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Abstract: Nitrogen is one of the key nutrients that indicate soil quality and an important component
for plant development. Accurate knowledge and management of soil nitrogen is crucial for food
security in rural communities, especially for smallholder maize farms. However, less research has
been done on generating digital soil nitrogen maps for these farmers. This study examines the
utility of Sentinel-2 satellite data and environmental variables to map soil nitrogen at smallholder
maize farms. Three machine learning algorithms—random forest (RF), gradient boosting (GB), and
extreme gradient boosting (XG) were investigated for this purpose. The findings indicate that the RF
(R2 = 0.90, RMSE = 0.0076%) model performs slightly better than the GB (R2 = 0.88, RMSE = 0.0083%)
and XG (R2 = 0.89, RMSE = 0.0077%) models. Furthermore, the variable importance measure showed
that the Sentinel-2 bands, particularly the red and red-edge bands, have a superior performance in
comparison to the environmental variables and soil indices. The digital maps generated in this study
show the high capability of Sentinel-2 satellite data to generate accurate nitrogen content maps with
the application of machine learning. The developed framework can be implemented to map the
spatial pattern of soil nitrogen. This will also contribute to soil fertility interventions and nitrogen
fertilization management to improve food security in rural communities. This application contributes
to Sustainable Development Goal number 2.

Keywords: satellite data; random forest; gradient boosting; extreme gradient boosting; soil fertility;
digital mapping

1. Introduction

Improving soil nutrient management at smallholder maize (Zea mays L.) farms is
imperative for ensuring food security in developing countries. Smallholder maize farms
are crucial for the livelihoods of rural communities in Africa who depend on agriculture
for food security and their local economic activities. Amongst the most important nutrients
is nitrogen; not only is it a component of the chlorophyll molecule but is also essential for
maize growth, quality, and yield [1–3]. The soil is one of the most important nitrogen reser-
voirs in terrestrial ecosystems [4]. Developing frameworks to map the spatial variability of
soil nitrogen is necessary for the local government, farmers, and stakeholders to identify
nitrogen excesses or deficiencies. Such information will guide soil fertility interventions
at smallholder farms. In the long term, improved soil nitrogen content management will
enhance maize productivity [5,6]. This application is particularly important for resource
limited smallholder maize farms such as those in developing countries, for example South
Africa, which have reported sub-optimal yields, infertile land, and land degradation in
previous studies [7,8].

Several soil databases and sources are available that archive soil nutrient information
for South Africa. Examples of these include the Africa Soil Information Service (AfSIS),

Sustainability 2021, 13, 11591. https://doi.org/10.3390/su132111591 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-0267-7405
https://orcid.org/0000-0002-5784-033X
https://orcid.org/0000-0002-1089-5528
https://doi.org/10.3390/su132111591
https://doi.org/10.3390/su132111591
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132111591
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132111591?type=check_update&version=2


Sustainability 2021, 13, 11591 2 of 21

which archives soil nutrient maps at a 250 m spatial resolution for Africa (http://africasoils.
net/, accessed on 9 August 2021). The Harmonized World Soil Database (HWSD) nutrient
map, which has a spatial resolution of 1 km [9], is another example. Other products such
as the SOTER-based soil parameter estimates (SOTWIS) product for Southern Africa have
a 1:2 M (million) scale resolution [10]. The soil Atlas of Africa dataset for soil groups has
a 1:3 M scale resolution [11]. Although these products are available, they have a coarse
spatial resolution to guide soil nutrient management efforts at smallholder farms, which
are typically 0.5–2 ha in size. These types of farms are often fragmented and heterogeneous
in most parts of the world including South Africa, which necessitates the use of improved
resolution data for digital soil mapping [12].

The Sentinel-2 mission has sensor capabilities with a potential to estimate soil nutrients
at smallholder farms. This satellite has an improved spatial resolution of 10–60 m, a wide
swath of 290 m, and a frequent revisit cycle of 5–10 days [13]. Additionally, the Sentinel-2
data are compatible with Landsat-8 and Satellite Pour l’Observation de la Terre (SPOT)
data [14]. The difference between Sentinel-2 and other medium resolution sensors such as
Landsat-8 is the presence of the red-edge band region in Sentinel-2. The red-edge region
lies between the red and near infrared portions of the electromagnetic spectrum and is
distinguished by a sharp increase in vegetation reflectance [15]. This current study relies on
soil and vegetation indices derived from strategic locations of the electromagnetic spectrum
to estimate the soil nitrogen content for smallholder maize farms.

Different techniques have been applied for digital soil mapping. The commonly used
models are multiple linear regression [16], principal component analysis regression [17],
generalized additive model [18], and kriging [19]. Recently, machine learning algorithms
(support vector machines, decision trees, random forests, artificial neural networks) have
been widely used in remote sensing studies [20–23]. These algorithms are beneficial
because they can learn from limited data and reduce errors through an adaptive learning
process [24,25]. However, studies using these techniques for soil nitrogen mapping at
smallholder maize farms are lacking [19]. Machine learning algorithms are not universally
applicable in different environments. This necessitates the evaluation of different machine
learning algorithms for applicability in our own context to understand the distribution of
soil nitrogen content at the locality.

