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Abstract

A step-wise algebraic routine is used to fit a dynamic non-linear model, specifically developed for process control, to
steady-state process data of an industrial single-stage grinding mill circuit. Step-test data from the industrial plant
is used to validate the response of the non-linear model. The results indicate that the model provides a qualitatively
accurate response of the main process variables. Because the non-linear model parameters can be calculated from steady-
state data, it provides an advantage over classical system identification methods as it does not require an expensive and
disruptive step-test campaign to develop linear transfer function models. The model is ideal for model-based predictive
process control.
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1. Introduction

A grinding mill in a comminution circuit is one of the
most energy intensive unit operations in a mineral pro-
cessing plant and contributes significantly to the overall
processing cost (Curry et al., 2014). Not only is the grind-
ing mill the main bottleneck of the plant, the efficiency
of the mill has a significant impact on the final through-
put and product quality of the plant (McIvor and Finch,
1991; Sosa-Blanco et al., 2000; Pérez-Garćıa et al., 2018).
Although throughput and product quality are inversely
proportional, advanced process control can improve these
competing objectives while optimising the overall energy
usage (Bauer and Craig, 2008; Le Roux and Craig, 2019).

Numerous studies confirm the significant benefit ad-
vanced process control such as linear model predictive con-
trol (MPC) provide to the operation of grinding mill cir-
cuits (Niemi et al., 1997; Pomerleau et al., 2000; Ramasamy
et al., 2005; Chen et al., 2007; Apelt and Thornhill, 2009;
Remes et al., 2010; Yang et al., 2010; Steyn and Sandrock,
2013; Bengtsson et al., 2017). In general, step-test cam-
paigns provide the necessary data for classical system iden-
tification tools to develop linear transfer function models
for the linear MPC controllers. However, these transfer
function models are limited to the operating condition of
the plant during the step-test campaign. In addition, since
the grinding mill circuit is subject to disturbances in the
composition and properties of the raw ore, the linear mod-
els must be updated frequently to adapt to the change in
operating conditions (Hodouin, 2011; Zhou et al., 2016).

Because of the non-linear nature of the grinding mill
process, it is preferable to make use of non-linear models
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as part of a non-linear MPC supervisory controller (Co-
etzee et al., 2010; Salazar et al., 2014). The advantage
of non-linear models is that they cover a larger range of
operating conditions, specifically the parabolic nature of
the mill power draw in relation to the mill filling (Apelt
et al., 2002; Morrell, 2004; Salazar et al., 2009; Hinde and
Kalala, 2009; Le Roux et al., 2020). However, many of
the available fundamental non-linear models are not neces-
sarily suitable for implementation in an industrial process
controller. The models contain large state and parameter
vectors which are difficult to estimate and update from
routine operating data (Hodouin, 2011; Zhou et al., 2016;
Le Roux et al., 2017).

The non-linear dynamic grinding mill circuit model by
Le Roux et al. (2013) uses as few states and parameters as
necessary to produce a qualitatively accurate process re-
sponse. The model appears in a variety simulation studies
to test process controllers and process monitoring meth-
ods (Olivier and Craig, 2013; Le Roux et al., 2016; Aguila-
Camacho et al., 2017; Botha et al., 2018; Wakefield et al.,
2018). As shown by Brooks et al. (2021), the model of
Le Roux et al. (2013) provides similar predictive perfor-
mance to linear transfer function models developed from
industrial process data. However, because neither Le Roux
et al. (2013) nor Brooks et al. (2021) provide a detailed and
systematic approach to fit the non-linear model to process
data (Pérez-Garćıa et al., 2020), the model has not yet
been used in an industrial model-based process controller.

The main contribution of this paper is the description
of a step-wise procedure to calculate the states and param-
eters of the non-linear dynamic model in Le Roux et al.
(2013) from process data. This will enable the use of the
model as part of an industrial model-based predictive con-
troller such as non-linear MPC. The step-wise procedure
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to calculate the states and parameters requires only the
steady-state process data and does not require expensive
step-test data. The model is fitted to steady-state process
data from an industrial circuit and the dynamic response
of the model is validated against dynamic step-test data
from the circuit. Although Le Roux et al. (2013) validated
the model, this was only against steady-state process data.
This paper improves the validation of the model with the
use of dynamic data.

The paper is organized as follows: Section 2 presents
the model of the process, Section 3 describes the parame-
ter fitting procedure of the model, Section 4 gives a brief
overview of the step-test data as provided by the plant
and shows the model validation results, and Section 5 con-
cludes the paper.

2. Process Description and Model

2.1. Process Description

The primary grinding mill circuit in Fig. 1 represents
a single stream platinum-group metals concentrator in the
Limpopo province of South Africa. Table 1 lists the manip-
ulated variables and measured variables. The manipulated
variables are indicated by u� and the measured variables
by y� where � represents the subscript. To maintain a
degree of consistency between articles the subscripts are
related to the variable names in Le Roux et al. (2013).
The measured variables are common to most industrial
grinding mill circuits (Wei and Craig, 2009).

