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ABSTRACT Reconstruction of metagenome-assembled genomes (MAGs) has be-
come a fundamental approach in microbial ecology. However, a MAG is hardly com-
plete and overlooks genomic microdiversity because metagenomic assembly fails to
resolve microvariants among closely related genotypes. Aiming at understanding the
universal factors that drive or constrain prokaryotic genome diversification, we per-
formed an ecosystem-wide high-resolution metagenomic exploration of microdiversity
by combining spatiotemporal (2 depths � 12 months) sampling from a pelagic fresh-
water system, high-quality MAG reconstruction using long- and short-read metagenomic
sequences, and profiling of single nucleotide variants (SNVs) and structural variants
(SVs) through mapping of short and long reads to the MAGs, respectively. We recon-
structed 575 MAGs, including 29 circular assemblies, providing high-quality reference
genomes of freshwater bacterioplankton. Read mapping against these MAGs identified
100 to 101,781 SNVs/Mb and 0 to 305 insertions, 0 to 467 deletions, 0 to 41 duplica-
tions, and 0 to 6 inversions for each MAG. Nonsynonymous SNVs were accumulated in
genes potentially involved in cell surface structural modification to evade phage recog-
nition. Most (80.2%) deletions overlapped with a gene coding region, and genes of pro-
karyotic defense systems were most frequently (.8% of the genes) overlapped with a
deletion. Some such deletions exhibited a monthly shift in their allele frequency, sug-
gesting a rapid turnover of genotypes in response to phage predation. MAGs with
extremely low microdiversity were either rare or opportunistic bloomers, suggesting
that population persistency is key to their genomic diversification. The results concluded
that prokaryotic genomic diversification is driven primarily by viral load and constrained
by a population bottleneck.

IMPORTANCE Identifying intraspecies genomic diversity (microdiversity) is crucial to
understanding microbial ecology and evolution. However, microdiversity among environ-
mental assemblages is not well investigated, because most microbes are difficult to cul-
ture. In this study, we performed cultivation-independent exploration of bacterial genomic
microdiversity in a lake ecosystem using a combination of short- and long-read metage-
nomic analyses. The results revealed the broad spectrum of genomic microdiversity
among the diverse bacterial species in the ecosystem, which has been overlooked by
conventional approaches. Our ecosystem-wide exploration further allowed comparative
analysis among the genomes and genes and revealed factors behind microbial genomic
diversification, namely, that diversification is driven primarily by resistance against viral
infection and constrained by the population size.
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In microbial ecology, reconstruction of metagenome-assembled genomes (MAGs)
from an uncultured microbial assemblage has become a routine technique that has

reshaped and substantially expanded our understanding of prokaryotic diversity (1, 2).
However, MAGs are hardly complete (i.e., circularly assembled) due to difficulties in
assembling repetitive (e.g., rRNA genes) and hypervariable (microdiverse) regions in a
genome coexisting in the same sample (3, 4). In particular, genomic microdiversity
hampers metagenomic assembly and results in incompleteness or the absence of a
MAG even at deep sequencing depths, which has been recognized as “the great meta-
genomics anomaly” (5). Moreover, a metagenomic assembler generally tries to gener-
ate a consensus long contig rather than fragmented assemblies reflecting different
microvariants (3, 6). Consequently, in a metagenomic assembly, genomic microdiver-
sity is either unassembled or masked by a consensus sequence.

Genomic microdiversity provides information essential to understanding microbial ecol-
ogy and evolution. The hypervariability of genes involved in cell surface structural modifica-
tion is thought to be a consequence of the virus-host arms race (7, 8). Intraspecies flexibility
of the genes responsible for the availability of substrates and nutrients suggests that func-
tionally diversified populations collectively occupy the diverse microniches (9). The degree
of genomic microdiversification varies among lineages and is thought to depend on a num-
ber of ecological and evolutionary factors, such as mutation rate, generation time, popula-
tion size, genetic mobility, fitness, and drift (10, 11). However, due to the aforementioned
difficulties, a comprehensive investigation of genomic microdiversity covering a consortium
of microbes in an ecosystem is challenging, and the universal factors that drive or constrain
their genomic diversification remain to be elucidated.

To address this, the present study took a three-step approach. The first was compre-
hensive metagenomic sampling in an ecosystem. We targeted freshwater bacterio-
plankton assemblages sampled spatiotemporally (2 depths � 12 months) at a pelagic
station on Lake Biwa, a monomictic lake with an oxygenated hypolimnion that harbors
one of the best-studied freshwater microbial ecosystems (12–16). The second step was
long-read metagenomic assembly, which can overcome the problem of fragmented as-
sembly by using reads longer than a repeat or hypervariable region (17–20). This was
done to generate high-quality reference MAGs covering the diversity of bacterioplank-
ton in the lake. The third step was short- and long-read metagenomic read mapping to
the MAGs, in which genomic microvariants were identified as inconsistencies between
a consensus assembly and mapped reads (21–23). Notably, we aimed to detect two dif-
ferent types of microvariants, single nucleotide variants (SNVs) and structural variants
(SVs), namely, insertion, deletion, duplication, or inversion of a genomic sequence.
While short-read mapping efficiently detects SNVs due to its high base accuracy (24,
25), it cannot resolve most SVs that are longer than the canonical short-read length
(i.e., 150 to 250 bp). SVs are often associated with gains and losses of genes, which
account for a large part of genomic and functional heterogeneity among closely
related genotypes (9, 10). Here, the limitation of short-read mapping is complemented
by long-read mapping, in which SVs can be located with reads discontinuously aligned
to a consensus assembly (26–28). Our three-step approach allowed a high-resolution,
ecosystem-wide exploration of SNVs and SVs covering the broad spectrum of prokary-
otic diversity in the lake. The results were comparatively analyzed from spatiotemporal,
phylogenetic, and gene functionality perspectives, aiming at characterizing factors
behind the genomic microdiversification.

