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Highlights 

 Blade Tip Timing proximity probe signals are converted into the angular domain. 
 Instantaneous phase information, using a quadrature filter, is used to calculate tip 

deflections. 
 Experimental tests against other triggering criteria are performed. 
 The proposed method demonstrates increased robustness against noise. 

Abstract 

Blade Tip Timing (BTT) is a non-intrusive measurement technique that can be used to 
estimate the vibration characteristics of rotor blades during turbomachine operation. BTT 
uses proximity probes mounted into the turbomachine casing to measure the Time-of-Arrival 
(ToA) of rotor blades at these proximity probes. The ToAs are determined using a triggering 
criterion on the proximity probe signal. Rotor blade tip displacements are then calculated 
from these ToAs. It is therefore imperative that the triggering criterion be as accurate as 
possible. This article proposes a new method to determine the tip displacement of rotor 
blades from a proximity probe signal. The method first converts the signal into the angular 
domain and then obtains the tip deflection through manipulation of the instantaneous phase in 
the signal. Three experimental tests are conducted where existing triggering criteria are 
compared to the proposed method. It is found that the proposed method is highly accurate in 
determining the tip deflections for a constant rotor speed. 
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Nomenclature 

 

 

1. Introduction 

Blade Tip Timing (BTT) is a non-intrusive method used to measure the vibration of rotor 
blades during operation [1], [2], [3], [4]. The method uses proximity probes mounted into the 
turbomachine casing around the rotor blade tips. A voltage pulse is generated by the probe 
each time a blade passes underneath it. This pulse is used to locate the Time-of-Arrival (ToA) 
of the blade at the probe. 

In the absence of unsteady shaft speed or blade vibration, it is possible to predict these ToAs 
precisely. If, however, the blade tip is deflected due to vibration, the blade arrives at the 
proximity probe earlier or later than expected. This difference between the measured and 
expected ToA is used to calculate the tip deflection of the blade every time it passes the 
probe. 

1.1. Determining rotor blade tip deflection 

Rotor blade tip deflections are calculated from the ToAs. The tip deflections are then used to 
calculate BTT information such as blade resonant frequencies and amplitudes. The size of 
these amplitudes depends on the operating conditions. One source states that amplitudes vary 
between 100 µm during normal operation and 400 µm during blade resonance [5]. One 
commercial vendor claims that blade vibration amplitudes can range between 3 µm and 5 cm 
[6]. 

The accuracy of the BTT signals is correlated to the accuracy of the tip deflections. The 
vibration amplitude may be over- or underestimated, or missed completely, if the tip 
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deflections are not calculated accurately. Two conventional triggering criteria are now 
discussed, followed by two sources of noise that can corrupt the tip deflections. 

1.2. Triggering criteria 

Two of the most frequently used methods to calculate the ToAs are the fixed voltage 
threshold and the constant fraction crossing methods: 

1. Fixed voltage threshold: The ToA is triggered by the signal crossing a fixed voltage 
threshold. 

2. Constant fraction crossing: The ToA is triggered using a threshold on the 
downwards slope of the pulse. The threshold is a fraction of the pulse’s amplitude and 
therefore changes according to the pulse’s height. 

 

These two methods are illustrated in Fig. 1 below. 

 

Fig. 1. Illustration of the two triggering criteria. 

There are several sources of noise that can affect the accuracy of the triggering criteria. Such 
sources include shaft torsional vibration, proximity probe noise and a finite sampling rate. 
Two of these sources are now discussed in greater depth. 

1.3. Proximity probe noise 

There are two consequences of having noise in the proximity probe signal: 

1. If noise is present on the rising or falling edge of a pulse near the triggering threshold, 
then the triggering will occur slightly earlier or later than it would have without the 
noise. This inaccuracy translates into a less accurate tip deflection. 

