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Abstract: The ridge regression estimator is a commonly used procedure to deal with multicollinear
data. This paper proposes an estimation procedure for high-dimensional multicollinear data that
can be alternatively used. This usage gives a continuous estimate, including the ridge estimator as a
particular case. We study its asymptotic performance for the growing dimension, i.e., p→ ∞ when n
is fixed. Under some mild regularity conditions, we prove the proposed estimator’s consistency and
derive its asymptotic properties. Some Monte Carlo simulation experiments are executed in their
performance, and the implementation is considered to analyze a high-dimensional genetic dataset.

Keywords: asymptotic; high–dimension; Liu estimator; multicollinear; ridge estimator

1. Introduction

Consider the multiple regression model given by

Y = Xβ + ε, (1)

where Y = (y1, . . . , yn)> is a vector of n responses, X = (x1, . . . , xn)> is an n× p design
matrix, with the ith predictor xi ∈ Rp, β = (β1, . . . , βp)> is the coefficients vector, and ε

is an n-vector of unobserved errors. Further, we shall assume E(ε) = 0, E
(
εε>

)
= σ2In,

σ2 > 0.
When p < n, the ordinary least squares (LS) estimator of β is given by

β̂ = arg min
β∈Rp

S(β), S(β) = (Y− Xβ)>(Y− Xβ)

= (X>X)−1X>Y. (2)

However, for the high dimensional (HD) case, p > n the LS estimator cannot be
obtained, because X>X is rank deficient. It is well known that the ridge regression (RR)
estimator of [1], followed by [2] regularization, however, exists. The rationale is to add
a positive value k > 0 to the eigenvalues of X>X to efficiently estimate the parameters

via β̂
Ridge

= (X>X + kIp)−1X>Y. Refer to Saleh et al. [3] for theory and application of
the RR approach. Using the projection of β onto the row space of X is a well-described
remedy. Wang et al. [4] used this technique and proposed a high dimensional LS estimator
as a limiting case of the RR, while Buhlmann [5] also used the projection method and
developed a bias correction in the RR estimator to propose a bias-corrected RR estimator
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for the high dimensional setting. Shao and Deng [6] used the method and proposed to
threshold the RR estimator when the projection vector is sparse, in the sense that many of
its components are small and demonstrated consistency. Dicker [7] studied the minimum
property of the RR estimator and derived its asymptotic risk for the growing dimension,
i.e., p→ ∞. Although the RR estimator involves high dimensional problems, there exits a
counterpart that has not been considered in high dimension.

An Existing Two-Parameter Biased Estimator

It is well known that the RR estimator is an efficient approach for multicollinear
situations. Since then, many authors have developed ridge-type estimators to overcome
the issue of multicollinearity. One drawback of the RR estimator is that it is a non-linear
function of the tuning parameter. Hence, Liu [8] developed a similar estimator; however,
it is linear for the tuning parameter via the following optimization problem, for the case
p < n:

min
β∈Rp

S(β) + (dβ̂− β)>(dβ̂− β). (3)

The solution to the optimization problem (3) has the form

β̂
Liu

= (X>X + Ip)
−1(X>Y + dβ̂), (4)

where d ∈ (0, 1) is termed as the biasing parameter.
Combining the advantages of the RR and Liu estimators, Ozkale and Kaciranlar [9]

proposed a two-parameter estimator by solving the following optimization problem:

min
β∈Rp

S(β) + k
[
(dβ̂− β)>(dβ̂− β)− c

]
, (5)

where c is a constant, and k is the Lagrangian multiplier. The resulting two-parameter
ridge estimator has the form

β̂(k, d) = (X>X + kIp)
−1(X>Y + kdβ̂) (6)

The above estimator has several advantages and can be simplified to LS, RR, and Liu
estimators as limiting cases (see Figure 1). It can be argued that this estimator can also be
interpreted as a restricted estimator under stochastic prior information about β.

β̂(k, d)

d→
1

d→
0

k→
0

k→ ∞

k→
1

β̂

β̂Ridge

β̂Liu

dβ̂

β̂

Figure 1. Special limiting cases.