RESULTS
General characteristics of the rMAGs. The 24 samples were associated with broad

physicochemical conditions. Thermal stratification occurred from May to December,
and the prokaryotic cell abundance was 0.82 to 4.30 (average = 2.00) �106 cells mL21

(see Table S1 in the supplemental material). For each of the samples, 10.9- to 27.5-Gb
long reads (N50 = 4,360 to 5,807 bp) were assembled, and the resulting contigs were
polished using 7.0- to 9.3-Gb short reads (Table S1 and Fig. S1). From the 24 polished
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contig sets, our pipeline generated 575 nonredundant representative/reference MAGs
(rMAGs) covering 21 phyla of bacteria and archaea (Table S2). The number of contigs,
the proportion of open reading frames (ORFs) with .90% of the length being aligned
to the reference database (POA90) (indel correction score; see Materials and Methods
for detail), and completeness of the rRNA genes all showed better results in rMAGs
with higher short-read coverage (Fig. 1a to c). For each of the 24 samples, 45.4% to
72.1% (mean = 60.4%) of the short reads were mapped to any of the 575 rMAGs
(Fig. S2), indicating that the rMAGs accounted for the majority of the extracted DNA. A
ubiquity-abundance plot (Fig. 1d) demonstrated that the rMAGs included common
freshwater bacterioplankton lineages known to dominate in Lake Biwa (12, 13, 29). The
relative abundance of the rMAGs revealed their diverse distribution pattern across the
months and depths (Fig. S3).

SNVs and SVs detected in the rMAGs. SNVs and SVs were profiled for the 178
rMAGs with .10� short-read coverage in the representative sample. The results
revealed the broad spectrum of genomic microdiversity across the rMAGs (Fig. 2). The
number of SNVs per 1 Mb ranged from 100 to 101,781 and significantly varied among
the habitat preferences (Fig. 2b). Among the four types of SVs detected, insertion (0 to
305 sites per rMAG) and deletion (0 to 467) dominated over duplication (0 to 41) and
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inversion (0 to 6) (Fig. 2d). The numbers of insertions and deletions were strongly cor-
related (Pearson’s r = 0.925), while they showed weaker correlations (Pearson’s
r = 0.241 and 0.285) with the number of SNVs (Fig. S4). Unlike SNVs, the number of SVs
(deletions) did not significantly vary among the habitat preferences (Fig. 2e). Both the
numbers of SNVs and the numbers of SVs (deletions) varied among and within the
phyla (Fig. 2c and f).

Genes involved in SNVs and SVs. On average, 66.5%, 24.3%, and 7.5% of SNVs
were synonymous, nonsynonymous, and intergenic, respectively (Fig. 2a). The nonsy-
nonymous SNV ratio exhibited a negative correlation with the SNV numbers, and
exceptionally high ratios (.35%) were observed among rMAGs (n = 15) with low SNV
numbers (,7,500 per 1 Mb) (Fig. 3a). The nonsynonymous SNV ratio was positively cor-
related with genome size (Fig. 3b). Gene-resolved SNV frequency and the ratio of non-
synonymous to synonymous polymorphism rates (pN/pS) exhibited differences among
different functional categories (Fig. 4).

Among the four types of SVs, we further focused on deletions, because deletion was the
most prevalent SV type (Fig. 2d) and genes overlapped with a deletion can be simply char-
acterized on a genome. The second reason is not the case for insertion, in which the
involved genes appear in the mapped long reads, which are unpolished and unannotated.
Among the 9,471 deletions detected in the 178 rMAGs, 35.2% were,100 bp, followed by a
long-tail distribution, with 31.7% and 3.4% being over 1 kb and 10 kb, respectively (Fig. S5).
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On average, 80.2% of deletions overlapped with a gene coding region (Fig. 5a), and the pro-
portion of gene coding deletions showed a wide range within and among the phyla
(Fig. 5b). Gene coding deletions were most frequently overlapped with transporter genes,
which reflects the large number of transporter genes in the rMAGs (Fig. S6). Normalized by
the gene counts, genes associated with the prokaryotic defense system were most often
(.8% of the genes) overlapped with a deletion (Fig. 6a). Among the genes affiliated with
the prokaryotic defense system, those associated with the type I restriction and modification
(RM) system were most abundant in deletions, followed by genes associated with toxin-anti-
toxin (TA) systems, other RM systems, and CRISPR-Cas systems (Fig. 6b).

DISCUSSION
Long-read metagenomes generated an ecosystem-wide, high-quality prokary-

otic genome collection from Lake Biwa. Long-read metagenomics successfully recon-
structed high-quality MAGs (Fig. 1) representing the majority of the prokaryotic diversity in
the lake across seasons and depths (Fig. 1d; see Fig. S2 in the supplemental material), which
was not possible by conventional short-read metagenomics in Lake Biwa (13) or other deep
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freshwater lakes (30–32). The MAGs included 29 closed assemblies, including the first circular
representatives of predominant hypolimnetic bacterioplankton lineages, namely, Chloroflexi
CL500–11 (rMAG_38), Nitrosoarchaeum (rMAG_256), Verrucomicrobia CL120–10 (rMAG_78),
“Candidatus Kapabacteria” LiUU-9–330 (rMAG_1819), and a member of Nitrosomonadaceae
(rMAG_1024) (33, 34).

