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Molecular mechanisms underpinning sarcomas and
implications for current and future therapy
Victoria Damerell 1, Michael S. Pepper 2 and Sharon Prince 1

Sarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to
their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic
alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for
each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now
mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for
sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has
included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date
overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis
in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition
(MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-
clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently
identified molecular pathways and key transcription factors.
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INTRODUCTION
Sarcomas are a heterogeneous group of neoplasms derived from
tissues of the mesenchyme such as bone, cartilage, muscle, and
other connective tissues. Their heterogeneity is highlighted by the
identification of over 100 different sarcoma subtypes which vary in
pathology, clinical presentation, molecular characteristics, and
response to therapy.1 Based on histopathological criteria and
tissue type of primary manifestation, 80% of sarcomas are
categorized as soft tissue sarcomas (STS), 15% as bone sarcomas,
and 5% as gastro-intestinal stromal tumors (also known as GISTs)
(Fig. 1).2,3 While relatively rare, sarcomas are often fatal and
because they are of the most aggressive childhood cancers they
are responsible for the loss of a significant number of years of life.4

Globally, the incidence of STS is around 3–4/100,000 persons per
year which accounts for 1% of all adult solid malignant tumors
and >20% of all pediatric cancers.4,5 The prevalence of sarcomas
may however be underestimated since those developing in
parenchymatous organs are more often attributed to the organs
affected rather than the surrounding connective or supporting
tissue.6

The clinical management of sarcomas is highly challenging due
to misdiagnosis because they are difficult to differentiate from
other malignancies, late diagnosis due to the absence of
symptoms, as well as their heterogeneity, aggressive nature, and
resistance to current treatment options. Indeed, data published in
the National Sarcoma Survey 2020, collected by Sarcoma UK in
collaboration with Quality Health, reported that nearly a quarter
(23%) of patients had started treatment for another disease before
being diagnosed with sarcoma.7 Furthermore, Raut et al. reported

discordant histopathological diagnoses in up to 25% of sarcomas,
of which over half had clinical significance and impact on
treatment.8 In addition, the absence of symptoms and clinical
presentation can result in late referrals to sarcoma specialists
which delays diagnosis.9–11 Due to the heterogeneity of these
tumors, response to conventional treatments such as surgery,
radiation, and chemotherapy (Fig. 2) also varies and cannot be
translated between different sarcoma subtypes. To date, the only
promising curative treatment for localized sarcoma is surgery in
combination with pre- or post-operative therapies.12 Metastatic
sarcomas respond poorly to radiation and chemotherapy which is
particularly problematic because one-third of patients develop
metastases and about 20% of sarcomas recur.13 Furthermore, the
5-year survival rate for localized STS is about 50% and <10% for
metastatic STS.14,15 While a proposed molecular targeted
approach to treatment has gained traction, the molecular
mechanisms that drive the sarcoma cells of origin to a
transformed phenotype remain to be elucidated. This review,
therefore, focuses on the key molecular mechanisms identified to
be associated with sarcomagenesis and their potential as novel
targets for sarcoma therapy.

MOLECULAR MECHANISMS AND GENOMIC ALTERATIONS
Sarcomagenesis is driven by fusion oncoproteins and/or muta-
tions and amplifications that result in activation of oncogenes or
loss-of-function of tumor suppressors, leading to unrestrained cell
proliferation, invasion, and metastasis. At a genetic level, the
karyotype of 15–20% of sarcomas is classified as simple while the
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remaining is classified as complex. Sarcomas with simple
karyotypes are defined by chromosomal translocations which
lead to oncogenic fusion proteins which play a central role in their
pathogenesis (Table 1).16 Sarcomas with complex karyotypes are
associated with genetic or chromosomal abnormalities, such as
losses, gains, and amplifications, as well as point mutations (Table
2).17–19 The rest of this section will review the genetic alterations
most frequently associated with simple and complex karyotypes.

Alterations in cell cycle regulators
The mammalian cell cycle is comprised of four distinct phases,
namely G1 (cells prepare for DNA replication or decide to go into
quiescence (G0)), S (DNA synthesis), G2 (cells prepare for mitosis),
and M (mitosis) (Fig. 3). The transition from one phase to another
is orchestrated by cyclin-dependent kinases (CDKs) which
associate with their regulatory subunits, known as cyclins. When

activated, cyclin–CDK complexes phosphorylate substrates that
provide the forward impetus through the cell cycle and their
inhibition by CDKIs triggers a ‘checkpoint’ that halts the cell
cycle.20 In mammals there are two classes of CDKIs, CIP/KIP
(p21CIP1, p27KIP1, and p57KIP2) and INK4/ARF (p15INK4b, p16INK4a,
p18INK4c, and p14ARF) which differ in their mechanism of action
and specificity.21 Alternative splicing of the CDKN2A locus gives
rise to p16INK4a and p14ARF and p16INK4a blocks G1/S transition by
interacting with CDK4/6 and inhibiting their association with type
D-cyclins.22 This impedes CDK4/6-cyclin-D from phosphorylating
retinoblastoma (RB) protein, and when hypo-phosphorylated, RB
prevents entry into S phase by sequestering E2F transcription
factors (TFs) and thereby inhibiting transcription of S phase
genes.23 Loss of p16INK4a consequently leads to unregulated
phosphorylation of RB, activation of E2F and its target genes as
well as the transition from G1 into S phase. Under conditions of

Fig. 1 Schematic representation of the most frequently occurring soft tissue (STS) (red) and bone (blue) sarcomas and affected tissues.
Sarcomas with a simple karyotype are referred to in italics. ARMS alveolar rhabdomyosarcoma, ERMS embryonal rhabdomyosarcoma, WD/
DDLPS well-differentiated/dedifferentiated liposarcoma

Fig. 2 Schematic illustration of conventional sarcoma treatment approaches
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cellular stress, p14ARF sequesters the ubiquitin E3 ligase, mouse
double minute 2 homolog (MDM2), that would ordinarily target
p53 for proteasomal degradation.24 The consequence of this is the
stabilization and increase of p53 levels and the transcriptional
activation of p53 targets including CDKIs such as p21CIP1. This
results in cell cycle arrests which can be followed by senescence
and/or cell death by for example apoptosis.25 The
p14ARF–MDM2–p53 pathway thus plays a critical tumor suppressor
role.
Clinicogenomic profiling of almost 8000 STS patients demon-

strated that genetic alterations including loss of DNA copy
number and point mutations frequently occur in RB1 (22%) and
CDKN2A (22%) with the latter significantly correlating with poor
prognosis.26 Importantly, loss of the CDKN2A locus disrupts the
p16INK4a-RB and p14ARF-p53 tumor suppressor signaling which
results in hyperactivation of CDKs and uncontrolled cell cycle
progression. Somatic TP53mutations, amplifications of MDM2, and
loss-of-function mutations in p14ARF have also been observed in a
range of sarcomas and are linked with enhanced cell proliferation
and survival, metastatic potential, chemotherapy resistance and
poor overall patient survival.26–29 Furthermore, phosphatase and
tensin homolog (PTEN) blocks AKT activation and consequently
phosphorylation and translocation of MDM2 to the nucleus, and
thus blocks p53 degradation.30 A multi-platform profiling of 2539
STS and bone sarcomas revealed loss of PTEN in 38.6% of
sarcomas, most commonly in LMS, ARMS, osteosarcoma, chor-
doma, and epithelioid sarcoma.31

The upregulation of positive cell-cycle regulators such as the
TFs c-Myc, Forkhead Box F (FoxF1/FoxF2), and T-box transcription
factor 3 (TBX3) has also been implicated in sarcomagenesis.
Indeed, c-Myc is upregulated in a number of sarcomas including
leiomyosarcoma, osteosarcoma, chondrosarcoma, synovial sar-
coma, ARMS and EwS.32–39 Myc is a basic helix–loop–helix zipper
transcription factor that regulates its target genes by binding to a
conserved E-box DNA sequence CACGTG.40 It mainly exerts its

effect on the cell cycle by transcriptionally activating cyclins and
CDKs or by repressing p15INK4b, p21CIP1, and p27KIP1.41–44 In
rhabdomyosarcoma cells, c-Myc, FoxF1 and FoxF2 are each
capable of directly repressing p21CIP1 to promote proliferation
and anti-apoptosis.45,46 In the case of Ewing’s sarcoma, p21CIP1 is
directly repressed by EWS-FLI1 fusion protein.47 TBX3 belongs to
the developmentally important T-box transcription factor family
and is overexpressed in a broad range of sarcoma subtypes which
are largely dependent on it for the cancer phenotype.48 During S-
phase, c-Myc transcriptionally activates TBX3 in chondrosarcoma
and rhabdomyosarcoma cells and TBX3 represses p21CIP1 to confer
a proliferative advantage to these cells.49,50 A summary of cell
cycle proteins involved in sarcomagenesis is illustrated in Fig. 3.

