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Numerical Stability Analysis of Space-Time Finite Integration
Method Based on the Dependent Domain Concept

Keinoshin Katsuki1, Shogo Asahino1 Takeshi Mifune1, and Tetsuji Matsuo1

1Graduate School of Engineering, Kyoto University, Kyoto, 615-8246 Japan, katsuki.keinoshin.33u@st.kyoto-u.ac.jp

A method for estimating the stability criterion in the space-time finite integration method using the subgrid technique was developed.
Numerical and analytical dependent domains were compared to estimate the stability limit. Space-time subgrids locally refined with
two, three, and four divisions were examined. The stability limit based on the proposed method almost agrees with that of the
numerical experiment.

Index Terms—Dependent domain, finite integration method, numerical stability, space-time grid

I. INTRODUCTION

AN EFFICIENT method for electromagnetic wave com-
putation is required in the analysis of advanced optical

device materials such as metamaterials and photonic crystals,
which locally have fine structures at sub-wavelength scales.
For the analysis of these devices, the application of the
subgrid technique [1] to the conventional finite difference time
domain (FDTD) method often causes numerical instability
unless sophisticated stabilization is implemented, whereas the
finite integration (FI) method [2][3][4] can simulate wave
propagation efficiently using flexible spatial grids. However, its
time step is restricted by the Courant–Friedrichs–Lewy (CFL)
condition [5], depending on the smallest spatial grid size.

As an expansion of the FI method, the space-time FI
[6] method was developed, where the primal and its dual
grid were constructed in space-time. This method reduces
the computational cost of handling local microstructures by
flexibly configuring both the spatial and the temporal grids.
It has been observed that the space-time FI method with the
subgrid technique is conditionally stable when using an explicit
time-marching scheme [7]. However, the stability limit must
be obtained experimentally by numerical examination. This
study proposes a method to estimate the stability limit from
the space-time grid geometry based on the dependent domain
concept [5], which in turn is based on the inclusion relationship
between the numerical dependent and analytical dependent
domains.

II. SPACE-TIME FINITE INTEGRATION METHOD

The coordinate system is denoted by (ct, x, y, z) =
(x0, x1, x2, x3), where c = 1/

√
ε0µ0 and ε0 and µ0 are the

permittivity and permeability of the vacuum, respectively. The
Maxwell equations are written in integral form as∮

∂Ωp

F = 0,

∮
∂Ωd

G =

∫
Ωd

J, (1)

where Ωp and Ωd are hypersurfaces in the space-time and
J is the source term given by the four-current density. The

electromagnetic variables F and G are defined as follows:

F = −
3∑

i=1

Eidx0dxi +

3∑
j=1

Bjdx
kdxl (2)

G =

3∑
i=1

Hidx
0dxi +

3∑
j=1

Djdx
kdxl, (3)

where Ei = Ei/c, Hi = Hi/c, and (j, k, l) is a cyclic
permutation of (1, 2, 3). The constitutive equation relating to
F and G can be written as

F = (Z∗)G, (4)

where Z =
√

µ/ε is the impedance of the medium, µ and ε
are the permittivity and permeability, respectively, and ∗ is the
Hodge operator, representing the duality of F and G.

For a simple expression of the constitutive equations, the
Hodge dual grid [6] is used to satisfy∫

Sd
crdx

0dxj∫
Sp

dxkdxl
= −

∫
Sd

dxkdxl∫
Sp

crdx0dxj
= κ, (5)

where Sp is the face of the primal grid, Sd is the corresponding
face of the dual grid, and cr = 1/

√
εrµr and εr and µr

are the relative permittivity and permeability, respectively.
Condition (5) gives the dual grid that is orthogonal to the
primal grid in the Lorentzian metric. Fig. 1 shows an example
of a subgrid according to (5) with two divisions in space-time,
where the solid line represents the primal grid and the dotted
line represents the dual grid. A systematic formulation of the
space-time FI method using incidence matrices is presented in
[8]. The construction of 4D space-time grid and its resultant
computational accuracy is discussed in [9].

III. CONCEPT OF DEPENDENT DOMAIN

The CFL condition is known as a stability condition for
electromagnetic field computation using the FDTD method
concept with a brick-type grid. The theory is replaced by the
concepts of analytical and numerical dependent domains [5].
The analytical dependent domain Da(t, τ, x, y) and numerical
dependent domain Dn(t, τ, x, y) are defined as the spatial do-
mains at a given time t that affect the analytical and numerical
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Fig. 1. Subgrid connection; solid line: primal grid, dotted line: dual grid

solutions at time τ > t and position (x, y), respectively.
According to the interpretation of the CFL condition, the nu-
merical propagation speed must exceed the propagation speed
of the physical phenomena for numerical stability. In other
words, a stable computation is achieved when the numerical
dependent domain, which is determined by the propagation
of computed information, includes the analytical dependent
domain, which is determined by the propagation of the physical
phenomena.