We should note that we aimed to generate continuous consensus contigs by merging
results from different assemblers and samples rather than disjoining microvariants of each
genotype. We took this “consensus-first” approach because our subsequent aim was to
detect microdiversity masked by the consensus assembly through read mapping. Caveats in
analyzing our rMAGs are that they may not represent a single genotype existing in the
environment and they may still contain base errors left unpolished due to inadequate
short-read coverage. The POA90 score suggested that fragmented ORFs introduced by

Prokaryotic defense system
Ribosome

Bacterial motility proteins
Two-component system
Transcription machinery

Secretion system
Lipopolysaccharide biosynthesis proteins

Translation factors
Transcription factors
Glycosyltransferases

Chaperones and folding catalysts
Chromosome and associated proteins

Peptidases and inhibitors
Transporters

Oxidative phosphorylation
Amino sugar and nucleotide sugar metabolism

Peptidoglycan biosynthesis and degradation proteins
DNA replication proteins

Purine and Pyrimidine metabolism
Ribosome biogenesis

Messenger RNA biogenesis
DNA repair and recombination proteins

Lipid biosynthesis proteins
Transfer RNA biogenesis

Biosynthesis of amino acids

0.00 0.01 0.02 0.03 0.04
Nucleotide diversity

Ribosome
Translation factors

Transcription machinery
Messenger RNA biogenesis

Oxidative phosphorylation
DNA replication proteins

Chaperones and folding catalysts
Chromosome and associated proteins

Transcription factors
Purine and Pyrimidine metabolism

DNA repair and recombination proteins
Lipid biosynthesis proteins

Biosynthesis of amino acids
Ribosome biogenesis

Transporters
Two-component system

Bacterial motility proteins
Secretion system

Transfer RNA biogenesis
Peptidases and inhibitors

Prokaryotic defense system
Amino sugar and nucleotide sugar metabolism

Peptidoglycan biosynthesis and degradation proteins
Lipopolysaccharide biosynthesis proteins

Glycosyltransferases

0.0 0.1 0.2 0.3 0.4 0.5
pN/pS

a

b

FIG 4 Box plots indicating the distribution of the nucleotide diversity (a) and pN/pS (b) of genes
among the 178 high-coverage rMAGs grouped by gene categories. Data were from the representative
sample for each rMAG. The categories are sorted by the median. Both nucleotide diversity and pN/pS
were determined by inStrain. The nucleotide diversity of a gene is defined as a gene-wide average of
base-wise nucleotide diversity expressed as 1 – (FA

2 1 FC
2 1 FG

2 1 FT
2), where FX is the frequency of

base X in the given nucleotide position.

Long-Read-Resolved Microdiversity of Lake Bacteria mSystems

July/August 2022 Volume 7 Issue 4 10.1128/msystems.00433-22 6

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 3

1 
A

ug
us

t 2
02

2 
by

 1
33

.3
.2

01
.3

1.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00433-22


uncorrected indel error are common in the majority of genomes with,10� short-read cov-
erage (Fig. 1b). In light of these limitations, we designate our MAGs as rMAGs (representa-
tive/reference MAGs) to differentiate them from those generated by conventional short-
read metagenomics and focused on those with.10� short-read coverage (n = 178) for fur-
ther investigation. In the downstream analyses (Fig. 2 to 6), we considered only SNVs and
SVs in the representative sample for each rMAG rather than concatenating the results from
multiple samples. We took this approach because the concatenation would introduce biases
in comparing genomes and genes due to the uneven number of high-coverage (.10�)
samples among the rMAGs.

The general trend that a higher read coverage resulted in a higher-quality rMAG (Fig. 1)
suggests that our sequencing effort (Table S1) was unsaturated and that deeper sequencing
would generate a greater number of high-quality rMAGs. However, read coverage alone was
not sufficient to reconstruct a high-quality rMAG. For example, an rMAG of LD12 (“Candidatus
Fonsibacter”), which is among the most abundant freshwater bacterioplankton lineages (35,
36), was fragmented and lacked rRNA genes, despite their extremely high read coverage
(.400� in short reads). Members of Pelagibacterales (also known as the SAR11 clade), includ-
ing LD12, harbor high genomic microdiversity in the flanking region of the rRNA gene operon
that is presumably responsible for immunity against their phage (21, 35, 37, 38). Our results
indicate that long-read sequencing generally deals well with “the great metagenomics anom-
aly” (5) but is still unable to solve the issue in extreme cases. Nonetheless, rMAGs provided an
unprecedentedly high-quality lake prokaryotic genome collection, which allowed ecosystem-
wide exploration of their genomic microdiversity through read mapping.