The primary milling circuit comprises of a 26’ radius
× 28’ length ball mill and a variable speed drive (VSD).
The feed of mined ore into the mill (uMFO) (t/h) is con-
trolled by a proportional, integral, derivative (PID) con-
troller that cascades to a VSD feeder under the stockpile
silo. Water into the mill is controlled as a ratio to the mill
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Figure 1: Single-stage closed grinding mill circuit.

feed ore (urMIW ) cascading from a ratio controller to a mill
inlet water PID controller.

The fractional filling of the mill is given by yJT . Al-
though the mill filling is not measured directly at most
plants, Powell et al. (2009) indicate how yJT can be cali-
brated to either load cell or bearing pressure measurements
at industrial plants.

The power draw is given by yPmill (MW). The rota-
tional rate uRPM (rpm) of the mill is converted to the
fraction of the critical mill speed (Apelt et al., 2001):

uφc = uRPM
2π

60

√
D/2

g
,

where D (m) is the internal mill diameter and g (m/s2) is
the gravitational constant. The critical speed is where the
angular acceleration equals the gravitational force.

The mill discharges through a partial overflow mech-
anism into the discharge sump. Pebbles are removed by
means of a pebble screen. The slurry in the sump is diluted
with water (uSFW ) (m3/h). The level of the sump filled
with slurry is given by ySLEV (m3). The sump content is
pumped to a cluster of cyclones via a variable speed pump.
The sump discharge density, i.e., the cyclone feed den-
sity, is represented by yρ (t/m3). The cumulative flow of
feed to the cyclone cluster is represented by uCFF (m3/h).
The cyclone cluster underflow returns to the mill and the
overflow reports to the downstream rougher flotation cir-
cuit. The final product particle size estimate passing 75
µm (yPSE) at the cyclone overflow is measured by an anal-
yser.

The advanced process control strategy for the grind-
ing mill circuit includes a layered approach consisting of
PID, fuzzy-logic-based and model predictive control, as
described in Steyn et al. (2010).

2.2. Process Model

The grinding mill circuit in Fig. 1 is modelled with
an adapted version of the continuous time phenomenolog-
ical non-linear population balance model of Le Roux et al.
(2013). A brief overview of the model is given below.

For the model, rocks refer to all the ore too large to
discharge via the discharge mechanism and which must
be broken further. Solids refer to all ore small enough
to discharge via the discharge mechanism from the mill.
Fines refer to the broken ore below the specification size.
Whereas solids are all ore small enough to discharge from
the mill, fines are the portion of solids smaller than the
specification size. Therefore, solids can be regarded as a
combination of fine ore and coarse ore where coarse ore is
the portion of solids larger than the specification size.

Table 2 lists the model parameters (cf. Le Roux et al.
(2013)). Table 3 provides a description of the lower case
subscripts for model flow-rates Q (m3/h) and model states
x (m3). The first subscript indicates the circuit unit (mill,
sump, cyclone) and the second subscript specifies the model
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Table 1: Manipulated and measured variables in the primary milling
circuit.

Variable Unit Description

Manipulated Variables

uMFO t/h Mill feed ore

urMIW - Ratio of mill inlet water to feed ore
ratio

uφc - Fraction of critical mill speed

uSFW m3/h Sump feed water

uCFF m3/h Cyclone feed flow-rate

Measured Variables

yJT - Fraction of mill filled with charge

yPmill MW Power draw of the mill

yPSE % Product particle size < 75µm
estimate

yρ t/m3 Sump discharge density

ySLEV % Sump slurry fill level

state (rocks, solids, coarse, fines, or water). For flow-rates
the third subscript indicates an inflow, outflow or under-
flow.

2.2.1. Mill Model

Four states describe the population volume balance of
the mill: water (xmw), solids (xms), rocks (xmr), and fines
(xmf ) (m3):

d

dt
xmw =

urMIW uMFO

ρw
−Qmwo +Qcwu (1a)

d

dt
xms = (1 − αr)

uMFO

ρo
−Qmso +Qcsu +QRC (1b)

d

dt
xmr = αr

uMFO

ρo
−QRC (1c)

d

dt
xmf = αf

uMFO

ρo
−Qmfo +Qcfu +QFP (1d)

where αf and αr represent the fraction of fines and rocks in
uMFO respectively, ρo and ρw (t/m3) are the ore and water
density respectively, Qmwo, Qmso, and Qmfo (m3/h) are
the mill discharge of water, solids, and fines respectively,
Qcwu, Qcsu, and Qcfu (m3/h) are the cyclone underflow
of water, solids and fines respectively, QRC (m3/h) is a
rock consumption terms that indicates the volumetric rate
of rocks broken into solids, and QFP (m3/h) is a fines
production term that indicates the volumetric rate of ore
broken into fines.