This paper uses the random forest (RF) algorithm, gradient boosting algorithm (GB),
and extreme gradient boosting (XG) machine learning algorithm in a regression format.
These algorithms were used because they can deal with noisy, high-dimensional, and non-
linear data [26,27]. The algorithms are applied to Sentinel-2 imagery to predict the spatial
patterns of soil nitrogen content at selected smallholder maize farms in Makhudutham-
aga district, South Africa. The study addresses the following specific research questions:
(1) What is the relationship between soil nitrogen content and different predictor variables?
(2) How effective are the selected machine learning algorithms in predicting soil nitrogen
content? (3) Which predictor variables are fundamental for modelling soil nitrogen con-
tent? Finally, (4) What is the spatial distribution pattern of soil nitrogen at smallholder
maize farms?

2. Materials and Methods

The overview of the methodological approach used in this study is summarized in
Figure 1. The Sentinel-2 imageries were pre-processed to correct for atmospheric effects,
and band indices were calculated. Ancillary data describing the environmental variables
and some of the Sentinel-2 bands were resampled to 10 m. Nine experiments with dif-
ferent data configurations were conducted using the Sentinel-2 bands, spectral indices,
and environmental variables. Three machine learning regression algorithms—RF, GB,
and XG—were then applied in each experiment using 70% of the nitrogen content mea-
surements for training the model. The remaining 30% of the data was used for model
evaluation with commonly used statistical metrics. Variable importance for the predictors

http://africasoils.net/
http://africasoils.net/
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was determined from the scores derived by the three machine learning regression models.
Finally, the spatial pattern of soil nitrogen at the smallholder maize farms was mapped.

Figure 1. The proposed methodological framework for mapping soil nitrogen content at smallholder maize farms.

2.1. Study Area

Soil nitrogen samples were collected from the smallholder maize farms of Makhudu-
thamaga district located in the northern part of South Africa (Figure 2). This district has a
low elevation (799–1047 m) in the northwestern part and a higher elevation (1295–1791 m)
in the central and southern parts. The topography is undulating with rock habitats such as
rock outcrops, rocky ridges, and rocky refugia [28]. This district was selected because most
of the rural population are smallholder maize farmers; they farm mainly for subsistence
and partially for selling in local markets. Smallholder maize production is predominant in
the southern part of the district [29]. The farmers add manure to their fields in November.
Maize is planted during December and January. The growing period is between February
and May. Harvesting takes place in June and no maize is present in the smallholder farms
during July–November. The smallholder farms in the district are rain-fed. The annual
rainfall is 536 mm with an average annual temperature of 7 ◦C in winter and 35 ◦C in
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summer according to the Agricultural Research Council stations located in Nchabeleng,
Ga-Rantho, and Leeuwkraal areas.

Figure 2. The location of the study wards and smallholder maize farms that are considered for soil nitrogen data collection
in Makhuduthamaga district, South Africa.

2.2. Field Data Collection and Laboratory Analysis

A total of 105 soil surface samples were collected from the topsoil layer (0–20 cm) at
the smallholder maize sample farms during 14–17 May 2019 corresponding to a period
of low rainfall. The positions for each sample were captured with a handheld Global
Positioning System (GPS). The samples were then processed at the Agricultural Research
Council Analytical Laboratory where they were air-dried at room temperature (25 ◦C),
crushed, and passed through a 2 mm sieve to remove coarse soil materials such as gravel
or plant roots. The soil total nitrogen content was then determined through analytical
processing with the Kjeldahl digestion method. The soil properties are summarized in
Table 1 according to the dominant soil type at the top (haplic acrisols) and least dominant
soil at the bottom (lithic leptosols). These were extracted from the Harmonized World Soil
Database [9].

Table 1. Soil attributes for the dominant soil types in smallholder farms.

Soil Type Topsoil Sand
Fraction (%)

Topsoil Silt
Fraction (%)

Topsoil Clay
Fraction (%)

Topsoil
Texture pH (H2O)

Bulk Density
(kg/dm3)

Organic
Carbon

(% Weight)

Haplic Acrisols 57 19 24 Sand clay loam 5.1 1.4 0.8
Ferric

Luvisols 65 18 17 Sandy loam 6.4 1.5 0.6
Lithic

Leptosols 43 29 28 Clay loam 7.5 1.3 0.4
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2.3. Sentinel-2 Data Acquisition and Pre-Processing

We used Sentinel-2 MSI level-1C (L1C) data acquired from the Copernicus Open
Access Hub. The image for 17 May 2019 was used in this study. This image covered
the field sampling date and was appropriate considering that the image was cloud free.
The L1C product images consist of top-of-atmosphere (TOA) reflectance after radiometric
correction and geometric corrections (ortho-rectification and spatial registration) with a
sub-pixel accuracy (https://sentinel.esa.int, accessed on 10 August 2021). Sentinel-2 MSI
has 13 bands, which have different spatial resolutions. This study made used of 10 bands
(visible, near-infrared, red-edge, and shortwave infrared) as summarized in Table 2 and
excluded the bands that are related to water and atmosphere elements. The Sentinel-2
TOA images were pre-processed with Sen2Cor plugin in Sentinel Application Platform
(SNAP) to convert them to bottom-of-atmosphere reflectance (BOA), and the 20 m bands
were resampled to a 10 m spatial resolution.