With growing dimensions p, p > n, the LS estimator (2) cannot be obtained, so
it is not possible to use the two-parameter ridge estimator in Equation (6). Hence, de-
veloping a high-dimensional two-parameter version of this estimator and studying its
asymptotic performance is interesting and worthwhile. Therefore, in this paper, we propose
a high-dimensional version of Ozkale and Kaciranlar’s estimator and give the asymptotic
properties. The paper’s organization is as follows: In Section 2, a high-dimensional two-
parameter estimator is proposed, and its asymptotic characteristics are discussed. Section 3
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indicates the generalized cross validation for choosing the parameters. In Section 4, some
simulation experiments are presented to assess the novel estimator’s statistical and compu-
tational performance, and an application to the AML data is illustrated in this section The
conclusion is presented in the last section.

2. The Proposed Estimator

In this section, we develop an HD estimator and establish its asymptotic properties.
To show a component is dependent to p, we shall use the subscript p and particularly
consider the scenarios in which p → ∞ and n is fixed. This is termed large p, fixed n,
which is more general than scenarios with p/n → ρ ∈ (0, ∞), a common assumption in
high-dimensional settings.

Consider a diverging number of variables case, in which p is allowed to tend to infinity.
This case fulfills the high-dimensional case p > n. Under this setting, the inverse of X>X
does not exist; however, the RR estimator is still valid and applicable. Further, the Liu
estimator cannot be obtained. As a remedy, one can use the Moore–Penrose inverse of X>X,
a particular case of the generalized inverse. Wang and Leng [10] showed that (X>X)−1X>

can be seen as the Moore-Penrose inverse of X for p < n, and that X>(XX>)−1 is the
Moore–Penrose inverse of X when p > n. This gives, for any p, n > 0,

(X>X + sIp)
−1X> = X>(XX> + sIn)

−1, (7)

where s is an arbitrary nonegative constant.
Multiplying both sides of (7) by Y reveals that the LS estimator can be represented as

β̂ = lim
s→∞

(X>X + sIp)
−1X>Y

= lim
s→∞

X>(XX> + sIn)
−1Y

= X>(XX>)−1Y. (8)

Now, for the HD case, substitute (8) in (6) to obtain

β̂
HD

= (X>X + kpIp)
−1(X>Y + kpdpX>(XX>)−1Y)

= (X>X + kpIp)
−1(X> + kpdpX>(XX>)−1)Y

= (X>X + kpIp)
−1(X> + kpdpX+)Y, (9)

where X+ = X>(XX>)−1 is the Moore–Penrose inverse of X.
We impose the following regularity conditions for studying the asymptotic perfor-

mance of the estimator. β̂
HD

given by (9).

(A1) 1/kp = o(1). There exists a constant 0 ≤ δ < 0.5, such that a component of X is

O
(

kδ
p

)
.

(A2) dp = o(1). There exists a constant 0 ≤ η < 0.5, such that a component of X+ is

O
(

d−η
p

)
.

(A3) For sufficiently large p, there is a vector bp×1, such that β = X>Xb, and there exists
a constant ε > 0, such that each component of the vector bp×1 is O(1/pε+1.5), and
kp = o(pεap), with ap = o(1). (An example of such choice is kp =

√
p and ε = 0.5+ δ).

(A4) For sufficiently large p, there exists a constant δ > 0, such that each component of β
is O(p−2−δ) and 1/dp = o(pδ). Further, kδ−1

p = o(dp).

Assumption (A3) is adopted from Luo [11]. Let β̂
HD

=
(

β̂HD
1 , . . . , β̂HD

p

)>
.

Theorem 1. Assume (A1) and (A2). Then, var
(

β̂
HD
i

)
= o(1) for all i = 1, . . . , p.
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Proof. For the proof, refer to Appendix A.

Theorem 2. Assume (A1)–(A3). Further, suppose λip = O
(
kp
)
, where λip > 0 is the ith

eigenvalue of X>X. Then, bias
(

β̂HD
i
)
= o(1) for all i = 1, 2, . . . , p.

Proof. For the proof, refer to Appendix A.

Using Theorems 1 and 2, it can be verified that the HD estimator β̂HD is a consistent
estimator for β as p→ ∞.

The following result reveals the asymptotic distribution of this estimator as p→ ∞.

Theorem 3. Assume 1/kp = o(1), and for sufficiently large p, there exists a constant δ > 0, such
that each component of β is O

(
1/p2+δ

)
. Let kp = o(pδ), λip = o(kp). Furthermore, suppose that

ε ∼ Nn
(
0, σ2In

)
, σ2 > 0. Then,

1
dp

(
β̂

HD − β
) D→ N(0, σ2X+X+>

)
as p→ ∞. (10)

Proof. For the proof, refer to Appendix A.