Alterations in growth factor and pro-survival signaling pathways
Most sarcoma subtypes are associated with mutations that result
in constitutive activation of pro-survival and growth-factor
signaling pathways (Fig. 4). These include the platelet-derived
growth factor (PDGF), insulin-like growth factor (IGF), epidermal
growth factor (EGF), c-KIT and c-MET pathways which promote
tumorigenesis by activating downstream Ras/Raf/MAPK and/or
PI3K/PTEN/AKT/mTOR pathways.31,51–59 PTEN negatively regulates
the PI3K/AKT/mTOR pathway and, as mentioned earlier, is lost in
38.6% of sarcomas leading to the aberrant activation of this
pathway.31,60 Furthermore, downstream of the PI3K/AKT pathway,
the protein kinase mTOR plays a major role in translating proteins
for cell-cycle progression, cell growth, and survival, and has
therefore become an attractive target for sarcoma therapy.61 In
addition, TBX3 is an important mediator of rhabdomyosarcoma-
genesis downstream of the PI3K/PTEN/AKT/mTOR pathway.
Indeed, phosphorylation by AKT1 stabilizes TBX3, and TBX3
promotes rhabdomyosarcoma proliferation, anchorage-
independent growth and tumor formation.50 Furthermore, aber-
rant stimulation of the WNT, Notch and Hedgehog-GLI signaling
pathways promotes proliferation, invasion, and metastasis of a

Table 1. Chromosomal changes observed in a selection of sarcomas with simple karyotype

Type of sarcoma Chromosomal translocation Fusion gene Frequency (%) Reference

Ewing’s sarcoma (EwS) t(11;22)(q24;q12) EWSR1-FLI1 85 290

t(21;22)(q22;q12) EWSR1-ERG 5–10 290

t(7;22)(q24;q12) EWSR1-ETV1 <1 290

t(17;22)(q21;q12) EWSR1-ETV4 <1 290

t(2;22)(q33;q12) EWSR1-FEV <1 290

Clear cell sarcoma t(12;22)(q13;q12) EWSR1-ATF1 >90 291

Myxoid liposarcoma (MLP) t(12;16)(q13;p11) FUS–CHOP 95 292–294

t(12;22)(q13;q12) EWSR1-CHOP 5 295,296

Extraskeletal myxoid chondrosarcoma t(9;22)(q22;q12) EWSR1-NR4A3 62 297

t(9;17)(q22;q11) TAF2N-NR4A3 27 297

t(9;15)(q22;q21) TCF12-NR4A3 4 297

Desmoplastic small round
cell tumors (DSRCT)

t(11;22)(q13;q12) EWSR1-WT1 ≥86.3 298,299

Alveolar rhabdomyosarcoma (ARMS) t(2;13)(q35;q14) PAX3- FKHR 55 300

t(1;13)(q36;q14) PAX7- FKHR 22 300

t(2;2)(q35;p23) PAX3-NCOA1 <10 301,302

t(2;8)(q35;q13) PAX3-NCOA2 <10 301

Alveolar soft part sarcoma t(X;17)(p11;q25) ASPSCR1-TFE3 100 303,304

Synovial sarcoma t(X;22)(p11.23;q11) SS18-SSX1 >61 305,306

t(X;18)(p11.21;q11) SS18-SSX2 <37 305,306

t(X;18)(p11;q11) SS18-SSX4 Rare 307

Infantile fibrosarcoma t(12;15)(q13;q25) ETV6-NRTK3 ≥87.2 308–310
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range of sarcoma subtypes.62–68 Finally, the Hippo pathway
prevents uncontrolled proliferation by phosphorylating and
preventing nuclear translocation of the TFs YAP and TAZ, and
molecular aberrations within this pathway have been linked to
sarcomagenesis.69 For example, YAP and TAZ are aberrantly
activated in 66% of sarcoma cell lines and 50% of sarcoma patient-
derived tissues and this correlated with increased proliferation,
anchorage-independent growth and tumor progression.70

Alterations in angiogenic signaling pathways
Angiogenesis which is the formation of new blood vessels, is
required for tumor cell growth, invasion and metastasis.71 The
vascular endothelial growth factor (VEGF) family members VEGF-A,
-B, -C, -D and placental growth factor (PGLF) are master regulators
of angiogenesis and mediate their biological effects via the surface
receptors VEGFR1, VEGFR2, and VEGFR3.72 Activation of the VEGF/
VEGFR pathway triggers endothelial cell growth and neovascular-
ization from pre-existing vessels; it is therefore not surprising that
this pathway is often activated during oncogenesis.73 Importantly,
upregulation of VEGFs and VEGFRs has been observed in at least
25% of sarcomas, and is linked to advanced tumor stage and poor
prognosis.74–76 Furthermore, analysis of 115 STS patients revealed
significantly higher levels of VEGF tissue concentration in patients
with local recurrence and metastasis, which correlated with poor

overall survival.77 In addition, immunohistochemical analysis
revealed that VEGFR1, VEGFR2 and VEGFR3 were expressed at
high levels in 61%, 11% and 64% of 275 STS tumors, respectively,
and this was significantly associated with higher tumor grade.78

Feng et al. also found moderate and high VEGF expression in 37%
and 40.7% of synovial sarcoma patients respectively, which was
associated with histological grade, cancer staging and metastasis.75

Similarly, a correlation between VEGF expression, tumor stage and
patient survival has been reported for bone sarcomas. For example,
in osteosarcoma patients, those with VEGF-positive tumors had a
significantly higher incidence of pulmonary metastases and worse
overall survival compared to those with VEGF-negative tumors.79

Finally, overexpression of VEGF in STS cell lines led to accelerated
growth and formation of highly vascular tumors, pulmonary
metastases and chemoresistance in experimental models in vivo.80

Alterations in factors promoting invasion and metastasis
Epithelial-to-mesenchymal transition (EMT)/mesenchymal-to-epithe-
lial transition (MET) plasticity in sarcomas. Tumor metastasis
involves tumor cells from the primary site invading neighboring
tissues, intravasation and transport of tumor cells through the
blood or lymphatic systems, and extravasation and tumor growth
at secondary sites. In carcinomas, this is facilitated by tumor cells
undergoing an EMT which reduces their adhesion properties and

Table 2. Frequent genetic alterations observed in sarcomas with complex karyotypes

