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Abstract: Rural communities rely on smallholder maize farms for subsistence agriculture, the main
driver of local economic activity and food security. However, their planted area estimates are
unknown in most developing countries. This study explores the use of Sentinel-1 and Sentinel-2
data to map smallholder maize farms. The random forest (RF), support vector (SVM) machine
learning algorithms and model stacking (ST) were applied. Results show that the classification of
combined Sentinel-1 and Sentinel-2 data improved the RF, SVM and ST algorithms by 24.2%, 8.7%,
and 9.1%, respectively, compared to the classification of Sentinel-1 data individually. Similarities
in the estimated areas (7001.35 ± 1.2 ha for RF, 7926.03 ± 0.7 ha for SVM and 7099.59 ± 0.8 ha
for ST) show that machine learning can estimate smallholder maize areas with high accuracies.
The study concludes that the single-date Sentinel-1 data were insufficient to map smallholder maize
farms. However, single-date Sentinel-1 combined with Sentinel-2 data were sufficient in mapping
smallholder farms. These results can be used to support the generation and validation of national
crop statistics, thus contributing to food security.

Keywords: Sentinel-1; Sentinel-2; smallholder; maize; machine learning

1. Introduction

Maize (Zea mays L.) is an essential cereal crop worldwide for food consumption, animal
feed, and the production of industrial products such as biofuels [1]. Developed countries
consume lower quantities of maize compared to developing countries (Asia, Latin America
and Africa), which are reliant on maize [2]. Smallholder farmers account for 80% of the
maize produced as a staple crop in Africa [3]. However, global climate forecasts have
reported that Africa could be one of the most susceptible regions to the effects of climate
change by 2050. This phenomenon will cause growing water shortages and scarcity of
suitable land, which will affect the production of cereal crops including maize [4,5]. Small-
holder maize farms are important for the livelihoods of rural communities in Africa who
depend on agriculture for food security and their local economic activities. These farmers
are faced with problems such as inadequate rainfall due to droughts; they often have poor
soils and limited irrigation infrastructure, which hinder their maximum productivity [6].
Although these problems prevail in smallholder farms, there is an increasing demand for
maize as a consequence of population growth [7]. The disparity between declining maize
supply and increasing demand for maize makes it necessary to develop a methodology to
map smallholder maize farms and their sizes. Information about the areal extent of small-
holder farms will guide the government when dispersing aid to them, inform land-use
policies, and provide an indication of the current food security status, especially in vulnera-
ble rural communities. The information provided by this project will enhance initiatives of
local governments to provide spatial information regarding agricultural land-use by rural
communities, as reliable information is lacking in most developing countries.
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The use of remotely sensed data presents an opportunity for mapping smallholder
farms and generating spatial information that can support policy implementation and
enhance food security planning. Remote sensing technologies are able to collect data
over a wide area in near-real time [8]. Additionally, the spatial distribution of crops
on other areas within a study location that was not visited can be mapped. However,
the use of remote sensing data for mapping smallholder farms has limitations. The coarse
spatial resolution of remote sensing products such as the moderate-resolution imaging
spectroradiometer (MODIS) and Landsat is not sufficient to map smallholder farmland
plots because of their small size of ±2 ha. Additionally, Landsat 8 has a revisit cycle of
16 days, which is insufficient to capture phenological changes for smallholder farms. Other
remote sensing products such as Worldview, PlanetScope, RapidEye, and Satellite Pour
l’Observation de la Terre (SPOT) have the required spatial resolution but are not freely
available, and have a limited spatial coverage [9]. Hence, there is a need to explore the use
of Sentinel-1 and Sentinel-2 data, which are freely available and have an improved spectral
and spatial resolution.

The Sentinel-1 and Sentinel-2 sensors were launched for different applications amongst
others, monitoring land-use/land-cover change and agricultural applications [10]. These
sensors have a shorter revisit time of 10–12 days and a spatial resolution of 10-60 m [11].
Sentinel-2 is an optical sensor, which captures changes in land cover and provides a means
to estimate crop area. However, the optical data from Sentinel-2 are susceptible to cloud
cover or rainy weather, which limits the data availability during the cropping season [12].
Radar imagery from Sentinel-1 overcomes the above shortfall; data are unobstructed
by clouds or weather. These data have not been explored extensively for agricultural
applications in comparison to optical data because of their complex data structure [13].

