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Abstract: In this study, the efficacy of loading graphene oxide and copper oxide nanoparticles
into ethylene glycol-water on viscosity was assessed by applying two numerical techniques. The
first technique employed the response surface methodology based on the design of experiments,
while in the second technique, artificial intelligence algorithms were implemented to estimate
the GO-CuO/water-EG hybrid nanofluid viscosity. The nanofluid sample’s behavior at 0.1, 0.2,
and 0.4 vol.% is in agreement with the Newtonian behavior of the base fluid, but loading more
nanoparticles conforms with the behavior of the fluid with non-Newtonian classification. Considering
the possibility of non-Newtonian behavior of nanofluid temperature, shear rate and volume fraction
were effective on the target variable and were defined in the implementation of both techniques.
Considering two constraints (i.e., the maximum R-square value and the minimum mean square
error), the best neural network and suitable polynomial were selected. Finally, a comparison was
made between the two techniques to evaluate their potential in viscosity estimation. Statistical
considerations proved that the R-squared for ANN and RSM techniques could reach 0.995 and 0.944,
respectively, which is an indication of the superiority of the ANN technique to the RSM one.

Keywords: hybrid nanofluid; viscosity; arterial neural network; response surface method

1. Introduction

Heat transfer, given its various applications, has long been the focus of researchers and
engineers [1,2]. Heat transfer can be attributed to the movement of free molecules, lattice
vibration, molecular diffusion, as well as molecular collisions. Thermal conductivity is the
potential of matter in heat transfer, so that materials with high thermal conductivity have a
greater heat transfer rate [3,4]. Many studies have shown that the presence of nanoscale
solids with high thermal conductivity can amplify the fluid thermal conductivity [5,6]
and, consequently, intensify the heat transfer rate [7–13]. Considering the fluid motion
in the convection heat transfer, in addition to the thermal conductivity, the viscosity can
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also be effective in determining the convective heat transfer coefficient [14,15]. In the
convection heat transfer scope, the fluid velocity field is required. To know the fluid
velocity field, momentum conservation (Navier–Stokes equation) must be solved [16]. In
the Navier–Stokes equation, there is friction force, which is itself a function of viscosity and
velocity gradient. Therefore, knowledge of the viscosity changes is essential for solving
convection heat transfer problems. Adding nanoparticles can have two significant effects
on the viscosity; that is, an increase in viscosity and a change from Newtonian behavior to
non-Newtonian behaviour [17,18]. From one perspective, studies on graphene-containing
nanofluid are divided into viscosity, thermal conductivity, and other properties [19]. The
number of studies on thermal conductivity is greater than studies on viscosity [20]. Table 1
summarizes the studies using graphene nanoparticles.

Table 1. Summary of studies using graphene.

References Nanoparticles Concentration\Temperature Findings

Hu et al. [21] GN/EG− DW
60 : 40 vol.%

Investigation of pool boiling
heat transfer (PBT)

Up to 0.02 wt.%, PBT enhanced

Yu et al. [22] GON/EG 0–5 vol.%
10–60 °C

kn f
kb f

= 1.61

Yu et al. [23]
GON − DW

GON − propyl glycol
GON − liquid para f f in

0–5 vol.%

Owing to incorporation GON
nanosheets into DW, propyl
glycol, and liquid paraffin, k

intensified by 30.2, 62.3,
and 76.8%

Yu et al. [24] GON/EG 5.0 vol.%

Enhancement in kn f
kb f

is up to
61.0%. It was found that the
maximum enhancement was
independent of temperature

Yu et al. [25] GN/EG 5 vol.% kn f
kb f

= 1.86

Moghaddam et al. [26] Graphene–glycerol 0.25–2 wt.%
20–60 ◦C

µn f ntensified up to 401.49% at
2 wt.% and 20 °C.

