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RIMS Kôkyûroku Bessatsu
B90 (2022), 77–95

Counting isomorphism classes of superspecial curves

By

Momonari Kudo∗

Abstract

A superspecial curve is a (non-singular) curve over a field of positive characteristic whose

Jacobian variety is isomorphic to a product of supersingular elliptic curves over the algebraic

closure. It is known that for given genus and characteristic, there exist only finitely many

superspecial curves, up to isomorphism over an algebraically closed field. In this article, we give

a brief survey on results of counting isomorphism classes of superspecial curves. In particular,

this article summarizes some recent results in the case of genera four and five, obtained by the

author and S. Harashita. We also survey results obtained in a joint work with Harashita and

E. W. Howe, on the enumeration of superspecial curves in a certain class of non-hyperelliptic

curves of genus four.

§ 1. Introduction

Throughout this article, by a curve we mean a non-singular projective variety of

dimension one. A curve of genus g over a field K of characteristic p > 0 is said to be

superspecial if Jac(C) ∼= Eg (over the algebraic closure K) for a supersingular elliptic

curve E, where Jac(C) denotes the Jacobian variety of C. Note that this definition is

well-defined by the following fact of Deligne, Ogus and Shioda (cf. [29, Theorem 3.5] or

[25, Section 1.6, p. 13]): If g ≥ 2, for any supersingular elliptic curves Ei for 1 ≤ i ≤ 2g,

we have E1 × · · · × Eg
∼= Eg+1 × · · · × E2g.

For a pair (g, p), we denote by Λg,p the set of Fp-isomorphism classes of superspecial

curves of genus g over finite fields of characteristic p > 0. The cardinality #Λg,p is at

most finite (zero is possible) by, e.g., a general fact that given an abelian variety A,

there exist only finitely many (irreducible) curves D such that Jac(D) ∼= A, see [27,
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Corollary 1.2]. Ekedahl proved in [6, Theorem 1.1], which we will recall in Theorem 2.1

in this article, that if there exists a superspeical curve C of genus g over Fp, then we

have 2g ≤ p2 − p, and 2g ≤ p− 1 if C is hyperelliptic and (g, p) 6= (1, 2).

The main problem which we consider in this article is:

Problem 1.1. Determine the number #Λg,p of Fp-isomorphism classes of su-

perspecial curves of genus g over finite fields of characteristic p > 0. Moreover, find

complete representatives of the isomorphism classes.

This article is a survey on results of counting the number of isomorphism classes of

superspecial curves. For g = 1, Deuring [4] proved that #Λ1,p is equal to the class num-

ber of a quaternion algebra. Also in the case of g = 2, 3, it follows from a general result

by Ibukiyama-Katsura-Oort [14, Theorem 2.10] on superspecial principally polarized

abelian varieties that #Λg,p is determined by computing the class numbers of quater-

nion hermitian lattices. These class numbers were explicitly computed by Eichler [5] for

g = 1, Hashimoto-Ibukiyama [11] for g = 2, and Hashimoto [10] for g = 3 (cf. Igusa also

computed the class number for g = 1 by directly counting the Fp-isomorphism classes

of supersingular elliptic curves). We review these results for g ≤ 3 in Section 2.

On the other hand, the problem for g ≥ 4 has not been solved in all primes, but in

recent years, the author and Harashita developed several algorithms to count genus-4

or genus-5 superspecial curves [19], [20], [21], [22]. Sections 3 and 4 describe our results

(for small primes) obtained by these algorithms in the case of genus g = 4, 5. In Section

5, we also describe our most recent results obtained by a joint work with Harashita and

Howe [23], where we presented algorithms to count (or find) superspecial curves among

certain 2-dimensional families of genus-4 non-hyperelliptic curves.

Remark. As stated above, this article mainly focuses on the enumeration of su-

perspecial curves of given genus, up to isomorphism over an algebraically closed field,

i.e., counting Fp-isomorphism classes of such curves over Fp. On the other hand, we

can also consider the enumeration up to isomorphism over finite fields, i.e., counting

the number of K-isomorphism classes of superspecial curves over a finite field K. Note

that it suffices for this to consider the case of K = Fp or Fp2 since the number of Fpa -

isomorphism classes of superspecial curves over Fpa depends on the parity of a (cf. [21,

Proposition 2.3.1]). Main results in [19], [20], [21], [22] that will be stated in Sections 3

and 4 include those on the enumeration not only over Fp, but also over Fp or Fp2 .

§ 2. The number of superspecial curves of genus one, two and three

Let p be a rational prime. At first, we recall Ekedahl’s results in [6] including the

field of definition of superspecial curves. The main theorem of [6] (Theorem 2.1 below)

gives bounds on the existence of superspecial curves:
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Theorem 2.1 ([6], Theorem 1.1). If there exists a superspecial curve C of genus

g in characteristic p, then we have the following:

1. 2g ≤ p2 − p, and

2. 2g ≤ p− 1 if C is hyperelliptic and (g, p) 6= (1, 2).

Ekedahl also showed in the proof of [6, Theorem 1.1] that any superspecial curve

over an algebraically closed field descends to a maximal or minimal curve over Fp2 ,

where a curve C of genus g over Fq is called maximal (resp. minimal) if the number of

Fq-rational points on C attains the Hasse-Weil upper bound q + 1 + 2g
√
q (resp. the

Hasse-Weil lower bound q + 1 − 2g
√
q). Conversely, it is known that any maximal or

minimal curve over Fp2 is superspecial. Thus, for determining #Λg,p, it suffices to count

Fp-isomorphism classes of superspecial curves of genus g over Fp2 . One more important

fact showed in the proof of [6, Theorem 1.1] is that the existence of a superspecial curve

over the prime field Fp implies that of maximal and minimal curves over Fp2 .