2. It is possible for the noise level to be so severe that ToAs are incorrectly triggered. 
This can happen when the signal, due to noise, breaks through the threshold several 
times during a single pulse. Commercial software handles this problem by allowing 
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the user to specify a black-out window. The black-out window specifies the minimum 
amount of time that must pass between consecutive ToAs. There are other ways to 
deal with this as well, such as using one or two trigger levels to “arm” the BTT 
system and then taking the first ToA after the next threshold level has been crossed. 
All these methods are ways of choosing between multiple possible ToAs. The black-
out window method selects the first ToA on a pulse and disregards the rest. There is 
no guarantee, however, that the first ToA is indeed the correct ToA. It is entirely 
possible for a wrong ToA to be measured, leading to incorrect tip deflections. 

1.4. Effect of a finite sampling rate 

The accuracy with which a BTT system can measure the ToAs is directly proportional to the 
data acquisition sampling rate. This statement is now illustrated using the conventional 
equation for tip deflection calculation [7], shown below. 

            (1) 

In Eq. 1 above, x indicates the rotor blade tip displacement, Ω indicates the rotor speed, R is 
the outside radius of the rotor blade and Δt is the difference between the measured ToA and 
the “expected” ToA in the absence of vibration. It is seen from Eq. 1 that the tip deflection is 
directly proportional to Δt and therefore the ToA. Even a very small error in the measured 
ToA can result in a large tip deflection error. The error in tip deflection per error in ToA is 
obtained by differentiating Eq. 1 and multiplying it with the error in the ToA, as done in Eq. 
2 below. 

            (2) 

In Eq. 2, δt is the error in the measured ToA. Take, for instance, the simple example of a 
rotor operating at a constant speed of 3000 RPM with an outside diameter of 1 m. If the 
measured arrival time is incorrect by just 1 µs, the error in tip deflection is 

        (3) 

An error of 157 µm is non-negligible if the blade vibration is in the range of 100 µm–400 µm 
as suggested in [5]. Even a sampling rate of 100 MHz leads to an error of 1.57 µm, which can 
be large if one is investigating tip vibrations in the region of 5 µm [6]. 

1.5. Scope of this article 

The triggering criteria already mentioned uses only one or two features of the pulse 
waveform, such as the first sample to cross a fixed voltage threshold. Most of the sampled 
waveform is therefore not utilized and effectively gets thrown away. 

This article proposes a triggering criterion that uses the entire pulse shape, or at least a large 
amount of it. Our hypothesis is that because more of the pulse is used, the results will be less 
affected by noise. Two different analyses are conducted to test this hypothesis: 



5 
 

1. Sensitivity to noise: A test is conducted whereby the tip deflections are calculated on 
a noise-free signal. Increasingly severe noise is then added to the signal. The three 
triggering criteria are then used on the noisy signals and we measure the error 
between them and the noise-free results. 

2. Sensitivity to sampling rate: A test is conducted whereby the tip deflections are 
calculated on a clean signal and at the highest possible sampling rate. The sampling 
rate of the signal is then progressively reduced, and the three triggering criteria are 
used to obtain the tip deflections. We then compare how closely the three methods 
can recover the noise free results. 

 

The claims made in this article are limited to constant shaft speed cases. 

2. Proposed method 

Every BTT triggering criterion is used to calculate the delay of the pulse caused by the blade 
tip moving past the sensor. The delay in a time domain signal manifests itself as a phase shift 
in the frequency domain. This is called the Fourier shift theorem. Suppose we have a time-
domain function g(t) and we impose a delay of t0 on g. The Fourier shift theorem states that 

        (4) 

Where ℱ is the Fourier transform and f is frequency. Eq. 4 can be used to calculate the phase 
shift of each component in the frequency domain for a given delay in g. To illustrate this, 
consider a pure sinusoid with a frequency of 1 Hz and a time delay of 0.1 s: 

          (5) 

            (6) 

We can calculate the phase shift caused by t0 as follows: 

          (7) 

           (8) 

        (9) 

A computational verification of this result is illustrated in Fig. 2 below. 
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Fig. 2. A graphical illustration of the Fourier shift theorem for     
πThe delay imposed on g creates a phase shift of −0.62832 radians. 