The combined use of both Sentinel-1 and Sentinel-2 has the advantage of capturing
both the spectral and textural information; this improves classification results, according to
Cai et al. [14]. Dobson [15] also observed that other Synthetic Aperture Radar (SAR) data
such as ERS-1 and JERS-1 are also sensitive to the structural properties, soil moisture and
above-ground biomass of vegetation. Studies combining both Sentinel-1 and Sentinel-2,
such as that of Van Tricht et al. [16], have found overall accuracies (OA) between 75 and 82%
when mapping maize and other land-cover classes with the application of Random Forest
(RF) classification with Sentinel-1 and Sentinel-2 data. Sonobe et al. [17] used a kernel-
based extreme learning machine to map maize and other crop types with Sentinel-1 and
Sentinel-2 data. Their study achieved an overall classification of 96.8%. To our knowledge,
limited studies have explored the potential offered by combining radar and optical data to
address smallholder crop classification/mapping in a rural setting.

We examined the utility of Sentinel-1 to mapping smallholder areas under maize.
We determined the outcome of integrating optical bands and vegetation indices derived
from Sentinel-2 on the Sentinel-1 polarizations through a series of classification experiments
for mapping maize areas. The RF algorithm, support vector machine (SVM) algorithm
and model stack (ST) are applied to each experiment. These machine learning algorithms
are selected specifically because they have a superior discrimination capacity between
different classes, suitable for noisy data and can be applied to limited samples [18,19]. These
distinguishing characteristics of the selected models have the potential of resolving issues
with mapping fragmented inhomogeneous smallholder farms. Thereby, we achieved
the overall aim of the study in developing a framework to enhance the delineation of
smallholder maize farms using Sentinel-1, Sentinel-2 and vegetation indices.

2. Materials and Methods
2.1. Study Area

The field data were collected from the Makhuduthamaga district in Limpopo, South
Africa (Figure 1). This area experiences rainfall during the warmer months of October to
March and the mean annual rainfall is 536 mm. The fields have an average elevation of
1333 m above mean sea level. The temperatures can drop to 7 ◦C in winter but can be as
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high as 35 ◦C in summer according to the records from the automatic weather stations of the
Agricultural Research Council. This area was selected as a case study because most of the
rural population are smallholder maize farmers; they farm primarily for subsistence and
partially for selling in local markets [20]. Specific regions of interest (ROI) were delineated
for investigation based on the locations of the smallholder maize farms. The ROI was
obtained from the local government department of agriculture (DAFF), where they were
developed through survey campaigns. The ROI was used to generate an improved estimate
of the area covered by smallholder farms by eliminating built-up areas, which can host
households with backyard maize gardens leading to an overestimation of the planted areas.
These households consume their maize before harvest-time.
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Figure 1. Location of Makhuduthamaga study area within Limpopo province, South Africa.

2.2. Field Data Collection

Field surveys for the collection of training and validation data for different landcover
types within the ROI occurred from 18 to 21 February 2019. This period was selected
because maize had the maximum green biomass at this time and could be discriminated
more clearly in comparison to other land-cover types [21]. A handheld Garmin Global
Positioning System (GPS) device was used to collect waypoints of different land-cover
classes, applying a purposive sampling approach. The classes considered were maize
(19.72%), bare land (50.01%), vegetation (30.23%) and water (0.0%), which are the dominant
classes in the study area. The bare land, vegetation and water classes were amalgamated to
form the non-maize areas and the maize areas were used as well. This approach of using
only two classes of (1) maize and (2) non-maize areas reduces the classification errors from
incorporating different land-cover classes individually. For example, there were fewer
pixels for water in the study area in comparison to bare land and vegetated areas; using
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this as a separate class has the potential of introducing errors depending on the sensitivity
of the classifier. Ground-based validation samples for 18 smallholder maize farms were
collected using a GPS. The samples were not used as training data for classification.