Ahammed et al. [27] Graphene–w 0.05, 0.1, and 0.15 vol.%
10–50 ◦C

37.2% enhancement in thermal
conductivity at 0.15 vol.%

Baby et al. [28] Graphene/EG− DI 0.005–0.05 vol.%
25–50 ◦C

kn f
kb f

= 1.75

Aravind and Ramaprabhua [29] GN/EG
GN/DI water

0.14 vol.%
25 ◦C

kn f
kEG

= 1.065
kn f

kDI water
= 1.136

Kole and day [30] GNP/EG−W 0.041–0.395 vol.%
10–70 °C viscosity increased by 100%

Given the relatively high thermal conductivity
(

76.5 W
m.K

)
of copper oxide (CuO), this

nanoparticle has also been used in many studies. Table 2 summarizes the studies using
copper oxide nanoparticles.

Hybrid nanofluids benefit from the advantages of two different nanoparticles, so
many researchers have focused on this class of nanofluids [39–44]. The correlations used to
estimate thermal conductivity or viscosity (for base fluids) are not accurate for nanoflu-
ids [45–48]. Conducting many experimental measurements on thermal conductivity or
viscosity is costly as well as time-consuming [49,50]. Therefore, using predictive techniques
can be helpful. In this way, algorithms based on artificial intelligence (ANN) and response
surface methodology (RSM) have been widely used by researchers [51–53]. In Table 3,
several studies including ANN/RSM approaches are summarized.
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Table 2. Summary of studies using CuO.

References Nanoparticles Concentration\Temperature References

Águila et al. [31] CuO/Octadecane 30–55 ◦C
2.5, 5, and 10 wt.%

µCuO/Octadecane
µOctadecae

= 1.6
non-Newtonian

Sahoo and Kumar [32] Al2O3-CuO-TiO2/water 0.01–0.1%
35 ◦C to 50 ◦C

µAl2O3−CuO−TiO2/w
µAl2O3−CuO/w

= 1.1725
µAl2O3−CuO−TiO2/w

µAl2O3−TiO2/w
= 1.5541

Esfe et al. [33] CuO-MWCNT/10W40 5–55 ◦C
Up to 10 vol.%

µMWCNT−CuO/10W40
µ10W40

= 1.22
Non-Newtonian

Akilu et al. [34] TiO2-CuO-C/EG Up to 2 vol.%
30–60 ◦C

µTiO2−CuO−C/EG
µEG

= 1.80
Newtonian

Asadi et al. [35] CuO-TiO2/water 0.1 to 1 vol%
25–55 ◦C Newtonian behavior

Shah et al. [36] CuO/EG-water (70;30) 0.3 vol.% Newtonian

Priya et al. [37] CuO–water Up to 0.016 vol.%
28–55 °C

µCuO/water
µwater

∼ 1.10

Alawi et al. [38] CuO/R134a 1 to 5 vol.%27–47 °C µCuO/R134
µR134

∼ 3.47

Table 3. Summary of studies including ANN/RSM approaches.

Reference Nanofluid
Input

Data/Output
Variable

Temperature/Concentration Accuracy Methods

Zhao et al. [54] Al2O3–water
CuO–water

T, ϕ, ρnp
dnp and µb f
output: µn f

10–50 °C
up to 12 vol.%

(
R2)

Al2O3/water = 0.9966(
R2)

CuO/water = 0.9998
ANN

Shahsavar and
Bahiraei [55]

Fe3O4-
CNTs/water

T, ϕFe3O4.
γ and ϕCNTs
output: µn f

25 and 55 ◦C
0.1 < ϕFe3O4 < 0.9
0 < ϕCNTs < 1.35

R2 = 0.999 ANN

Ghaffarkhah et al.
[56]

MWCNT-
Al2O3/SAE40

MWCNT-
MgO/SAE40

MWCNT-
ZnO/SAE40

MWCNT-
SiO2/SAE40

T , ϕ
µn f

25 and 50 ◦

0.05, 0.25, 0.50,
0.75, and 1 vol.%

Not reported ANN

Alirezaie et al. [57]
MWCNT-

MgO/Engine
oil

T, ϕ,
.