Type of sarcoma Genetic alterations Genes affected Frequency (%) Reference

Leiomyosarcoma (LMS) Deletions PTEN 57–69 311,312

RB1 27–59 311,312

Mutations TP53 33–49 312–314

ATRX 17–26 312–314

MED12 21 314

Amplification MYOCD 70 315

Osteosarcoma Mutations TP53 47–82 316,317

RB1 29–47 316,317

DLG2 53 316

ATRX 29 316

Amplifications c-Myc 39–42 35,318

CCNE1 33 318

RAD21 38 318

VEGFA 23 318

RUNX2 Common 319,320

Liposarcoma (other than myxoid) Amplifications MDM2 86–98 321,322

CDK4 58–88 321,322

HMGA2 75–93 322

c-JUN 16–60 322

Chondrosarcoma (other than myxoid) Mutations IDH 50–80 323,324

Fibrosarcoma (other than infantile) Amplifications MDM2 Common 325

Embryonal Rhabdomyosarcoma (ERMS) Deletions CDKN2A/B 23 326

Activating Mutation FGR4 20 326

Activating Mutation Ras family 42 326

Angiosarcoma Mutations TP53, PTPRB 66, 26 327

Overexpression VEGF 80 327

Malignant peripheral nerve-sheath tumor (MPNST) Mutations NF1 87.5 328

CDKN2A 75 328

TP53 40.3 328

EED, SUZ12 Common 329

Undifferentiated pleomorphic sarcoma (UPS) Deletions RB1 30–35 330,331

Molecular mechanisms underpinning sarcomas and implications for current. . .
Damerell et al.

4

Signal Transduction and Targeted Therapy           (2021) 6:246 



enhances their migratory and invasive abilities. Once they reach
their destination, they undergo a reverse process termed MET to
establish metastases.81 EMT is characterized by the downregula-
tion of the epithelial cell–cell adhesion molecule E-cadherin and
the upregulation of the TFs Twist-related protein 1 (TWIST-1), Zinc
finger E-box-binding homeobox (ZEB)1/2, SLUG, SNAIL, and the
EMT inducer transforming growth factor β (TGF-β).82,83

Unlike carcinomas, EMT processes in sarcomas are largely
unknown and seem paradoxical since they are, by definition,
mesenchymal in nature. However, based on recent evidence,
Sannino et al. propose that sarcoma cells may reside in a
metastable state, and depending on cellular context, can either
differentiate towards an epithelial or more mesenchymal pheno-
type.84 This EMT/MET plasticity has been linked to an aggressive
phenotype,84 and several EMT/MET TFs have been shown to play a
role in sarcomagenesis. For example, downstream of the PI3K/
AKT/mTOR and MAPK/ERK pathways, SLUG and SNAIL promote
EMT-related processes in chondro- and rhabdomyosarcoma cells
respectively.85–87 On the other hand, downregulation of SNAIL
due to an epigenetic switch in chondrosarcoma cells resulted in
MET which corresponded with expression of epithelial markers, E-
cadherin, maspin, desmocollin 3, and 14-3-3σ.88 Similarly, in
synovial sarcomas, TGF-β may drive phenotypic switching by
upregulating TWIST-1, SNAIL and SLUG which promote cell
migration and invasion.89,90 The SYT-SSX1 and SYT-SSX2 fusion
proteins can reverse the mesenchymal phenotype in synovial
sarcoma cells through binding to SNAIL and SLUG respectively,
thereby preventing them from repressing E-cadherin.91 In
rhabdomyosarcoma and osteosarcoma cells, miR-200 inhibits
ZEB1 and thereby induces E-cadherin and co-expression of miR-
200 and grainyhead‐like transcription factor 2 (GRHL2) results in a
multiplicative increase in E-cadherin and morphological changes
consistent with MET.92 More is known about EMT/MET processes
in osteosarcoma cells since several factors including TGF-β,

microRNAs (miRs), BMP-2 and Interleukin-33 (IL-33) have been
identified to regulate these processes. For example, TGF-β
promotes EMT by upregulating SNAIL and subsequently down-
regulating E-cadherin93 and miR-23a and miR-130a induce EMT in
osteosarcoma cells by directly downregulating PTEN.94,95 In
addition, BMP-2 upregulated ZEB2 and activated Wnt/β-catenin
signalling in these osteosarcoma cells. This promoted EMT and
invasiveness through the inhibition of E-cadherin and increased
levels of the mesenchymal markers SNAIL, N-cadherin and
vimentin.96,97 When the Wnt/β-catenin pathway was blocked with
the dominant negative soluble low-density lipoprotein receptor-
related protein 5 (sLRP5), EMT was reversed as seen by
upregulated levels of E-cadherin and downregulated levels of
SLUG, TWIST and matrix metalloproteinases (MMPs).98 A recent
study demonstrated that IL-33 may promote EMT by down-
regulating E-cadherin and upregulating MMP-9 and N-cadherin.99

Importantly, the upregulation of MMPs does not only occur in
osteosarcoma, but has also been reported in several STS where
they promote cell invasion and metastasis.100–102 Taken together,
the above findings indicate that EMT/MET plasticity plays a key
role during sarcomagenesis and the factors involved are
summarized in Fig. 5.

microRNAs. Short non-coding microRNAs have been shown to
either inhibit or promote sarcoma metastasis, mainly through the
modulation of EMT TFs and MMPs. For example, miR-708-5p, miR-
126, and miR-130a impair osteosarcoma EMT, migration, invasion,
and metastasis by directly inhibiting ZEB1 expression and miR-
708-5p also downregulates MMP-2, MMP-7 and MMP-9.103–105 In a
similar manner, overexpression of miR‑30d repressed EwS cell
migration and invasion by inhibiting PI3K/AKT/mTOR and MAPK/
ERK pathways as well as MMP-2 and MMP-9 levels.106 Recently,
miR-200b-3p, miR-30c-1-3P, and miR-363-3P were reported to
inhibit GIST invasion via direct downregulation of SNAI2.107 In

Fig. 3 Schematic illustration of the mammalian cell cycle and proteins involved in sarcomagenesis
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Fig. 4 Schematic illustration of key signaling pathways underpinning sarcomagenesis. Wnt signaling: SS,271 OS,272,273 EwS,62,274 MPNST,275–277

ARMS,278 Notch signaling: SS,279 RMS,279 EwS,62 UPS,280; Growth-factor signaling: GIST,53–55 DSRCT,51 AS,31,281 SS,58 LS,31 CS,31 OS,52 EwS,62,282

RMS,57,283 MPNST, 284; Hedgehog signaling: UPS,280 OS,63, ERMS,64 CS,65 EwS,62; Hippo signaling: OS,138,285 EwS,286,287 ERMS,288 ARMS.289

Abbreviations: ARMS alveolar rhabdomyosarcoma, AS angiosarcoma, CS chondrosarcoma, DSRCT desmoplastic small round cell tumors, ERMS
embryonal rhabdomyosarcoma, EwS Ewing’s sarcoma, GIST gastro-intestinal stromal tumor, LMS leiomyosarcoma, LS liposarcoma, MPNST
malignant peripheral nerve sheath tumor, OS osteosarcoma, SS synovial sarcoma, UPS undifferentiated pleomorphic sarcoma

Fig. 5 Factors promoting epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) in sarcomagenesis
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contrast, miR-182 promotes STS metastasis by downregulating
tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) followed by
upregulation of its downstream targets and key mediators of cell
invasion, MMP-2 and MMP-9.108 MicroRNA-135b also upregulated
MMP-2 in myxoid liposarcoma which resulted in increased cell
invasion in vitro and metastasis in vivo.109 Furthermore, miR-181a
is overexpressed in high-grade chondrosarcoma and promotes
angiogenesis and metastasis by upregulating VEGF and MMP-1.110

Taken together, the above studies show that microRNAs are
important for sarcoma EMT/MET plasticity and metastasis, and are
thus potentially attractive targets for treatment.