2.3. Sentinel-1 Data Acquisition and Pre-Processing

Sentinel-1 Level-1 ground range detected (GRD) data described in Table 1 were
acquired from the Copernicus Open Access Hub. The interferometric wide (IW) image for
20 February 2019 was used; this consisted of the vertical transmit and vertical receive (VV)
and vertical transmit and horizontal receive (VH) polarized backscatter values (in decibels)
in a 10 m spatial resolution. Pre-processing of the radar images was done using the Sentinel
application platform (SNAP). The orbit file was applied to update the orbit state vectors
in the metadata file. Then, radiometric calibration was performed to convert the intensity
values into sigma nought values. Speckle filtering was implemented to remove the granular
noise caused by the interference of waves reflected from many scatterers. The Lee filter was
applied at a 7× 7 window size as it was found to be superior in preserving the edges, linear
features, point target and texture [22]. Range Doppler terrain correction was done to correct
for geometric distortions caused by topography such as foreshortening and shadows; the
Shuttle Radar Topography Mission (SRTM) 3-sec Digital Elevation Model (DEM) was used
for this purpose [23]. The backscatter values were converted into decibels, then the VH
and VV polarizations were used to generate the VV/VH ratio.

Table 1. Specifications of the Sentinel-1 and Sentinel-2 MSI data used in this study.

Spectral Band/Polarization Central
Wavelength (nm) Bandwidth (nm) Spatial

Resolution (m)

Sentinel-1

Vertical transmit and vertical receive (VV) 55,465,763 - 10
Vertical transmit and horizontal receive (VH) 55,465,763 - 10

Sentinel-2 MSI

2–Blue 490 65 10
3–Green 560 35 10
4–Red 665 30 10

5–Vegetation Red Edge (RE1) 705 15 20
6–Vegetation Red Edge (RE2) 740 15 20
7–Vegetation Red Edge (RE3) 783 20 20

8–Near-Infrared (NIR) 842 115 10
8a–Vegetation Red Edge (RE4) 865 20 20

11–Short-wave Infrared (SWIR1) 1610 90 20
12–Short-wave Infrared (SWIR2) 2190 180 20

2.4. Sentinel-2 Data Acquisition and Pre-Processing

The Sentinel-2 Level-1C image for 26 February 2019 was acquired from the Coper-
nicus Open Access Hub. The Sentinel-2 images were pre-processed using the Sen2Cor
plugin in SNAP to convert them from the top of atmosphere reflectance units to the bottom
of atmosphere reflectance [24]. The bands which were used are summarized in Table 1.
The SWIR and vegetation red edge bands were rescaled to 10 m resolution. The indices
depicted in Table 2 were derived. These indices are necessary to be investigated for map-
ping smallholder farms because they cover a broad part of the electromagnetic spectrum
(NIR, red and green) in comparison to only using the normalized difference index (NDVI).
Additionally, they are sensitive to changes in soil background; they enhance the green
vegetation signal, reduce the saturation effect of NDVI and are sensitive to chlorophyll
content [25–34].
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Table 2. Vegetation indices computed from Sentinel-2 imagery.

Vegetation Index Equation Justification Reference

DVI DVI = NIR− Red Distinguishes between maize
and soil. [26]

GNDVI GNDVI = (NIR− Green)/(NIR + Green) More sensitive to chlorophyll
concentration than NDVI. [31]

IPVI IPVI = NIR/(NIR + Red) Similar to NDVI, but it is
computationally faster. [28]

MSR MSR =
(

NIR
Red − 1

)
/
((

NIR
Red

)1/2
+ 1
) Minimizes the effects of

variable soil reflectance. [30]

MTVI1 MTVI1 = 1.2×
[1.2× (NIR− Green)− 2.5× (Red− Green)]

Predicting maize green LAI
(leaf area index). [34]

MTVI2 MTVI2 =
1.5×[1.2×(NIR−Green)−2.5×(Red−Green)]√

(2×NIR+1)2−(6×NIR−5×
√

Red)−0.5

Better predictor of maize
green LAI than MTVI1, and it
accounts for soil background.

[34]

NDVI NDVI = NIR−Red
NIR+Red

Sensitive to maize greenness.
However, it can saturate in
dense vegetation when LAI

becomes very high.

[26]

OSAVI OSAVI = NIR−Red
NIR+Red+0.16

Eliminates the effect of the soil
background. [32]

RDVI RDVI = NIR−Red√
NIR+Red

Detects maize and is not
sensitive to the effects of soil
and sun viewing geometry.