Table 2. Sentinel-2 multi-spectral bands used in this study (https://www.usgs.gov, accessed on
10 August 2021).

Variable Description

Raw Bands Central Wavelength
(nm)

Bandwidth
(nm)

Spatial Resolution
(m)

B2–Blue 490 65 10
B3–Green 560 35 10
B4–Red 665 30 10
B5–RE1 705 15 20
B6–RE2 740 15 20
B7–RE3 783 20 20
B8–NIR 842 115 10
B8a–RE4 865 20 20

B11–SWIR1 1610 90 20
B12–SWIR2 2190 180 20

Note: Red Edge (RE), Near Infrared (NIR), Short Wave Infrared (SWIR).

2.4. Spectral Indices

Spectral indices were generated from the Sentinel-2 bands. The vegetation indices
that are included in the current study were selected by fitting the RF, XG, and GB ma-
chine learning regression models. Vegetation indices that optimized the coefficient of
determination (R2) in relation to the nitrogen content for each model were retained. This
procedure was done because similar studies have reported a diverse range of vegetation
indices [19,30,31]. The vegetation indices evaluated based on the RE were the following:
Normalized Difference Vegetation Index RE 1, 2, and 3 narrow (NDVIRE1n, NDVIRE2n,
NDVIRE3n), Normalized Difference Vegetation Index RE 1 (NDRE1), Normalized Differ-
ence Vegetation Index RE 1 modified (NDRE1m), Modified Simple Ratio RE (MSRRE),
Chlorophyll Index RE (CLRE), and Normalized Difference Vegetation Index RE (NDVIRE).
Other indices based on the NIR, SWIR1, SWIR2, and visible parts of the electromagnetic
spectrum were also evaluated. These indices included the Plant Senescence Reflectance
Index (PSRI), Enhanced Vegetation Index (EVI), and the Green Normalized Difference
Vegetation Index (GNDVI). Additionally, the Difference Vegetation Index (DVI), Normal-
ized Difference Water Index (NDWI), Renormalized Difference Vegetation Index (RDVI),
Normalized Difference Vegetation Index (NDVI), Optimized Soil Adjusted Vegetation
Index (OSAVI), Soil Adjusted Vegetation Index (SAVI), and Triangular Vegetation Index
(TVI) were also evaluated. The final spectral indices used in this study are summarized in
Table 3.

https://sentinel.esa.int
https://www.usgs.gov
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Table 3. The collection of spectral indices considered in this study.

Vegetation Indices Equation Source Property

PSRI (Red−Green)
RE2

[32] Senescence-induced reflectance changes
NDVIRE1n (RE4−RE1)

(RE4+RE1)
[33] Sparse biomass

NDVIRE2n (RE4−RE2)
(RE4+RE2)

[33] Sparse biomass

NDVIRE3n (RE4−RE3)
(RE4+RE3)

[33] Sparse biomass

MSRRE (NIR/RE1)−1√
(NIR/RE1)+1

[34] Correction for leaf specular reflection

EVI 2.5× (NIR−Red)
(NIR+6×Red−7.5×Blue)+1

[35] Chlorophyll sensitive

GNDVI (NIR−Green)
(NIR+Green)

[36] Chlorophyll sensitive

Soil Indices Equation Source Property

BI
(
(Red2+Green2+Blue2)

3

)0.5 [31,37] Average reflectance magnitude

CI (Red−Green)
(Red+Green)

[31,37] Soil Colour

HI (2×Red−Green−Blue)
(Green−Blue)

[31,37] Primary Colours

RI Red2

(Blue×Green3)
[38] Hematite content

SI (Red−Blue)
(Red+Blue)

[31,37] Spectral slope

Note: Brightness Index (BI), Coloration Index (CI), Hue Index (HI), Redness Index (RI), Saturation Index (SI).

2.5. Environmental Variables

Different datasets in Table 4 were used to describe the environmental variables needed
to estimate nitrogen content. These included the slope, elevation, aspect, catchment area,
topographic wetness index (TWI), precipitation, and temperature. The ASTER digital
elevation model (DEM) with a 30 m spatial resolution was used to extract the terrain
variables. This product was used because it is freely available and was closer to the 10 m
spatial resolution of Sentinel-2 data. The ASTER DEM tiles were mosaicked and resampled
to a 10 m resolution using a bilinear interpolation in the R software. The DEM, slope,
aspect, catchment area and TWI were subsequently derived. The JAXA Earth Observation
Research Center precipitation and Landsat land surface temperature (LST) covering 7 years
from 2013 to 2019 were used. This period was selected based on the continuity of the
Landsat LST collection. These images were also resampled to a 10 m resolution. The
environmental variables have shown to be valuable in previous studies for modeling
nitrogen content [3,30].

