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Abstract: The present study intends to evaluate a synergy towards enhanced biogas production
by co-digesting municipal sewage sludge (SS) with brewery spent grain (BSG). To execute this,
physicochemical and metagenomics analysis was conducted on the sewage sludge substrate. The
automatic methane potential test system II (AMPTS II) biochemical methane potential (BMP) batch
setup was operated at 35 ± 5 ◦C, pH range of 6.5–7.5 for 30 days’ digestion time on AMPTS II
and 150 days on semi-continuous setup, where the organic loading rate (OLR) was guided by pH
and the volatile fatty acids to total alkalinity (VFA/TA) ratio. Metagenomics analysis revealed that
Proteobacteria was the most abundant phyla, consisting of hydrolytic and fermentative bacteria. The
archaea community of hydrogenotrophic methanogen genus was enriched by methanogens. The
highest BMP was obtained with co-digestion of SS and BSG, and 9.65 g/kg of VS. This not only
increased biogas production by 104% but also accelerated the biodegradation of organic matters.
However, a significant reduction in the biogas yield, from 10.23 NL/day to 2.02 NL/day, was
observed in a semi-continuous process. As such, it can be concluded that different species in different
types of sludge can synergistically enhance the production of biogas. However, the operating
conditions should be optimized and monitored at all times. The anaerobic co-digestion of SS and
BSG might be considered as a cost-effective solution that could contribute to the energy self-efficiency
of wastewater treatment works (WWTWs) and sustainable waste management. It is recommended to
upscale co-digestion of the feed for the pilot biogas plant. This will also go a long way in curtailing
and minimizing the impacts of sludge disposal in the environment.

Keywords: anaerobic co-digestion; biodegradation; methanogenesis; microbial community; munici-
pal sludge; and brewery spent grains

1. Introduction

In South Africa, sewage sludge (SS) generated from municipal waste water treatment
works (WWTW) remains a challenge. Most urban SS in the country is treated improperly
prior to discharge [1,2]. This is due to the fact that most WWTWs lack trained operators
and inadequate wastewater capital and operating funds. There is also a lack of planning to
provide for the constant increase in urbanization, as well as a lack of human resources and
technical skills [3]. Studies have shown that a substantial number of wastewater treatment
works run by municipalities in Gauteng are producing effluent that does not meet DWAF
standards. Some of the works produce effluent of low-quality by-products that are released
to the environment [4–6]. This is mostly the case with underperforming WWTPs, for which
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some of the reasons are: unplanned treatment loads exceeding treatment capacity, under-
budgeting by the municipality for wastewater equipment maintenance, and the use of
personnel with insufficient understanding of the technology of wastewater treatment [3,7].
Due to various industrial processes, water is contaminated with undesirable compounds.
These toxic compounds are harmful to people, animals, and the environment. However,
these toxic harmful bacteria can otherwise be utilized in renewable energy production [8].

Renewable energy production is currently a major issue worldwide and in South
Africa [9]. Its usage will relieve countries from non-renewable sources that heavily pollute
the environment and compromise its ability to foster life [10]. The current National Devel-
opment Plan goals are to procure at least 20,000 MW of renewable electricity by 2030 [11].
Despite what has been achieved so far, a lot of work remains to be conducted in order to
achieve the country’s targets for universal access to clean and affordable energy [10]. As
such, the optimization of energy efficiency is equally important to municipal WWTWs.
Increasing energy costs and concerns about global climate change highlight the need to re-
alize energy self-sufficiency in WWTWs. Energy self-sufficient WWTWs have been studied
to reduce operation costs, energy consumption, and achieve carbon neutrality [12,13]. This
will also make WWTWs self-sustainable and self-sufficient in terms of energy due to waste
beneficiation.