[29]

SAVI SAVI = ((1+L)×(NIR−Red))
NIR+Red+L

The SAVI index is similar to
NDVI, but it reduces the

influence of soil.
[27]

SR SR = NIR
Red

Detects healthy maize.
However, it can saturate in

densely vegetated maize plots
when LAI becomes very high.

[25]

TVI TVI = 0.5×
[120× (NIR− Green)− 200× (Red− Green)]

Detects green maize biomass
and chlorophyll. [33]

Note: DVI: difference vegetation index; GNDVI: green normalized difference vegetation index; IPVI: infrared percentage vegetation index;
MSR: modified simple ratio; MTVI1: modified triangular vegetation index; MTVI2: modified triangular vegetation index—modified; NDVI:
normalized difference vegetation index; OSAVI: optimized soil-adjusted vegetation index; RDVI: renormalized difference vegetation index;
SAVI: soil-adjusted vegetation index; SR: simple ratio; TVI: triangular vegetation index.

2.5. Classification Algorithms

Three different approaches were applied for mapping the smallholder farms, namely,
RF, SVM and ST. The RF algorithm is a non-parametric decision tree ensemble classifier [35].
This classifier consists of a large number of classification and regression trees (CART), where
each pixel is classified using a majority voting system. The RF algorithm trains each tree
using an independently drawn subset of the original data using bootstrapping or bagging,
and determines the number of features to be used at each node through an evaluation of a
random vector [35]. One tuning parameter was defined for RF, the number of trees to grow
(ntree), and the rest of the parameters are set to default values. In this study, the ntree was
150; this minimized the Out of Bag error, similar to Rodriguez-Galiano et al. [36]. The RF
algorithm was selected because it can handle high dimensional data, is less sensitive to
over-fitting and makes no distribution assumptions [18,37,38].

The SVM algorithm is also a non-parametric supervised learning classifier. The SVM
uses the kernel function to transform training data into a high dimensional feature space,
and to identify the optimal hyperplane that maximizes the distance between the separating
hyperplane and the nearest sampling points [39–41]. The radial basis kernel was applied
for SVM because of its good performance in previous studies [42,43]. The regularization
parameter, gamma value and kernel coefficient had to be defined for the classifier. In this
study, the regularization parameter was 100, the gamma value was 0.01 and kernel coeffi-



Sustainability 2021, 13, 4728 6 of 16

cient was 0, similar to Kumar et al. [44]. The SVM algorithm was selected because it does
not make assumptions of the probability distribution and is not sensitive to training sample
size [40]. A grid-search method was used to find these optimum turning parameters for
both SVM and RF.

Model stacking was applied; it collates the predictions generated by different machine
learning algorithms and uses them to generate a second-level learning classifier [45]. In this
study, the RF and SVM classifier were stacked, and the Logistic Classifier was used to
combine the results. This ensemble model was applied because it has the ability to increase
the predictive capacity of the two classifiers instead of using them independently [45].

Although RF has a variable importance measure, the permutation feature importance
measurement was applied in this study to determine the importance of the predictors
in each experiment, since previous studies have shown that RF variable importance has
variations in ranking predictors as different iterations are performed [46]. The permutation
feature importance allows different trained models (RF, SVM and ST) to assess feature
importance. The algorithm computes reference scores s for the selected model on experi-
mental datasets D. This reference score is the overall accuracy of the classifier. The features
j in the datasets D are randomly shuffled to generate a corrupted version of the data D̃k,j.
The scores sk,j are computed on the corrupted datasets D̃k,j. The feature importance ij is
then computed for feature f j according to Equation (1)

ij = s− 1
K

k

∑
k=1

sk,j. (1)

2.6. Experimental Design

These samples were randomly separated into training (80% of the data) and testing
(20% of the data) [47]. The training data were used for classification, whereas the testing
data were used to evaluate the models. The vegetation indices in Table 2 were derived
for use during classification. Then, classification experiments depicted in Table 3 were
set for the classification algorithms based on different combinations (data configurations).
These experimental set-ups were adopted to investigate the best approach for mapping
smallholder maize with Sentinel-1 and Sentinel-2 data.

Table 3. Combinations (data configurations) for the four experiments.