By applying this concept to the space-time FI method
without a subgrid, the numerical and analytical dependent
domains are as illustrated in Fig. 2. The faces, on which
the computed information at the space-time point (τ, x, y)
depend, at time t = τ − ∆t, and t = τ − 2∆t constitutes
the numerical dependent domain. Meanwhile, the analytical
dependent domain is the area within the light cone given by
the propagation of electromagnetic waves, which is represented
by a circle. The inclusion of these domains is considered for all
space-time points, and the most critical condition determines
the stability limit. This study compares the aforementioned
stability criterion with the stability limit obtained by numerical
examination for various space-time subgrid geometries.

Fig. 2. Dependent domains in 3D space-time

A. Straight-type 2-Divisions

For the space-time FI method using a subgrid with discrete
width (∆t/2,∆x/2(= ∆y/2)), as shown in Fig. 1, we derive

the stability limit from the concept of the dependent domain.
Considering the inclusion of numerical and analytical depen-
dent domains at all space-time points, the grid that restricts the
stability limit exists at the subgrid boundary, as shown in Fig.
3(a). The computed information at (τ = (n + 1/2)∆t, x, y)
depends on the purple-colored faces at time t = n∆t and
t = (n − 1/2)∆t. The numerical dependent domains expand
as time goes back. However, at time t = (n−1/2)∆t, the main
grids do not affect the space-time point (τ, x, y), yet; hence,
the numerical dependent domain does not expand to the main
grid at t = (n− 1/2)∆t. Meanwhile, the analytical dependent
domain obtained by the propagation of electromagnetic waves
expands regardless of the geometry of the grid. Therefore, the
inclusion of the analytical dependent domain with respect to
point (x, y) at t = (n − 1/2)∆t in the numerical dependent
domain is achieved by c∆t ≤ d(x′, y′), as shown in Fig. 3(b),
where d(x′, y′) is given by

d(x′, y′) =

√(
l − ∆x

4

)2

+

(
∆x

4

)2

(6)

l =
∆x

2
+ δ +

(c∆t)2

6∆x
. (7)

Therein, δ is a freeparameter of the grid connection and
(c∆t)2/6∆x is due to the slope of the primal face satisfying (5)
[Fig. 3]. A grid optimization method [10] gives δ = 0.135∆x.
Therefore, the inclusion condition for the dependent domain is

c∆t ≤

√[
∆x

4
+ δ +

(c∆t)2

6∆x

]2
+

(
∆x

4

)2

, (8)

which gives the stability limit c∆t = 0.495∆x.

(a) Dependent domains at the subgrid boundary in 3D space-time

(b) Dependent domains at t = (n− 1/2)∆t

Fig. 3. Dependent domains in space-time subgrid with 2-divisions
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B. Staircase-type 2-Divisions

We set the staircase-type subgrid (∆t/2,∆x/2), as shown in
Fig. 4(a); this simplifies the grid connection without changing
the nodal positions [7][9]. Considering the dependent domain
as in III-A, the stability limit is also restricted by the condition
that (x, y), shown in Fig. 4(b), at τ = (n + 1/2)∆t depends
on the computed information at t = τ − ∆t; it is derived by
c∆t ≤ d(x′, y′). Furthermore, because d(x′, y′) is determined
by the unchanged nodal positions, we obtain exactly the same
stability limit c∆t = 0.495∆x using (8); therefore, the stability
limit is unchanged by the staircase grid connection.

(a) Subgrid connection; solid line: primal grid, dotted line: dual grid

(b) Dependent domains at t = (n− 1/2)∆t

Fig. 4. Subgrid with staircase 2-divisions

C. Reversed 2-Divisions

A coarse grid domain is set up inside the subgrid
(∆t/2,∆x/2) domain; that is, the domains of coarse and fine
grids are reversed to the previous setting shown in Fig. 5(a).
This arrangement modifies only the corner connections of the
subgrid. In this case, the stability limit is restricted by the
condition that (x, y), as shown in Fig. 5(b), at τ = (n+1/2)∆t
depends on the computed information at t = τ − ∆t; it is
derived by c∆t ≤ d(x′, y′), where d(x′, y′) is given by

d(x′, y′) =
√
2

[
137∆x

432
+

49(c∆t)2

432∆x

]
. (9)

We obtain the stability limit of c∆t = 0.486∆x.