Among others, a current promising method in place is anaerobic digestion (AD). The
process has received lot of attention in the wastewater treatment plant AD because it can be
used for sewage sludge stabilization, energy recovery from sludge, and waste management,
thus reducing the concentration of organic matter. Even though anaerobic digestion is
widely applied throughout the world, knowledge on the subject is quite limited, especially
in South Africa. AD is a process in which bacteria breaks down the organic matter from a
biomass material to produce biogas in the absence of oxygen [14]. Biogas is a promising
renewable source of energy which combines the elimination of organic waste with the
formation of a versatile energy carrier of methane. Four main reactions during methane
production that constitute this metabolic pathway are: hydrolysis, acidogenesis, acetogene-
sis, and methanogenesis, as shown in Figure 1. Hydrolysis involves the breaking down of
the complex organic polymer into simple soluble molecules by hydrolysing fermentative
bacteria. The hydrolysis reaction converts polymers of carbohydrates, protein, and lipids
into their respective monomers of sugar, amino acids, and long-chain fatty acids. The
hydrolysed soluble substrates are fermented by acidogenic bacteria during the acidogenesis
stage into VFAs with small amounts of CO2, H2, and acetic acid being produced [13–15].
These intermediate products are further oxidised to acetate H2 by homoacetogenic and
obligatory H2 producing bacteria in the acetogenesis stage, respectively [16]. In the final
step, methanogenesis, acetate and H2 are metabolised into CH4 by acetolactic and hy-
drogenotrophic methanogens. The acetolactic methanogen uses only acetic acid in the
formation of CH4, whereas hydrogenotrophic methanogen uses H2 and CO2, as shown in
Figure 1.

As a result of the complexity of the microbial communities and metabolic pathways
involved, the microbiological process leading to biogas production requires an in-depth
understanding that specifically focuses on the microbial communities governing the produc-
tion of biogas. In addition, in order to maximize the biogas yield in AD, an understanding
of the microbial community, especially that of an archaea and bacteria, is deemed necessary.
This is particularly important in terms of the AD metabolic pathways, taxonomy profile,
and diversity [15,16]. There are many literature reports that provide information about the
methanogenesis pathway, a metagenomics study of the dominant microbes, and how to
monitor their community shift. The basis of literature will assist by providing information
on how to improve the process of economic viability for AD and to maximize CH4 yield,
as well as to engineer the environmental parameters and augment the development of AD
bio-catalytic bacteria [17,18].
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A common problem usually encountered in biogas production is low biogas yield due
to the use of single feedstock, i.e., sewage sludge. Too often, sludge is either recalcitrant to
digestion or has a low or high C/N ratio. This can be improved by co-digesting the sludge
with a co-substrate that increases the conversion of organic solids to biogas, thus increasing
the production of methane. This will, in turn, boost energy production, making it possible
to offset the required energy in the WWTWs’ processes [20,21]. Anaerobic co-digestion
(ACD) is a practice which includes the mixing of more than two different feedstocks [22].
ACD has recently been proposed as a solution to the limitation of sewage sludge mono-
digestion. Low organic load, poor C/N ratio, and low alkalinity are all characteristics
of SS. Heavy metals, sulphates, and ammonia are also found in sludge; these act as AD
inhibitors [23]. The addition of a substrate may improve process stability by improving
nutrient balance and diluting inhibitory substances in the feedstock [24–26].

Brewery spent grains (BSG) are high in protein, lignocelluloses, and moisture, making
them susceptible to microbial degradation. They also have a high C/N ratio and significant
alkalinity, as well as a significant amount of easily biodegradable organic matter [27].
BSG is a major by-product of the beer-brewing industry and is thus regarded as waste.
Therefore, it is not limited by cost or seasonality; it is readily available in large quantities.
BSG can be produced from a variety of sources, including breweries, the ethanol industry,
and households. The chemical composition of different sources of BSG varies depending
on the chemical content of the parent feedstock. Due to the limited biodegradability of
lignin, which results in low biogas yields and requires an extended hydraulic retention
time (HRT), the mono-digestion of BSG is ineffective [27]. However, SS contains inorganic
compounds that can disrupt the naturally ordered structure of BSG and remove lignin to
make it less recalcitrant to biodegradability [25–29].

The objective of this study is to evaluate the impact of anaerobic co-digestion on
methane production from sewage sludge and brewery spent grain blend. If the enhance-
ment is achieved, this research aims to quantify the enhancement effect and assess its
mechanism. This paper focuses on a physicochemical and metagenomics synergy analysis,
especially in relation to the microbial communities that influence or inhibit the production
of biogas.
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2. Materials and Method
2.1. Substrate Sampling and Source

Sewage sludge was collected randomly from the municipal WWTWs in Gauteng
Province, South Africa. Brewery spent grain (BSG) was collected from InBev SA, Rosslyn
(Pretoria) in South Africa. The samples collected were stored in a 4 ◦C laboratory fridge
prior to analysis to preserve their original structural quality. Samples were used on the
day of collection, and some were reserved for physicochemical tests and metagenomics
analysis.