Table 2: Model parameters.

Parameter Unit Description

Densities

ρb t/m3 Density of balls

ρmc t/m3 Density of mill charge

ρo t/m3 Density of ore

ρw t/m3 Density of water

Mill parameters

αf - Mass fraction of fines in the
feed ore

αr - Mass fraction of rocks in the
feed ore

δs - Power parameter for fraction
solids in the mill

δv - Power parameter for volume of
mill filled

dq h-1 Discharge rate

ε0 - Maximum fraction of solids by
volume slurry at zero slurry
flow

εp - Porosity of the mill charge

ϕN - Rheology normalisation factor

JB - Fraction of mill filled with
steel balls

JTPmax - Fraction of mill filled at
maximum power draw

KFP MWh/t Fines production factor

KFPJT - Fractional change in fines
production factor per change
in fractional mill filling

KRC MWh/t Rock consumption factor

Pmax MW Maximum mill power draw

S - Mill discharge volumetric
solids content

U - Voidage in the mill charge

vmill m3 Mill volume

Sump parameters

vsump m3 Sump volume

Cyclone parameters

αsu - Parameter related to fraction
solids in cyclone underflow

C1,2,3 - Cyclone model constants

εc m3/h Parameter related to coarse
split at cyclone

The mill discharge flow-rates in (1) are defined as:

Qmwo = ϕdqxmw

(
xmw

xms + xmw

)
(2a)

Qmso = ϕdqxmw

(
xms

xms + xmw

)
(2b)

Qmfo = ϕdqxmw

(
xmf

xms + xmw

)
, (2c)
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Table 3: Description of state and flow-rate lower case subscripts.

Subscript Description
x�− m-mill; s-sump; c-cyclone
x−� w-water; s-solids; c-coarse; f-fines; r-rocks
Q−−� i-inflow; o-outflow; u-underflow

where dq (1/h) is the discharge rate. Parameter dq is a
fitting parameter to account for the discharge mechanism
design (Latchireddi and Morrell, 2003a,b). It represents
the pressure or driving force applied to the slurry to dis-
charge from the mill.

The rheology factor ϕ in (2) is an empirically defined
function that incorporates the effect of the fluidity and
density of the slurry on the performance of the mill:

ϕ =


√

1 −
(
ε−10 − 1

)
xs
xw

; xs
xw

≤
(
ε−10 − 1

)−1
0; xs

xw
>
(
ε−10 − 1

)−1
,

(3)

where ε0 = 0.60 is the approximate maximum fraction of
solids by volume of slurry at zero slurry flow (Song et al.,
2008). The slurry consists only of water for ϕ = 1 when
xms
xmw

= 0 . The slurry is a non-flowing mud for ϕ = 0 when
xms
xmw

= 1.5.
Rock consumption (QRC) and fines production (QFP )

in (1) are defined as:

QRC =
xmryPmill

ρoKRC (xmr + xms)
(4a)

QFP =
yPmill

ρoKFP

(
1 +KFPJT

(
yJT − JTPmax

)) , (4b)

where KRC (MWh/t) is the rock consumption factor and
indicates the energy required per tonne of rocks broken,
and KFP (MWh/t) is the fines production factor and in-
dicates the energy required per tonne of fines produced (cf.
Amestica et al. (1996) and Hinde and Kalala (2009)). The
fractional change in power per fines produced per change
in fractional filling of the mill KFPJT is used to modify the
fines production factor.

The fraction of the mill filled with charge (yJT ) is de-
fined as:

yJT =
xmw + xms + xmr + xmb

vmill
, (5)

where vmill (m3) is the total internal volume of the mill and
xmb is the volume of balls in the mill. Although there are
various ways to describe steel ball consumption in mills
(Apelt et al., 2002; Salazar et al., 2009; Le Roux et al.,
2013), because of the slow dynamic change in xmb com-
pared to the other mill states it is assumed xmb is con-
stant.

The mill power draw (yPmill) (MW) in (4) is modelled

as:

yPmill = Pmaxuφc×(
1 − δv

(
yJT

JTPmax
− 1
)2

− δs

(
ϕ
ϕN

− 1
)2)

,

(6)
where δv is the power change parameter for volume of mill
filled, δs is the power change parameter for the volume
fraction of solids in the slurry, ϕN is a rheology normalisa-
tion factor, JTPmax is the fraction of the mill filled at max-
imum power draw, and Pmax is the maximum mill power
draw. If the general grind curve trends are know from
historical plant data, Pmax (MW) and JTPmax can each
be parameterized as polynomial functions of uφc (Van der
Westhuizen and Powell, 2006; Le Roux et al., 2020).