3. Generalized cross Validation

As noted, the estimator β̂HD depends on both the ridge parameter kp and Liu parame-
ter dp that must be optimized in practice. To do this, we use the generalized cross-validation
(GCV) criterion. The GCV uses to choose the ridge and Liu parameters by minimizing an
estimate of the unobservable risk function

R
(

β; β̂
HD)

=
1
n

(
E(Y)− ŶHD

(kp, dp)
)>(

E(Y)− ŶHD
(kp, dp)

)
=

1
n

∥∥∥E(Y)− Xβ̂
HD

(kp, dp)
∥∥∥2

,

where

ŶHD
(kp, dp) = Xβ̂

HD

= (X>X + kpIp)
−1(X> + kpdpX+)Y

= H(kp, dp)Y, (11)

with H(kp, dp) = X(X>X + kpIp)−1(X> + kpdpX+), termed as the hat matrix of Y.
This is straightforward to demonstrate, as in [12].

E
(

R
(

β; β̂
HD))

=
1
n
∥∥(In −H(kp, dp)

)
Xβ
∥∥2

+
σ2

n
tr
(

H(kp, dp)
>H(kp, dp)

)
= ν2

1(kp, dp) + σ2ν2(kp, dp),

where ν2
1(kp, dp) =

1
n

∥∥(In −H(k, d)
)
Xβ
∥∥2 and ν2(kp, dp) =

1
n tr
(
H(kp, dp)>H(kp, dp

)
.

The GCV function is then defined as

GCV
(

β̂
HD)

=
1
n

∥∥(In −H(kp, dp)
)
y
∥∥2(

1− 1
n tr

(
H(kp, dp)

))2

=
1
n

∥∥(In −H(kp, dp)
)
y
∥∥2(

1− µ1(kp, dp)
)2 , (12)

where µ1(kp, dp) =
1
n tr
(
H(kp, dp)

)
.

The following theorem extends the GCV theorem proposed by Akdeniz and Roozbeh [13].
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Theorem 4. According to the definition of GCV, we have

E
(

R
(

β; β̂
HD))− E

(
GCV

(
β̂

HD))
+ σ2

E
(

R
(

β; β̂
HD)) =

(
1− σ2(

1− µ1(kp, dp)
)2

)

+
1

D(k, d)
×

σ2µ1(kp, dp)2(
1− µ1(kp, dp)

)2 ,

where D(k, d) = ν2
1(kp, dp) + σ2ν2(kp, dp), and consequently,∣∣∣E(R

(
β; β̂

HD))− E
(

GCV
(

β̂
HD))

+ σ2
∣∣∣

E
(

R
(

β; β̂
HD)) <

σ2(
1− µ1(kp, dp)

)2

×
(

2µ1(kp, dp) +
µ1(kp, dp)2

ν2(kp, dp)

)
,

whenever 0 < µ1(kp, dp) < 1.

Proof. r For the proof, refer to Appendix A.

4. Numerical Investigations

In this section, for performance assessment of the proposed HD estimator β̂
HD

, we
conduct a simulation study along with the analysis of real data.

4.1. Simulation

Here, we consider the multiple regression model with varying squared multiple
correlation coefficient R2 and error distribution, given by the following relation:

Y = cXβ + σε,

where β = (β1, 0)>, β1 is the active set, and its dimension is p1 = 0.4p. The absolute
values of a normal distribution with mean 0 and standard deviation 5 is considered β1. The
remaining p− p1 components are zero.

In this example, motivated by McDonald and Galarneau [14], the explanatory vari-
ables are computed by

xj =
√

1− ρ2zj + ρzp1 , j = 1, . . . , p,

where the zjs are independent standard normal pseudo-random vectors, and ρ is specified
such that the correlation between any two explanatory variables is given by ρ2. Similarly to
Zhu et al. [15], the variance is set to σ2 = 6.83, and two different kinds of error distribution
are taken for ε: (1) the standard normal is Nn(0, In), and (2) standard t with 5 degrees of
freedom tn(0, In, 5). The constant c is also varied to control the signal-to-noise ratio, and it
is set to 0.5, 1, and 2 with the corresponding R2 = 20%, 50% and 80%. R2 represents the
proportion of the variable for a dependent variable that is explained by an independent
variable or variables in a regression model.

We consider ρ ∈ {0.8, 0.95}; the sample size and the number of covariates are set to n ∈
{30, 50, 100}, p ∈ {256, 512, 1024}, respectively. Following regularity conditions (A1)–(A4),
we set kp =

√
p. For δ = 0.25 = 1/4, we take dp = p−1/5, which guarantees (A4). We then

simulate β̂
HD

and β̂
Ridge

100 times using Equation (9) and β̂
Ridge

= (X>X + kpIp)−1X>Y.