In the following, we review results on the computation of #Λg,p for g ≤ 3. Let

hp (resp. tp) denote the class (resp. type) number of the quaternion algebra Bp,∞ over

Q ramified exactly at {p,∞}. Deuring [4] showed that the computation of #Λ1,p is

reduced into that of the class number hp.

Theorem 2.2 ([4]). We have the following:

1. Every supersingular elliptic curve over Fp has a model over Fp2 , and #Λ1,p = hp.

2. The number of elements in Λ1,p which have models defined over Fp is 2tp − hp.

Using results on computing hp and tp by Eichler [5], we have the following:

Theorem 2.3 ([4], [5]). The number #Λ1,p of Fp-isomorphism classes of super-

singular elliptic curves is equal to

p− 1

12
+

1−
(

−1
p

)

4
+

1−
(

−3
p

)

3

if p > 3, and one if p = 2 or 3.

Igusa [16] also proved the same result as in Theorem 2.3 by directly computing the

number of supersingular j-invariants from the Legendre form y2 = x(x − 1)(x − λ) of

an elliptic curve. We also refer to [31, Proposition 4.4] for results on the number of

Fq-isomorphism classes of supersingular elliptic curves over Fq.

For g = 2 and 3, determining #Λg,p is reduced into counting superspecial princi-

pally polarized abelian varieties (PPAV’s for short) by the fact that any PPAV is the
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Jacobian variety of a (possibly reducible) curve, see the main theorem of [28]. Here we

recall a general result by Ibukiyama-Katsura-Oort [14, Theorem 2.10] on the number of

superspecial principally polarized abelian varieties:

Theorem 2.4 ([14], Theorem 2.10). Let E be a supersingular elliptic curve over

Fp. For g ≥ 2, the number of principal polarizations on Eg up to automorphisms of

Eg is equal to the class number Hg = Hg(p, 1) of the principal genus of the quaternion

hermitian space (Bp,∞)g.

Counting superspecial curves of genus g = 2, 3 is done by removing the contribution

of reducible curves. As is noted in [14, p. 145], the number of supersingular abelian

surfaces with reducible principal polarization is equal to the number of pairs (Ei, Ej)

of supersingular elliptic curves Ei and Ej with i ≤ j, and thus we have the following

result for g = 2:

Theorem 2.5 ([14], [11]). The number #Λ2,p of Fp-isomorphism classes of su-

perspecial curves of genus two is equal to H2 −H1(H1 + 1)/2. Using the computational

result of H2 by Hashimoto-Ibukiyama [11] together with Theorem 2.3, we have that

#Λ2,p =















0 (p = 2, 3)

1 (p = 5)

p3+24p2+141p−166
2880 − 1−(−1

p )
32 +

1−(−2

p )
8 +

1−(−3

p )
18 + ǫ (p ≥ 7),

where ǫ = 4/5 if p ≡ 4 (mod 5), and zero otherwise.

The number of Fp-isomorphism classes of superspecial curves C of genus 2 such

that C has a model over Fp is also computable, see [15, Section 1].

Similarly to the case of g = 2, we can compute the value of #Λ3,p, see [3, Theorem

3.10 (d)] for an explicit formula.

§ 3. Case of genus four

Different from the case of g ≤ 3, for g ≥ 4 the dimension of the moduli space of

curves of genus g is strictly less than that of the moduli space of PPAV’s of dimension

g. This means that the theory of abelian varieties is not so effective for our purpose

for g ≥ 4. For this reason, the enumeration of superspecial curves of genus 4 has

not been completed yet for every p, whereas some results for small and concrete p are

known. In this section (resp. the next section), we survey results on the enumeration of

superspecial curves of genus 4 (resp. 5). In particular, this section summarizes results in

[19], [20] and [21], where the authors proposed computational approaches to enumerate

superspecial curves of genus 4.
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Let C be a curve of genus 4. We recall that C is either of the following two types

(cf. [9, Chap. IV, Example 5.2.2]):

1. Hyperelliptic. The normalization of the plane curve y2 = f(x), where f(x) is a

separable polynomial of degree 9 or 10.

2. Canonical. A complete intersection of quadratic and cubic hypersurfaces in P3.

Recall from the paragraph just after Theorem 2.1 that, for counting superspecial

curves in characteristic p > 0, it suffices to count Fp-isomorphism classes of superspecial

curves over Fp2 .

First, we consider the case where C is a non-hyperelliptic curve over a finite field

K = Fq with q = p or p2 for p ≥ 5, and give a summary of results in [19] and [21]. As

a canonical curve, C is defined in the 3-projective space P3 = Proj(K[x, y, z, w]) by an

irreducible quadratic form Q and an irreducible cubic form P in K[x, y, z, w], see [9,

Chapter IV, Example 5.2.2]. As showed in [19, Section 2.1], we may assume that any

coefficient of Q and P belongs to K. By the classification theory of quadratic forms over

finite fields, we can transform Q into either of (N1) 2xw + 2yz, (N2) 2xw + y2 − ǫz2

for ǫ ∈ K× r (K×)2 and (Dege) 2yw + z2 (cf. [19, Remark 2.1.1]).

Here we recall a criterion on the superspecialty of C = V (Q,P ) in Proposition 3.1

below. The proof is done by computing the Hasse-Witt matrix of C, which represents

the Frobenius on the first cohomology group H1(C,OC). Each entry of the Hasse-Witt

matrix of C is one of the 16 coefficients in (QP )p−1 given in Proposition 3.1.