The mill charge density ρmc (t/m3) is given by (cf.
Apelt et al. (2001)):

ρmc = ρo(1−εp+εpUS)+
JB
yJT

(ρb−ρo)(1−εp)+εpU(1−S),

(7)
where εp is the porosity of the mill charge, JB is the frac-
tion of the mill filled with steel balls, U is the fraction of
grinding media voidage occupied by the slurry, and S is
the mill discharge volumetric solids content.

2.2.2. Sump Model

Three states describe the population volume balance
of the sump: water (xsw), solids (xss), and fines (xsf ):

d

dt
xsw = Qmwo −Qswo + uSFW (8a)

d

dt
xss = Qmso −Qsso (8b)

d

dt
xsf = Qmfo −Qsfo, (8c)

where Qswo, Qsso and Qsfo (m3/h) are the sump discharge
flow-rates, solids and fines respectively. It is assumed the
slurry in the sump is fully mixed. Since it is assumed the
rocks and balls do not exit through the discharge mech-
anism of the mill, they do not form part of the volume
balance of the sump.

The sump discharge is pumped to the cyclone cluster
via a variable speed pump. The sump discharge flow-rates
in (8) are defined as:

Qswo = uCFF

(
xsw

xsw + xss

)
(9a)

Qsso = uCFF

(
xss

xsw + xss

)
(9b)

Qsfo = uCFF

(
xsf

xsw + xss

)
. (9c)

The percentage of the sump filled with slurry (ySLEV )
(%) and the sump outflow density (yρ) (t/m3) are defined
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as:

ySLEV = 100

(
xss + xsw
vsump

)
(10)

yρ =
ρwQswo + ρoQsso
Qswo +Qsso

(11)

where vsump (m3) is the physical volume of the sump.

2.2.3. Cyclone Cluster Model

The cyclone cluster is modelled as a single classifier. If
needed, the model can be expanded into separate smaller
cyclones as in Botha et al. (2018). The aim here is simply
to calculate the total water, solids, and fines split at the
cluster.

The non-linear static cyclone model presented here aims
to model the product size and density by taking the effects
of angular velocity of the particle inside the cyclone, the
slurry density and slurry viscosity into account. The un-
derflow of coarse material (Qccu) (m3/h) is modelled as:

Qccu =
(
Qsso −Qsfo

)(
1 − C1 exp

(
−uCFF
εc

))
×(

1 −
(
Fi
C2

)C3
)(

1 − PC3
i

)
,

(12)
where Fi = Qsso

uCFF
is the fraction solids in the cyclone feed,

Pi =
Qsfo
Qsso

is the fraction fines in the feed solids, εc (m3/h)
relates to the coarse split, C1 = 0.70 relates to the split
at low-flows when the centrifugal force on particles is rel-
atively small, C2 = 0.70 normalizes the fraction solids in
the feed according to the upper limit for the packing frac-
tion of solid particles, and C3 is an integer which adjusts
the sharpness of the dependency on Fi and Pi.

The fraction of solids in the underflow (Fu) can be
expressed per definition as:

Fu =
Qcsu

Qcsu +Qcwu
. (13)

This can be modelled as follows to determine the amount
of water and fines accompanying the coarse underflow:

Fu = C2 − (C2 − Fi) exp

(
− Qccu
αsuεc

)
, (14)

where αsu relates to the fraction solids in the underflow.
The ratio of fines to water in the feed and underflow

respectively can be regarded as approximately equal if it is
assumed the fines are not influenced by centrifugal forces,
i.e.,

Qsfo
Qswo

≈ Qcfu
Qcwu

. Consequently, using (13), the cyclone

underflow flow-rates in (1) can be expressed as:

Qcwu =
Qswo (Qccu − FuQccu)

FuQswo + FuQsfo −Qsfo
(15a)

Qcfu =
Qsfo (Qccu − FuQccu)

FuQswo + FuQsfo −Qsfo
(15b)

Qcsu = Qccu +Qcfu. (15c)

The cyclone water overflow (Qcwo), solids overflow (Qcso),
and fines overflow (Qcfo) can be calculated using a flow
balance around the cyclone.

The product particle size passing the specification size
of 75 µm (yPSE) is defined as:

yPSE = 100

(
Qcfo
Qcso

)
. (16)

2.3. State space Representation

A state-space model of the grinding mill circuit can be
formulated as:

d
dtx = f (t,x,u,p)

y = h (t,x,u,p) ,
(17)

where x =
[
xmw, xms, xmr, xmf , xsw, xss, xsf

]T
are the

states, u =
[
uMFO, urMIW , uφc , uSFW , uCFF

]T
are the in-

puts, y =
[
yJT , yPmill, ySLEV , yρ, yPSE

]T
are the outputs,

and p contains the model parameters as listed in Table 2.
Function f(·) is given by (1) and (8), and function h(·) by
(5), (6), (10), (11), and (16).