Table 4. The list of selected environmental variables used in this study.

Environmental Variables Units Source Property

Slope (SLP) Degrees [39] Rise or fall of the land surface
Elevation (EL) Meters [39] Distance above sea level
Aspect (ASP) Degrees [39] Direction of terrain

Catchment area (CA) Square Meters [39] Flow accumulation
TWI - [40] Soil moisture

Precipitation (RAIN) Millimeter/hour [41] Rainfall
LST Kelvin [42] Temperature

2.6. Machine Learning Regression Models
2.6.1. Random Forest Regression

Random Forest is a bagging ensemble learning method [43]. This algorithm can be
applied to both classification and regression problems. The principle of RF regression
is to predict a continuous response variable using a bootstrapping method based on the
classification and regression trees. Decision tree models are fitted to the data. Every
tree is trained using different bootstrap samples from the training data, referred to as



Sustainability 2021, 13, 11591 7 of 21

in-bag samples. The final model is generated by averaging the individual tree outputs [43].
Samples that are not used in the bootstrap are referred to as the out-of-bag samples; these
can be used for model evaluation and variable importance [44]. The RF algorithm is
applied in this study because of its superior performance capabilities. RF can handle high
dimensional data, requires relatively few tuning parameters, and processes non-linear
data without overestimation [45]. The tuning parameters necessary to train the RF model
(number of trees and features) were determined using Gridsearch method in Python;
further details can be obtained in Lerman [46]. Variable importance for the RF algorithm
was determined using the built-in Python variable importance measure for RF; readers are
referred to Dangeti [47] for further details on this procedure.

2.6.2. Gradient Boosting Regression

Gradient boosting is an ensemble-based decision tree machine learning method devel-
oped by Friedman [48]. This method can be adapted for both regression and classification
problems. The purpose of gradient boosting is to improve the performance of weak learners
to achieve over random guessing [49]. At each iteration, a new regression tree is trained to
improve the loss function determined by the steepest gradient. This procedure reduces the
model residuals along the gradient direction. The results of the individual regression trees
are combined to give the final result [48]. The gradient boosting algorithm is applied in the
present study because it can handle unbalanced data and it is robust to outliers [50]. The
parameters needed for gradient boosting are the number of trees, number of features for the
best split, maximum depth, learning rate, and the minimum number of samples required at
a leaf node. These were optimized using the Gridsearch method. Variable importance for
the GB algorithm was determined using the built-in Python variable importance measure
for GB; readers are referred to Dangeti [47] for further details on this procedure.

2.6.3. Extreme Gradient Boosting Regression

The Extreme Gradient Boosting algorithm is part of the classification and regression
ensemble gradient boosting machine algorithms. This model can be applied for both
classification and regression problems [51]. The XG uses additive training strategies: the
first learning phase is fitted to the entire input dataset and the second phase is fitted to
the residuals. This procedure enhances the performance of weak supervised learning.
The fitting process is done repeatedly until the stopping criteria are achieved [51]. The
XG algorithm was applied because it overcomes problems with overfitting and has an
optimized performance [52]. This algorithm requires a rigorous number of regularization
parameters; these were determined using Gridsearch. Variable importance for the XG
algorithm was determined using the built-in Python variable importance measure for XG;
readers are referred to Dangeti [47] for further details on this procedure.

2.6.4. Experiments

We investigated the effect of different feature variables for modeling nitrogen con-
tent in smallholder maize farms. The data were split into 70% training and 30% test-
ing. Three models RF, GB, and XG with different combinations of variables summarized
in Table 5 were implemented. The experiments consisted of: (1) raw bands, (2) raw
bands + vegetation indices, (3) raw bands + soil indices, (4) raw bands + environmental
variables, (5) raw bands + vegetation indices + soil indices + environmental variables, (6)
raw bands + vegetation indices + soil indices, (7) raw bands + vegetation indices + envi-
ronmental variables, (8) raw bands + soil indices + environmental variables, and (9) raw
bands + environmental variables + soil indices.



Sustainability 2021, 13, 11591 8 of 21

Table 5. The different data configurations for the nine machine learning regression experiments.

Experiment Number of Variables Data Configuration

1 10 Raw bands
2 17 Raw bands and vegetation indices
3 15 Raw bands and soil indices
4 17 Raw bands and environmental variables
5 29 Raw bands, vegetation indices, soil indices, and environmental variables
6 22 Raw bands, vegetation indices, and soil indices
7 24 Raw bands, vegetation indices, and environmental variables
8 22 Raw bands, soil indices, and environmental variables
9 19 Raw bands, environmental variables, and soil indices

2.7. Model Evaluation

The predictive performances of the RF, GB, and XG models were evaluated using
validation indices. These included the fraction of predictions within a factor of two (FAC2),
mean absolute error (MAE), mean bias error (MBE), root mean square error (RMSE),
Pearson correlation (r), R2, and cross validation (CV) as shown in Equations (1)–(7):

FAC2 : 0.5 ≤ Pi
Oi
≤ 2.0 (1)