Broad spectrum of genomic microdiversity resolved by SNVs and SVs.We found
more than 1,000-fold differences in the SNV frequency across the rMAGs (Fig. 2a),
which is in line with a report on another freshwater system (39). The dominance of syn-
onymous SNVs (Fig. 2a) is also in agreement with previous works in freshwater (39)
and marine (21, 40) systems, supporting the idea that the bacterioplankton assem-
blage is generally under purifying selection, with most of the nucleotide variation
being neutral. The positive correlation between the nonsynonymous SNV ratio and ge-
nome size (Fig. 3b) agrees with the hypothesis that genome streamlining is associated
with strong purifying selection (41–43). We further found that the frequency of SNVs
was lower (Fig. 2b) and also more temporally stable (Fig. S7) in genomes of hypolimn-
ion inhabitants than that in genomes of epilimnion inhabitants. These results imply a
lower mutation rate in the deeper water layer, presumably due to the lower UV-
induced oxidative stress or the lower biological productivity owing to the lower tem-
perature and resource availability in the hypolimnion.
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FIG 5 Overview of deletions among rMAGs. Three rMAGs with no deletions were removed from the analysis; the remaining 175 high-
coverage rMAGs are shown. Data were from the representative sample for each rMAG. (a) Each bar represents an individual rMAG, sorted by
the number of deletions. Coding (i.e., overlapping with a gene coding region) and intergenic deletions are shown in different colors. The
mean proportion of each deletion type among the rMAGs is shown in the color legend. (b) Distribution of the proportion of gene coding
deletions grouped by phylum. Each point represents an individual rMAG.
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FIG 6 Genes overlapped with a deletion among the 178 high-coverage rMAGs. Data were from the representative sample for each rMAG. (a)
Proportion of genes overlapped with a deletion, grouped by gene categories. The same data but shown as the number of genes are available
in Fig. S6. (b) Number of prokaryotic defense system genes overlapped with a deletion, with the color indicating the type of defense system.
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One of the major achievements of the present study was the detection of SVs in a
metagenomic sample facilitated by long-read mapping. Compared to the SV analysis
for an isolated clonal genome, that for metagenomic assembly generates more com-
plex outputs as it refers to a consensus assembly derived from a highly heterogeneous
population. Notably, our approach was not efficient in detecting SVs with a high allele
variation or frequency, because such a highly heterogeneous region often eludes
metagenomic assembly. Conversely, our approach cannot detect mobile elements that
did not show heterogeneity within the 24 samples. Given these technical limitations,
our goal was not to resolve all SVs but rather to discover patterns of SV distribution
among environmental prokaryotic genomes under the same methodological criteria.
Indeed, most SVs in a genome were consecutively detected across samples of different
months (Fig. S8a), supporting the reproducibility and robustness of our analysis.

As with SNVs, we observed significant variation in SV frequency among the rMAGs
(Fig. 2d). The relationship between the number of SNVs and SVs was weak because several
rMAGs had an extremely high number of SVs (Fig. S4). Notably, members of Planctomycetota
harbored disproportionally high numbers of SVs (Fig. 2f) and a lower frequency (55.9% to
81.0%) of coding deletions (i.e., those overlapping with an ORF) than the average (80.2%)
(Fig. 5b). Further investigation found that their noncoding deletions were often associated
with intergenic tandem repeats (Fig. S8b). Such duplications and deletions can be introduced
by slippage of DNA polymerase during replication and can regulate the transcriptional activity
or act as a recombination site (44). Planctomycetes generally harbor a large genome with a
high number of genes with unknown functions (45). A recent exploration of freshwater planc-
tomycete MAGs reported a correlation between their genome size and intergenic nucleotide
length (46). Together, their intergenic plasticity might play an essential role in maintaining
their genomic integrity. Although characterization of individual SVs is beyond the scope of the
present study, overall, our long-read-resolved ecosystem-wide analysis reveals the ubiquity of
SVs in environmental prokaryotic genomes and sheds light on their role in regulating genomic
structure and function.

Genetic bottleneck as a major constraint of genomic microdiversity. The nega-
tive relationship between SNV frequency and their nonsynonymous rate (Fig. 3a) sug-
gests that stronger purifying selection acts on a genome in which more mutations are
accumulated. Based on this assumption, the lineages with a high nonsynonymous SNV
ratio and a low number of SNVs may have experienced a recent population bottleneck
and not mutated sufficiently to be negatively selected. In other words, their diversifica-
tion process might still be dominated by random drift or positive selection. Indeed, the
top 15 rMAGs with the highest nonsynonymous SNV ratio (delineated in Fig. 3a) were
either continuously rare in the hypolimnion or mostly rare but predominant in a short
period (boom-and-bust) in either of the water layers (Fig. S3). The former case could be
the consequence of the low growth and mutation rates in the hypolimnion, which
makes the genome diversification of these lineages slow enough to be observed
before purifying selection dominates. Notably, among these cases, the highest nonsy-
nonymous SNV ratio was observed in rMAG_34, which is affiliated with “Candidatus
Levybacteria” (OP11), a member of the candidate phyla radiation (CPR) (47). Recently, a
comprehensive exploration of freshwater CPR MAGs (48) reported exceptionally high
average nucleotide identity (ANI) (99.53%) between levybacterial MAGs reconstructed
from Lake Biwa (13) and Lake Baikal (31) metagenomes. We confirmed that our levy-
bacterial rMAG also belonged to the same species (ANI . 99.5% to both). Collectively,
it is possible that “Candidatus Levybacteria” recently migrated from the Eurasian conti-
nent to Lake Biwa and that their genomic microdiversity was still constrained by the
genetic bottleneck.