Mathematics 2021, 9, 3057 6 of 11

For comparison purposes, the quadratic bias (QB) and mean squared error (MSE) are
computed according to

QB(β̂
∗
) =

1
100

100

∑
j=1

(β̂
∗
j − β)>(β̂

∗
j − β), and MSE(β̂

∗
) =

1
100

100

∑
j=1

(β̂
∗
j − β)>(β̂

∗
j − β),

respectively, where β̂
∗

is one of β̂
HD

or β̂
Ridge

.

4.2. Review of Results

In Theorem 2, the condition for which the proposed β̂
HD

is unbiased is investigated
based on the eigenvalues of X>X. Here, we numerically analyze the biasedness of this
estimator by comparing the ridge estimator concerning the parameters of the model. For
this purpose, the difference in QB is reported in Table 1 by evaluating

diff = QB(β̂
HD

)−QB(β̂
Ridge

).

If diff is positive, then the quadratic bias of the proposed estimator is larger than that
of the ridge estimator.

Table 1. The difference between quadratic biases of the high dimensional and ridge estimators.

ρ = 0.8 ρ = 0.95

N (0, In) tn(0, In, 5) N (0, In) tn(0, In, 5)

p c n diff diff diff diff

256

0.5
30 5.7657 5.7643 10.0535 10.1134
50 6.4911 6.4941 11.4722 11.5088

100 17.8314 17.8493 30.1008 30.4137

1
30 22.9671 487.4169 39.6556 459.3473
50 25.8621 522.6298 45.1138 480.5501

100 70.8693 798.6551 118.1326 676.1919

2
30 91.7526 2413.9746 158.0026 2256.1664
50 103.3996 2587.7382 179.8509 2357.4111

100 283.0549 3922.0057 470.4114 3259.2211

512

0.5
30 3.1943 3.2012 6.5528 6.6001
50 4.4800 4.4781 9.5861 9.6151

100 10.2121 10.2489 20.1828 20.3366

1
30 12.7657 926.7540 26.0911 916.2663
50 17.8861 1009.3595 38.0549 969.4353

100 40.7254 1192.4455 79.9094 1095.9628

2
30 51.0605 4621.0862 104.2892 4555.0569
50 71.5157 5029.3107 151.9461 4809.2595

100 162.7616 5920.6337 318.7343 5397.7878

1024

0.5
30 1.7594 1.7584 3.7384 3.7410
50 3.9188 3.9345 9.2523 9.3437

100 5.1236 5.1189 12.6469 12.6455

1
30 7.0318 1637.6798 14.8960 1636.5664
50 15.6758 1804.8548 36.9649 1763.7468

100 20.4564 1940.6091 50.2993 1856.0197

2
30 28.1221 8181.4255 59.5312 8167.9835
50 62.7157 9008.4246 147.8715 8781.1968

100 81.7756 9682.7404 147.8715 9229.7803
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To comprise the MSEs, we use the relative mean square error (RMSE) given by

RMSE =
MSE(β̂

Ridge
)

MSE(β̂
HD

)
.

The results are reported in Table 2. If RMSE > 1, then the proposed estimator has a
smaller MSE compared to the ridge.

Table 2. The relative MSE of the high dimensional and ridge estimators.

ρ = 0.8 ρ = 0.95

N (0, In) tn(0, In, 5) N (0, In) tn(0, In, 5)