Proposition 3.1 ([19], Corollary 3.1.6). With notation as above, C is superspe-

cial if and only if the coefficients of xpi−i′ypj−j′zpk−k′

wpℓ−ℓ′ in (QP )p−1 are equal to 0

for all positive integers i, j, k, ℓ, i′, j′, k′, ℓ′ with i+ j + k + ℓ = i′ + j′ + k′ + ℓ′ = 5.

Based on Proposition 3.1, we have a computational strategy to enumerate super-

special non-hyperelliptic curves of genus 4 over K:

Strategy 3.2.

1. For each of the three types ((N1), (N2) and (Dege)) of Q, collect superspecial

curves V (Q,P ) as follows:

(a) Collect cubic forms P ∈ K[x, y, z, w] such that HW-matrix = 0, i.e., the 16

coefficients in (QP )p−1 given in Proposition 3.1 are all zero.

(b) For each P collected in (a), test whether V (Q,P ) is non-singular or not.

2. For the superspecial curves V (Q,P ) collected in Step 1, compute their isomorphism

classes.



82 Momonari Kudo

Both of Step 1 (a), (b) and Step 2 are done with Gröbner basis computation. We

here focus on Step 1 (a) and Step 2, and give their brief descriptions. Note that Step 1

(b) is done by a general method for the non-singularity test, see e.g., [19, Section 3.2].

Step 1 computes the solutions of multivariate systems HW-matrix = 0 with respect

to unknown coefficients in P . Naively, P has 20 unknowns, but in fact, the dimension

of the moduli space of non-hyperelliptic curves of genus 4 is 9. Thus it requires to

reduce the number of unknowns as much as possible, since the number deeply affects

the computational cost of solving multivariate systems. The author and Harashita [19,

Section 4], [21, Section 3] reduced the number by considering the action of elements in

the orthogonal similitude group Õϕ(K) to the cubic form P , where ϕ is the symmetric

matrix associated to Q. Note that they realized elements in Õϕ(K) by computing the

Bruhat decomposition of Õϕ(K), see [19, Section 3] for more details.

In Lemmas 3.3 – 3.5 below, we collect the reduced form of P for each of the three

types of Q.

Lemma 3.3 ([21], Lemma 3.4.1). Let Q = 2xw + 2yz, and ϕ the symmetric

matrix associated to Q. An element of Õϕ(K) transforms P into the following form:

(y + b1z)x
2 + b2xz

2 + a1y
3 + a2y

2z + a3yz
2 + a4z

3

+ (a5y
2 + a6yz + a7z

2)w + (a8y + a9z)w
2 + a10w

3
(3.1)

for ai ∈ K and for b1 ∈ {0} ∪K×/(K×)2 and b2 ∈ {0, 1}.

Lemma 3.4 ([21], Lemma 3.5.1). Let Q = 2xw + y2 − ǫz2 for ǫ ∈ K× with

ǫ /∈ (K×)2. An element of Õϕ(K) transforms P into the following form:

(a1y + a2z)x
2 + a3(y

2 − ǫz2)x+ b1y(y
2 − ǫz2) + a4y(y

2 + 3ǫz2)

+ a5z(3y
2 + ǫz2) + (a6y

2 + a7yz + b2z
2)w + (a8y + a9z)w

2 + a10w
3

(3.2)

for some ai ∈ K with (a1, a2) 6= (0, 0) and for b1, b2 ∈ {0, 1}.

Lemma 3.5 ([21], Lemma 3.6.1). Let Q = 2yw + z2, and ϕ the symmetric ma-

trix associated to Q. An element of Õϕ(K) transforms P into the following form (3.3)

if #K > 5, and into either of the following forms (3.3) and (3.4) if #K = 5:

a0x
3 + (a1y

2 + a2z
2 + a3w

2 + a4yz + a5zw)x

+ a6y
3 + a7z

3 + a8w
3 + a9yz

2 + b1z
2w + b2zw

2,
(3.3)

for some ai ∈ K with a0, a6 ∈ K× and for b1, b2 ∈ {0, 1}, where the leading coefficient

of R := a1y
2 + a2z

2 + a3w
2 + a4yz + a5zw is 1 or R = 0;

(3.4) x3 + (a1y
2 + a2z

2 + a3w
2 + a4yz + b1zw)x+ y2z + zw2

for ai ∈ K = F5 and b1 ∈ {0, 1}.
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Thus Step 1 (a) of Strategy 3.2 is done by: For each of the three types of Q, collect

P in the corresponding reduced form given in Lemma 3.3 for (N1), Lemma 3.4 for

(N2) and Lemma 3.5 for (Dege) such that HW-matrix = 0.

We next consider Step 2 of Strategy 3.2, i.e., how to decide whether two non-

hyperelliptic curves of genus 4 are isomorphic or not over k, where k = K or K. Let

C1 = V (Q1, P1) and C2 = V (Q2, P2) be non-hyperelliptic curves of genus 4 over k. If

there exists an isomorphism over k from C1 to C2, the quadratic forms Q1 and Q2 are

equivalent over k. Hence it suffices to consider the case of Q1 = Q2, say Q. Let ϕ

be the symmetric matrix associated to Q. As is described in [19, Section 6.1], the two

curves C1 and C2 are k-isomorphic if and only if there exist g ∈ Õϕ(k) and λ ∈ k×

such that g · P1 ≡ λP2 mod Q. Using the Bruhat decomposition of Õϕ(k) given in [19,

Section 3], we reduce the (non-)existence of such g and λ into that of solutions over k of

multivariate systems, see [21, Section 4.2] for more details including concrete algorithms

to test the (non)-existence of such solutions.