Among the latter (boom-and-bust) cases, prominent examples were two verrucomi-
crobial rMAGs (rMAG_2736 and rMAG_29), which had extremely low numbers of SNVs
and SVs (Fig. 3a and Table S2) and transiently dominated in either of the water layers
(Fig. S3). Both rMAGs were circular, indicating that long-read metagenomes generate a
complete assembly unless hampered by high microdiversity or low read coverage. The
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boom-and-bust dynamics of Verrucomicrobia agrees with the general assumption that
they are opportunistic strategists rapidly responding to a supply of carbohydrates (49,
50). Notably, rMAG_29 (taxonomically assigned to the genus “CAINDI01” by the GTDB)
was among the most abundant bacterioplankton lineages in the lake during their
bloom (Fig. 1d and Fig. S3), with their relative abundance (reads per kilobase of ge-
nome per million reads sequenced [RPKMS]) increasing more than 12-fold in just
1 month (1.39 in November to 16.92 in December). Because their bloom was observed
from May to June and from December to January in the hypolimnion (Fig. S3), their
growth was likely triggered by a supply of polysaccharides exuded from sinking phyto-
plankton cells derived from the spring and autumn algal blooms in the epilimnion, as
observed in a previous study of the lake (51). Taken together, the ecological strategy of
CAINDI01 (to rapidly exploit intermittent resources) produced periodic genetic bottle-
necks and effectively eluded selective processes, which resulted in their extremely low
genomic microdiversity in the lake despite their quantitative dominance. Interestingly,
CAINDI01 contained as many as 236 transposase genes (annotated by Prokka), but
none of them were associated with SVs, except for an inversion involving IS21 transpo-
sases (data not shown). The results further suggest that their rapid population turnover
prevented invasions of mobile genetic elements (MGEs). Collectively, we conclude that
a genetic bottleneck is a primary factor constraining genomic microdiversification.

Conversely, the extent of genomic microdiversification may be used to predict the exis-
tence or absence of a recent bottleneck event. For instance, rMAG_739 (Chitinophagaceae
of the phylum Bacteroidetes) was the fourth-most SNV-rich rMAG, with a low nonsynony-
mous rate (Fig. 3a), despite the fact that these bacteria were detectable only from June to
October in the epilimnion (Fig. S3). These results suggest that they did not experience a
recent genetic bottleneck and thus are allochthonous, presumably maintaining their large
genetic pool in the inflowing river, sediment, or the water column horizontally distant from
our sampling site. It should also be noted that no sign of a recent bottleneck event was
found among common and abundant freshwater bacterioplankton lineages (e.g., LD12, acI,
acIV, and CL500–11). Interestingly, the two most SNV-rich members, rMAG_1314 and
rMAG_102, were hypolimnion-dominating species of LD12 and acI, respectively, rather than
those dominant in the epilimnion (i.e., rMAG_300 and rMAG_28) (Fig. 3a and Fig. S3). The
results further support the idea that persistent rather than dominant populations exhibit
higher intrapopulation sequence variation (52). Given that the hypolimnion accounts for a
larger part of the lake water volume and is a less competitive habitat than the epilimnion,
we hypothesize that hypolimnion inhabitants are more likely to sustain a larger and more
stable population and thus are less constrained by a population bottleneck than epilimnion
inhabitants.

Phage predation as a major driving force of genomic microdiversification. The
lowest pN/pS ratio in housekeeping genes involved in replication, transcription, trans-
lation, and oxidative phosphorylation (Fig. 4b) agreed with that of a previous study in
the Baltic Sea (25) and indicated that the genes involved in core functions are under
stronger purifying selection. In contrast, high pN/pS ratios were observed among
genes potentially involved in cell surface structural modification, namely, glycosyltrans-
ferases, lipopolysaccharide biosynthesis, and peptidoglycan biosynthesis proteins
(Fig. 4b). Hypervariability of such genes has been observed in genomes of ubiquitous
marine and freshwater bacterioplankton and is considered beneficial in evading the
host recognition system of their phage (7–9). Our results further demonstrate that
these traits are universal in the ecosystem and suggest that phage predation is the
most prevalent selective pressure generating amino acid-level gene diversity.

The SV profiling demonstrated that deletion was overrepresented in genes involved
in prokaryotic defense systems, namely, RM systems, TA systems, and CRISPR-Cas sys-
tems (Fig. 6a). Among them, the three proteins making up the type I RM system (R, M,
and S) were the most represented (Fig. 6b). A previous metaepigenomic exploration
revealed the diversity of DNA methylated motifs and methyltransferase genes among
Lake Biwa bacterioplankton assemblages (53). Interestingly, the study reported that a
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corresponding pair of a methylated motif and a methyltransferase gene is often absent
in MAGs, which could be attributable to the incompleteness of MAGs or to the limited
sensitivity of the method. Further, the study found that the ratio of methylation in
each motif in a genome varied considerably, from 19% to 99%, for which the authors
reasoned reflected the methodological limitation of modification detection power (53).
Our results introduce another possible explanation for these observations: the mobility
of RM-related genes within a sequence-discrete population might have resulted in the
heterogeneous recovery of methylated motifs or methyltransferase genes in a MAG.
The variable nature of epigenetic modification proposes another layer of genomic
microdiversity, which will be key to revealing the mechanism behind the virus-host
arms race.