p c n RMSE RMSE RMSE RMSE

256

0.5
30 1.0050 1.0050 1.0140 1.0139
50 1.0058 1.0058 1.0161 1.0160

100 1.0222 1.0222 1.0543 1.0539

1
30 1.0032 1.0032 1.0179 1.0178
50 1.0039 1.0039 1.0209 1.0209

100 1.0221 1.0220 1.0883 1.0876

2
30 0.9816 0.9816 0.9852 0.9851
50 0.9793 0.9793 0.9829 0.9829

100 0.9434 0.9435 0.9587 0.9584

512

0.5
30 1.0011 1.0011 1.0031 1.0031
50 1.0016 1.0016 1.0048 1.0048

100 1.0041 1.0041 1.0119 1.0119

1
30 1.0004 1.0004 1.0029 1.0029
50 1.0007 1.0007 1.0048 1.0048

100 1.0023 1.0023 1.0139 1.0139

2
30 0.9948 0.9948 0.9924 0.9924
50 0.9929 0.9929 0.9895 0.9895

100 0.9843 0.9843 0.9810 0.9809

1024

0.5
30 1.0003 1.0003 1.0009 1.0009
50 1.0007 1.0007 1.0022 1.0022

100 1.0009 1.0009 1.0031 1.0031

1
30 1.0001 1.0001 1.0006 1.0006
50 1.0002 1.0002 1.0017 1.0017

100 1.0003 1.0003 1.0025 1.0025

2
30 0.9984 0.9984 0.9973 0.9973
50 0.9964 0.9964 0.9933 0.9933

100 0.9954 0.9954 0.9910 0.9911

Based on the results of Tables 1 and 2, the following conclusions are made:

(1) The performance of the estimators is affected by the number of observations (n), the
number of variables (p), the signal to noise ratio (c), and the degree of multicollinear-
ity (ρ).

(2) By increasing the degree of multicollinearity, ρ, although for both cases of error
distributions, the QB of the proposed estimator increases for c = 0.5 and 1, its MSE
decreases dramatically since the RMSE increases.

(3) The signal-to-noise shows the effect of β in the model. Lower values (less than 1)
are a sign of model sparsity, since, when c is small, the proposed estimator performs
better than the ridge. This is evidence that our estimator is a better candidate as an
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alternative in sparse models in the MSE sense. However, the QB increases for large c
values, which forces the model to overestimate the parameters.

(4) As p increases, although the proposed estimator is superior to the ridge in sparse
models (small c values), the efficiency decreases. This is more evident when the
ratio p/n becomes larger. This fact may come as poor performance of the proposed
estimators, but our estimator is still preferred in high dimensions for sparse models.

(5) Obviously, as n increases, so does the RMSE; however, the QB becomes very large,
and it is due to the nature of the proposed estimators because of its complicated
form. It must be noted that this does not contradict the results of Theorem 2, since the
simulation scheme does not obey the regularity condition.

(6) There is evidence of robustness for the distribution tail for sparse models, i.e., the QB
and RMSE are the same for both normal and t distributions. However, as c increases,
the QB of the proposed estimator explodes for the heavier tail distribution. This may
be seen as a disadvantage of the proposed estimators, but even for large values of
c, the RMSE stays the same, evidence of relatively small variance for the heavier
tail distribution.

4.3. AML Data Analysis

This section assesses the performance of the proposed estimators using the mean
prediction error (MPE) and MSE criteria of a data set adopted from Metzeler et al. [16],
in which the information for 79 patients was collected. The data can be accessed from the
Gene Expression Omnibus (GEO) data repository (http://www.ncbi.nlm.nih.gov/geo/
(accessed on 1 January 2021)) by the National Center for Biotechnology Information (NCBI),
where the data is available under GEO accession number GSE12417. We only use the data
set that was used as a test set. This contains gene expression data for 79 adult patients
with cytogenetically normal acute myeloid leukemia (CN-AML), showing heterogeneous
treatment outcomes. According to Sill et al. [17], we reduce the total number of 54,675
gene expression features that have been measured with the Affymetrix HG-U133 Plus
2.0 microarray technology to the top p ∈ {1000, 2000} features with the largest variance
across all 79 samples. We considered overall survival time based on month as the response
variable. The condition number of the design matrix for the AML data set is approximately
1095.80, evident of severe multicollinearity among columns of the design matrix ([18], see
p. 298). To find the optimum values of k and d, denoted by kopt and dopt for practical
purposes, we use the GCV given by Equation (12). Hence, we use the following formulas:

β̂
HD∗

= (X>X + koptIp)
−1(X>Y + koptdoptX>(XX>)−1Y)

β̂
Ridge∗

= (X>X + koptIp)
−1X>Y.

To compute the MPE and MSE, we divide the whole data set into two train (T =
(Xtrain, Ytrian)) and validation (V = (Xvalid, Yvalid)) sets, comprising 70% and 30%, respec-
tively. Then, the measures are evaluated using

MPEboot(β̂
∗
) =

1
N.boot

N.boot

∑
j=1

(Xvalidβ̂
train∗
j − Yvalid)>(Xvalidβ̂

train∗
j − Yvalid),

MSEboot(β̂
∗
) =

1
N.boot

N.boot

∑
j=1

(β̂
train∗
j − βHD∗)>(β̂

train∗
j − βHD∗),

where N.boot stands for the number of bootstrapped sample, β̂
∗

is one of the proposed

and ridge estimators, and β̂
HD∗

is the assumed true parameter obtained by Equation (9)
from the whole data set.