In [19, Section 5] and [21, Section 4], the authors wrote down explicit algorithms

for Strategy 3.2, and implemented them over Magma [1]. To implement Step 1 (a), they

adopted the hybrid method [2], which combines the Gröbner basis computation with

the brute force on some unknown coefficients in P . In Theorem 3.6 below, we collect

main results in [19] and [21] obtained by executing proposed algorithms over Magma.

Theorem 3.6.

1. ([19, Theorem A]) Any superspecial curve of genus 4 over F52 is F52-isomorphic to

2yw + z2 = x3 + a1y
3 + a2w

3 + a3zw
2 = 0 in P3, where a1, a2 ∈ F×

52 and a3 ∈ F52 .

2. ([19, Corollary 5.1.1]) All superspecial curves of genus 4 in characteristic 5 are

isomorphic to each other over an algebraically closed field.

3. ([21, Theorem A] and [19, Example 6.2.4]) There exist exactly seven (resp. 21)

superspecial curves of genus 4 over F5 (resp. F25) up to isomorphism over F5 (resp.

F25).

4. ([19, Theorem B]) There is no superspecial curve of genus 4 in characteristic 7.

5. ([21, Theorem B]) There exist exactly 30 (resp. nine) non-hyperelliptic superspecial

curves of genus 4 over F11 up to isomorphism over F11 (resp. F11).

Second, we consider the case where C is hyperelliptic, and give a summary of results

in [20]. In general, a hyperelliptic curve H over K is realized as the desingularization

of the homogenization of y2 = f(x), where f(x) is a polynomial over K with non-zero

discriminant. In [20, Section 3.2], the authors gave a reduction of a defining equation

of H so that the set of all the ramification points of the reduced model is defined over

K:
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Lemma 3.7 ([20], Lemma 2). Assume that p and 2g + 2 are coprime. Let ǫ ∈
K× r (K×)2. Any hyperelliptic curve H of genus g over K is the desingularization of

the homogenization of

cy2 = x2g+2 + bx2g + a2g−1x
2g−1 + · · ·+ a1x+ a0

for ai ∈ K for i = 0, 1, . . . , 2g − 1 where b = 0, 1, ǫ and c = 1, ǫ.

We also recall a criterion on the superspecialty of the hyperelliptic curve H of genus

g in Corollary 3.8 below. This criterion comes from a well-known explicit formula for

the Cartier-Manin matrix of H (cf. [32]), which represents the Cartier operator on the

space H0(H,Ω1
H) of regular differential forms on H.

Corollary 3.8 ([20], Corollary 1). Let H be a hyperelliptic curve y2 = f(x) of

genus g over K, where deg(f) = 2g + 1 or 2g + 2. Then H is superspecial if and

only if the coefficients of xpi−j in f (p−1)/2 are equal to 0 for all pairs of integers with

1 ≤ i, j ≤ g.

Here we also describe a method given in [20, Section 3.3] to test whether two

hyperelliptic curves C1 : c1y
2 = f1(x) and C2 : c2y

2 = f2(x) with c1, c2 ∈ K× of genus

g are isomorphic or not over k = K or K, where fi is a separable polynomial in K[x]

of degree 2g + 2 for each 1 ≤ i ≤ 2. Let Fi be the homogenization of fi with respect

to an extra variable z for each 1 ≤ i ≤ 2. Recall from [20, Lemma 1] that C1
∼= C2

over k if and only if there exist h ∈ GL2(k) and λ ∈ k× such that h · F1 = λ2F2.

Regarding entries of h and λ as variables, we reduce the (non-)existence of such h and

λ into that of a solution over k of a multivariate system, see [20, Section 3.3] for more

details including concrete algorithms to test the (non)-existence of such a solution.

Combining Lemma 3.7 and Corollary 3.8 with the isomorphism test described as

above, we can construct a strategy similar to Strategy 3.2 for enumerating superspecial

hyperelliptic curves of genus g over K, see [20, Section 3] for concrete algorithms. The

authors of [20] implemented the algorithms over Magma, and executed them for g = 4

with q = 11, 112, 13, 132, 17, 172, 19. Theorem 3.9 below collects main results in [20].

Theorem 3.9.

1. ([20, Theorem 1]) There is no superspecial hyperelliptic curve of genus 4 in charac-

teristic 11 and 13.

2. ([20, Theorem 2]) There exist precisely 5 (resp. 25) superspecial hyperelliptic curves

of genus 4 over F17 (resp. F172) up to isomorphism over F17 (resp. F172). Moreover,

there exist precisely 2 superspecial hyperelliptic curves of genus 4 over the algebraic

closure in characteristic 17 up to isomorphism.
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3. ([20, Theorem 3]) There exist precisely 12 superspecial hyperelliptic curves of genus

4 over F19 up to isomorphism over F19. Moreover, there exist precisely 2 superspecial

hyperelliptic curves of genus 4 over F19 up to isomorphism over the algebraic closure.

Table 1 summarizes known values of the number #Λ4,p of Fp-isomorphism classes of

superspecial curves of genus 4 in characteristic p. The non-existence of non-hyperelliptic

(resp. hyperelliptic) superspecial curves of genus 4 for p ≤ 3 (resp. p ≤ 7) is deduced

from Ekedahl’s bounds given in Theorem 2.1. The number written in bold type is

determined by our theorems (Theorems 3.6 and 3.9) described in this section. The

notation ‘H’ and ‘C’ denote the hyperelliptic and canonical cases respectively. The

number written in each bracket is the number of Fp-isomorphism classes of superspecial

curves C such that C has a model over Fp.

Table 1. Known values of the number #Λ4,p of Fp-isomorphism classes of superspecial

curves of genus 4 in characteristic p.

p 2 3 5 7 11 13 17 19 ≥ 23

H 0 0 0 0 0 0
2 ?

?
(2) (2)

C 0 0
1

0
?