3. Step-wise Parameter Estimation Procedure

The aim of this section is to describe a step-wise proce-
dure to determine the model parameters p for the system
model in (17) from steady-state process data, i.e., where
d
dtx = 0 in (17). A consequence is that the model states
x at the steady-state of operation is also determined.

The variables as listed in Table 1 are assumed to be
known at the start of the estimation procedure:

• Manipulated variables:
uMFO, urMIW , uφc , uSFW , and uCFF

• Measured variables:
yJT , yPmill , yPSE , yρ, and ySLEV

The variables listed above represent the minimum set of
real-time process variable measurements necessary to de-
termine the model states and parameters. These variables
are insufficient for a mass or volume balance around the
circuit. The estimation procedure can be completed even if
these measurements are not entirely accurate, but any wa-
ter or solids that is unaccounted for will cause poor model
prediction. It is generally most visible in the model predic-
tion of ySLEV which will either increase or decrease sharply
based on an unmeasured disturbance such as spillage wa-
ter. Therefore, it is important that measurement instru-
mentation is maintained well and calibrated to produce
accurate and trustworthy measurements.

The following parameters are assumed to be available
from sampling campaign data or operator knowledge:

• Densities: ρb, ρo, and ρw

• Feed distribution: αf and αr
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• Mill charge: JB , ρmc, and U

• Power draw: JTPmax and Pmax

• Volumes: vmill and vsump

If the feed distribution is not measured on-line (Maritz
et al., 2019), a general estimate is sufficient. Similarly,
the mill charge parameters will not necessarily be known
exactly and a general estimate can be used (Napier-Munn
et al., 2005).

As mentioned in Section 2.2.1, if grind curves can be
generated based on historical data, Pmax and JTPmax can
be parameterized as polynomial functions of uφc using a
least squares fit. If this is not the case, Pmax is the power
draw for the specific operating condition. Similarly, the
operators should know whether the mill is operating be-
fore or past the peak in power in terms of yJT . In the
case where the mill operates before the peak in power,
JTPmax ≥ yJT . Otherwise, JTPmax ≤ yJT .

Finally, the following parameters are degrees of free-
dom that need to be specified: C3, ϕN , KFPJT .

3.1. Sump

The aim of this subsection is to calculate steady-state
values for xsw and xss in (9a) and (9b).

If the total mass of slurry in the sump is given by MT =
MS + MW where MS is the mass of solids and MW is
the mass of water, the flow of material exiting the sump
(uCFF = MT /yρ) can be written as:

MT

yρ
=
MS

ρo
+
MW

ρw
. (18)

Eq. (18) can be simplified to give the solid mass fraction:

MS

MT
=

1
yρ

− 1

1
ρo

− 1
. (19)

From the results above, the sump water and solids dis-
charge (Qswo and Qsso) and volumes (xsw and xss) can be
calculated from measured variables and parameters:

Qswo =
yρuCFF
ρw

1 −
1
yρ

− 1

1
ρo

− 1

 (20a)

Qsso =
yρuCFF
ρo

 1
yρ

− 1

1
ρo

− 1

 (20b)

xsw =
yρySLEV vsump

100ρw

1 −
1
yρ

− 1

1
ρo

− 1

 (20c)

xss =
yρySLEV vsump

100ρo

 1
yρ

− 1

1
ρo

− 1

 . (20d)

3.2. Cyclone Cluster

The aim of this section is to calculate a steady-state
value for xsf in (9c), and parameter values εc and αsu
in (12) and (14). The calculations below depend on the
states and flows determined in Section 3.1 above.

Given steady-state operation and assuming no unmea-
sured disturbances in the circuit, the volumetric flow-rate
of water and solids exiting the circuit is:

Qcwo =
urMIW uMFO

ρw
+ uSFW (21a)

Qcso =
uMFO

ρo
. (21b)

Therefore, from a flow-balance around the cyclone it is
possible to determine the water and solids underflow:

Qcwu = Qswo −Qcwo (22a)

Qcsu = Qsso −Qcso (22b)

Given the underflows in (22) above, the fraction of solids
in the underflow (Fu) in (13) can be determined.

Using (15a), set β = Qcwu
Qswo

such that (15b) can be writ-

ten as Qcfu = βQsfo. Consequently, rewrite (15a) to find
Qccu in terms of β:

Qccu =
βFuQswo − βQsfo(1 − Fu)

1 − Fu
. (23)

From a flow balance around the cyclone, the fines and
solids overflows are given by:

Qcfo = Qsfo −Qcfu (24a)

Qcso = Qsso −Qcsu = Qsso −Qccu −Qcfu. (24b)

Finally, using (23)-(24) it is possible to rewrite (16) as:

yPSE = 100

 Qsfo(1 − β)

Qsso − βFuQswo−βQsfo(1−Fu)
1−Fu − βQsfo

 .