D. 3-Divisions

We discuss the dependent domain when using the subgrid
with 3-divisions (∆t/3,∆x/3) as shown in Fig. 6. Similar
to the case of 2-divisions, the strictest condition in which the
numerical dependent domain includes the analytical dependent
domain is given by the subgrid boundary connection shown
in Fig. 7(a). The inclusion condition of dependent domains at

(a) Subgrid connection; solid line: primal grid, dotted line:
dual grid

(b) Dependent domains at t = (n− 1/2)∆t

Fig. 5. Subgrid with reversed 2-divisions

t = τ −∆t created by (τ = (n + 1/3)∆t, x, y) gives c∆t ≤
d(x′, y′), where d(x′, y′) is given by

d(x′, y′) =

√[
∆x

6
+ δ +

(c∆t)2

6∆x

]2
+

(
∆x

6

)2

(10)

using δ = 0.089∆x; thus, we obtain the stability limit c∆t =
0.314∆x.

Fig. 6. Subgrid connection with 3-divisions; solid line: primal grid, dotted
line: dual grid

E. 4-Divisions
In the case of a subgrid with 4-divisions (∆t/4,∆x/4) [11],

the subgrid geometry at the boundary restricts the stability
limit according to the concept of the dependent domain. The
dependence between t = (n + 1/4)∆t and t = (n − 3/4)∆t
at (x, y) as shown in Fig. 7(b) derives c∆t ≤ d(x′, y′), where
d(x′, y′) is given by

d(x′, y′) =
5√
34

[
∆x

5
+ δ +

3(c∆t)2

20∆x

]
(11)
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using δ = 0.089∆x; thus, we obtain the stability limit c∆t =
0.256∆x.

Fig. 7. Dependent domains in space-time subgrid with (a) 3-divisions at t =
(n− 2/3)∆t and (b) 4-divisions at t = (n− 3/4)∆t.

IV. NUMERICAL EXAMINATION

To evaluate the stability limit based on the concept of the
dependent domain, we experimentally obtained the stability
limit by numerical examination and compared it with the
stability limit due to the dependent domain.

Wave propagation was simulated in the computational do-
main with the spatially periodic boundary condition, as shown
in Fig. 8 with c = 1, ∆x = ∆y = 1 by normalization and
normalized initial conditions given by Ex = Ey = Ez = 0,
Bx = By = 0, and Bz = exp[−(x2 + y2)/25]. Fig. 9(a)
depicts the distribution of Bz at t = 75∆t with ∆t = 0.50
setting the subgrid (∆t/2,∆x/2) in Domain I. Meanwhile,
Fig. 9(b) describes the distribution of Bz at t = 100∆t with
∆t = 0.35 setting the subgrid (∆t/3,∆x/3) in Domain II;
the wave propagation can also be simulated for the case of the
subgrid with 4-divisions.

A long-term computation of 1 million steps is simulated
under these conditions, and the upper limit of the time step at
which numerical instability does not appear is considered to
be the experimentally obtained stability limit. A comparison
between the stability limits obtained experimentally and those
derived from the concept of a dependent domain is shown in
Table I. The stability limits in the cases of straight-type and
staircase-type 2-divisions are detailed in [7]; the computational
accuracy and non-physical reflections are discussed in [1], [10]
and [11]. The results in this table show that the concept of the
dependent domain can predict the stability limit of the space-
time FI method.

V. CONCLUSION

A method for estimating the stability criterion in the 3D
space-time FI method based on the concept of the dependent
domain is presented. The stability limits given by the concept
are consistent with those obtained experimentally by long-
term calculations in the cases of the subgrid with straight 2-,
staircase 2-, reversed 2-, 3-, and 4-divisions. According to our
preliminary experiments, the concept of dependent domain is
still valid in the case of 4D space-time subgrid, which will be
reported in the future.

Fig. 8. Computational domain

Fig. 9. Wave propagation; (a) reversed 2-divisions and (b) 3-divisions.

TABLE I
COMPARISON OF STABILITY LIMITS c∆t/∆x

Dependent domain Numerical examination
2-divisions 0.495 0.50 [7]
staircase 2-divisions 0.495 0.50 [7]
reversed 2-divisions 0.486 0.50
3-divisions 0.314 0.35
4-divisions 0.256 0.27
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