? ? ? ?
(1) (9)

#Λ4,p 0 0
1

0
?

? ? ? ?
(1) (9)

We close this section with open problems in the enumeration of superspecial curves

of genus four:

Problem 3.10 (Genus four). Determine the number of K or K-isomorphism

classes of superspecial curves of genus four over K in the following cases:

1. Canonical case over K = Fp for p ≥ 13 or over K = Fp2 for p ≥ 11.

2. Hyperelliptic case over K = Fp for p ≥ 23 or over K = Fp2 for p ≥ 19.

§ 4. Case of genus five

First, we recall that a curve of genus 5 is either of the following three types:

1. Hyperelliptic. The normalization of the plane curve y2 = f(x), where f(x) is a

separable polynomial of degree 11 or 12.

2. Trigonal. A curve C such that there exists a morphism C → P1 of degree 3.
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3. Generic (canonical and non-trigonal). A complete intersection of three quadric in

P4.

In this paper, we say that a curve of genus 5 is “generic” if it is canonical and non-

trigonal.

As for the non-existence of superspecial curves of genus 5, it follows from Ekedahl’s

bound given in Theorem 2.1 that there is no superspecial curve of genus 5 in charac-

teristic p = 2, 3. The non-existence holds also for p = 5. Indeed, by [19, Lemma 2.2.1],

if there were a superspecial curve of genus 5 in characteristic 5, then there would exist

a maximal curve of genus 5 over F52 , which contradicts the fact due to Fuhrmann and

Torres [7] that if there exists a maximal curve of genus g over Fp2 , then 4g ≤ (p−1)2 or

2g = p2 − p. For p ≥ 7, there is no result that shows the non-existence in the canonical

case. The problem of counting superspecial curves of genus 5 is left for p ≥ 11 in the

hyperelliptic case, and for p ≥ 7 in the canonical case.

This section briefly describes results in [22], where the authors enumerated super-

special trigonal curves of genus g = 5 over finite fields Fpa for any a if p ≤ 7 and for

odd a if p ≤ 13. Recall from [19, Proposition 2.3.1] that it suffices to study the case of

a = 1, 2 if p ≤ 7 and the case of a = 1 if p ≤ 13.

Let C be a trigonal curve of genus 5 over a finite field K = Fq, where q = p or p2

with p ≥ 5. It is shown in [22, Section 2] that C is the normalization of a plane quintic

C ′ = V (F ) ⊂ P2 with a unique singular point for some quintic form F ∈ K[x, y, z]. The

quintic forms defining our curves are divided into the following three types: (Split node

case) F = xyz3+f , (Non-split node case) F = (x2−ǫy2)z3+f with ǫ ∈ Kr(K×)2,

(Cusp case) F = x2z3 + f , where f is the sum of monomial terms which can not be

divided by z3. Specifically, we have the reduced forms of F in Propositions 4.1 – 4.3

below. In the following, let ζ be a primitive element of K×, and ǫ an element of

K× r (K×)2.

Proposition 4.1 ([22], Proposition 3.1.1). Any trigonal curve of genus 5 over

K in (Split node case) has a quintic model in P2 of the form (4.1) or (4.2):

F = xyz3 + (x3 + b1y
3)z2 + (a1x

4 + a2x
3y + a3x

2y2 + a4xy
3 + a5y

4)z

+ a6x
5 + a7x

4y + a8x
3y2 + a9x

2y3 + a10xy
4 + a11y

5,
(4.1)

for ai ∈ K, where b1 ∈ {0, 1} if q ≡ 2 mod 3 and b1 ∈ {0, 1, ζ} if q ≡ 1 mod 3.

F = xyz3 + (c1x
4 + c2x

3y + a3x
2y2 + a4xy

3 + a5y
4)z

+ a6x
5 + a7x

4y + a8x
3y2 + a9x

2y3 + a10xy
4 + a11y

5.
(4.2)

for (c1, c2) = (0, 0), (1, 0), (0, 1), (1, 1), (1, ζ) and for ai ∈ K.
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Proposition 4.2 ([22], Proposition 3.2.1). Any trigonal curve of genus 5 over

K in (Non-split node case) has a quintic model in P2 of the form (4.3), (4.4) or

(4.5):

F = (x2 − ǫy2)z3 + {x(x2 + 3ǫy2) + by(3x2 + ǫy2)}z2

+ (a1x
4 + a2x

3y + a3x
2y2 + a4xy

3 + a5y
4)z

+ a6x
5 + a7x

4y + a8x
3y2 + a9x

2y3 + a10xy
4 + a11y

5,

(4.3)

for ai ∈ K, where b = 0 if q 6≡ −1 mod 3 and otherwise b has three possibilities deter-

mined by the condition that (1, b) is parallel to (1, 0)A for a representative A of C̃/C̃3

(for example b = 0, 6, 10 if q = 11), where

C̃ =

{(

r ǫs

s r

)∣

∣

∣

∣

∣

(r, s) ∈ K2, (r, s) 6= (0, 0)

}

.

F = (x2 − ǫy2)z3 + (cx4 + a2x
3y + a3x

2y2 + a4xy
3 + a5y

4)z

+ a6x
5 + a7x

4y + a8x
3y2 + a9x

2y3 + a10xy
4 + a11y

5.
(4.4)

for c = 1, ζ and for ai ∈ K.

(4.5) F = (x2 − ǫy2)z3 + a6x
5 + a7x

4y + a8x
3y2 + a9x

2y3 + a10xy
4 + a11y

5.

for ai ∈ K.