Experiment Number Combinations Description

1 VH, VV, VV/VH Sentinel-1 polarization

2 VH, VV, VV/VH, DVI, GNDVI, IPVI, MSR, MTVI1,
MTVI2, NDVI, OSAVI, RDVI, SAVI, SR, TVI Sentinel-1 polarization and vegetation indices

3
VH, VV, VV/VH, DVI, GNDVI, IPVI, MSR, MTVI1,
MTVI2, NDVI, OSAVI, RDVI, SAVI, SR, TVI, IPVI, 2,

3, 4, 5, 6 7, 8, 8a, 11, 12

Sentinel-1 polarization, vegetation indices and
Sentinel-2 bands

4 VH, VV, VV/VH, 2, 3, 4, 5, 6 7, 8, 8a, 11, 12 Sentinel-1 polarization, and Sentinel-2 bands

2.7. Classification Model Evaluation and Planted Maize Area Estimation

Model evaluation was done to select the ideal model for estimating the maize areas.
The matrices used were the OA, kappa coefficient of agreement (k̂), cross-validation,
precision, recall and F1-Score. The OA is the total classification accuracy and values close
to 1 indicate that a classification is accurate; this is computed according to Equation (2).
The OA was adjusted using the procedure of Olofsson et al. [48] to account for classification
errors. The k̂ is calculated according to Equation 3 where k is the land-cover classes in
the confusion matrix, xi+ and x+j represent the marginal total for row i and column j.
xii represents the number of observations in the row i and column i and N represents
the total number of samples. k̂ values > 0.8 represent a strong agreement between the
classification map and the ground reference data. k̂ values between 0.4 and 0.8 represent
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moderate agreement and k̂ values < 0.4 represent poor agreement [49]. The equations for
both matrices are given as:

Overall accuracy =

k
∑

i=1
xii

N
, (2)

k̂ =

N
k
∑

i=1
xii−

k
∑

i=1

(
xi+ × x+j

)
N2 −

k
∑

i=1

(
xi+ × x+j

) . (3)

The K-fold cross-validation method was then applied [50]. This method divides the training
data randomly into K-folds or subsets (in this study a standard value of 10 was used), where
one of the subsets is used as a test data set and the other K-1 is used as a training data set
used to fit the model. This process is repeated i times, and the calculated average accuracy
is computed for the testing data. The accuracy statistic was used during cross-validation,
where values close to 1 indicate a high probability that a sample is correctly classified.
The standard deviation of each accuracy value is also computed in each iteration, and the
average standard deviation is indicated using a +/− attached to the cross-validation
accuracy. The precision, recall and F1-Score were computed to determine the rate at which
the pixels were correctly classified. The classifier performs well if the precision, recall and
F1-Score are close to 1 [51].

Classification confidence was evaluated using McNemar’s test to compare each of
the models together [52]. We tested the hypothesis that the two models perform the same.
When the Chi-squared values are less or equal to 3.84, the models have the same error at a
95% confidence level. However, one model is superior if the Chi-squared values are greater
than 3.84.

The areas derived from the classification map were adjusted to account for classifica-
tion error, and the 95% confidence interval was computed to compare the three models [48].
These areas were compared to the areas derived from 18 maize farms measured during
fieldwork to get an indication of how accurately the models estimate maize-planted areas
using a regression equation. The p-value (p) and Pearson correlation coefficient (R) are
used to evaluate the accuracy.

3. Results
3.1. Classification Model Evaluation

The performances of the three algorithms applied in this study are presented in Table 4.
The experiment with the lowest accuracies was experiment 1, containing the Sentinel-
1 polarizations independently. This experiment had an accuracy of between 0.68–0.85
and a cross-validation score of between 0.65–0.69 for the three algorithms. Furthermore,
the precision (0.65–0.69), recall (0.60–0.71) and F1-Score (0.64) for this experiment were
considerably lower than all the other experiments. The kappa values also indicate moderate
agreement between models and the reference data. However, there was a notable increase
in accuracy by adding vegetation indices to the Sentinel-1 polarizations. The vegetation
indices increased the accuracies by 24.2% for RF, 8.7% for SVM and 9.1% for ST. Although
there was a reasonable improvement in model performance (precision of 0.925–0.929,
recall of 0.926–0.930 and F1-Score of 0.925–0.930) in this experiment, adding Sentinel-2
bands improved the performance further by 5.9% for RF, 5.7% for SVM and 5.8% for ST in
experiment 3. The best-performing experiment for all algorithms was experiment 4 with
Sentinel-1 polarization and Sentinel-2 bands. This experiment had the highest accuracy
(0.99) and was the most accurate (cross-validation: 0.91–0.92, precision: 0.99, recall: 0.99,
and F1-Score: 0.99). McNemar’s test (Table 5) confirmed that all three algorithms had a
different performance in experiments 1–3. However, the performances of the algorithms
were similar for the ST-RF combination but different for the ST-SVM combination in
experiment 4.