2.2. Inoculum Preparation

For continuous AD process, efficiency can be reduced due to operational difficulties
and instability problems associated with poor start-up and lack of adapted inoculum [30].
Hence, the seeding process has to be conducted using biologically active sludge and
inoculum. Inoculum supplies the microorganism to the anaerobic digestion process, and is
one of the most important factors since it has the ability to significantly influence methane
yield results [28,30,31]. The standard method for preparing inoculum was followed in this
order, and a quality check was performed to indicate whether the operational parameters
of the digester were of good quality (see Table 1). The most common recommendation
is to pre-incubate the inoculum for 1 to 5 days at 35 ◦C to degas and reduce the impact
of its methane production. The inoculum used for both the batch and starting the semi-
continuous AD processes was provided by IBERT, inside Cavalier Abattoir in Cullinan,
Pretoria. IBERT Ptys provided the inoculum sourced from a plant treating abattoir waste.

Table 1. Characterization of the biochemical methane potential feedstock.

Parameters Inoculum Sewage Sludge Brewery Spent
Grains Blend (1:1)

pH 7.20 6.90 6.10 6.64
Total solids (w/w%) 1.34 3.60 16.72 10.16

Volatile solids (w/w%) 1.58 98.70 97.50 98.10
Carbon content, % 37.14 35.23 87.30 61.27

Nitrogen content, % 3.23 8.60 2.50 5.55
C/N ratio 11.50 4.10 34.92 19.51

2.3. Analysis Techniques

The measure of pH, total solids (TS), and volatile solids (VS) was performed according
to standard methods procedures outlined in Eaton et al. (2015) [32]. To have a better
understanding of microbial dynamics in the digester feed, the bacterial community was
characterized. ZymoBIOMICS DNA extraction was used to extract gDNA from the samples,
as per the manufacturer’s protocol. Universal 16S primers (27F and 1492R) tagged with
universal PacBio adaptor sequences were used to generate full-length 16S amplicon for
sequencing on the PacBio Sequel system. For alignment, raw subreads were processed
through the SMRTlink (v6.0) circular consensus sequences (CCS) algorithm to produce
highly accurate reads (>QV40). For data analysis, these highly accurate reads were then
processed through usearch (https://drive5.com/usearch (accessed on 8 October 2019)),
and taxonomic information was determined based on the Ribosomal Database Project’s
16s database v16 (http://rdp.cme.msu.edu/index.jsp (accessed on 31 October 2019)).

SEM was used to observe the samples’ morphologies. Preliminary images were
obtained with a new generation Philips XL30 SEM, (Foster City, CA, United States). The
SEM is useful for generating images of samples bombarded with beam of electrons. Image
signal can only be generated by SEM if the sample is electrically conductive. Samples were
mounted onto a stud using a double-sided carbon tape and placed in the SEM imaging
chamber. The SEM has an accelerating voltage of 15–30 kV. The maximum voltage used
was 20 kV. Images were captured at different magnifications. To collect the biogas analysis,
the sample was taken from the gas chamber/eudiometer connected to the digester; the

https://drive5.com/usearch
http://rdp.cme.msu.edu/index.jsp
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eudiometer reported the gas flowrate per day. The biogas composition data were collected
on a daily basis using the Geotech 5000 biogas Analyzer. The instrument analyzed methane,
carbon dioxide, and the balance of the gas, which can either be H2S, H2, and siloxanes.

2.4. Batch Co-Digestion Experiment (Biochemical Methane Potential Apparatus)

Under laboratory conditions, the sludge was mixed at the recommended volume
ratio of 50:50 (sludge: spent grain). It was then homogenized, screened through a 3 mm
sieve, and portioned. The samples were analyzed for physicochemical parameters prior
the BMP assay, which included the pH, total solids (TS), volatile solids (VS), total chemical
oxygen demand (COD), Total Kjeldahl Nitrogen (TKN), total organic carbon (TOC), and
total phosphorus (TP). The analysis was carried out according to the Standard Methods for
the Examination of Water and Wastewater. The parameters were determined spectrophotomet-
rically by the use of standard test kits (Hach-DR3900, USA) and the method available from
the company website. The BMP assays were conducted based on the internally developed
method at the university laboratory. Tests were carried out in triplicate, including a blank
to ensure that the environmental samples have not been contaminated and a control to
evaluate the methane on the inoculum. Schott’s glass bottles of 500 mL capacity, with
400 mL working volume were used to carry out the tests [33].