(25)
Substituting (9) into (25) and simplifying, xsf can be cal-
culated as:

xsf =
FuyPSExss − yPSExss + βFuyPSExsw

100 (Fu + β − Fuβ − 1)
. (26)

Since xsf is now known, the discharge of fines from the
sump in (9c) is:

Qsfo = xsfuCFF
100

ySLEV vsump
. (27)

The remaining set of over- and underflows at the cyclone
can be calculated as:

Qccu =
βuCFF
xss + xsw

(
xswFu + xsf (Fu − 1)

1 − Fu

)
(28a)

Qcfu =
xsf (Qccu − FuQccu)

Fuxsw + Fuxsf − xsf
(28b)

Qcfo = Qcso
yPSE
100

. (28c)
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Finally, given the flow-rates and states above, it is pos-
sible to calculate the cyclone parameters εc and αsu:

εc = − uCFF
log(λ)

(29a)

αsu = − Qccu

εc log(C2−Fu
C2−Fi )

(29b)

where

λ =
1

C1
− Qccu

C1(Qsso −Qsfo)(1 − (Fi/C2)C3)(1 − PC3
i )

.

Note, C1 = C2 = 0.7 is known a-priori as defined in Sec-
tion 2.2.3. Unless further measurements of the cyclone
underflow are available, C3 cannot be fitted to data. Sub-
sequently, C3 is a degree of freedom that is heuristically
chosen as the smallest positive integer for which both εc
and αsu are positive. The choice of C3 does not influence
the parameters for the grinding mill.

3.3. Mill

The aim of this section is to calculate steady-state val-
ues for xmw, xms, xmf , xmr, and xmb, the discharge rate
dq, the power draw parameters δv and δs, and the break-
age parameters KFP , and KRC . The calculations below
depend on the states and flows determined in Sections 3.1
and 3.2 above.

3.3.1. Mill States and Discharge

From a mass balance around the sump at steady-state,
the mill discharge flow-rates are:

Qmwo = Qswo − uSFW (30a)

Qmso = Qsso (30b)

Qmfo = Qsfo (30c)

It is assumed that general estimates of the mill charge
density (ρmc), charge voidage (U), and fraction of mill
filled with steel balls (JB) are available from sampling cam-
paign data or operator knowledge. Therefore, the charge
porosity (εp) can be calculated from (7) as:

εp =
ρmc − ρo − (ρb − ρo)JB/yJT

ρoUS − ρo + (ρb − ρo)JB/yJT + U(1 − S)
, (31)

where S = Qmso
Qmso+Qmwo

. Subsequently, the mill states in

(1) can be determined in the following order as:

xmb =
(
1 − εp

)
JBvmill (32a)

xmw = (1 − S) εpUyJT vmill (32b)

xms = SεpUyJT vmill (32c)

xmf =

(
Qmfo
Qmso

)
xms (32d)

xmr = yJT vmill − xmb − xmw − xms. (32e)

Given the mill state values calculated above, the dis-
charge rate dq can be calculated from (2) as:

dq = Qmwo

(
xmw + xms
ϕx2mw

)
(33)

where ϕ is given in (3).

3.3.2. Mill power draw

Assuming δv = δs, these parameters can be calculated
from (6) as follows:

δs = δv =
1 − yPmill

Pmaxuφc(
yJT

JTPmax
− 1
)2

+
(
ϕ
ϕN

− 1
)2 . (34)

If sufficient process data is available to evaluate the impact
of the solids to water ratio on the power draw of the mill
(Steyn and Sandrock, 2013), it is possible to determine an
accurate estimate of ϕN . Otherwise, ϕN is a degree of
freedom that needs to be chosen. A conservative choice is
ϕN = 0.70 which corresponds to xms

xmw
≈ 0.75.

3.3.3. Breakage rates

Since steady-state is assumed, the breakage rates in
(4a) and (4b) can be back-calculated from (1c) and (1d)
respectively:

KRC =
yPmillxmr

uMFOαr (xmr + xms)
(35a)

KFP =
yPmill

ρo

(
1 +KFPJT

(
yJT − JTPmax

))
× 1(

Qmfo −Qcfu − uMFOαf
ρo

) , (35b)

where KFPJT is a degree of freedom to adjust the breakage
rate of fines given the variation in yJT . Unless historic data
is available to fit KFPJT , it can be set to KFPJT = 0. If
yJT = JB , then xmr ≈ 0 in (32). In this case it is necessary
to modify the rock consumption term in (4a) such that
QRC = yPmill

ρoKRC
.