MAE =
1
n

n

∑
i=1
|Pi −Oi| (2)

MBE =
1
n

n

∑
i=1

(Pi −Oi) (3)

RMSE =

√
1
n

n

∑
i=1

(Pi −Oi)
2 (4)

r =
1

(n− 1)

n

∑
i=1

(
Pi − P

σp
)(

Oi −O
σo

) (5)

R2 =

n
∑

i=1
(Pi−Oi)

2

n
∑

i=1
(Pi−Oi)

2 (6)

CV(k) =
1
k

k

∑
i=1

Ri (7)

where n represents the number of sample points, Pi represents the predicted soil nitrogen
content, Oi represents the observed soil nitrogen content in site i, and σ represents the stan-
dard deviation. The reader is directed to Carslaw and Ropkins [53] for further information
on these model evaluation matrices. The Taylor diagram was derived using the Openair
package in R software [53].

3. Results
3.1. Statistical Analaysis for Soil Nitrogen Content Measurements

Different vegetation indices (Figure 3) described in Section 2.4 were evaluated to retain
indices that perform optimally for soil nitrogen content estimation. The RF, XG, and GB
models were used to relate the vegetation indices to soil nitrogen. The PSRI, NDVIRE1n,
EVI, NDVIRE2n, NDVIRE3n, GNDVI, and MSRRE were retained for further analysis.
These vegetation indices were strongly related to the soil nitrogen content with an R2 of
0.62 to 0.81. The soil nitrogen content measurements collected at the smallholder maize
farms are characterized in Table 6. The nitrogen content was low for the farms, ranging
from 0.014–0.088%. The mean is lower than the standard deviation, which shows that
the data are clustered closely around the mean. The mean is greater than the median,
indicating a positively skewed distribution similar to the skewness value of 1.42 [54]. The
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nitrogen content measurements were related to each of the variables in the regression
experiments through a correlation matrix (Table 5). The MSRRE, NDVIRE1-3n, EVI, LST,
and TWI had positive relationships with the soil nitrogen content. The remaining variables
had a negative relationship with soil nitrogen. The PSRI, NDVIRE1-3n, EVI, CI, BI, SI,
RI, and B4-B12 were strongly related to the soil nitrogen content. However, the SLP, CA,
ASP, DEM, TWI, LST, and RAIN had a weak relationship with soil nitrogen. Moderate
relationships where observed for the HI, B3, and soil nitrogen. Multicollinearity was
identified between the vegetation indices, soil indices, and raw bands. These variables
were highly linearly related.

Figure 3. Vegetation indices evaluated for mapping soil nitrogen content.

Table 6. Statistical analysis for the soil nitrogen content samples.

Soil Nitrogen

(a) Descriptive Statistics

Count Minimum
(%)

Maximum
(%)

Mean
(%)

Median
(%)

Standard
Deviation Skewness

Nitrogen 105 0.014 0.088 0.033 0.025 0.019 1.424

(b) Correlation

Variable r Variable r Variable r Variable r

MSRRE 0.579 CI −0.713 B6 −0.899 TWI 0.081
PSRI −0.793 BI −0.798 B7 −0.894 DEM −0.292

NDVIRE3n 0.835 SI −0.804 B8 −0.883 ASP −0.011
NDVIRE2n 0.840 RI −0.748 B8A −0.889 CA −0.024
NDVIRE1n 0.737 B2 −0.061 B11 −0.883 SLP −0.154

EVI 0.838 B3 −0.463 B12 −0.870
GNDVI −0.757 B4 −0.884 RAIN −0.268

HI −0.591 B5 −0.898 LST 0.117
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3.2. Model Evaluation

The model performance statistics derived from the testing data (n = 32 samples) are
summarized in Table 7. The best performing model from all experiments was the RF model
for experiment 4. This model had the highest accuracy for soil nitrogen content estimation
based on the lowest values for RMSE and MAE (RMSE = 0.0076% and MAE = 0.0054%)
and the highest r and R2 (r = 0.95 and R2 = 0.90). The predicted soil nitrogen values were
smaller than the observed values based on the MBE (MBE = − 0.0013%). Additionally,
this model had a FAC2 = 1, indicating a perfect model similar to the FAC2 values for
the other experiments. The least optimal performing model overall was the XG model
for experiment 6 containing the raw bands, soil indices, and vegetation indices. This
model had a high error rate based on the high RMSE and MAE (RMSE = 0.0090% and
MAE = 0.0063%) and the lowest r and R2 (r = 0.9149 and R2 = 0.8371). Furthermore, this
model overestimated the soil nitrogen content based on the MBE (MBE = 0.0004%). The
raw bands and environmental variables were sufficient to model soil nitrogen content with
the RF (RF4) and GB (GB4) model. However, additional soil indices were needed in XG
(XG8) for estimating soil nitrogen more accurately.

Table 7. Model evaluation statistics for the three machine learning models in different experiments.