Sustainability 2021, 13, 4728 8 of 16

Table 4. The model performance statistics for the three classifications (RF–random forest, SVM–support vector machine,
ST–model stack) algorithms in different experimental (Exp) setups.

Exp Algorithm Overall
Accuracy Cross-Validation Precision Recall F1-Score Kappa

1 RF 0.679 0.647 +/− 0.131 0.652 0.660 0.637 0.509
SVM 0.845 0.688 +/− 0.127 0.693 0.706 0.640 0.526

ST 0.841 0.689 +/− 0.128 0.674 0.703 0.637 0.523

2 RF 0.921 0.869 +/− 0.118 0.926 0.927 0.926 0.885
SVM 0.932 0.873 +/− 0.112 0.925 0.926 0.925 0.884

ST 0.932 0.870 +/− 0.109 0.929 0.930 0.930 0.890

3 RF 0.980 0.903 +/− 0.127 0.983 0.983 0.983 0.972
SVM 0.989 0.883 +/− 0.106 0.991 0.991 0.991 0.986

ST 0.990 0.899 +/− 0.137 0.991 0.991 0.991 0.986

4 RF 0.987 0.907 +/− 0.132 0.989 0.989 0.989 0.982
SVM 0.991 0.914 +/− 0.082 0.992 0.992 0.992 0.988

ST 0.991 0.921 +/− 0.112 0.991 0.991 0.991 0.986

Table 5. McNemar’s test results for the ST–RF and ST–SVM combinations for experiments 1–4.

Combination Chi-Squared p-Value

ST1–RF1 4396.2 0
ST1–SVM1 430 1.7 × 10−95

ST2–RF2 120 6.3 × 10−28

ST2–SVM2 516.5 2.4 × 10−114

ST3–RF3 6.3 0.0002
ST3–SVM3 34.5 4.2 × 10−9

ST4–RF4 0.05 0.83
ST4–SVM4 9.3 0.0002

3.2. Variable Importance

The variable importance was determined for the experiments in Table 3 using the
permutation feature importance algorithm [46]. The experiments (Figure 2) varied in terms
of the most important predictors depending on the input data. In experiment 1, the VH
polarization had the highest importance; however, when integrating other predictors
(e.g., experiments 3 and 4), the VV polarization had a higher importance over the other
polarizations. The DVI outperformed all the other vegetation indices, followed by GNDVI
in experiment 2. The most important bands in experiments 3 and 4 were the blue, red-edge
and short-wave infrared (SWIR) bands. Additionally, the Sentinel-2 spectral bands took
the highest priority in terms of importance in comparison to the Sentinel-1 polarizations.

3.3. Mapping and Area Estimates for Maize

The 95% confidence interval was computed for the maize and non-maize areas within
the study area. There was a relatively small variation between the total areas classified by
the three algorithms for maize in Table 6. The RF algorithm had a discrepancy of 6% when
compared to SVM, and 0.7% when compared to ST for the maize-planted areas. The ST
algorithm had a variation of 5.5% in comparison to SVM. The areas classified as planted
with maize had a lower error (0.7–1.2 ha) in comparison to the other areas which were not
maize (1.2–1.88 ha) based on the 95% confidence interval. The RF algorithm had the lowest
accuracy of ±1.2 ha when estimating maize areas, and SVM had the highest accuracy of
±0.7 ha.
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Table 6. Estimated areas based on experiment 4 generated by the three classifiers for maize-planted
areas and non-maize areas.