3.4. Summary

The procedure to calibrate the model is summarized
in Fig. 2. The estimation procedure is divided into three
phases starting at the top with the sump, followed by the
cyclone, and ending at the grinding mill. Information cal-
culated in one phase is passed to the next. For each phase
the set of known variables and parameters necessary to
complete the calibration is shown on the far left, the set
of calculations needed to calibrate the model in the cen-
tre, and the final calibrated model parameters p and the
model states x at the specific steady-state operating con-
dition are shown on the far right.
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Steps Eq. Result

1.1 (20) Qswo, Qsso, xsw, xss

Variables

uCFF , yρ, ySLEV

Parameters

ρo, ρw, vsump

Output

xsw, xss

Steps Eq. Result

2.1 (21) Qcwo, Qcso

2.2 (22) Qcwu, Qcsu

2.3 (13) Fu

2.4 - β = Qcwu
Qswo

2.5 (26) xsf

2.6 (27) Qsfo

2.7 (28) Qccu, Qcfu, Qcfo

2.8 - Pi =
Qsfo
Qsso

; Fi = Qsso
uCFF

2.9 (29) εc, αsu

Variables

uMFO, urMIW , uSFW ,

uCFF , yPSE , ySLEV

Parameters

ρo, ρw, vsump

Degree of Freedom

C3

Output

xsf , εc, αsu

Steps Eq. Result

3.1 (30) Qmwo, Qmso, Qmfo

3.2 - S = Qmso
Qmso+Qmwo

3.3 (31) εp

3.4 (32) xmb, xmw, xms, xmf , xmr

3.5 (3) ϕ

3.6 (33) dq

3.7 (34) δv, δs

3.8 (35) KRC , KFP

Variables

uMFO, uSFW , uφc ,

yJT , yPmill

Parameters

αr, αf , ρb, ρmc, ρo, JB ,

JTPmax Pmax, U , vmill

Degrees of Freedom

ϕN , KFPJT

Output

xmb, xmw,

xms, xmf ,

xmr, dq,

δv, δs,

KRC , KFP

1
:
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Figure 2: Summary of model calibration process.

4. Validation

4.1. Estimated Parameters from Step-test Data

The model is validated with step-test data from the in-
dustrial primary milling circuit illustrated in Fig. 1. Step-
tests were performed between the 1st and 3rd February
2020. Data was sampled at a rate of 16.7 mHz (period of

60 s). A section of data of 24 hours with no instrumenta-
tion failure or plant stoppages is used for validation of the
model. The manipulated variables u and measured vari-
ables y as in (17) for the specific 24 hour step-test period
is shown in Figs. 3 and 4 respectively.

Table 4 shows the steady-state operating condition in
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Table 4: Steady-state operating condition and process data.

Variable Value Unit

Operating condition

uMFO 1191 t/h

urMIW 0.572 m3/h

uφc 0.768 -

uSFW 870 m3/h

uCFF 2921 m3/h

yJT 0.328 -

yPmill 14.8 MW

ySLEV 59.4 %

yρ 1.77 t/m3

yPSE 37.9 %

Process Data

αf 0.10 -

αr 0.50 -

JB 0.30 -

JTPmax 0.23 -

Pmax 19.7 MW

ρb 7.8 t/m3

ρmc 5.55 t/m3

ρo 3.2 t/m3

ρw 1 t/m3

U 1 -

vmill 540.9 m3

vsump 345.8 m3

terms of the manipulated and measured variables at the
start of validation period. The table also shows the pro-
cess data assumed to be known prior to the estimation
as available from sampling campaign data. In terms of
the power draw parameters JTPmax and Pmax in Table
4, no historical grind curve data was available to param-
eterize these parameters as functions of uφc . However, it
was known from the operators that the plant operated
past the point where the maximum power was drawn.
Therefore, JTPmax was conservatively and heuristically
set as JTPmax = 0.7yJT . Similarly, Pmax was set as
Pmax = 1.02yPmill/uφc . The 2% increase in yPmill is an
increase of 300 kW above the initial steady-state operat-
ing condition.

The procedure outlined in Section 3 and summarized
in Fig. 2 was followed to fit the model described in Section
2 to the data in Table 4. The calculated parameters and
the process states at the specific steady-state operating
condition are shown in Table 5.

4.2. Simulated Model

The dynamic model (17) is simulated using the fourth-
order Runge-Kutta numerical integration method with a

Table 5: Parameter and state values calculated according to the
step-wise process in Section 3.

Parameter Value Unit

Degrees of Freedom

C3 4 -

ϕN 0.7 -

KFPJT 20 -

Model Parameters

αsu 0.119 -

εc 2528 m3/h

δv = δs 0.0911 -

dq 114.7 h-1

KRC 5.97×10-3 MWh/t

KFP 15.0×10-3 MWh/t

Process States

xmw 31.0 m3

xms 31.1 m3

xmf 5.22 m3

xmr 9.84 m3

xmb 105 m3

xsw 133 m3

xss 72.2 m3

xsf 12.1 m3

step-size of 60 s. The model takes as input the process data
in Table 4, the process parameters and initial state condi-
tion in Table 5 and the manipulated variables u shown in
Fig. 3. The comparison of the output of the model y to
the measured data is shown in Fig. 4.