Extracellular vesicles. Exosomes are extracellular vesicles secreted
by several cell types that are important for cell-to-cell commu-
nication. Their components include proteins, mRNA, miRNA, and
DNA, and have been implicated in the regulation of tumorigenesis
and metastasis.111 For example, osteosarcoma-derived exosomes
were reported to be enriched for proteins implicated in tumor
progression, migration, angiogenesis, and metastasis.112 Further-
more, gene ontology analysis showed an enrichment for miRNAs
associated with tumorigenesis and metastasis in metastatic
osteosarcoma-derived exosomes.112 In addition, miR-25-3p and
miR-92a-3p were shown to be secreted by liposarcoma cells
though exosomes and induced interleukin-6 secretion from
tumor-associated macrophages, which promoted liposarcoma cell
proliferation, invasion, and metastasis.113 Since cancer-derived
exosomes contribute to metastasis, their disruption may consti-
tute a novel therapeutic strategy.114 Indeed, a preclinical study has
shown that targeting breast-cancer-derived exosomes with
human-specific anti-CD9 or anti-CD63 antibodies significantly
reduced metastasis in vivo.115 More studies are required to
elucidate the exact molecular mechanisms of exosome-related
metastasis in sarcomas, and how to target these for treatment.
Exosomes may also represent a useful tool for targeted anti-

cancer drug delivery. For example, miR-143 downregulates MMP-

13 to suppress osteosarcoma cell invasion and metastasis, and
exosome-mediated delivery of miR-143 to osteosarcoma cells
significantly reduced their migration.116,117 In addition, in a murine
sarcoma model, exosome-mediated delivery of siTGF-β1-inhibited
TGF-β signaling, tumor growth, and lung metastases.118 More
investigations are needed to evaluate the potential of exosomes
as delivery systems for targeted therapy in sarcomas.
Together, the above sections provide evidence that alterations

in several factors and signaling pathways that regulate the cell
cycle, angiogenesis, invasion, and metastasis, co-operate to
promote sarcomagenesis. Understanding these has been impor-
tant for modelling sarcomagenesis in MSCs.

MESENCHYMAL STEM CELLS AS THE PUTATIVE ORIGIN OF
SARCOMAS
The cells which give rise to sarcomas still remain unclear but
recent evidence suggests that MSCs may be sarcoma-initiating
cells.119,120 MSCs are multipotent stromal/stem cells that are found
in most human adult tissues and they give rise to differentiated
cell types including adipocytes, chondrocytes, skeletal myoblasts,
osteocytes, neural cells and fibroblasts (Fig. 6). Sarcomas are
histopathologically classified based on cell-lineage of differentia-
tion and the normal tissue type that they resemble, and two
theories have been proposed as to how they arise (Fig. 6). Theory
1 suggests that sarcomas arise from primitive MSCs, which acquire
mutations that direct tumorigenesis and theory 2 proposes that
progenitor cells acquire mutations at different stages of differ-
entiation which leads to a block in terminal differentiation and
subsequent tumor development (Fig. 6).119

Modelling sarcomagenesis using MSCs
Several studies have reported that following the introduction of
oncogenic hits, primary MSCs can transform into sarcomas. Indeed,
the overexpression of FUS-CHOP combined with loss of p53 in

Fig. 6 Mesenchymal stromal/stem cell (MSC) differentiation and sarcomagenesis. Schematic representation of malignant transformation of
MSCs into several sarcoma subtypes driven by several oncogenic hits (red arrows). During normal development, MSCs mature through
different stages (progenitor cells) towards a final differentiated cell such as an adipocyte, chondrocyte, osteocyte, skeletal myocyte, fibroblast,
neural, and stromal cell. Theory 1 suggests that oncogenic hits occur in primitive MSCs; theory 2 suggests that oncogenic hits occur in
progenitor cells which drives their malignant transformation. The two theories are not mutually exclusive but they feed into a model where
sequential genomic alterations in a primitive MSC and/or its progenitor cells result in an accumulation of oncogenic hits followed by
malignant transformation
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murine MSCs induced liposarcoma-like tumors.121 Furthermore, c-
Myc overexpression was sufficient to transform murine bone marrow
(BM)-MSCs into osteosarcoma in vivo and when combined with loss
of the Ink4a/Arf locus, the process was substantially accelerated.122

The authors further showed that these osteosarcoma cells consisted
of two subpopulations with one showing altered tri-lineage
differentiation potential and resistance to conventional anti-cancer
drugs. It would however appear that forced expression of a single
oncogene in human MSCs (hMSCs) is not sufficient to induce
sarcoma development. For example, the expression of EWS-FLI1
alone, was not capable of transforming hMSCs into EwS and
expression of FUS-CHOP was only capable of transforming hMSCs
into myxoid liposarcoma in the presence of several other oncogenic
hits including p53 and pRB deficiency, hTERT overexpression, c-Myc
stabilization, and H-RASV12 mutation.123,124 A recent study also
showed that overexpression of c-Myc alone enhanced the prolifera-
tion of human adipose-derived MSCs (ASCs) and altered their tri-
lineage differentiation potential in vitro but it had no effect on their
tumor forming ability in vivo.125 A combination of c-Myc over-
expression and RB knockdown in hMSCs could however transform
them into osteosarcoma.126 Another study reported that 3H
transformed hMSCs (overexpression of hTERT, p53, and pRB
degradation) manipulated to overexpress c‐JUN and c‐JUN/c‐FOS
developed into fibroblastic and pleomorphic osteoblastic osteosar-
comas, respectively.127 Combined overexpression of the liposarcoma
diagnostic markers, MDM2 and CDK4, increased human 2H
transformed BM-MSCs (overexpression of hTERT, p53 degradation)
proliferation, migration, and inhibited adipogenic differentiation
potential in vitro. However, MDM2 and CDK4 overexpression in
these MSCs only led to tumor growth in vivo and the formation of
dedifferentiated liposarcoma when combined with three additional
oncogenic hits (c-Myc stabilization, RB inactivation, and overexpres-
sion of H-RASV12).128 In contrast to the above findings, Vishnubalaji
et al. provided evidence that overexpression of a single oncogene
LIN28B in human BM-MSCs resulted in fibromyxoid sarcoma-like
tumors in vivo with increased angiogenesis.129 The above studies
provide overwhelming evidence that at least two oncogenic hits are
required to transform hMSCs into sarcomas in vivo.
Despite the evidence from in vitro and in vivo models

suggesting that MSCs are the cells of origin of sarcomas,
additional studies are necessary to elucidate the mechanisms of
MSC transformation into individual sarcoma subtypes.

Modelling sarcomagenesis using mesenchymal progenitor cells
The possibility that cells of the osteoblastic lineage (pre-
osteoblasts, mature osteoblasts, or osteocytes) may be the cells
of origin of osteosarcoma has been widely debated.130–132 Indeed,
p53 is a critical regulator of osteogenesis and studies using
conditional and transgenic mouse models showed that inactiva-
tion of TP53 in osteogenic progenitors led to the formation of
highly metastatic osteosarcomas which was potentiated by loss of
RB.133–136 Furthermore, constitutive Notch activation in committed
murine osteoblasts was sufficient to induce osteosarcoma-like
tumors, and when combined with loss of TP53, osteosarcoma
development was substantially accelerated.137 Similarly, upregula-
tion of Hedgehog signaling in p53+/− mutant mice resulted in
osteosarcoma development.138 Collectively, these studies provide
evidence that the loss of p53 is critical for the initiation of
osteosarcoma which is consistent with the majority of osteosar-
comas exhibiting TP53 mutations/deletions. Interestingly, Rubio
et al. showed that loss of TP53 and RB in osteogenic progenitors
derived from murine BM-MSCs, but not ASCs, resulted in the
formation of metastatic osteosarcoma.139 Additionally,
leiomyosarcoma-like tumors were promoted in TP53 and RB null
undifferentiated BM-MSCs or ASCs.139 Together these observa-
tions suggest that not only is a certain level of osteogenic
differentiation required for osteosarcoma development but that
the source of the cells of the osteogenic lineage is also important.