Model FAC2 MAE
(%)

MBE
(%)

RMSE
(%) r R2 CV

RF1 0.9688 0.0067 0.0012 0.0086 0.9324 0.8694 0.7563
RF2 0.9688 0.0061 0.0000 0.0086 0.9302 0.8653 0.8079
RF3 0.9688 0.0071 0.0004 0.0092 0.9204 0.8472 0.7891
RF4 1.0000 0.0054 −0.0013 0.0076 0.9486 0.8998 0.6625
RF5 1.0000 0.0066 −0.0007 0.0086 0.9232 0.8523 0.7720
RF6 0.9688 0.0063 −0.0003 0.0089 0.9256 0.8568 0.6604
RF7 1.0000 0.0053 0.0000 0.0080 0.9433 0.8898 0.7104
RF8 1.0000 0.0059 0.0002 0.0083 0.9368 0.8775 0.6885
RF9 1.0000 0.0056 0.0000 0.0082 0.9395 0.8827 0.8645
GB1 0.9688 0.0070 0.0007 0.0092 0.9210 0.8482 0.5325
GB2 1.0000 0.0059 −0.0001 0.0084 0.9348 0.8739 0.6670
GB3 1.0000 0.0068 −0.0003 0.0092 0.9177 0.8423 0.6124
GB4 1.0000 0.0061 0.0001 0.0083 0.9369 0.8778 0.6354
GB5 1.0000 0.0061 0.0000 0.0084 0.9347 0.8737 0.7043
GB6 1.0000 0.0062 −0.0006 0.0087 0.9298 0.8645 0.7942
GB7 1.0000 0.0060 0.0002 0.0084 0.9336 0.8716 0.7734
GB8 0.9688 0.0064 −0.0009 0.0094 0.9172 0.8413 0.7556
GB9 1.0000 0.0058 0.0008 0.0083 0.9315 0.8676 0.7296
XG1 0.9688 0.0062 0.0003 0.0084 0.9311 0.8669 0.5671
XG2 0.9688 0.0057 0.0001 0.0085 0.9257 0.8569 0.8546
XG3 0.9688 0.0065 0.0005 0.0089 0.9227 0.8513 0.5970
XG4 1.0000 0.0062 0.0004 0.0088 0.9221 0.8502 0.5711
XG5 1.0000 0.0059 0.0004 0.0081 0.9352 0.8747 0.6121
XG6 0.9688 0.0063 0.0004 0.0090 0.9149 0.8371 0.6367
XG7 1.0000 0.0061 0.0007 0.0087 0.9234 0.8527 0.6453
XG8 1.0000 0.0054 0.0003 0.0077 0.9434 0.8900 0.5954
XG9 0.9688 0.0058 0.0002 0.0086 0.9300 0.8648 0.5839

Note: Random forest experiment number (RFx), gradient boosting experiment number (GBx), extreme gradient
boosting experiment number (XGx) defined in Table 4.

The Taylor diagram in Figure 4 was used to verify the model performance. All models
had high correlation coefficients ranging from 0.91 to 0.95 and they plotted close to the
observed reference value at the origin. Additionally, they had a similar performance shown
by the clustering of points with the same location on the Taylor diagram [55]. However, the
RF4 model had a slightly better performance compared to the other models based on the
lowest standard deviation and root mean squared (RMS) error. The correlation coefficient
was also high for this model, signifying a good fit between the observed and predicted
values. The XG8 and GB4 models were the optimal performing models for the XG and
GB models. They had a considerably lower standard deviation and RMS values but a
high correlation. Additionally, the predicted values from these models were closer to the
observed values.
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Figure 4. Taylor diagram for the nine experiments applying the three machine learning models.

Scatterplots were constructed for optimal performing RF, GB, and XG models to relate
the observed and predicted soil nitrogen content in Figure 5. The data points are close to
the diagonal line for all three models, indicating a good agreement between the observed
and predicted values. The RF4 model had a slightly better performance R2 (R2 = 0.90) than
the other models and was statistically significant (p = 1.6 × 10−16) at a 95% confidence
interval. The GB and XG models had similar R2 values (R2 = 0.88 and R2 = 0.89). However,
GB had a higher p-value of 3.1 × 10−15 in comparison to XG with a p-value of 6.3 × 10−16.
Both models were statistically significant at a 95% confidence interval.

Figure 5. The relationship between observed soil nitrogen and predicted soil nitrogen where (a) is RF4, (b) is GB4, and
(c) is XG8.
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3.3. Variable Importance

The importance of the predictor variables was determined for the most robust RF,
GB, and XG models. All three models in Figure 6 varied in terms of predictor importance.
The most important predictors for RF were B7, B5, B6, and B4. These were derived from
experiment 4. The GB model ranked B4, B6, B5, and B12 highly from experiment 4. The
B4 band was important in the XG model followed by CI and B5 in experiment 8. The RF
model had a more even distribution of predictor importance in comparison to GB and XG
where there is a greater contrast between the important (highest 4) and least important
predictors (after the highest 4 predictors).