The next most represented defense genes in deletions were those involved in TA
systems (Fig. 6b), which can also act as an antiphage system (54). Recent experimental
work has demonstrated that the mobility and rapid turnover of genes involved in intra-
cellular defense machinery are essential mechanisms to maintaining the core genome
in the face of phage predation (55). Our results that RM and TA systems are highly mo-
bile (Fig. 6b) suggest the prevalence of such mechanisms in the ecosystem. In addition,
SNV analysis revealed that the prokaryotic defense system was the gene category with
the lowest nucleotide diversity (Fig. 4a) and among the highest pN/pS ratios (Fig. 4b),
which implies that the defense genes are positively selected by phage predation.
Meanwhile, both RM and TA systems can behave as selfish and addictive elements and
are prone to be horizontally transferred with an MGE (54, 56, 57). Their beneficial and
parasitic aspects are not mutually exclusive, and the relative contribution of the two
remains unresolved. Thus, we cannot rule out the possibility that some defense genes
are rather parasitic and nonbeneficial or even detrimental for the host. In any case,
these genes are among the most prevalent mobile genes generating genomic hetero-
geneity within a sequence-discrete population.

Although not as frequent as RM and TA systems, we also found deletions associated
with genes involved in the CRISPR-Cas system (Fig. 6b). Further investigation revealed
individual cases in which the whole CRISPR-Cas system was involved in a deletion, and
one of them further included TA system genes (Fig. S8c). Experimental studies have
suggested that the CRISPR-Cas system can disseminate horizontally (58, 59) and is
sometimes encoded in an MGE, which facilitates not only adaptive immunity against
phages but also inter-MGE competition and guided transposition of the MGE (60–62).
Our results provide evidence of the mobility of the CRISPR-Cas system in an ecosystem,
although it remains unknown whether it is beneficial or parasitic for the host.

Finally, we note that our monthly investigation revealed a shift in the allele fre-
quency of deletions or insertions involving the CRISPR-Cas system and CRISPR spacers
during the study period (Fig. S8c and d). The results suggest monthly turnover of the
population composition driven by the virus-host arms race. Such a rapid shift in popu-
lation composition has been demonstrated from the virus side in the marine system
(22). Our results are the demonstration from the host side and propose the significance
of not only sympatric but also temporal microdiversity. In summary, our ecosystem-
wide investigation of SNVs and SVs suggests that phage predation is the major driving
force of genomic microdiversification among the environmental microbial assemblage.
The key question for future works is whether and how the mobility of defense genes is
beneficial for the host, for which the microdiversity of the counteracting viral genome
must be explored.

Conclusions. Our ecosystem-wide high-resolution approach combining spatiotem-
poral sampling and long- and short-read metagenomics resulted in two major achieve-
ments. First, we presented a collection of high-quality MAGs covering the majority of
the prokaryotic diversity in a deep freshwater lake, which will be a valuable reference
for future studies in freshwater microbial ecology. Then, the broad spectrum of SNVs
and SVs masked in the MAGs were detected by short- and long-read mapping, respec-
tively, which is the second and greater achievement of this work. Based on the results,
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we conclude that genomic microdiversification is driven primarily by viral load and
constrained by genetic bottlenecks.

We also demonstrated the performance and limitation of our “consensus-first” approach
(Fig. 1). To push the consensus-first approach further, future works can consider gaining a
deeper sequencing depth (for instance, using the PromethION platform [63, 64]) and obtain-
ing longer sequencing reads with a more sophisticated DNA extraction method (65).
Alternative possible approaches include genome-free metagenomics, which directly handles
pan-metagenomic graphs without the prerequisite of a linear genomic assembly (66). The
ultimate approach will be a strain-resolved assembly, which usually requires an isolated cul-
ture or single cell but was recently accomplished in a metagenomic assembly using highly
accurate long reads (i.e., PacBio HiFi reads) and high-throughput chromosome conformation
capture (Hi-C) (20), although it is still too costly for common application.

Lakes are physically separated unique ecosystems and thus harbor genetically iso-
lated microbiomes (67), while those in the marine system are likely distributed globally
(40, 68) presumably following the rapid circulation of global surface seawater (69). This
implies that we can further perform a comparative study among different lakes, in
which each lake can be considered as a replicate or control of an ecosystem. The two
main factors affecting genome microdiversification (genetic bottlenecks and virus-host
interactions) are both lake specific. The microbiomes in different lakes have different
histories of biological interactions under different physicochemical conditions, which
would result in different trajectories of genome microdiversification. For instance, we
hypothesize that a larger and older lake is less affected by genetic bottlenecks in terms
of time and space. That is, the extent of bacterioplankton microdiversification in Lake
Biwa (the largest and oldest lake in Japan) might be the greatest among the lakes in
the country but might be lower than that of Lake Baikal, the largest and oldest fresh-
water lake on the earth. Such interlake comparative analyses will be an effective
approach to further validate the findings in the present study and to unveil the univer-
sal mechanisms in the diversification and evolution of the microbial genome.