Fig. 2 confirms the result from Eqs. (7), (9), i.e. that a phase shift of 0.62832 radians has 
taken place. 

BTT signals are, however, more complex than this example. For one, BTT signals are 
nonstationary, meaning each pulse will have a different time delay and consequently a 
different phase shift. Also, BTT pulses do not result in a single frequency when transformed 
into the frequency domain. They result in broadband spectra. These difficulties have been 
effectively dealt with in Motion Magnification (MM) literature [8], [9], [10], [11]. In MM, 
small changes in an image’s position is found by extracting and manipulating the 
instantaneous phase at every location in an image. The instantaneous phase of a signal can be 
obtained by convolving that signal with a quadrature filter. The proposed method follows a 
similar approach to that used in MM. The proposed method is broken down into three steps: 

Step 1: Convert the proximity probe signal into the angular domain. The shaft 
encoder is used to express the proximity probe signal in the angular domain. In other 
words, the proximity probe signal is no longer expressed in terms of time. The signal 
captured by the proximity probe starts at 0 radians and ends at 2πradians for each 
shaft revolution. This is done to remove delays in the proximity probe signal that can 
be attributed to differences in shaft speed instead of a vibrating blade. This step is 
necessary to cater for small variations in shaft speed. 

Step 2: Apply a quadrature filter. A complex filter is convolved with the proximity 
probe signal. The purpose of this convolution is to expose the instantaneous phase at 
each pulse. 

Step 3: Convert instantaneous phase into tip deflection. The instantaneous phase is 
converted into a delay for each pulse. Because the proximity probe signal is expressed 
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in the angular domain, the delay is in units of radians. The delay is then multiplied 
with the blade’s length to obtain the tip deflection. 

The three steps are now discussed in turn. 

2.1. Conversion of the proximity probe signal into the angular domain 

Conversion of the proximity probe signal into the angular domain is simple. Many methods 
of doing this exist [12], [13]. For the purposes of this article, Eq. 10 is used. 

                 (10) 

In Eq. 10, tstart and tend refer to the start and end of a revolution as determined using the 
tachometer. 

Fig. 3 illustrates the effect this has on the proximity probe signal. There are five blades on the 
test rotor used for Fig. 3. A single proximity probe was used to measure for three consecutive 
revolutions. The three signals are shown in Fig. 3a) and b). A zoomed-in portion of a) is 
shown in b). Fig. 3c) and d) show the same signals as in a) and b), only after they have been 
converted to the angular domain. It can clearly be seen that the pulses in the angular domain 
are closer to one another than the pulses in the time domain. It is important to note that we are 
not changing the signal in any sense, it is merely represented in a different domain. In fact, all 
BTT triggering criteria perform conversion into the angular domain. To demonstrate this 
point, Eq. 11 rewrites the standard way to convert from time delay to tip deflection such that 
the conversion to the angular domain is apparent. 

              (11) 

 

Fig. 3. Proximity probe signals from three consecutive revolutions superimposed over one another. a) 
All three revolutions superimposed over one another in the time domain. The revolutions have been 

aligned to start at  The same signals as in a) only zoomed into a single pulse, c) the 
proximity probe signals superimposed in the angular domain, i.e. the proximity probe signals as a 
function of shaft circumferential position, d) the same signal as in c) only zoomed into a single pulse. 
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The first, second and third revolutions are not individually marked as it does not matter for the 
purposes of this discussion and only clutters up the image. 

The proximity probe signal that has been converted into the angular domain will henceforth 

be referred to as . 

2.2. Apply a quadrature filter 

As stated earlier in the article, a quadrature filter is used to expose the local phase in the 
signal. The intuition behind this has been given earlier using the Fourier shift theorem. More 
in-depth theory about the use of quadrature filters is outside the scope of this article. Readers 
are referred to original MM and instantaneous phase literature for a deeper understanding 
[14], [15], [16], [17], [18]. The quadrature filter used for the proposed method is the analytic 
signal of the second derivative of a Gaussian. This filter has been used to great effect in other 
applications [9], [19]. The filter is denoted by K2 and is given in Eqs. (12), (13), (14). 