Figure 6. The ranking of variables for predicting soil nitrogen content with (a) RF4, (b) GB4, and (c)
XG8 algorithms.
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3.4. Mapping Soil Nitrogen Content for Smallholder Maize Farms

The spatial distribution of soil nitrogen was mapped in Figures 7–9. There were
differences in the spatial distribution of nitrogen for the smallholder maize farms. The
smallholder farms in the central and southeastern part of the study area had a lower
nitrogen content. However, the farms in the southern part of the study area had a higher
nitrogen content. The maps generated by the RF and XG algorithms were similar, but GB
overestimated the nitrogen content.

Figure 7. The spatial distribution of soil nitrogen mapped with the random forest model for experiment 4.
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Figure 8. The spatial distribution of soil nitrogen mapped with the gradient boosting model for experiment 4.
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Figure 9. Distribution map of soil nitrogen obtained using the XG model is for experiment 8.

4. Discussion

This study assessed the applicability of Sentinel-2 bands, derived soil and vegetation
indices, and environmental data for predicting soil nitrogen in the smallholder maize
farms of Makhuduthamaga district. Descriptive statistics were generated for the collected
soil nitrogen content samples. Experiments were used to evaluate the performance of RF,
GB, and XG machine learning algorithms in a regression format. The variable importance
measure for each algorithm was used to determine which predictors had the most influence.
The best performing algorithms in each experiment were then used for mapping nitrogen
content. The results showed that the Sentinel-2 bands and environmental variables have
a superior performance when estimating the soil nitrogen content in comparison to the
vegetation indices and soil indices.

Findings from the descriptive statistics indicate that nitrogen content is low (0.014–0.088%)
for the smallholder maize farms. This is expected because the smallholder farms within
the study area rarely apply nitrogen fertilization and a small proportion of the farmers
use cow manure as fertilizer. For example, Nyamangara et al. [56] conducted experiments
for three years and found that the combination of cow manure and nitrogen fertilizers
in smallholder maize farms in Zimbabwe improved soil nitrogen content and increased
maize yield. Furthermore, data exploration in our study revealed that multicollinearity was
present when relating soil nitrogen content to the different predictor variables. The presence
of multicollinearity implies that the application of multiple linear regression with these
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variables to predict the soil nitrogen content would be unreliable [57]. Multicollinearity
introduces large variances in the least squares estimators (regression coefficients) and
lowers the quality of the resulting parameter estimates, and the variables have a low
information content [58]. The main advantage of the machine learning techniques, applied
in the present study, is that they are less prone to multicollinearity problems. For example,
Jaya et al. [59] found that the artificial neural network model had a lower bias, mean
squared error, and minimized residuals in comparison to a multiple linear regression
model when multicollinearity was present. Additionally, Farrell et al. [60] observed that
multicollinearity removal and correlation removal did not reduce the performance of RF
and support vector machine substantially. The robustness of machine learning could be
due to the adaptive learning process used by the models that reduces errors [24,25]. For
example, RF uses bagging, XG uses additive training strategies, and GB reduces the model
residuals along the gradient direction, which minimizes the multicollinearity problem.

Three predictive models were evaluated. Findings show that the RF model performs
better than the GB and XG models when estimating soil nitrogen at smallholder maize
farms in our study area. These results are similar to other studies that show the high
capacity of RF in mapping soil nitrogen content [19,61–65]. Furthermore, the findings
suggest that the XG model needs more input variables to model soil nitrogen content in
comparison to GB and RF. This can be attributed to the implementation of the models: the
XG algorithm is sensitive to outliers because the individual learners are in series format,
and RF is not sensitive to outliers because it is a parallel implementation of multiple
decision trees [66]. In terms of variability, this study found an R2 of 0.87–0.90, RMSE of
0.0086–0.0092%, and CV of 0.66–0.81 with RF, which is the most robust model. Our results
are similar to López-Calderón et al. [65] that found an R2 of 0.77 and a mean square error
of 0.15% when predicting soil total nitrogen content applying RF for forage maize with
UAV imagery. Additionally, Sorenson et al. [62] used field reflectance spectroscopy for
estimating soil nitrogen content and reported a cross-validation RMSE of 0.62% and R2 of
0.78 with RF for reclaimed soils. Furthermore, Deng et al. [64] found a cross validation
R2 = 0.65 and RMSE = 0.43 g kg−1 with RF applied on MODIS data when estimating soil
nitrogen content for croplands. Contrary to our findings, Xu et al. [19] reported an adjusted
R2 of 0.49 and RMSE of 125.71 mg kg−1 with Landsat 8 data applying RF to predict soil
nitrogen at smallholder farmlands planting different crops. Jeong et al. [61] observed an
R2 = 0.552 and RMSE = 1.131 mg g−1 when applying RF soil nitrogen content estimation in
a complex terrain with Landsat TM data. These differences in findings can be influenced
by the input variables or other factors such as whether the soil is completely bare or has
plant coverage, which can influence the predicted soil nitrogen content. For example, the
study by Beguin et al. [67] found that the input predictors affect the predictive capacity of
models predicting soil properties. Other studies such as Zhang et al. [63] observed different
performance for the digital soil map generated in a vegetated condition (R2 = 0.67) and
completely bare soil condition (R2 = 0.80) with RF.