Algorithm Land-Cover Total
Area (ha)

95% Confidence
Interval (ha)

RF Maize 7001.35 1.236
Non-Maize 33,496.05 1.884

SVM Maize 7926.03 0.735
Non-Maize 32,571.37 1.242

ST Maize 7099.59 0.819
Non-Maize 33,397.81 1.202

The classified areas for 18 smallholder maize farms were related to the field measured
area at the same farms in Figure 3. There was a positive relationship, which was significant
at a 95% confidence interval (p < 0.05) between the classified areas and field measured
areas. The correlation coefficients obtained by the RF, ST and SVM algorithms are 0.51, 0.78
and 0.84, respectively, indicating higher agreement with the field measurements.
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The three algorithms were used to generate the classification maps in Figure 4b–d
depicting the spatial patterns of the two classes considered within the ROI. These maps
compared well with the true color composite satellite image in Figure 4a for Sentinel-2.
The classification maps generated by SVM, RF and ST were similar. The maize-planted
areas were concentrated in the southern part of the Makhudutamaga district. The crop
maps derived in this study are fundamental for crop forecasting and crop yield estimation at
the end of the season. Changes induced by natural phenomena, such as climate variability
and their effects on crop production, can be understood with the use of crop maps.
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4. Discussion

This study assessed the applicability of Sentinel-1, Sentinel-2 and derived vegetation
indices for mapping smallholder maize in Makhudutamaga, Limpopo Province. Clas-
sification experiments were set to evaluate the performance of three machine learning
algorithms. The variable importance measures were employed to investigate which pre-
dictors had the most influence in each experiment. The best performing algorithms were
then used for estimating and mapping the maize-planted areas. Findings suggest that
integrating Sentinel-1 and Sentinel-2 is ideal for mapping smallholder maize farms with
the application of machine learning algorithms.

Contrary to our expectations, the use of single-date Sentinel-1 radar data was not effec-
tive for mapping smallholder maize farms. The data combination consisting of Sentinel-1
polarizations exclusively had a low OA ranging from 67.9% to 84.5%, with RF being the
worst performing classifier. These results are similar to those of Abubakar et al. [53],
who observed an OA of 78.9% when mapping smallholder maize using Sentinel-1 data by
applying SVM. However, Useya and Chen [54] reported an OA of 46% with RF and 40%
with K-means classification when mapping smallholder maize farms and other crops with
Sentinel-1 single-date data. The poor performance of the Sentinel-1 C-band data could be
because of its shorter wavelength, which decreases canopy penetration in comparison to
L-band SAR, which has a longer wavelength [55,56]. The inconsistencies in the planting
pattern in the smallholder farms, such as a lack of equal row spacing, differences in the
plant densities, leaf area index and crop heights in the study area, detract from the per-
formance of the Sentinel-1 data because, according to Inoue et al. [57], C-band data are
sensitive to changes in biomass.

The integration of Sentinel-1, Sentinel-2 and vegetation indices were ideal for detecting
smallholder maize farms, similar to previous studies in comparison to using Sentinel-1
data independently. Experiments 2, 3 and 4 show a clear increase in performance measures,
in both OA and cross-validation scores. These values are more consistent and similar to
each other, indicating the positive impact of radar-optical fusion on classification accuracy.
Other studies such as that of Van Tricht et al. [16] achieved OAs between 75 and 82%
when mapping maize and other land-cover classes with the application of Sentinel-1 and
Sentinel-2 data. Abubakar et al. [53] achieved an OA of 97% when mapping smallholder
maize with vegetation indices, Sentinel-1 and Sentinel-2 data. The high accuracies attained
in this current study are attributed to the use of ideal locations of the electromagnetic
spectrum such as the red-edge andSWIR. Furthermore, the vegetation indices applied in
the current study reduce background effects (soils and other classes such as buildings),
thereby enhancing the detection of crops and vegetation classes [25–34].

The differences in performance of the SVM, RF and ST algorithms were expected.
For example, Ouzemou et al. [58] reported different OAs of 89.3%, 85.3% and 57.2% for RF,
SVM and Spectral Angle Mapper (SAM) for crop type mapping with Landsat 8 data. Sonobe
et al. [59] found that SVM (OA of 89.1%) had a superior performance than RF (OA of 87.8%)
and the Classification and regression tree (CART) (OA of 81.2%) algorithms for classifying
crops with TerraSAR-X data. These differences can be induced by various factors. In this
study, the first experiment had the lowest accuracies; notably, RF had a low performance.
This is because RF has been shown to be highly sensitive to small number of training input
data in previous studies, in comparison to SVM and ST [60,61]. All three algorithms had
high accuracies in the four experiments, possibly because the ROI used for training focused
on maize-planted areas. This approach reduced the effects of using multiple land-cover
classes individually which has a potential to lower the classification accuracy.