Proposition 4.3 ([22], Proposition 3.3.1). Any trigonal curve of genus 5 over

K in (Cusp case) has a quintic model in P2 of the form (4.6):

F = x2z3 + a1y
3z2 + (a2x

4 + a3x
3y + a4x

2y2 + b1xy
3 + a5y

4)z

+ a6x
5 + a7x

4y + a8x
3y2 + a9x

2y3 + b2xy
4 + a10y

5
(4.6)

for ai ∈ K (i = 1, . . . , 10) with a1 6= 0, where b1 ∈ {0, 1} and b2 ∈ {0, 1}.

Here we recall a criterion on the superspecialty of the trigonal curve C of genus 5 in

Proposition 4.4 below. For the proof, see [22, Section 2.2], where the authors computed

the Hasse-Witt matrix of C.

Proposition 4.4 ([22], Corollary 2.2.2). With notation as above, C is superspe-

cial if and only if the coefficients of the monomials xpi−i′ypj−j′zpk−k′

in F p−1 are equal

to zero, where (i, j, k) and (i′, j′, k′) run through (3, 1, 1), (1, 3, 1), (2, 2, 1), (2, 1, 2), (1, 2, 2).

Here we also describe a method given in [22, Section 5.1] to test whether two

trigonal curves of genus 5 are k-isomorphic or not, where k = K or K. Let C1 and C2

be trigonal curves of genus 5 over K, and let V (F1) and V (F2) be the associate quintics
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in P2. Recall from [22, Lemma 2.1.2] that C1
∼= C2 over k is equivalent to V (F1) ∼= V (F2)

over k, i.e., there exist M ∈ GL3(k) and λ ∈ k× such that M · F1 = λF2. Regarding

entries of M and λ as variables, we reduce the (non-)existence of such M and λ into

that of a solution over k of a multivariate system, see [22, Section 5.1] for more details

including concrete algorithms to test the (non)-existence of such a solution.

Combining Propositions 4.1 – 4.4 with the isomorphism test described as above, we

can construct a strategy similar to Strategy 3.2 for enumerating superspecial trigonal

curves of genus 5 over K, see [22, Section 4] for concrete algorithms. In Theorem 4.5

below, we collect main results in [22] obtained by executing the algorithms over Magma.

Theorem 4.5.

1. ([22, Theorem A]) There is no superspecial trigonal curve of genus 5 in character-

istic 7.

2. ([22, Theorem B]) Any superspecial trigonal curve of genus 5 over F11 is F11-

isomorphic to the normalization of

(4.7) xyz3 + a1x
5 + a2y

5 = 0

in P2, where a1, a2 ∈ F×

11, or the normalization of

(4.8) (x2 − 2y2)z3 + ax5 + bx4y + (9a)x3y2 + 4bx2y3 + (9a)xy4 + 3by5 = 0

in P2, where (a, b) ∈ (F11)
⊕2 r {(0, 0)}.

3. ([22, Proposition 5.1.1 (I)]) There exist precisely four F11-isomorphism classes of

superspecial trigonal curves of genus 5 over F11. Representatives of the four iso-

morphism classes are given by the normalization Ci of C
′
i = V (Fi) ⊂ P2, where

F1 = xyz3 + x5 + y5,

F2 = xyz3 + 2x5 + y5,

F3 = xyz3 + 3x5 + y5,

F4 = (x2 − 2y2)z3 + x5 + 9x3y2 + 9xy4.

4. ([22, Proposition 5.1.1 (II)]) There exists a unique F11-isomorphism class of su-

perspecial trigonal curves of genus 5 over F11. A representative of the unique iso-

morphism class is given by the normalization C(alc) of the singular curve C(alc)′ =

V (F ) ⊂ P2 with F = xyz3 + x5 + y5.

5. ([22, Theorem C]) There is no superspecial trigonal curve of genus 5 over F13.
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In Table 2, we summarize known values of the number #Λ5,p of Fp-isomorphism

classes of superspecial curves of genus 5 in characteristic p. As described at the beginning

of this section, there is no superspecial non-hyperelliptic (resp. hyperelliptic) curve of

genus 5 for p ≤ 5 (resp. p ≤ 7). The number written in bold type is determined by our

theorem (Theorems 4.5) described in this section. The notation ‘H’, ‘T’ and ‘G’ denote

the hyperelliptic, trigonal, generic (canonical and non-trigonal) cases respectively. The

number written in each bracket is the number of Fp-isomorphism classes of superspecial

curves C such that C has a model over Fp.

Table 2. Known values of the number #Λ5,p of Fp-isomorphism classes of superspecial

curves of genus 5 in characteristic p.

p 2 3 5 7 11 13 17 19 ≥ 23

H 0 0 0 0 ? ? ? ? ?

T 0 0 0 0
? ?

? ? ?
(1) (0)

G 0 0 0 ? ? ? ? ? ?

#Λ5,p 0 0 0 ? ? ? ? ? ?

We close this section with open problems in the enumeration of superspecial curves

of genus five:

Problem 4.6 (Genus five). Determine the number ofK orK-isomorphism classes

of superspecial curves of genus five over K in the following cases:

1. Hyperelliptic case over K = Fp or over K = Fp2 for p ≥ 11.

2. Trigonal case over K = Fp for p ≥ 17 or over K = Fp2 for p ≥ 11.

3. Generic (canonical and non-trigonal) case over K = Fp or over K = Fp2 for p ≥ 7.

§ 5. Enumeration of certain genus-four superspecial curves

While our papers [19] and [21] (resp. [20]) enumerate superspecial curves among the

whole space of non-hyperelliptic (resp. hyperelliptic) curves of genus 4, the paper [23]

enumerates those among a certain family of non-hyperelliptic curves of genus 4, that

is, Howe curves. In [12], these curves were first studied in order to quickly construct
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genus-4 curves with many rational points, and also they heuristically tend to be super-

special. It was also proved in [24] that there exists a supersingular Howe curve in every

characteristic p > 3.