γ/µn f

0.0625, 0.125, 0.25,
0.5, 0.75, and 1

vol.%
25–50 °C

R2 = 0.9973 ANN

Yan et al. [58]
Graphene

nanosheets/ethylene
glycol

T, ϕ
σn f

25–70 °C
0–5 wt.% R2 = 0.981 RSM

Tian et al. [59] Al2O3-
MWCNT/10W40

T, ϕ
kn f

25–65 °C
Up to 1 vol.% R2 = 0.9948 RSM

Yan et al. [40] MWCNTs-
TiO2/EG

T, ϕ
µn f

25–55 °C
up to 1 vol.% R2 = 0.995 RSM

Tian et al. [60] CuO/MWCNTs
into water/EG

T, ϕ
µn f

20–60 °C
Up to 1 vol.% R2 = 0.9987 RSM
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Table 3 reveals that the methods of estimating GO-CuO/water-EG viscosity have not
been investigated. In this study, two different techniques are utilized. The first technique
employed the response surface methodology based on the design of experiments. In the
second technique, artificial intelligence algorithms are implemented to estimate the GO-
CuO/water-EG hybrid nanofluid viscosity. Considering the possibility of non-Newtonian
behavior of nanofluid, temperature, shear rate, and volume fraction were effective on the
target variable and were defined in the implementation of both techniques. Considering
two constraints (i.e, the maximum R-square value and the minimum root mean square
error), the best neural network and suitable polynomial were selected. Finally, a comparison
was made between the two techniques to evaluate their potential in viscosity estimation.

2. Input Data

In this paper, the GO-CuO/water-EG hybrid nanofluid viscosity is predicted. The
nanofluid is prepared from GO as well as CuO and water-EG. µn f was measured at 25–50 °C
(with 5 °C interval) and 0.1, 0.2, 0.4, 0.8, and 1.6 vol%. [61] (Figure 1). In the paper conducted
by Rostami et al. [61], the details of morphology, XRD and TEM/SEM images, preparation,
and stability were explained. By carefully studying the viscosity changes in terms of shear
rates, it is found that the behavior of the hybrid nanofluids is strongly dependent on the
amount of added nanoparticles. For ϕ ≤ 0.4 vol.%, GO-CuO/water-EG hybrid nanofluids
are treated like a fluid with Newtonian behavior, while with a further increase in ϕ, the
nanofluids exhibit non-Newtonian behavior [61]. Note that, for a fluid with Newtonian
behavior, viscosity is influenced by T as well as ϕ, while for non-Newtonian behavior,
shear rate should be added to the effective parameters.

Figure 1. Cont.
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Figure 1. The experimental viscosity.
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3. Artificial Neural Network

Artificial neural networks are inspired by the human brain structure and utilized in
viscosity prediction by many researchers [62–65]. ANNs consist of three layers: input,
hidden, and output layers [66,67]. Each layer contains a group of neurons that are gener-
ally associated with all other layer neurons. Note that the neurons of each layer do not
interact with other neurons of the same layer. The neuron is the smallest unit performing
information processing. It is considered as a basis for ANN. The neuron is considered as a
function with nonlinear behavior, so ANNs formed by the assembly of nonlinear functions
are completely complex. The number of neurons in the first layer (i.e., input layer) is
determined by the number of input variables. Input variables in this study are temperature,
viscosity, and shear rate. Hence, the number of input neurons is three (Figure 2). In neural
networks, each input (Xi) has a weight that is represented by (Wi). As can be seen, each
input is connected to a single weight. Each input must be multiplied by its weight. In
the neural network, the result of (Xi Wi) is summed by the sigma operator (∑ XiWi). The
sigma operator output enters the activation function.

Figure 2. ANN structure.

These functions are a part of neural networks whose input is a number (small or large
in arbitrary range), and their output is usually a number between 0 and 1, or −1 and +1.
In fact, these functions convert an input number to a specified interval (e.g., −1 to +1).
Transfer functions are also called activation functions. The non-linear sigmoid activation
function is used in this simulation. In general, the neural network can be considered as a
transformation function from a space with n dimension (in the input) to a space with m
dimension (in the output). In this study, the neural network converts a three-dimensional
input space into a one-dimensional space output. Input space consists of temperature,
mass fraction, and shear rate (3D), and output space is only viscosity (1D).