Yang et al. recently provided additional evidence to support this.
They showed that consecutive introduction of the oncogenes
hTERT, SV40 large T antigen and H-Ras transformed human pre-
osteoblasts into osteosarcoma but transformed hMSCs into
spindle cell sarcoma.140 It is worth noting that osteosarcoma
generated from cells of the osteocalcin-lineage i.e. mature
osteoblasts, were less osteoblastic compared to osteosarcoma
generated from pre-osteoblasts, suggesting that the final differ-
entiation status of osteosarcoma does not necessarily reflect that
of their cells of origin.141 The final differentiation state of
osteosarcomas was proposed to be dependent on silencing of
epigenetic regulators such as DNA methyltransferases during
osteosarcomagenesis. Furthermore, results from several in vivo
studies suggest that osteosarcomas generated from committed
progenitor cells are not able to de-differentiate or transdiffer-
entiate into other sarcoma types.142 There is also evidence that
other sarcomas such as synovial sarcoma, EwS, and myxoid
liposarcoma can result from the introduction of the fusion
oncoproteins SYT-SSX2, EWS-FLI1, or FUS-CHOP into murine
primary mesenchymal progenitors, respectively.143–146 Future
studies should evaluate whether these oncogenic hits are
sufficient to transform human mesenchymal progenitor cells into
different sarcoma subtypes.
While the above studies suggest that sarcomas, especially

osteosarcomas, can arise from mesenchymal progenitor cells at
different stages of differentiation, there is currently a lot more
evidence to suggest that sarcomas arise from multiple genetic
alterations occurring in primitive MSCs. This may however be due to
more studies having been performed with primitive hMSCs and we
can therefore not exclude the possibility that sarcomas may arise
from either primitive hMSCs or hMSC-derived progenitor cells.

MOLECULAR TARGETED THERAPY
The standard treatment for localized sarcomas is surgery
combined with neoadjuvant (pre-operative) or adjuvant (post-
operative) therapies such as chemotherapy and radiation.147

Although patients with localized sarcomas have a high chance
of complete recovery with surgery, when their tumors recur or
metastasize the prognosis is dismal. This is particularly proble-
matic as 10–20% of sarcomas recur and up to 50% of patients
develop metastases.147,148 Chemotherapy is the standard form of
treatment for metastatic sarcomas; however, the reported median
overall survival is only 12 months and <10% of patients have a 5-
year overall survival rate.15,149,150 There is therefore clearly a need
for more effective therapies as the traditional approaches have
been mostly ineffective. Targeted therapies may overcome the
current therapeutic limitations; however, most sarcoma subtypes
have alterations in many signaling pathways and therefore
effective therapy will probably need to target a range of pathways.
In this section, we review the most relevant pathways that are
currently targeted by commercially available drugs, as well as
ongoing preclinical and clinical trials on potential novel targeted
therapies (summarized in Fig. 7).

TARGETING CELL CYCLE PROGRESSION
Cell cycle inhibitors (CDKIs)
CDKIs are being tested for the treatment of sarcomas as they can
inhibit aberrant cell cycle activation. First generation CDKIs such as
flavopiridol (PubChem CID: 5287969) performed poorly in patients
and were associated with toxicity, which is partly due to their lack of
specificity.151 Second generation inhibitors such as dinaciclib
(PubChem CID: 46926350) had more specificity for fewer CDKIs
and displayed less toxicity; however, their performance was
disappointing in early phase clinical trials.151 The major problem
with non-selective CDKIs is their inability to differentiate between
normal and cancer cells. Therefore, efforts have focused on
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developing single CDK-specific inhibitors that exhibit maximum anti-
tumor effects with minimal toxic side effects. Currently, the most
promising agents include the CDK4/6 inhibitors palbociclib (Pub-
Chem CID: 5330286), ribociclib (PubChem CID: 44631912), and
abemaciclib (PubChem CID: 46220502). For example, CDK4 ampli-
fication is typical in over 90% of well-differentiated/dedifferentiated
liposarcomas (WD/DDLPS), and palbociclib has demonstrated anti-
tumor potential in preclinical studies and a phase II clinical trial of
patients with advanced or metastatic WD/DDLPS and resulted in a
more favorable progression-free survival (NCT01209598).151 Palbo-
ciclib may also be beneficial for osteosarcoma treatment since they
frequently have disruptions in the pRB pathway, such as loss of
p16INK4a and/or amplification of CDK4/6.152 Despite the promising
preclinical and clinical data, limitations such as acquired drug
resistance to CDK4/6 inhibitors are coming to light.153–155 In an
attempt to overcome these challenges with CDK-monotherapy,
ongoing clinical trials are mostly focusing on combination therapies
(NCT04129151, NCT03709680, NCT02897375, NCT02784795,
NCT03009201, NCT03114527, NCT02343172).
The ubiquitin E3 ligase MDM2 which is responsible for

ubiquitinating and targeting p53 for degradation, is often
amplified in sarcomas.156 This has prompted the development
of MDM2 therapeutic inhibitors including nutlin-3 (PubChem
CID: 216345) and RG7112 (PubChem CID: 57406853).25 Nutlin-3
was shown to repress tumor formation by inducing apoptosis in
osteosarcoma xenografts by stimulating the p53 signaling
pathway.157 Furthermore, RG7112 significantly reduced tumor
growth in patients with MDM2-amplified liposarcoma in a phase
I clinical trial.149 Liposarcomas frequently harbor amplifications
of both MDM2 and CDK4, and therefore a combination therapy

targeting both factors may have a synergistic effect and lead to
a better treatment outcome. Indeed, a preclinical study by
Laroche-Clary et al. found that compared to monotherapy, a
combination of the MDM2 inhibitor RG7388 (PubChem CID:
53358942) with the CDK4/6 inhibitor palbociclib led to
significantly reduced tumor growth in DDLPS xenografts and
increased progression-free survival.158

TARGETING GROWTH RECEPTORS AND PRO-SURVIVAL
SIGNALING MOLECULES
Tyrosine kinase inhibitors (TKIs)
TKIs represent a highly successful form of targeted therapy for
sarcomas. For example, the c-KIT, PDGF, and VEGF receptors are
currently being targeted in approved therapeutics. Eighty percent
of GISTs harbor mutations in c-KIT and 10% harbor mutations in
PDGFRα; this leads to constitutive ligand-independent activation
of these receptors which promotes uncontrolled cell proliferation
and anti-apoptosis.159 Molecular-targeted therapy has significantly
improved the prognosis of GISTs which are intrinsically resistant to
chemotherapy and radiation. Indeed, one of the first FDA-
approved molecular targeted drugs is imatinib (PubChem CID:
5291), a TKI which inhibits both c-KIT and PDGFR.160 Imatinib has
shown great efficacy for the treatment of GISTs and is currently
used as the first line treatment for these tumors.161 A study on
GISTs in the United States by Demetri et al. reported a >50%
response to imatinib in which the estimated 1-year overall survival
was 88%.162 Long-term data confirmed the success of imatinib
with a 5-year overall survival of about 50%.163 Based on these
findings, the therapeutic use of imatinib has been extended to

Fig. 7 Current targeted therapies for sarcomas. Illustration shows a selection of experimental and approved drugs and their respective targets
(highlighted in blue) aimed to inhibit features of sarcomagenesis including cell cycle progression, sustained proliferative signaling, DNA repair,
epigenetics, tumor microenvironment, and angiogenesis
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other sarcomas that contain c-KIT and PDGFR mutations. However,
the response rates of other sarcomas have mostly been poor.164