RMPEboot =
MPEboot(β̂

Ridge∗
)

MPEboot(β̂
HD∗

)
RMSEboot =

MSEboot(β̂
Ridge∗

)

MSEboot(β̂
HD∗

)

http://www.ncbi.nlm.nih.gov/geo/


Mathematics 2021, 9, 3057 9 of 11

The results are tabulated in Table 3 for the number of bootstrap N.boot = 200. The
following conclusions are obtained from Table 3:

(1) Using the GCV, the proposed estimator is shown to be consistently superior to the
ridge estimator, relative to RMSE and RMPE criteria.

(2) Similarly to the results of simulations, with growing p, the MSE of the proposed
estimator increases compared to the ridge estimator. However, as p gets larger the
mean prediction error becomes smaller, which shows the superiority for prediction
purposes.

Further, Figure 2 depicts the MSE and MPE values for both HD and ridge estimators,
for the case p = 1000. It is obvious that the high-dimensional estimator performs better
compared to the ridge. For the case p = 2000, we obtained similar results.

Table 3. RMPE and RMSE values for 200 bootstrapped samples in the analysis of AML data

Criterion p = 1000 p = 2000

RMPEboot 1.001981 1.002278
RMSEboot 1.046073 1.039997

Figure 2. Box-plot of the MSE and MPE values for p = 1000 in the AML data.

5. Conclusions

In this note, we propose a high-dimensional two-parameter ridge estimator to the
conventional ridge and Liu estimators. Its asymptotic properties have also been discussed.
This estimator, via simulation and real-life experiments, is efficient in high dimensional
problems and can potentially overcome multicollinearity. Additionally, the proposed
high-dimensional ridge estimator yields superior performance in the small mean squared
error sense.
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Appendix A. Proof of the Main Results

Proof of Theorem 1. By definition, we have

var
(

β̂
HD
)

= σ2
(

X>X + kpIp

)−1(
X> + kpdpX+

)(
X> + kpdpX+

)>(
X>X + kpIp

)−1

= σ2

(
X>X

kp
+ Ip

)−1(
X>

kp
+ dpX+

)(
X
kp

+ dpX>
+
)(

X>X
kp

+ Ip

)−1

(A1)

By (A1), X/kp = O(1)kδ−1
p = o(1) and X>X/kp + Ip → Ip. By (A2), dpX+ =

O(1)d1−η
p = o(1). Hence, var

(
β̂HD

i
)
→ 0 as p→ ∞, and the proof is complete.

Proof of Theorem 2. By definition

E
(

β̂
HD
)

= (X>X + kpIp)
−1(X> + kpdpX+)Xβ

=

(
X>X

kp
+ Ip

)−1(
X>X

kp
+ dpX+X

)
β

=

(
X>X

kp
+ Ip

)−1(
X>X

kp

)
β + dpX+Xβ. (A2)

Under (A2), dpX+X = o(1). The proof is complete using Theorem 2 of Luo [11].

Proof of Theorem 3. We have

1
dp

(β̂
HD − β) =

1
dp

{
(X>X + kpIp)

−1(X> + kpdpX+)(Xβ + ε)− β
}

=

(
X>X

kp
+ Ip

)−1(
X>

kpdp
+ X+

)
ε

+
1
dp

(
X>X

kp
+ Ip

)−1(
dpX+X− Ip

)
β.

By (A1), X>X/kp + Ip → Ip, by (A2), dpX+X = o(1), and by (A4), X/kpdp = o(1).
Hence,

1
dp

(β̂
HD − β)→ X+ε

The proof is complete.

http://www.ncbi.nlm.nih.gov/geo/
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Proof of Theorem 4. It is straightforward to verify that

E
(

GCV
(

β̂
HD))

=
ν2

1(kp, dp) + σ2(1− 2µ1(kp, dp) + ν2(kp, dp)
)(

1− µ1(kp, dp)
)2 .

Hence

E
(

R
(

β; β̂
HD))− E

(
GCV

(
β̂

HD))
= E

(
R
(

β̂
HD

(kp, dp); β
))(

1− 1(
1− µ1(kp, dp)

)2

)

−σ2 1− 2µ1(kp, dp)(
1− µ1(kp, dp)

)2 ,

which leads to the required result.
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