MATERIALS ANDMETHODS
Sample collection.Water samples were collectedmonthly fromMay 2018 to April 2019 at a pelagic station

(water depth, ca. 73 m) on Lake Biwa (35°13909.50N, 135°59944.70E) from two water depths, representing the epi-
limnion (5 m) and the hypolimnion (65 m) (24 samples in total). Vertical profiles of chlorophyll a concentration,
temperature, and dissolved oxygen were collected using a RINKO CTD profiler (ASTD102; JFE Advantech). The
collected lake water was immediately sequentially filtered through a 200-mm mesh, 5-mm polycarbonate filter
(TMTP14250; Merck Millipore) and a 0.22-mm-pore-size Sterivex cartridge (SVGP01050; Merck Millipore), using a
peristaltic pump system onboard. Filtration was performed until the Sterivex cartridge was clogged (1 to 2.5 L of
lake water was filtered for each cartridge), and at least four Sterivex cartridges were collected for each sample.
The filters were flash-frozen in a dry ice-ethanol bath, transported to the laboratory on dry ice, and stored at
280°C until further processing. Water samples were collected between 8:00 a.m. and 11:00 a.m. on each
sampling day and processed to the freezing step within 1 h after collection. Prokaryotic cell abundance was
determined for each sample using a flow cytometer (CytoFLEX; Beckman Coulter) following fixation of the water
sample with 1% glutaraldehyde and staining with 0.25� SYBR green solution (S7563; Invitrogen).

DNA extraction. DNA was extracted from the Sterivex filters (i.e., 0.22- to 5-mm size fraction) using an
AllPrep DNA/RNA minikit (catalog no. 80204; Qiagen) with a modified protocol: the filter paper removed from
a Sterivex cartridge was put into a lysing matrix E tube (catalog no. 6914050; MP Biomedicals) with a mixture
of 400 mL RLT plus buffer (containing 1% b-mercaptoethanol in accordance with the kit’s protocol) and
400mL phenol-chloroform/isoamyl alcohol (25:24:1, vol/vol/vol); bead-beating was performed at 3,500 rpm for
30 s (MS-100; TOMY Digital Biology), followed by cooling on ice for 1 min, and then again at 3,500 rpm for
30 s; the supernatant after centrifugation (16,000 � g for 5 min at room temperature) was mixed with 500mL
chloroform-isoamyl alcohol (24:1, vol/vol) to remove the residual phenol and then centrifuged again; the su-
pernatant was then used as the loading material for the AllPrep DNA spin column and processed in accord-
ance with the manufacturer’s instructions. The quantity and quality of the DNA were measured using a Qubit
double-stranded DNA (dsDNA) HS assay kit (catalog no. Q32851; Thermo Fisher Scientific) and a spectropho-
tometer (NanoDrop 2000; Thermo Fisher Scientific). Consequently, at least 2 mg purified DNA was obtained
from each sample.

Sequencing. The extracted DNA was used for both short- and long-read shotgun metagenomic sequenc-
ing. For short-read sequencing, the DNA was sheared to 500 bp, on average, using an ultrasonicator (Covaris),
and a 24-sample multiplexed library was prepared using an MGIEasy universal DNA library prep set (catalog
no. 1000006986; MGI), a circularization kit (catalog no. 1000005259; MGI), and a MGISEQ-2000RS high-through-
put sequencing set (catalog no. 1000013857; MGI) with seven cycles of PCR amplification. A 1 � 400 bp sin-
gle-end sequencing was run using one lane of the MGI DNBSEQ-G400 platform. For long-read sequencing,
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long DNA molecules were purified using diluted (0.45�) AMPure XP beads, and a sequencing library was pre-
pared using a ligation sequencing kit (LSK-109; Oxford Nanopore). Each of the 24 samples was sequenced by
an R9.4.1 flow cell (FLO-MIN106D; Oxford Nanopore) using the Oxford Nanopore GridION platform for 72 h.
Base calling was performed using Guppy (v3.2.10; high-accuracy mode).

Read assembly and contig polishing. Each of the 24 raw long-read libraries was assembled using two
different assemblers: Flye (v2.8; –plasmids –meta) (70) and Raven (v1.5.0) (71). The assembled contigs were pol-
ished with long reads using Racon (v1.4.13) (72) and Medaka (v1.0.3) (https://github.com/nanoporetech/
medaka) and then with short reads using Pilon (v1.23) (73) and two rounds of Racon. Read mapping for polish-
ing was performed using Minimap2 (v2.17) (74) and Bowtie2 (v2.3.5.1) (75). Quality control of short reads was
performed using Cutadapt (v2.5) (76) and fastp (v0.20.0) (77). The detailed workflow and parameters are avail-
able in Fig. S1 in the supplemental material.

Binning and bin curation. Contigs longer than 2.5 kb were selected using SeqKit (v0.13.2) (78), and their
read coverage across the 24 samples was calculated by mapping the quality-controlled short reads using
CoverM (v0.4.0; -m metabat) (https://github.com/wwood/CoverM). The coverage table was input to MetaBAT
(v2.12.1) (79) and MaxBin (v2.2.7) (80) to bin the contigs from each of the 24 Flye and Raven assemblies. The
resulting 18,621 bins, containing redundancy derived from 24 samples (2 depths � 12 months), two assem-
blers (Flye and Raven), and two binners (MetaBAT and MaxBin) (Fig. S1), were curated by the following proce-
dures. Bins sharing an average nucleotide identity (ANI) of.95% were clustered using FastANI (v1.31) (81) and
the hclust function (method = “average”) of R v4.0.0 (https://www.r-project.org/). This resulted in 3,053 bin clus-
ters and 1,595 singletons, hereinafter referred to as superbins. Next, bins in the same superbin were merged as
follows. First, the bin quality score (BQS) was determined as (completeness 2 [5 � contamination]), referring
to the output of checkM (v1.1.3) (82) for each bin. Then, bins derived from the same sample (i.e., only different
in the assembler or binner) were merged using quickmerge (v0.3), which bridges gaps in one assembly
(acceptor) using sequences of another assembly (donor) based on alignment overlaps (83). Starting from the
bin with the highest BQS as an acceptor, bins were iteratively merged by providing a donor bin in the order of
BQS. For bins with the same BQS, the bin with fewer contigs was selected in priority. The “–hco” parameter
was set to 20, which means that the aligned length should be more than 20 times longer than the unaligned
length to merge two contigs. Next, if multiple merged bins in the same superbin (i.e., those from different sam-
ples) showed a BQS of.50, they were further merged in the same manner as described above. Notably, inter-
sample merges did not always generate a better bin than intrasample merged bins, presumably because of
the genomic compositional heterogeneity between samples. Finally, a representative bin was determined for
each of the 4,648 superbins by selecting the one with the highest BQS among the original and merged bins.