Variable importance was done to determine the most important predictors for esti-
mating soil nitrogen content at smallholder maize farms. The results showed that the
Sentinel-2 bands have an advantage when estimating soil nitrogen content. However,
environmental variables had a lower ranking, and additional soil indices were necessary in
the XG model. These findings are similar to other studies that found that spectral bands are
more important than environmental variables [63,68,69]. However, some studies showed
contrasting results in which the environmental variables had the highest ranking [30,70].
The differences in findings are attributed to variations in the model input variables in these
studies. For example, most of these studies used Landsat optical data for mapping soil
nitrogen content, which does not have the RE bands that Sentinel-2 has, which the current
study incorporated. Additionally, the presence of maize crops within the smallholder
farms in the current study could have contributed to the higher importance of the red-edge
bands. These bands are sensitive to variations in chlorophyll content, differences in the leaf
structure, and plant biomass [33,35]. The radiation from the red-edge penetrates deeper
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into the crop canopy and leaves in comparison to visible light due to lower chlorophyll
absorption in the visible region [71]. Xu et al. [19] also found that red-edge spectral bands
are important when estimating soil total nitrogen in smallholder farms that have different
crops planted. These studies prove that red-edge bands have a high capability to estimate
total nitrogen content accurately in smallholder farms that have crop cover. The high
importance of the CI and RI amongst the soil indices was expected within the study area
because most of the soils are red soils that have a high iron oxide content, possibly related
to haematite, to which the RI is sensitive [38]. The most important predictors were LST,
DEM, and TWI for the environmental variables. The LST affects the spatial distribution
of soil nitrogen through its effect on soil temperature, thereby affecting the process of
nitrogen mineralization [72]. The DEM is important because elevation plays a role in
microclimate, runoff, evaporation, and transpiration [73]. The TWI is an indicator of soil
moisture distribution [40]. Soil moisture conditions, in addition of course to soil nutrients,
are determinants of crop vigor and development. The distinction between highly ranked
predictors and low-ranking predictors in the GB and XG models shows that further ex-
ploration of the influence of the predictors on model performance can be done for both
models for model optimization.

The spatial distribution of soil nitrogen was mapped. The resulting spatial maps
produced from the three algorithms were similar. This finding proved the high capability
of machine learning to estimate soil nitrogen content in smallholder maize farms. The
soil nitrogen maps generated in this study can be used as a tool to guide decision making
for smallholder farms. Recommendations by crop consultants, extension services, and
fertilizer dealers can also benefit from using nitrogen content maps. Government initiatives
providing farmers with agricultural inputs can use such maps to determine the soil nitrogen
content at the farms and the proportion of fertilizer to use, because different fertilizer
quantities affect maize yield differently, as shown by Nyamugara et al. [56]. Improved
levels of soil nitrogen content at smallholder farms will increase maize yields, thereby
improving food security [1–3]. This application contributes to Sustainable Development
Goals (SDG) number 2 (Zero Hunger), target 2.4 and indicator 2.4.1, which are concerned
with mitigating factors that affect agricultural production, ensuring sustainable agriculture
and increasing the proportion of agricultural area under production [74].

The main limitation of this study is that a small number of farms were visited for field
data collection due to the high cost for laboratory processing of samples and fieldwork.
This study recommends further exploration of Sentinel-1 and Sentinel-2 data for estimating
soil nitrogen in smallholder farms [63,69,70]. Studies focusing on smallholder farms are
lacking, especially in an African context, and these farms are important for food security
and rural livelihoods [7,8]. Training programs are recommended for the smallholder farms
to improve the awareness of farmers on chemical fertilization. For example, nitrogen
is essential when the crop is actively growing, but nitrogen application before that time
can lead to losses through leaching or subsurface flow [75]. Other more cost-effective
alternatives to nitrogen fertilizers such as leguminous trees and shrubs grown with maize
are recommended for smallholder farms in resource poor areas. These will provide nitrogen-
rich residues that increase soil fertility [76].

5. Conclusions

This study was aimed at assessing Sentinel-2 bands, derived soil and vegetation
indices, and environmental variables for predicting soil nitrogen in smallholder maize
farms applying machine learning regression. Different predictor variables were related
to soil nitrogen content. The red, red-edge, and short-wave infrared bands were strongly
related to soil nitrogen with correlations of 0.89–0.90. The machine learning models
applied in this study (RF, GB, and XG) were suitable for the data because multicollinearity
was present between the predictors, which these models dealt with effectively. Model
evaluation results show that machine learning models have a high predictive capacity
in estimating soil nitrogen (R2 = 0.84–0.90 and RMSE = 0.0076–0.0094%) in smallholder
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farms. Variable importance revealed that the Sentinel-2 bands, particularly the red and
red-edge bands, are fundamental for modeling soil nitrogen in all three models. The soil
nitrogen maps generated in this study can be used as a tool to guide decision making for
smallholder farms. Recommendations by governments, extension services, and fertilizer
dealers can also benefit from using such maps. These maps are useful to establish nitrogen
management plans in the smallholder farms, which will increase maize yields, thereby
improving food security.
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