4. RSM

Mathematical methods have many applications in many fields [68–72]. One of the
methods for predicting the objective function (e.g., viscosity and thermal conductivity)
is the use of response surface methodology [73–77]. In this technique, a polynomial is
derived using mathematical and statistical methods to estimate the objective function. In
these polynomials, there are either independent variables with the power of 1, 2, and 3
(e.g., T2) or the combination of multiple independent variables (e.g., T

.
γ). The significance

of each independent parameter can be estimated by applying ANOVA. Then, by applying
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the concept of regression and considering the values of R-square, the best polynomial
correlation is proposed.

5. Results and Discussion

Temperature (T), shear rate
( .
γ
)
, and mass fraction (ϕ) are identified as input variables

and viscosity is the output (objective or target) variable. Using the RSM technique, the
following polynomials are suggested for visibility estimation.

µn f = a0 + a1 T +a2 ϕ + a3
.
γ + a4Tϕ + a5T

.
γ + a6 ϕ

.
γ + a7 T2 + a8 ϕ

2 + a9
.
γ

2

+a10Tϕ
.
γ + a11T2 ϕ + a12T

.
γ

2
+ a13Tϕ2 + a14T

.
γ

2

+a15 ϕ2 .
γ + a16

.
γ

2
ϕ+ a17T3 + a18ϕ

3 + a19
.
γ

3
(1)

Table 4 reports the results of ANOVA. If the p-value for any parameter is less than
0.05, then it can be said that any variations in that parameter have a substantial result on
the target variable, while values higher than 0.1 show that the variation in the parameters
has no considerable effect [78]. According to Table 4, the significant parameters are shown
in bold.

Table 4. ANOVA results.

p-Value F-Value Parameter p-Value F-Value Parameter

0.98 0.00058 T
.
γ < 0.0001 32.95 T

0.153 2.0577 Tϕ < 0.0001 55.026 ϕ
< 0.0001 123.39

.
γϕ 0.2777 1.1862

.
γ

0.711 0.1374 T
.
γϕ 0.0075 7.313 T2

0.618 0.25 T2 .
γ < 0.0001 22.77 .

γ
2

0.863 0.0296 T2 ϕ < 0.0001 46.368 ϕ2

0.741 0.109 T
.
γ

2 0.055 3.737 T3

0.0166 5.855 Tϕ2 0.395 0.726 .
γ

3

< 0.0001 20.611 .
γ

2
ϕ 0.778 0.0794 ϕ3

0.0224 5.312
.
γϕ2

Table 5 presents the values of a0− a19. Two criteria of mean square error (MSE) [79,80]
and R-square [74,81] can be utilized to assess the proposed correlation performance
(Equation (1)):

MSE =
1
N

N

∑
i=1

(
µPred − µExp

)2 (2)

− square =

 ∑N
i=1

(
µExp − µexp

)
(µPred − µPred)

2

√
∑N

i=1

(
µExp − µexp

)2
2
√

∑N
i=1(µPred − µPred)

2


2

(3)

correlationcoe f f icient(R) =

 ∑N
i=1

(
µExp − µexp

)
(µPred − µPred)

2

√
∑N

i=1

(
µExp − µexp

)2
2
√

∑N
i=1(µPred − µPred)

2

 (4)
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Table 5. Coefficients’ value of the proposed correlation.

Parameter Value Parameter Value

a0 14.914 a10 −7.438 E−5

a1 −0.78439 a11 −1.620 E−4

a2 4.26804 a12 7.576 E−6

a3 −0.0209 a13 0.0383

a4 −0.054 a14 −1.2028 E−6

a5 −3.288 E−4 a15 −9.1588 E−3

a6 −0.039446 a16 2.57 E−4

a7 0.018264 a17 −1.517 E−4

a8 0.55451 a18 −0.13075

a9 4.33736 E−4 a19 −1.908 E−6

Applying Equations (2) and (3), the values of MSE and R-square are 0.166 and 0.944,
respectively. The R-square value of 0.944 affirms that the accuracy of the proposed corre-
lation (Equation (1)) is very high and, therefore, the viscosity can be predicted with high
accuracy. Another criterion of the suitability of the proposed correlation (Equation (1)) can
be obtained by calculating the margin of deviation (MOD) [58,79].

MOD =
µExp − µPred

µExp
× 100 (5)

By focusing on Figure 3, it is found that the MOD varies in the range of 0 to 24.48%.
Thereby, the maximum margin of deviation is 24.48%.