Among the 4,648 representative bins, 331 consisted of a single contig. Because quickmerge does
not consider genome circularity, we attempted their circularization in the following procedure. First,
using nucmer (v3.1) (84), the first and last 50 kb of the contig were aligned against the set of contigs in
the same superbin to find a “bridging contig” that may close the gap between the ends. Next, if a bridg-
ing contig was found, it was supplied as “new_assembly.fasta” to the circlator (v1.5.5) merge function
with the “–ref_end 50000” parameter (85). If the circularization was successful, the contig was rotated to
start from a dnaA gene using the circlator fixstart (–min_id 30) function.

Finally, the 4,648 representative bins were quality filtered at a BQS of .50, followed by dereplication
using dRep (v3.0.1; -comp 0 -con 100 -sa 0.95 –SkipMash –S_algorithm fastANI) (86). This final dereplica-
tion removed redundancy that eluded the initial superbin clustering, which was not exhaustive due to
the limitation of hierarchical clustering of incomplete genomes. The resulting 575 bins were designated
representative/reference metagenome-assembled genomes (rMAGs).

Analysis of rMAGs. The 575 rMAGs were taxonomically classified using GTDB-Tk (v1.5.0) with the refer-
ence data version r202 (87), and the genes were annotated using prokka (v1.14.6) (88) and eggNOG-mapper
(v2.1.5) (89). Annotated genes were functionally categorized according to KEGG PATHWAY and KEGG BRITE
hierarchies (90) assigned to each gene by eggNOG-mapper. For further analysis, we selected the top 25 func-
tional categories that covered 33% of the genes. To evaluate the frequency of indel errors that eluded polish-
ing, we followed the idea of the IDEEL software, i.e., interrupted open reading frames (ORFs), which are often
introduced by a frameshift, were used as an indicator of indel errors (18). Specifically, amino acid sequences
for each rMAG predicted by Prodigal (v2.6.3) (91) were aligned against the UniRef90 database (release
2020_06) (92) using DIAMOND blastp (v2.0.6; -k 1 -e 1e25) (93). Based on the results, the proportion of amino
acid sequences in which .90% of the length was aligned to a UniRef90 sequence was determined for each
rMAG and designated as the score for the proportion of ORFs with .90% alignment (POA90). Coverage-
based abundance relative to the total sequenced DNA in each of the 24 samples was determined as reads
per kilobase of genome per million reads sequenced (RPKMS), which was generated by mapping the quality-
controlled short reads to the 575 rMAGs using bowtie2 (v2.4.2) (75), followed by counting of mapped and
unmapped reads using CoverM (–min-read-percent-identity 92). The habitat preference (epilimnion or hypo-
limnion) of each rMAG was determined using the metric Pepi, which was defined as the quotient of RPKMS in
the epilimnion versus the sum of the values in the epilimnion and hypolimnion [i.e., epilimnion/(epilimnion
1 hypolimnion)] during the stratification period (May to December). When Pepi was .0.95 or ,0.05, the
rMAG was determined as an epilimnion or hypolimnion specialist, respectively (13).

Analysis of SNVs and SVs. The gene loci and mapping results (i.e., bam files) generated above were
input to inStrain (v1.0.0; profile –database_mode –pairing_filter all_reads), which provides genome- and
gene-wide SNV profiles based on the short-read alignment (24). SVs were detected by mapping the raw
long reads to the rMAGs using NGMLR (v0.2.7) (26) and inputting the resulting bam files to Sniffles
(v1.0.12) (26). Among the five types of SVs reported by Sniffles, deletion, insertion, duplication, and
inversion were further analyzed, while translocation was removed in the downstream analyses because
translocation can involve multiple contigs in different bins and is hard to interpret in metagenomic data.
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Subsequently, SVs with low (,0.1) allele frequency (reported by Sniffles) were filtered out. SVs longer
than 100 kb were also removed, as they were seemingly artifacts introduced by genome circularity,
which Sniffles does not account for.

The representative sample providing the highest short-read coverage among the 24 samples was
determined for each rMAG. To remove low-quality data derived from low read coverage, rMAGs that
showed .10� short-read coverage in the representative sample (n = 178) were selected, and SNVs and
SVs in the representative sample were analyzed in detail.

Data availability. The raw sequencing reads generated in the present study are available under
accession numbers DRR333363 to DRR333410 (BioProject ID PRJDB12736) as summarized in Table S1.
Nucleotide fasta files of the rMAGs are available at https://doi.org/10.6084/m9.figshare.19165673.v1.
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