In this section, we briefly describe results of [23], where the authors present compu-

tational methods ((A), (B) and (C) below) for enumerating superspecial Howe curves.

We start with recalling the definition of a Howe curve. Throughout this section, let K

be an algebraically closed field of characteristic p 6= 2.

Definition 5.1. A Howe curve over K is a curve which is isomorphic to the

normalization of the fiber product E1 ×P1 E2 of two genus-1 double covers Ei → P1

ramified over Si, where each Si consists of 4 points and where #(S1 ∩ S2) = 1.

The superspeciality of a Howe curve is reduced into that of curves of low genera

as follows: For a Howe curve H with two genus-1 double covers Ei : y
2 = fi(x), where

fi is a separable polynomial of degree 3 or 4 with i = 1, 2, we have a genus 2-curve

C : y2 = f1f2. It follows from [12, Theorem 2.1] (see also [18, Theorem C] for a more

general result) that H is supersingular if and only if E1, E2 and C are all supersingular.

In order to enumerate superspecial Howe curves, two strategies (A) and (B) below

are provided in [23]. The authors of [23] also gave a method ((C) below) to decide

whether two Howe curves are K-isomorphic, or not.

(A) (E1, E2)-first, using Cartier-Manin matrices

In this strategy, we use the same realization of Howe curves as in [24], that is,

the fiber product of E1 : z
2 = f1(x) := x3 + A1µ

2x + B1µ
3 and E2 : w

2 = f2(x) :=

(x− λ)3 + A2µ
2(x− λ) + B2µ

3 over P1 = Proj(K[x, y]), where A1, B1, A2 and B2 are

elements in K such that EAi,Bi
: y2 = x3+Aix+Bi (i = 1, 2) are supersingular elliptic

curves over K, and where λ, µ and ν are elements in K such that (i) µ 6= 0 and ν 6= 0,

and (ii) f1 and f2 are coprime. Note that a point (λ : µ : ν) ∈ P2(K) satisfying (i) and

(ii) is said to be of Howe type in [24]. It was shown in [23, Proposition 4.1] that any

superspecial Howe curve is K-isomorphic to the normalization of E1 ×P1 E2 obtained

as above for A1, B1, A2, B2, λ, µ and ν belonging to Fp2 .

This strategy enumerates pairs of supersingular elliptic curves Ei : y2 = fi(x)

(i = 1, 2) so that C : y2 = f1(x)f2(x) is superspecial. To do this, for each unordered

pair of (A1, B1) and (A2, B2), it suffices to compute the solutions (λ : µ : ν) ∈ P2(Fp2)

(of Howe type) to the homogeneous system M ≡ 0, where M is the Cartier-Manin

matrix of C. Once all pairs (E1, E2) are enumerated, we classify isomorphism classes

of Howe curves defined by the pairs, by the isomorphism test described in (C) below.

For a concrete algorithm of the enumeration based on this strategy, see [23, Section

4.2]. It is also shown in [23, Section 4.3] that the complexity of this algorithm is Õ(p6)

arithmetic operations in Fp2 .
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(B) C-first, using Richelot isogenies

The second strategy first enumerates superspecial curves C : y2 = f(x) of genus 2,

where f(x) ∈ K[x] is a separable polynomial of degree 6. Once all superspecial curves

of genus 2 are enumerated, we then enumerate decompositions f(x) = f1(x)f2(x) with

fi(x) of degree 3 so that there is an element b ∈ K ∪ {∞} that makes both genus-1

curves Ei : y
2 = (x− b)fi(x) (i = 1, 2) supersingular.

For this, we first apply a method given in [13, Section 3] to construct some (at

least one) superspecial curves of genus 2 by gluing supersingular elliptic curves together

along their 2-torsion. We then produce more such curves by applying Richelot isogenies

to the curves already produced, where the definition of a Richelot isogeny of two curves

of genus 2 is as follows:

Definition 5.2. Two genus-2 curves are Richelot isogenous if there exits an

isogeny Ψ : J(C1) → J(C2) such that Ker(Ψ) is isomorphic to Z/2Z × Z/2Z that is

maximal isotropic with respect to 2-Weil pairing. In this case, the isogeny Ψ is called a

Richelot isogeny.

Note that given a curve C1, we can compute (at most 15) genus-2 curves C2,

which are Richelot isogenous to C1, with an isogeny map Ψ, see e.g., [30, Chapter 8] for

more details. The above procedure to enumerate superspecial genus-2 curves terminates

because there are only finitely many superspecial curves of genus 2, and a recent result

of Jordan and Zaytman [17, Theorem 43] shows that we obtain all isomorphism classes

of superspecial curves of genus 2 in this way. Once all pairs (E1, E2) are enumerated, we

classify isomorphism classes of Howe curves defined by the pairs, by the isomorphism

test described in (C) below. A concrete algorithm of the enumeration of superspecial

Howe curves based on this strategy is given in [23, Section 5.3], and its complexity is

Õ(p4) arithmetic operations in Fp2 .

(C) A new isomorphism test for Howe curves.

Since every Howe curve is canonical (cf. [23, Lemma 2.1]), we can test whether

two Howe curves are isomorphic or not, by applying the isomorphism test for canonical

curves of genus 4 given in Section 3 (cf. [19, Section 6.1] and [20, Section 4.3]). However,

this turns out to be very costly since it uses many Gröbner basis computations. In [23,

Section 3], the authors present an efficient isomorphism test specific to Howe curves.

We here briefly describe the isomorphism test given in [23, Section 3].