Figure 3. Margin of deviation of proposed correlation (Equation (1)).

However, many researchers also require the maximum amount of residual. The
maximum value of the residual can be seen in Figure 4.
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Figure 4. Residual value for the proposed correlation.

The most important criterion for evaluating the accuracy of a correlation is illustrating
the predicted value against the laboratory value. In Figure 5, all experimental viscosity (at
180 points) are compared with the predicted viscosity value. At low temperatures, accuracy
seems to be poor. Therefore, a comparison was made for each temperature separately.
Figure 6 shows the compared µExp and µPred at each temperature.

Figure 5. Comparison between µExp and µRSM.
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Figure 6. Correlation versus experimental data at different temperatures (RSM method). 
Figure 6. Correlation versus experimental data at different temperatures (RSM method).

As can be seen, for each temperature, some points are not fitted by the correlation. In
the following, the results obtained from the ANN method are presented. As mentioned,
the ANN method consists of three layers, and Figure 7 shows the amount of correlation
coefficient value in all three layers.
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Figure 7. Investigation of accuracy in training, validation, and test sections of neural network
algorithm and correlation coefficient values (R).

Note that the R-square for ANN, according to Figure 7, is 0.997862 ∼ 0.995. The
accuracy of the neural network can be obtained by drawing the output data. In Figure 8, the
viscosity value (output from the neural network) is compared with its experimental value.

It is found that the developed ANN can well estimate the viscosity. However, the
values of the MOD are reported in Figure 9. As shown, the MODmaximum for the developed
neural network is approximately 6.7%. Figure 10 compares the results of ANN and RSM.
At all temperatures, ANN accuracy outweighs the accuracy of the RSM method because it
fits more points.
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Figure 8. Investigating the ANN accuracy.

Figure 9. Margin of deviation for the ANN technique.

It should be noted that, for data run within the range of 146–150 in Figure 7e, the
fluid has a non-newtonian behavior. Fluid behavior at volume fractions of 0.1, 0.2, and
0.4 is Newtonian and, for 0.8 and 1.6 vol.%, the behavior changed to non-Newtonian [61].
In other words, up to a volume fraction of 0.4, viscosity is not sensitive to one of the
input parameters (shear rate), but it is quite sensitive to the shear rate at 0.8 and 1.6 vol.%.
Therefore, it is logical that the accuracy of RSM is not high in this range. Therefore, using
ANN for nanofluids with changing behavior from Newtonian to non-Newtonian is much
better than the RSM method.
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Figure 10. Comparison between ANN and RSM techniques.

6. Conclusions

In this study, the efficacy of loading GO and CuO nanoparticles into EG-water on
viscosity was evaluated by applying two numerical techniques. The first technique em-
ployed the response surface methodology based on the design of experiments, while in the
second technique, artificial intelligence algorithms are implemented to estimate the GO-
CuO/water-EG hybrid nanofluid viscosity. Considering the possibility of non-Newtonian
behavior of nanofluid, temperature, shear rate, and volume fraction were effective on
the target variable and were defined in the implementation of both techniques. Consid-
ering two constraints maximizing the R-square as well as minimizing the mean square
error, the best neural network and suitable polynomial were approved. It was found
that the R-squared for ANN and RSM techniques can reach 0.995 and 0.944, respectively,
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and, simultaneously, the mean square error for the approved ANN and RSM techniques
was 0.0125 and 0.166, respectively, which indicate that using ANN is prioritized over the
RSM technique.
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Nomenclature

ANOVA Analysisofvariance
ANN Artificialneuralnetwork
EG Ethyleneglycol
GO Grapheneoxide
GON Grapheneoxide nanosheets
GN Grapheme nanosheets
knf Nanofluidthermalconductivity/Wm−1K−1

kbf Basefluidthermalconductivity/Wm−1K−1

MSE Meansquareerror
MOD Marginofdeviation
MWCNTs Multi−walledcarbonnanotubes
RSM Responsesurfacemethodology
T Temperature/°C
TCR Thermalconductivityratio
Greek letter
ϕ Volumefraction/%
.
γ Shearrate/s−1

µ Viscosity/cP
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