The substrate and the inoculum were introduced following a substrate/inoculum
ratio in terms of volatile solids (VS). Once the bottles were closed, as shown in Figure 2,
they were placed in a water bath-shaker in a controlled temperature of 35–40 ± 1 ◦C,
in mesophilic conditions. The experiments were then carried out in duplicate using the
AMPTS II designed specifically for BMP analysis. The inoculum-only test was used to
account for the inoculum’s biogas contribution in all batch samples.
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methane productions.
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The duration of the experiments depends on the kind of substrate and subject of their
productivity, where a production of less than 1% would indicate the end of the experiment.
Once the assays were finished, the main parameters were analyzed in order to evaluate
the effectiveness of the process, considering the removal results. The chemical oxygen
demand (COD), VFA, alkalinity, pH level, and ammonia nitrogen and orthophosphate
phosphorus were determined in the supernatant. The supernatant samples were obtained
by centrifuging the sample at 4000 r min−1 for 30 min.

Characteristics of Sewage Sludge and Spent Grain

The characteristics of sewage sludge and spent grain are shown in Table 1. The
characteristics of sewage sludge were reported as total solids (TS), volatile solids (vs),
C/N ratio, and pH. The total solids and volatile solids were 3.6 (98.7%), 16.71 (97.5%),
and 10.16 (98.1%) of sludge, grains, and the blend, respectively. These results correlate
well with the results reported by [18]. It was reported that the favourable characteristic
range for anaerobic digestion of sewage sludge in terms of TS and pH is 3–15% and 6.5–8.0,
respectively [34]. The optimal C/N ratio is 15–30 to balance out the carbon and nitrogen
requirements during anaerobic digestion [35]. The sewage sludge is shown to have a
C/N ratio that is lower than recommended. Contrarily, spent grain is above the optimum
range. Brewery spent grains are lignocellulosic materials which are known to contain high
amounts of carbon and are recalcitrant to degradation, slowing down their decomposition
rate [36]. However, when blended together at a 1:1 ratio, the resulting C/N was 19.51,
which is favourable for anaerobic digestion.

The characteristics of sewage sludge and spent grain are shown in Table 1. The
characteristics of sewage sludge were reported as total solids (TS), volatile solids (vs), C/N
ratio, and pH. Please note that the %VS is presented as per solid content of the sample
(per %TS). The total solids and volatile were 3.6 (98.7)%, 16.71 (97.5)% and 10.16 (98.1)%
of sludge, grains, and the blend, respectively. These are similar to values obtained in a
previous study conducted by Alemahdi et al. [18]. It was reported that the favourable
characteristic range for anaerobic digestion of sewage sludge in terms of TS and pH is
3–15% and 6.5–8.0, respectively [34]. The optimal C/N ratio is 15–30 to balance out the
carbon and nitrogen requirements during anaerobic digestion [35]. The sewage sludge
is shown to have a C/N ratio that is lower than recommended. Contrarily, spent grain
is above the optimum range. Brewery spent grains are lignocellulosic materials which is
known to contain high amounts of carbon and are recalcitrant to degradation, slowing
down decomposition rate [36]. However, when blended together at 1:1 ratio, the resulting
C/N was 19.51 which is favourable for anaerobic digestion.