The variable importance results indicating the superiority of the VV polarization, DVI,
GNDVI, blue band, red-edge and SWIR bands for mapping maize were expected. Forkuor
et al. [62] found that the VV band was superior to the VH band derived from TerraSAR-X for
crop mapping applications. Deschamps et al. [63] used Sentinel-1 data for crop classification
and observed that the VV band was important for crop classification. However, other
studies, for example Inglada, et al. [64] and Arias et al. [65], have reported that the VH band
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is more important than the VV bands for mapping crops because it captures the volume
scattering from the crop canopy structure [66]. These results suggest that it is important to
evaluate the polarizations based on the locality where they are applied. The finding that
DVI and GNDVI are the most important indices, when using radar data and vegetation
indices for crop classification, highlights the importance of evaluating different indices
instead of relying on the commonly used NDVI index. The blue band, red-edge and SWIR
bands have proven to be important in previous studies [38,67,68]. These bands capture
the biochemical properties, water content and residue cover of different crop types that
improves their detection [69]. In experiment 2, the OSAVI index was the least important
variable. However, this seems to change in experiment 3, where this index ranked higher
than RDVI, MTV12, MTV11, DVI, SAVI and TVI. This may be due to the correlation of
these bands with the raw Sentinel-2 bands in experiment 3, while the indices in experiment
2 have a lower correlation between them.

The RF and ST algorithms had a relatively small difference of 0.7% when estimating
the total planted maize area class, while the SVM algorithm seems to have overestimated
the planted maize area by approximately 6% compared to the results from other algorithms.
Even though SVM had a higher correlation coefficient than the RF and ST algorithms,
we could not conclude that the SVM was the better estimator since the validation samples
are relatively small. More validation data are required to provide more information on the
performance of each algorithm in relation to ground-measured areas. However, since all
algorithms have similar positive values of correlation coefficients, we can conclude that
these algorithms can be used to estimate smallholder maize farmed areas. Unfortunately,
official agricultural statistics such as production areas are not available in our study area,
and could have been used to validate these observations.

The findings of this study are applicable to the Sustainable Development Goals (SDG),
specifically, SDG number 2 (Zero Hunger), target 2.4 and indicator 2.4.1, which concern
mitigating factors that affect agricultural production, ensuring sustainable agriculture and
increasing the proportion of agricultural area under production [70]. The agricultural pro-
duction area is of great importance, as it informs local government and related stakeholders
about agricultural activities and provides means by which production can be forecasted.
The production area is one of the important indicators of food insecurity, especially in
developing countries such as South Africa. Thus, this study contributes towards this
SDG by using remote sensing data to accurately map production areas for smallholder
maize farms. The spatial information generated can be used by local government to assist
smallholder farms and policy implementation [70].

The limitations of this study were that a limited number of sample points were
collected during fieldwork due to the undulating nature of the terrain, high cost to conduct
the fieldwork and prominent mountainous areas, which were not accessible for data
collection. This small sample size affects the statistical robustness of results [71]. Secondly,
the poor farm management practices of smallholder farmers such as weeds and patches of
grass growing in some of the farms affect the spectral signature of maize and decrease the
accuracy at which they can be detected with remotely sensed imagery. Thirdly, the use of
red-edge indices, which have demonstrated some potential in improving the detection of
vegetation in previous studies, should be explored [72,73].

5. Conclusions

The overall aim of the study was to develop a framework to enhance the delineation
of smallholder maize areas using single-date Sentinel-1, Sentinel-2 and derived vegetation
indices. The results showed that single-date Sentinel-1 on its own was not sufficient in
mapping planted maize fields. When Sentinel-2 data were integrated with Sentinel-1 data,
an improvement of 24.2%, 8.7% and 9.1% for RF, SVM and ST algorithms, respectively, were
observed. Machine learning proved to have a high capacity to estimate smallholder maize-
planted areas (7001.35 ± 1.2 ha for RF, 7926.03 ± 0.7 ha for SVM and 7099.59 ± 0.8 ha for
ST). The framework used in this study can be applied when evaluating different algorithms
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for mapping smallholder farms. The crop maps derived in this study are fundamental for
crop monitoring, land-use policies and aiding food security planning activities.
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