Indeed, a phase II clinical trial which assessed the performance of
imatinib on 22 metastatic or relapsed KIT- or PDGFR-positive
sarcomas only showed partial response in a single patient.165

Therefore, there was no correlation between the response to
imatinib and expression levels of PDGFR/KIT.
Pazopanib (PubChem CID: 10113978) is another TKI that targets

VEGFR with high affinity and both c-KIT and PDGFR with lower
affinity.166 Results from the PALETTE phase III clinical trial showed
that pazopanib was beneficial in treatment-resistant metastatic
sarcomas and improved progression-free survival by 3 months.167

While this led to its FDA-approval as a second-line treatment for
advanced STS, treatment with pazopanib has been linked to side
effects such as diarrhea, weight loss, nausea, fatigue, and
hypertension.167 A recent phase II clinical trial (GISG-04/NOPASS)
by the German Interdisciplinary Sarcoma Group assessed the
effect of pazopanib as preoperative therapy in 21 STS patients;
beneficial effects were only observed in a single patient.168

Sorafenib (PubChem CID: 216239) is a multi-TKI that inhibits
VEGFR and PDGFR and results from phase II clinical trials indicated
that it had moderate activity as a second-line therapy for
metastatic STS.169–171 Furthermore, for patients with desmoid
tumors, sorafenib significantly prolonged progression-free survi-
val.172 A recent phase II clinical trial showed that a combination of
sorafenib with the cytotoxic agent ifosfamide (PubChem CID:
3690) achieved significant clinical benefit in advanced STS
patients.173 Another phase II clinical trial used sorafenib in
combination with the cytotoxic agent dacarbazine (PubChem
CID: 135398738) in leiomyosarcoma, synovial sarcoma, and MPNST
patients; modest activity and a favorable disease-control rate were
observed, although the combination also increased the potential
for significant toxic side effects.174 Importantly, a pooled analysis
of several clinical trials between 2009 and 2016, showed that
treatment with pazopanib, sorafenib and sunitinib (PubChem CID:
5329102) was linked to significantly increased risk of toxicity and
severe adverse side effects.175

Small molecule inhibitors that target TKs may be associated
with less adverse side effects. For example, the small molecule
inhibitor ZD6474 (PubChem CID: 3081361) targets TKs including
VEGFR-2 and EGFR, and in preclinical osteosarcoma studies was
shown to block cell proliferation and enhance cell cycle arrest
and cell death by suppressing the PI3K/AKT and MAPK/ERK
pathways.176 Furthermore, the combination of ZD6474 with the
COX-2 inhibitor celecoxib (PubChem CID: 2662) resulted in an
additive or synergistic anti-tumor effect in vitro and in vivo.176

To date, ZD6474 has not yet being tested in clinical trials for
sarcoma treatment, but it significantly improved the
progression-free survival for medullary thyroid cancer in a
phase II clinical trial.177

Although the use of TKIs results in clinical efficacy in STS other
than GISTs, one of the biggest challenges is the lack of validated
predictive biomarkers for patients who are most likely to respond
positively to TKI treatment.178 Furthermore, TKIs still have limited
therapeutic application due to their side effects such as
hypertension, arterial and venous thromboembolic events, and
hand-foot skin reactions.179,180

IGFR inhibitors
Monoclonal antibodies that target IGFR-1, such as cixutumumab
(IMC-A12) or R1507, showed modest clinical benefit for EwS,
liposarcoma, osteosarcoma, rhabdomyosarcoma, and synovial
sarcoma patients in phase II clinical trials.181,182 However, most
patients who initially responded to therapy developed drug
resistance and suffered from disease recurrence.183 Therefore,
combination therapies are currently under investigation in many
preclinical studies. For instance, a combination of inhibitors to
IGFR and CDK4/6 profoundly repressed the PI3K/mTOR pathway

and had a synergistic anti-tumor effect in vitro and in vivo in
EwS.184

mTOR inhibitors
The mTOR inhibitor ridaforolimus (PubChem CID: 11520894), an
analogue of rapamycin, has shown promising results for the
treatment of several sarcomas. Results from a phase II clinical trial
showed that ridaforolimus had clinical benefit and only mild to
moderate adverse side effects for patients with metastatic or
unresectable STS and bone sarcomas.185 In contrast, an interna-
tional randomized phase III clinical trial demonstrated that
second-line treatment with ridaforolimus delayed sarcoma pro-
gression to only a small extent.186 Furthermore, the placebo and
ridaforolimus-treated groups had comparable overall survival rate
and therefore the FDA rejected the approval application for
ridaforolimus in 2012. Other inhibitors of mTOR namely ever-
olimus (PubChem CID: 6442177), temsirolimus (PubChem CID:
6918289) and sirolimus (PubChem CID: 46835353) were assessed
in single-agent clinical trials; however, results were mostly
disappointing.149 Preclinical phase investigations are therefore
currently under way for combination therapies. For example, co-
treatment with ridaforolimus and palbociclib resulted in a
synergistic anti-tumor effect in a range of sarcoma cell lines and
in a murine fibrosarcoma model.187

OTHER THERAPEUTIC AVENUES
Inhibition of epigenetic regulators
Histone deacetylase inhibitors (HDACi) are powerful epigenetic
regulators that affect tumor cells by interfering with cell growth,
inducing apoptosis and inhibiting angiogenesis.188 Although
preclinical studies have shown promising anti-cancer activity of
the HDACi panobinostat (PubChem CID: 6918837), monotherapy
in advanced STS did not show clinical benefit in phase II clinical
trials; different combination therapies are therefore currently in
development.189,190 For example, HDAC inhibitors enhanced the
anti-cancer effect of pazopanib against sarcoma cells, and this
effect was even more pronounced in combination with the TK
inhibitor, neratinib.191,192 Furthermore, results from a phase I
clinical trial found panobinostat to increase the efficacy of the
topoisomerase II inhibitor epirubicin (PubChem CID: 41867) and
this led to clinical benefit and has the potential to reverse
anthracycline resistance.193 Interestingly, tazemetostat (PubChem
CID: 66558664), a lysine methyltransferase inhibitor of the histone
modification enzyme enhancer of zeste homolog 2 (EZH2), was
approved by the FDA in 2020 as the first epigenetic therapy for
solid tumors and is used to treat advanced or metastatic
epithelioid sarcoma.194 EZH2 is upregulated in numerous sarco-
mas including synovial sarcoma, rhabdomyosarcoma, EwS, and
MPNST, where it promotes tumorigenesis and cancer progres-
sion.195 Importantly, the inhibition of EZH2 in these sarcomas
resulted in cell death and a reduction in tumor growth. Thus, EZH2
represents a potential therapeutic target in a range of sarcomas,
and clinical studies should therefore investigate the effect of
tazemetostat in other sarcoma subtypes. The treatment of ARMS
and ERMS with the DNA methyltransferase inhibitor guadecitabine
(PubChem CID: 135564655) also reduced cell growth, induced
apoptosis and differentiation, and repressed ARMS tumor growth
in vivo; this occurred by activating canonical Hippo signaling and
downregulating YAP1, a known tumor promoter of RMS.196