2.5. Semi-Continuous Experimental Set-Up

To investigate a nearly practical performance of the AD process, 5 L reactors were
used, as shown in Figure 3. This setup was designed and fabricated for the semi-continuous
digestion experiment. One of the digesters treated the substrate. Each cycle of the semi-
continuous operation was for 24 h and included the following steps: feeding (~1 h);
anaerobic digestion (23 h); and digestate partial draining (~1 h simultaneously with feed-
ing). Both digesters were filled with only inoculum and sealed at the beginning of the
experiment. The experimental set-up operated at 35–40 ± 1 ◦C, and the flowrate meter
used to measure the biogas produced. The temperature of the digester was supplied by a
75 W submersible heating element; this was connected to a temperature controller. The
operating volume of the digester unit was 3 L. The reactor was fitted with an IKA overhead
stirrer that operated at 100 RPM over 10 min/h. The stirrer was programmed to switch on
and off periodically as it communicated with the automatic timer. The semi-continuous test
was conducted for a duration of 150 days. The experimental samples were collected daily
in triplicate in a cycle of 24 h using a Geotech Biogas 5000 instrument. For co-digestion of
sewage sludge and spent grain, a 1:1 ratio was used, and the results of co-digestion were
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compared with those from the control experiment, where the experiment contained only
inoculum as a refence for methane production.
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The start-up stage involved steadily raising the digester’s loading capability and then
changing the microbial community’s routine substrate dose. A low organic loading rate
(OLR) was used as the initial feeding to adapt the microbial population to the new substrate,
as opposed to its source. Then, the OLR was slowly raised until the starting inoculum was
entirely replaced and the microbial population had been acclimated. The starting OLR was
set to 0.5 g VS/L.d for the first week; it was iteratively increased according to the standard
OLR procedure outlined in [37]. The OLR was guided by volatile fatty acids to a total
alkalinity ratio (VFA/TA). If the VFA/TA ratio was below 0.2 after a week, the OLR needed
to be increased by 0.5 g VS/L.d for another week. However, if the VFA/TA ratio range was
between the range of 0.2 and 0.4, the OLR needed to be maintained at 0.5 g VS/L.d.

There are cases where the VFA/TA was above 0.4; in this scenario, pH was used as a
guidance for OLR. When the pH of the material was between 6.5–7.0, the OLR was reduced
by 0.5 g VS/L.d; for a pH below 6.5 but above 6.0, OLR was reduced by 1.0 g VS/L.d. If
the pH was lower than 6.0, the feeding was stopped and the material was neutralised with
an alkaline substrate until the pH was between 6.5 and 7.0.

3. Results and Discussion
3.1. SEM Imaging

A scanning electron micrograph (SEM) was carried out to evaluate the morphology
of the materials from a microbiological point of view. The micrographs were obtained
from native sewage sludge and digested sewage sludge, according to the methodology
described earlier in Materials and Methods. These micrographs were selected in order
to show a representative image of the observed structures; the magnification may differ
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in order to highlight certain areas of interest. Since organic samples are sensitive and
could easily react to the effect of the electron beam, the SEM used is a new generation
microscope equipped with analytical techniques sufficient for complete characterization of
a wide range of materials. It is made to reduce the sample vacuum, avoid surface damage,
electrically conductive, void of free particles and volatile matter-free. Additionally, the
reduced electron beam was used, and it was optimized so that image resolution did not
suffer as a result.

As shown in Figure 4a microscopic observations showed that the raw sewage sludge
exhibited a structure with a rough and granular texture, with a large amount of open poros-
ity. This is similar to the images reported by Han et al. [38] and Yan et al. [39]. Figure 4a
shows that large amounts of hydration products cover the surface of sludge particles.
Figure 4b shows an excessive growth of filamentous microorganisms after anaerobic di-
gestion. Different groups of filamentous bacteria were present, but no dominant type of
morphology was observed. As a result, floccs are present in a skeleton form of structure
which promotes the attachment of other microorganisms by their extracellular polymeric
substances, according to the mechanism which was suggested by Alemahdi et al. [18].
Similar SEM images of wastewater sludge were described by the same source. It is well
known that a large filamentous population causes detrimental effects on liquid waste
treatment systems due mainly to the loss of sludge settling (bulking) and foam generation.
However, relatively little is known regarding the factors that affect the growth of these
filaments.
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3.2. Taxonomic Profile of the Biogas Microbial Community