At no point during the simulation are any of the model
parameters updated. Therefore, once the model is fitted
to initial steady-state condition at t = 0 h in Figs. 3 and
4, the model response is a pure simulation to be compared
with the actual plant response.

4.3. Discussion

As seen in Fig. 4, the model is able to capture the main
dynamic variations yJT , yPmill , yρ, and yPSE over an ex-
tended period of time. Because the sump acts as an inte-
grator for the level of the sump filled with slurry (ySLEV ),
it is not easy to capture its dynamic response with suffi-
cient accuracy. The sharp increase between t = 15 h and
t = 24 h can possibly be attributed to an unmeasured
disturbance propagating through the sump. In practice
a simple feedback controller can maintain ySLEV within
allowable limits.

The model is able to account for the large change in
yPmill as a result of the change in uφc shown in Fig. 3. It is
interesting to see that there is not a significant change in
yJT or yPSE for the variation in uφc . This indicates that
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Figure 3: Manipulated variable step-test data.

the charge in the mill is most probably overshooting the
toe of the charge and impacting the mill liners.

As seen in Fig. 4, the model provides a filtered response
for the various measured variables. Given the simplicity
of the model, mismatch between the model and the actual
plant response is to be expected. However, as noted by
Le Roux et al. (2013), the aim of the model is for pro-
cess control and does not necessarily intend to produce a
quantitatively accurate response. The qualitatively accu-
rate model response is sufficient for a model-based predic-
tive feedback controller such as non-linear MPC (Coetzee
et al., 2010; Le Roux et al., 2016; Aguila-Camacho et al.,
2017), or for process monitoring purposes (Wakefield et al.,
2018). In other words, the plant can be controlled as long

0.3
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Non-linear model in (17).
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Figure 4: Validation of the model output against the measured plant
step-test data.

as the direction of deviation of a variable can be predicted
even though the exact magnitude of the deviation is un-
certain. In the case of MPC, the prediction horizon should
at least capture the settling time of the plant to ensure the
dynamics of the process is represented in any prediction
(Seborg et al., 2016). For example, if the settling time of a
grinding mill is about an hour the model only needs to be
accurate for this time period. The model can be updated
once a new steady-state is reached to reduce model plant
mismatch (Olivier and Craig, 2013).
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Table 6: Statistical comparison of model responses in Fig. 4.

Non-linear model† Linear model‡

RMSE R2 RMSE R2

yJT 0.0157 0.325 0.0177 0.231

yPmill 0.128 0.849 0.187 0.524

yρ 0.0240 0.785 0.0241 0.782

yPSE 8.16 0.0420 5.54 0.123
† Non-linear model in (17).

‡ Linear model from Brooks et al. (2021).

Brooks et al. (2021) uses the same set of step-test data
to develop linear transfer function models for all the mea-
sured variables except ySLEV . The linear model predic-
tion is included in Fig. 4. A statistical comparison of the
non-linear and linear model performance in terms of the
root mean squared error (RMSE) and the coefficient of
determination (R2) is shown in Table 6. The non-linear
model has similar predictive performance than the linear
transfer function models. The advantage of the non-linear
model presented in this paper is that it requires only the
accurate measurement of a single steady-state condition.
In contrast, the linear transfer function models require an
expensive and disruptive step-test campaign. The linear
transfer function model will also remain valid for the spe-
cific operating condition, whereas the non-linear model can
be fitted to any operating condition.

5. Conclusion

The contribution of this article is a step-wise proce-
dure to fit a non-linear model of a grinding mill circuit to
steady-state process data. By way of example, the non-
linear model is fitted to process data from an industrial pri-
mary milling circuit and is validated against step-test data
from the plant. The advantage of the non-linear model is
that the model parameters can be calculated from a single
steady-state operating condition. It does not require an
expensive step-test campaign such as is needed to develop
linear transfer function models.

The comparison between the response of the simulated
non-linear model and the response of the plant shows that
the model provides a sufficiently accurate representation
of the dynamics of the process. Specifically, the model is
able to capture in a qualitative sense the dynamics of the
fraction of the mill filled with charge (yJT ), the power draw
(yPmill), the sump discharge density (yρ), and the prod-
uct particle size < 75 µm (yPSE). Therefore, the model is
ideally suited for model-based predictive control or for pro-
cess monitoring for industrial grinding mill circuits. The
model parameters can easily be updated for each steady-
state operating condition.

Future work will consider automatic derivation of grind
curves based on historical data to parameterize the power
draw model parameters in terms of mill speed.
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