Poly(ADP-ribose) polymerase (PARP) inhibitors
PARP enzymes are important players in the repair of DNA single-
strand breaks through the base-excision repair pathway, and their
inhibition was found to potentiate the cytotoxic effect of DNA-
damaging agents.197,198 Inhibitors of PARP (PARPi) represent a
novel class of anti-cancer agents that are especially effective
against cancers with DNA-repair defects where they induce
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synthetic lethality.199 Recently, PARP inhibitors have also been
identified as promising agents for sarcoma treatment.200 Olaparib
(PubChem CID: 23725625), an FDA-approved PARPi, is currently in
Pediatric MATCH phase II trials for advanced, recurrent, and
refractory STS and bone sarcomas resulting from defects in DNA
damage repair genes (NCT03233204 and NCT03155620). Further-
more, multiple clinical trials are either underway or have
investigated the performance of chemotherapy–PARPi combina-
tions (NCT02044120, NCT01858168, NCT02116777, NCT03880019).
Indeed, a Phase Ib clinical trial assessed the combination of
olaparib and the DNA alkylating agent trabectedin (PubChem CID:
108150) which are both known to cause accumulation of single-
strand and double-strand DNA breaks. Results showed manage-
able toxicity of the combination and encouraging anti-tumor
activity in advanced STS and bone sarcoma patients
(NCT02398058).201,202 Perez et al. recently reported that a
synergistic effect can be achieved when olaparib is combined
with the DNA damaging agent doxorubicin (PubChem CID: 31703)
in vitro and in sarcoma patient-derived xenograft (PDX) models.203

The authors further showed that this combination was most
effective in tumors that expressed high levels of pH2AX and
MAP17. Furthermore, due to the radiosensitizing activities of
PARPi, a phase Ib study is currently investigating the effects of
combining olaparib with concomitant radiotherapy to treat locally
advanced/unresectable STS (NCT02787642). Taken together,
PARPi in combination with DNA damaging agents/radiotherapy
may be an effective treatment strategy for both STS and bone
sarcomas.

Immunotherapy
The most popular immunotargets include programmed cell death
protein (PD)-1 and its ligand PD-L1 as well as cytotoxic T-
lymphocyte-associated protein (CTLA)-4.204 Clinical trials are
currently investigating the potential of monoclonal antibodies
(mAB) against PD-L1 and CTLA-4 to treat DDLPS and pleiomorphic
liposarcoma (NCT02500797 and NCT03114527). Other ongoing
phase II clinical trials are investigating the effect of the PD-L1
inhibitor durvalumab in combination with pazopanib or tremeli-
mumab (CTLA-4 inhibitor) to treat advanced STS (NCT03798106
and NCT02815995). However, pooled analysis of results from
recent phase II clinical trials revealed that, as single agents or in
combination therapy, PD-1/PD-L1 antagonists have limited activity
in unselected STS.205 Whereas patients with undifferentiated
pleomorphic sarcoma and alveolar soft part sarcoma showed the
highest overall response and non-progression rate, leiomyosar-
coma patients showed the lowest overall response and non-
progression rate. This suggests that the success of anti-PD1/PD-L1
treatment is largely dependent on specific sarcoma subtypes.
Molgora et al. further demonstrated that the inhibition of TREM2, a
pro-tumorigenic marker of tumor-associated macrophages, with
an anti-TREM2 mAB, substantially increased the performance of
anti-PD-1 treatment in a sarcoma mouse model.206 This combina-
tion strategy is of particular interest since it effectively targets the
immunosuppressive tumor microenvironment and enhances anti-
tumor immune responses. The efficacy of monotherapy with a
CTLA-4 inhibitor has only been evaluated in one pilot study using
ipilimumab; however, no clinical benefit was observed in patients
with synovial sarcoma.207 Recently, the IMMUNOSARC study, a
phase II clinical trial which investigated the potential of treating
advanced STS with a combination of the multi-targeted TKI
sunitinib with the PD-1 inhibitor nivolumab, was completed.
Promising results were observed with an overall and progression
free survival of 77% and 50%, respectively, at 6 months
(NCT03277924).208 Chimeric antigen receptor T (CAR-T) adaptive
cell therapy involves the isolation of a patient’s own T-cells and
modifying them to express a CAR that recognizes a specific tumor
antigen and then reinjecting them into the patient.209 Recognition
of the tumor cells by the CAR activates T-cell proliferation and

elimination of the tumor cells. CAR-T cell therapy has proven to be
promising for hematological cancers and is currently under
investigation for solid tumors including sarcomas.210–212 A phase
I/II clinical trial showed that HER2-CAR-T cells travel to the site of
human epidermal growth factor receptor 2 (HER2)-positive
sarcomas and persist for more than 6 weeks; the median overall
survival ranged from 5.1 to 29.1 months without inducing toxicity
(NCT00902044).213 A CAR-T cell therapy pilot study is currently
undergo where the T-cells from myxoid liposarcoma patients were
genetically engineered to recognize NY-ESO1, an antigen
expressed in 80–90% of myxoid liposarcoma patients
(NCT02992743).214 Interestingly, 70–80% of synovial sarcomas
also express NY-ESO1, and T-cell receptor (TCR) treatment has
recently gained FDA approval for patients with HLA-A*201, HLA-
A*205, or HLA-A*206 allele-positive advanced synovial sar-
coma.215–217 It may therefore be worthwhile to evaluate whether
CAR-T cell therapy is superior to TCR treatment in synovial
sarcomas. A phase I clinical trial that utilizes CAR-T cell therapy to
target EGFR and CD19 to treat children and young adults with
recurrent/refractory solid tumors is ongoing (NCT03618381).
Preclinical studies have proven that CAR-T cell therapy targeting
sarcoma-associated antigens is effective and ongoing clinical trials
are evaluating its therapeutic potential (reviewed in ref. 218).

FUTURE DIRECTIONS
Targeting oncogenic TFs
Historically, TFs were considered undruggable, but there is
increasing preclinical and clinical evidence that their activity can
be targeted. Indeed, TFs can be targeted by inhibiting their
interactions with DNA or protein co-factors or by decreasing their
protein stability through targeting the proteasome.219,220 Aberrant
TF activity plays a critical role in simple and complex karyotype
sarcomas, and recently there have been advances to target
oncogenic fusion TFs in sarcomas. For example, trabectedin is
clinically effective against leiomyosarcomas and liposarcomas
where it interferes with the ability of FUS-CHOP to bind its target
promoters.221–223 Trabectedin was FDA-approved for these
sarcoma subtypes in 2015 and is currently in clinical trials for
other sarcoma subtypes (NCT02367924, NCT02275286,
NCT04076579, NCT01303094, NCT04067115).
Emerging evidence has revealed that genome-editing systems

and genetic approaches including clustered regularly interspaced
short palindromic repeats associated protein 9 (CRISPR-Cas9) and
RNA interference (RNAi) have therapeutic potential by directly
targeting fusion oncogenes or their respective DNA-binding
motifs. Indeed, CRISPR-Cas9-mediated knockdown of PAX3-
FOXO1 significantly reduced colony formation in a human
myoblast model.224 Knockdown of EWSR1-FLI1 with CD99-
targeted nanoparticles carrying Cas9-EWSR1 sgRNA RNP led to
reduced tumor growth in EwS xenografts.225 Deletion of the
GGAA-microsatellite sequence regulating the activation of NR0B1
by EWSR1/FLI1 using CRISPR-Cas9 led to reduced EwS cell
proliferation and anchorage-independent growth.226 GGAA-
microsatellite repeats were found to be specifically active only
in EwS, and silencing multiple repeats using CRISPR-Cas9 strongly
decreased the expression of putative EWS-FLI1 target genes.227,228

Furthermore, targeting of a single SOX2-regulating GGAA-micro-
satellite enhancer abrogated EwS tumor growth in vivo.228