The taxonomic distribution of the microbial community indicated that the most abun-
dant domain was the Bacteria, followed by the Archaea (Figure 5). This analysis reveals that
94 of the amplicons were of bacterial origin, whereas only one amplicon could be assigned
to the kingdom of Archaea. Proteobacteria was most abundant followed by the group of Bac-
teroides, Firmicutes and Actinobacteria. Among the Proteobacteria subclass, Alpha- and Delta-
were more dominant than Gamma- and Beta-proteobacteria. The genera that dominated
were Dechloromonas Propionivibrio, and Nitrospira there. There is an acceptable count of
methanogens and other species. Some of the sequences belong to the phylum Spirochaetae,
with the most abundant class being Anaerolineae. This class contributed to the majority
of the Bacteria domain in the sludge sample. In the Archaeal domain, the most abundant
family was the Methanomicrobiales. These species have been identified frequently in the
anaerobic digestion of sewage sludge and food waste [40,41].
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Besides the appearance of Proteobacteria, there was an appearance of Nitrospirae, which
uses urea as a source nutrient and converts it to carbon dioxide (CO2), which then reacts
with hydrogen (H2) to form methane [42]. As indicated in Figure 5, about 5.61% of
Firmicutes are unclassified; these are Gram positive bacteria known for carbohydrate
metabolism [19]. Further sequences were assigned to the class Bacteroidetes, which is
similar to Firmicutes; these are known for breaking down carbohydrates to simple sugars.
Additionally, Bacteroidetes are good energy converters and amino acids metabolisers; hence,
they appear frequently during AD and biogas production [43]. The phylum Chloroflexi and
the class Actinobacteria were identified as non-abundant taxa. Only few sequences could be
allocated to lower taxonomic ranks such as ‘family’ or ‘genus’ [44].

3.3. Metabolic Pathway Analysis

Anaerobic degradation requires the participation of various bacterial species, and each
step is driven by a group of microorganisms such as hydrolytic, acid forming, acetogenic,
and methanogenic archaea that produce carbon dioxide (CO2) and methane (CH4) as end
products [45]. The first step in anaerobic degradation is the hydrolysis of complex organic
substrates, which involves the breakdown of large molecules [46,47]. The communities of
bacteria that are involved in this step are identified by efficient hydrolysis of plant biomass
that is rich in lignocellulose. Most of these bacteria belong to the classes of Clostridia and
Bacilli. As expected, the overwhelming majority of the identified abundant species in the
AD system are members of the Betaproteobacteria (36.61%), Clostridia (14.81%) and Bacilli
(6.18%) classes, together with members of the Mollicutes (1.75%), Gammaproteobacteria (3%),
and Actinobacteria (5.09%) classes (Figure 6). Among the Clostridia, Clostridium thermocel-
lum occurred most frequently and, in the Bacilli family, Bifidobacterium dominated. This
species can hydrolyze cellulose efficiently by means of its extracellular cellulases, which
are organised into cellulosomes [48].
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The second stage is acidogenesis, in which the acid forming bacteria ferment the
hydrolytic products into volatile fatty acids, acetate, and hydrogen [18,45]. In this study, the
phyla that contain many known species of acidogens are Proteobacteria (61.93%), Firmicutes
(5.61%), Bacteroidetes (5.54%), and Chloroflexi (2.28%). Under the phylum Proteobacteria,
Betaproteobacteria dominated the most. In Firmicutes, Lactobacillus gave a highest read
count, as did Anaerolinaceae in the phylum Chloroflexi. Acidovorax dominated in the phylum
Actinobacteria and in a few thermophilic bacteria. The fermentation pathways yield organic
acids such as acetate and butyrate, or acetone, butanol, and ethanol [18]. In the phylum
Firmicutes and Proteobacteria are the genera Syntrophomonas and Syntrophobacter that generate
lactate, acetate, and butyrate from sugars; this is also performed through their hydrogenase
process, which produce H2. Similarly to C. thermocellum, C. cellulolyticum is a well-known
strain that degrades cellulose to acetate and evolves CO2 and H2. C. saccharolyticum,
which also possesses cellulolytic activity. The fermentation products include acetate,
ethanol, H2, and CO2. The last stage is methanogenesis, in which the most commonly
observed methanogenic genera such as Methanolinea, Methansaeta, and Methanospirillum
produce methane [40,41]. The archaea community of hydrogenotrophic methanogen
genus enrichment includes methanogens such as Methanobacterium, thermoautotrophicum,
Methanosarcina barkeri, and Methanobacterium wolfei.
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3.4. Anaerobic Co-Digestion Experiments
3.4.1. Methane Production: Batch Studies

The results of cumulative biogas production profiles for mono-digestion of sewage
sludge and spent grain, along with co-digestion of a 1:1 ratio, is shown in Figure 7. As
evident from Table 1, the C/N ratio and TS of both individual feedstocks were outside the
optimal range for AD; however, when blended, they were within the optimal range [49]. As
a result, biogas production was increased in volume using co-digested samples compared
to sewage sludge alone. Approximately 95, 645, and 320 mL/kg of feed methane were
produced from the mono-digestion of sewage sludge and spent grain and co-digestion of
the two feedstocks mixed at ratio of 1:1, respectively. These results are consistent with data
from the literature [33,34,50]. It can be observed that biogas production rapidly increased
from day 1 until day 10 for most of our sample, except for spent grain mono-digestion.
This is due to the intra and intermolecular hydrogen bonds creating crystal structures of
difficult ace. Additionally, the presence of low soluble COD and the lignocellulose in the
grains caused low biodegradability and a slower biodegradation rate [51].
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Figure 7. Cumulative methane yield (NmL/gVS) for sewage sludge (SS) and brewery spent grain
(BSG) mono-digestion and co-digestion.