We first recall from the beginning of [23, Section 3] that a Howe curve is specified

by the following three pieces of information: (1) A genus-2 curve C. (2) An unordered

pair of disjoint sets {W1,W2}, each consisting of three Weierstrass points of C. (3) An

unordered pair of distinct points {P1, P2} on C that are mapped to one another by the
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hyperelliptic involution. We here call (C, {W1,W2}, {P1, P2}) a Howe triple of a Howe

curve. A criterion given in [23, Section 3] for determining whether two Howe curves are

isomorphic or not is the following:

Proposition 5.3 ([23], Corollary 3.3). Two Howe triples (C, {W1,W2}, {P1, P2})
and (C ′, {W ′

1,W
′
2}, {P ′

1, P
′
2}) give isomorphic Howe curves if and only if there is an iso-

morphism C → C ′ that takes {W1,W2} to {W ′
1,W

′
2} and {P1, P2} to {P ′

1, P
′
2}.

This isomorphism test is conducted by simply deciding whether there exist any

automorphisms of P1 that respect the sets of Weierstrass points and their divisions, and

that take the x-coordinate of P1 and P2 to that of P ′
1 and P ′

2. Clearly this procedure

does not require any Gröbner basis computation, and also it is shown to be more efficient

than the isomorphism test for canonical curves of genus 4 given in Section 3.

Main theorems in [23] and open questions

The authors of [23] implemented algorithms based on (A) – (C) over Magma, and

executed them to enumerate superspecial Howe curves for concrete p. Recall that the

complexities of (A) and (B) are Õ(p6) and Õ(p4) respectively. Practical time behaver

of (A) and (B) for 5 ≤ p ≤ 53 is shown in [23, Table 2]. As the estimated complexities

show, we expect from [23, Table 2] that (B) is extremely faster than (A) in practice;

e.g., for p = 53, (A) takes 5678.32 seconds, while (B) takes only 1.46 seconds, under the

authors’ experimental environment (details are written in [23, Section 6]). From this,

the authors of [23] decided to adopt (B) in order to obtain results for p larger than 53.

Main results obtained by the execution of (B) together with (C) are the following:

Theorem 5.4.

1. ([23, Theorem 1.1]) For every prime p with 7 < p < 20000, there exists a superspe-

cial Howe curve in characteristic p.

2. ([23, Theorem 1.2]) For every prime p with 7 < p ≤ 199, the number of Fp-

isomorphism classes of superspecial Howe curves in characteristic p is given in

Table 3.

We can easily increase the upper bounds on p in these two theorems. For example,

on a 2.8 GHz Quad-Core Intel Core i7 with 16GB RAM, computing the 8351 superspe-

cial Howe curves in characteristic 199 using an algorithm based on (B) took 124 seconds

in Magma. Finding examples of superspecial Howe curves for every p between 7 and

20000 took 680 minutes on the same PC.

We close this section with an open problem in the enumeration of superspecial

Howe curves, and an open question on the existence of such curves:
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Table 3. For each prime p from 11 to 199, we give the number n(p) of superspecial

Howe curves over Fp and the ratio of n(p) to the heuristic prediction p3/1152 (see [23,

Section 5]).

p n(p) Ratio p n(p) Ratio p n(p) Ratio

11 4 3.462 67 260 0.996 137 2430 1.089

13 3 1.573 71 742 2.388 139 2447 1.050

17 10 2.345 73 316 0.936 149 3082 1.073

19 4 0.672 79 595 1.390 151 3553 1.189

23 33 3.125 83 655 1.320 157 3427 1.020

29 45 2.126 89 863 1.410 163 3518 0.936

31 59 2.281 97 802 1.012 167 6268 1.550

37 41 0.932 101 1207 1.350 173 4780 1.064

41 105 1.755 103 1151 1.213 179 5771 1.159

43 79 1.145 107 1237 1.163 181 5419 1.053

47 235 2.608 109 1193 1.061 191 9610 1.589

53 167 1.292 113 1323 1.056 193 6298 1.009

59 259 1.453 127 2013 1.132 197 6839 1.030

61 243 1.233 131 2606 1.335 199 8351 1.221

Problem 5.5.

1. (Problem) Determine the number of Fp2-isomorphism classes of superspecial Howe

curves.

2. (Question) Does there exist a superspecial Howe curve in any characteristic p > 7?
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[5] Eichler, M., Über die Idealklassenzahl total definiter Quaternionenalgebren, Math. Z., 43

(1938), 102–109.

[6] Ekedahl, T., On supersingular curves and abelian varieties, Math. Scand., 60 (1987),

151–178.



94 Momonari Kudo

[7] Fuhrmann, R. and Torres, F., The genus of curves over finite fields with many rational

points, Manuscripta Math., 89, 103–106, 1996.

[8] Gonzalez, J., Hasse-Witt matrices for the Fermat curves of prime degree, Tohoku Math.

J., (2) 49 (1997), no. 2, 149–163, MR 1447179 (98b:11064).

[9] Hartshorne, R., Algebraic Geometry, GTM 52, Springer-Verlag (1977).

[10] Hashimoto, H., Class numbers of positive definite ternary quaternion Hermitian forms,

Proc. Japan Acad. Ser. A Math. Sci., 59 (1983), no. 10, 490–493.

[11] Hashimoto, K. and Ibukiyama, T., On class numbers of positive definite binary quaternion

Hermitian forms II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 695–699

(1982).

[12] Howe, E. W., Quickly constructing curves of genus 4 with many points, pp. 149–173 in:

Frobenius Distributions: Sato-Tate and Lang-Trotter conjectures (D. Kohel, I. Shparlinski,

eds.), Contemporary Mathematics 663, American Mathematical Society, Providence, RI

(2016).
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