Martinez-Lage et al. recently proposed that non-homologous
end joining (NHEJ) CRISPR-mediated deletion of fusion oncogenes
is an efficient and selective strategy for cancer cell elimination. The
authors showed that CRISPR-mediated EWR1-FLI1 deletion inhib-
ited tumor growth in EwS xenografts and PDX models. Moreover,
a combination of EWSR1-FLI1 deletion and doxorubicin was more
effective compared to either monotherapy alone in xenograft
models.229 Inhibiting expression of EWS-FLI1,230–232 PAX3-
FOXO1,233,234 and SYT-SSX235,236 by RNAi in vitro also significantly
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reduced cell viability and induced cell death. However, these anti-
tumor effects were not always confirmed in vivo and siRNA
delivery using nanoparticles, liposomes and recombinant exo-
somes has had limited success.
Approaches to target fusion oncoproteins by proteasome

degradation or post-translational modifications have also been
investigated. For example, treatment of synovial sarcoma cells
with the HDACi FK228 (PubChem CID: 5352062) led to degrada-
tion of SYT-SSX and decreased cell viability and induced
apoptosis.237 Similarly, treatment of EwS cells with entinostat
(PubChem CID: 4261), a HDAC1/3 inhibitor, led to reduced EWS-
FLI1 expression, a G0/G1 cell cycle arrest, DNA damage, caspase
activation and apoptosis.238 PLK1, a serine/threonine kinase,
phosphorylates and stabilizes PAX3-FOXO1 in ARMS cells, and
when it was inhibited with a small molecule inhibitor BI 2536
(PubChem CID: 11364421), PAX3-FOXO1 was ubiquitinated and
degraded and this corresponded with tumor regression in a
xenograft mouse model.239 Similarly, 100% tumor regression was
obtained in xenograft mouse models of ARMS using the PLK1-
inhibitor volasertib (BI 6727) (PubChem CID: 10461508).240

Furthermore, PAX3-FOXO1 activity is dependent on the epigenetic
regulator bromodomain-containing protein 4 (BRD4) and inhibi-
tion of BRD4 with the small molecule inhibitor JQ1 (PubChem CID:
46907787) resulted in anti-cancer activity in preclinical models.241

The advantages and drawbacks of targeting oncogenic fusion TFs
are further discussed in a recent editorial.242

The oncogenic c-Myc, which is amplified in a variety of sarcomas
with simple and complex karyotypes, has been successfully
targeted in preclinical studies and clinical trials using multiple
approaches. Omomyc, a dominant negative c-Myc, interferes with
the ability of c-Myc/Max complexes to bind and activate their
target genes.243 In a preclinical model of lung adenocarcinoma,
Omomyc slowed tumor growth, and when combined with
paclitaxel (PubChem CID: 36314), almost completely abrogated
tumor growth.244 Due to its high anti-cancer potential and limited
side effects, Omomyc is about to reach clinical trials for lung, breast
and colorectal cancers. Future preclinical and clinical studies
should investigate the potential of Omomyc to treat c-Myc-driven
sarcomas. BRD4 is involved in regulating c-Myc transcription, and
its inhibition using JQ1 resulted in anti-cancer activity in
rhabdomyosarcoma and EwS, among other cancers.241,245–248

While JQ1 treatment significantly reduced EwS cell proliferation
and tumor growth in vivo, it did not result in a downregulation of
c-Myc, indicating that BRD4 does not target c-Myc in EwS.249

Proteolysis targeting chimaeras (PROTACs), a technology that
utilizes the ubiquitin–protease system to target proteins for
proteasomal degradation, has shown better success than JQ1 in
targeting BRD4.250 For example, ARV-825 (PubChem CID:
92044400) was designed to target BRD4 and it has greater ability
than JQ1 or other small-molecule BRD4 inhibitors to downregulate
levels of c-Myc and its downstream target genes.251,252 ARV-825
and ARV-771 (PubChem CID: 126619980) also have anti-cancer
potential in MPNST cells by downregulating BRD4, inhibiting cell
viability and inducing apoptosis.253 The PROTAC BET-d260
significantly downregulated BRD2,3,4 and c-Myc in a number of
osteosarcoma cell lines and this was associated with tumor growth
inhibition and apoptosis.254 Furthermore, PROTAC MD-224 (Pub-
Chem CID: 131986956) which efficiently targets MDM2, induced
complete and durable tumor regression in leukemia cells in vivo,
and it would be worth evaluating its activity in MDM2-driven
sarcomas such as liposarcomas.255 Future clinical trials should
evaluate whether targeting TFs either alone or in combination with
other targeted therapeutic approaches can lead to more effective
therapies and better outcomes for sarcoma patients.

Personalized precision medicine
Next generation sequencing (NGS) tools allows for rapid and cost-
effective sequencing of whole genome DNA and transcriptomic

RNA profiles which can be used for either diagnostic or
therapeutic purposes. So far, they have enabled the generation
of large gene expression signatures of downstream targets of
genetic or chromosomal aberrations in specific sarcoma subtypes.
These NGS tools are redefining the way we diagnose and treat
sarcomas, as sarcomas are difficult to fully characterize even by
expert pathologists. Rationally chosen drug treatment based on
NGS data in individual patients could provide clinical benefit and
should become the norm for sarcoma diagnosis and treatment.
Furthermore, 3D-cell culture models such as spheroids and
organoids derived from tumor tissue from a patient represent
novel tools that can be used to identify personalized drug
treatments. Importantly, these models are able to overcome
limitations associated with traditional 2D-monolayer cell cultures
and more realistically reflect tumor heterogeneity, cell-
extracellular matrix interactions and tumor microenvironment.256

Similarly, PDX models in which fresh patient tumor tissues are
directly transplanted into immunocompromised mice, represent a
novel approach to identify personalized drug treatments. They are
superior to standard cell line-derived xenografts because they
maintain the histological, epigenetic and genetic characteristics
across several passages, and includes the tumor microenviron-
ment, which together creates a more realistic model of the
pathophysiological conditions of the patient’s tumor.257,258

Indeed, copy number alterations found in PDX models of STS
and bone sarcoma are also evident in sarcoma patients which
suggest that these alterations are due to realistic tumor
progression rather than model-specific artefacts.259 Furthermore,
in vitro PDX cell lines and/or in vivo PDX mouse models enable
researchers to perform high-throughput drug screens rapidly and
inexpensively to design personalized treatments aimed at
improving patient outcomes. Importantly, PDX models are highly
predictive of clinical treatment response.260 This is evident in the
response rates to standard chemotherapeutic and targeted
therapies in PDX models correlating well with clinical outcome
for a number of cancer patients including those with colorectal,
pancreatic, non-small cell lung and breast cancer.261–265 Several
studies have reported successful establishment of STS and bone
sarcoma PDX models, with an overall engraftment success rate of
32–69% and successful recapitulation of the genetic and
phenotypic characteristics of the original tumor.266–270 Further-
more, a high-throughput drug screen revealed that the most
commonly used chemotherapeutics, HDAC and proteasome
inhibitors, were active against most sarcoma subtypes.268 All
rhabdomyosarcoma PDX models were particularly sensitive to the
WEE1 inhibitor AZD1775 (PubChem CID: 24856436) and AZD1775
combined with current standard of care drugs vincristine (VCR)
(PubChem CID: 5978) and irinotecan (IRN) (PubChem CID: 60838)
had a better response rate in ERMS and ARMS PDX models
compared to AZD1775, VCR and IRN alone. This demonstrates the
advantage of using PDX models for personalized sarcoma therapy
and justifies the use of a combination of the three drugs for future
clinical trials. A summary of current personalized sarcoma
treatment options is illustrated in Fig. 8.

CONCLUSIONS
Despite the identification of oncogenic factors and pathways that
drive sarcomagenesis and the development of therapies to target
some of them, the treatment of sarcomas still poses a huge
therapeutic challenge. This is due to the vast array of sarcoma
subtypes, their intrinsic heterogeneity, alterations in many
signaling pathways and variability in response to treatment. Not
surprisingly, monotherapy has not been effective in the treatment
of sarcomas, and combination therapies that target multiple
oncogenic pathways while minimizing drug toxicity should be
considered in future. It is anticipated that this will be achieved by
unravelling the molecular mechanisms of each sarcoma subtype
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and applying personalized medicine principles to treat these
highly aggressive and often drug resistant cancers.
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