The highest BMP was obtained with the co-digestion of SS and BSG, and 965 mL/kg
of feed. This is a three-fold increase compared to the assay of sludge mono-digestion.
Noteworthy is the fact that, just after 2 days, methane production reached 80% of the
maximum, stabilizing at 10 days (Figure 7). The improvement in methane production
could be attributed to the favourable balancing out of C/N ratio, TS, and the microbial
community [18,45]. Co-digestion increases the organic matter available as volatile fatty
acids (VFAs) and biogas productivity, as a consequence of the subsequent degradation of
VFAs by methanogens [52]. Furthermore, in the microbiological interpretation, co-digestion
is the introduction of the hydrolytic-acidogenic species which increase the biodegradability
of the blend [53]. It was also noticed that, during the steady-state period, a significant shift
occurred, with Proteobacteria becoming the most abundant phylum and hydrogenotrophic
methanogens dominating over aceticlastic methanogens [54].
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3.4.2. COD Removal Efficiency in AD

During AD, the bacteria convert COD to methane and carbon dioxide. As such,
the COD removal efficiency can be used to assess the accomplishment of the process in
producing methane. In this study, all the samples exhibited excellent COD removal above
65%, as indicated in Figure 8, indicating that COD can be successfully treated during both
mono-digestion and co-digestion processes [55,56]. The effluent COD concentration was
below 7.0 g O2/kg. Similar results of COD removal efficiency were reported elsewhere.
Studies conducted by [57–59] show that high COD removal efficiency was achieved when
organic loading rate was increased and constant HRT was maintained in the AD system.
In addition, the pH of the system was closely monitored on daily basis to avoid a pH drop
to below 6.5, which could result in low COD conversion.
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3.5. Biogas Production: Semi-Continuous Studies

The result of the semi-continuous experiment revealed that, although co-digestion of
sewage sludge with spent grain caused an enhancement of the AD process during the BMP
study, this was not necessarily the case, as can be observed in Figure 9. The performance
characteristics in the sludge substrate experiment were reduced from the co-digestion in
batch studies. Although the target of this research work was to achieve CH4 concentrations
close to those of natural gas under mesophilic conditions (i.e., CH4 concentration >90%),
the highest recorded by the optimal process was 77.61% on the second day. The inability to
achieve a CH4 concentration of >90% can be attributed to the unstable operating conditions,
especially temperature, in which this experiment was conducted; that limited the extent of
mineralisation of the metals and the rate of reaction. A significant reduction in the biogas
yield, from 10.23 to 2.02 NL/day, was also observed when the OLR reached a level of
2.90 gVS/L.day.

It was also observed after day 40, the co-digestion phase boosted CH4 production
and biogas by 60%. This is attributable to a more balanced substrate feed for the digester.
Despite a decrease in biogas production the next day, an overall average in OLR was 18%
higher than in the first digestion phase. The OLR was not increased excessively to enhance
the volumetric biogas yield; rather, it was kept within 1.4–2.5 gVS/L.day, a level that
favours higher biogas production. After 140th day, the digester had a specific biogas of
1.678 NL/gVS, on average, which was about 10 percent greater than results reported in the
literature [60–62].



Sustainability 2021, 13, 8225 13 of 16Sustainability 2021, 13, x FOR PEER REVIEW 14 of 17 
 

 
Figure 9. Semi-continuous biogas production per day. 

4. Conclusions 
This study aimed to improve the anaerobic digestion process of sewage sludge by 

co-digesting with brewery spent grains. The first objective was to understand the physi-
cochemical and the microbial community involved in the AD and the complex interaction 
among microbes in an AD environment. The physicochemical and the metagenomics 
analysis was conducted using the Standard Methods for the Examination of Water and 
Wastewater. Anaerobic co-digestion was carried out with batch and semi-continuous la-
boratory setup. From the results gathered from this study, the following can be claimed 
with confidence: 
● The microbial analysis indicated that Proteobacteria is the most abundant phylum, 

followed by the Bacteroidetes, Firmicutes, and Actinobacteria. The Bacteroidetes consist 
of fermentative bacteria, which are capable of hydrolysing and fermenting organic 
substances and acids into CO2 and H2. During the steady-state period, a significant 
shift occurred, with Proteobacteria becoming the most abundant phylum and 
hydrogenotrophic methanogens dominating over aceticlastic methanogens. The 
archaea community of hydrogenotrophic methanogen genus enrichment includes 
methanogens such as Methanobacterium, thermoautotrophicum, Methanosarcina barkeri, 
and Methanobacterium wolfei. 

● The results confirm that the conducted BMP tests can definitely be used to assess the 
biogas and methane production from the co-digestion process. It was found that the 
cumulative biogas production of the mixture of sewage sludge and spent grain 
increased with increasing proportions of the spent grains. However, a negative effect 
on kinetics was observed in the presence of BSG and a major decline was observed 
for shortened HRT of 18 d, which seems to indicate the need to extend HRT. 
Importantly, the application of BSG, the substrate that is rich in organic compounds, 
significantly enhanced methane production. Regardless of the HRT, a stable process 
performance was maintained in co-digestion runs. However, a significant reduction 
in the biogas yield, from 10.23 to 2.02 NL/day, was also observed in a semi-
continuous setup when the OLR reached a level of 2.90 gVS/L.day. 
Therefore, the anaerobic co-digestion of SS and BSG might be considered as a cost-

effective solution that could contribute to the energy self-efficiency of WWTPs and sus-
tainable waste management. However, the operating conditions should be optimized and 

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140

M
as

s F
lo

w
ra

te
 (N

l/d
ay

)

Experiment Duration (days)

Figure 9. Semi-continuous biogas production per day.

4. Conclusions

This study aimed to improve the anaerobic digestion process of sewage sludge by
co-digesting with brewery spent grains. The first objective was to understand the physico-
chemical and the microbial community involved in the AD and the complex interaction
among microbes in an AD environment. The physicochemical and the metagenomics
analysis was conducted using the Standard Methods for the Examination of Water and
Wastewater. Anaerobic co-digestion was carried out with batch and semi-continuous labo-
ratory setup. From the results gathered from this study, the following can be claimed with
confidence:

• The microbial analysis indicated that Proteobacteria is the most abundant phylum,
followed by the Bacteroidetes, Firmicutes, and Actinobacteria. The Bacteroidetes con-
sist of fermentative bacteria, which are capable of hydrolysing and fermenting or-
ganic substances and acids into CO2 and H2. During the steady-state period, a
significant shift occurred, with Proteobacteria becoming the most abundant phylum
and hydrogenotrophic methanogens dominating over aceticlastic methanogens. The
archaea community of hydrogenotrophic methanogen genus enrichment includes
methanogens such as Methanobacterium, thermoautotrophicum, Methanosarcina barkeri,
and Methanobacterium wolfei.

• The results confirm that the conducted BMP tests can definitely be used to assess
the biogas and methane production from the co-digestion process. It was found that
the cumulative biogas production of the mixture of sewage sludge and spent grain
increased with increasing proportions of the spent grains. However, a negative effect
on kinetics was observed in the presence of BSG and a major decline was observed for
shortened HRT of 18 d, which seems to indicate the need to extend HRT. Importantly,
the application of BSG, the substrate that is rich in organic compounds, significantly
enhanced methane production. Regardless of the HRT, a stable process performance
was maintained in co-digestion runs. However, a significant reduction in the biogas
yield, from 10.23 to 2.02 NL/day, was also observed in a semi-continuous setup when
the OLR reached a level of 2.90 gVS/L.day.

Therefore, the anaerobic co-digestion of SS and BSG might be considered as a cost-
effective solution that could contribute to the energy self-efficiency of WWTPs and sus-
tainable waste management. However, the operating conditions should be optimized
and monitored at all times. Based on the experimental results, it is recommended that
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co-digestion of the feed for the pilot biogas plant is upscaled. The feed should comprise
sludge from WWTP sludge and brewery spent grains.
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