                 (12) 

                  (13) 

                  (14) 

In Eq. 12,  is the sum of  and its Hilbert transform,  is the second 

derivative of a Gaussian function with variance  as shown in Eq. 13.  is given in Eq. 
14 [20]. The Hilbert transform of a Gaussian, or derivatives of a Gaussian, does not have a 
closed form solution [21] and must be calculated computationally. Most scientific packages 
have built-in functions to compute the Hilbert transform. The Python function 
scipy.signal.hilbert was used for this article. To illustrate the filter, four different values for 
the scaling parameter, or  are used and the resulting quadrature filters are plotted in Fig. 4. 
The four values for the scaling parameter, , are 0.05, 0.1, 0.15, and 0.20 radians 
respectively. 
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Fig. 4. The complex filter used for the proposed method. Four different filters are shown for 
illustrative purposes, the four filters have different scaling parameters of 0.05, 0.1, 0.15, and 0.2 
radians respectively. 

The quadrature filter is now convolved with the proximity probe signal. If a real-valued 
function is convolved with a quadrature filter, the response contains real and imaginary 
components. Eq. 15 shows this convolution. 

              (15) 

In Eq. 15, is a symbol used to denote the proximity probe signal after it has been 
expressed in the angular domain and * is the linear convolution operator. The result of the 

convolution is denoted by . To illustrate  , a full convolution is performed between 

 and , and the result is shown in Fig. 5. 

 

Fig. 5. This figure illustrates the result of convolving the proximity probe signal with . The 
scaling parameter was  for this illustration. 

Now, finally, the phase is obtained from by expressing it in polar form, as shown in Eq. 
16. 
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                   (16) 

We do not create a new function for the amplitude of  because the amplitude is not used 

in the proposed method. The phase, , for the signal in Fig. 5 can be seen in Fig. 6. 

 

Fig. 6. Illustration of  derived from the signal in Fig. 5. 

2.3. Convert instantaneous phase into tip deflection 

Now for the final step. The instantaneous phase is converted into a tip deflection using Eq. 
17. 

                 (17) 

In Eq. 17, x is the tip deflection and is the phase signal from the first revolution. The 
first revolution therefore serves as a reference for the other values. Eq. 17 has been taken 
straight from MM literature [9], [11], [15], [19]. The quantity is the quantity that governs the 
sample spacing of the quadrature filter. This value should be as small as the smallest sample 

spacing found in . 

A full convolution of  with , as shown in Fig. 5, is not necessary. We only need to 
apply Eq. 17 once at every pulse location to get a tip deflection for every blade. The angular 
location used to apply Eq. 17 at for blade number b is denoted by . To determine , a 
threshold value is used on the rising and falling flanks of the reference signal (i.e. the signal 
obtained from the first revolution). The  values are taken to be in the middle of these two 
angular positions. See Fig. 7 for an illustration. Note that, when performing the convolution, 

 is interpolated to have the same spacing as . This ensures the two signals are 
aligned exactly. Simple linear interpolation is used in this article. 
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Fig. 7. Determination of the angular location, , where the instantaneous phase of each blade b is 
determined. It is located halfway between the rising and falling edges of the pulse. 

3. Experimental setup and method 

3.1. Experimental setup 

The turbomachine used for the experiment consists of a shaft supported by two bearings, 
driven by a three phase motor. The shaft encoder consists of a zebra tape and an optical 
probe. This produces TTL pulses as the output signal. The shaft encoder has 78 sections but 
only every 78th revolution was used for the experiments, rendering the encoder a Once Per 
Revolution (OPR) encoder. The rotor, a blisk with five rectangular blades, has an outside 
diameter of 324 mm and is end-mounted onto the shaft with a taper-lock fastening 
mechanism. A single eddy-current probe was used for the experiment. The probe used in this 
experiment has a sensitivity of 8 mV/µm and a measuring range of 2 mm. The data 
acquisition system is a NI USB-6366 system, capable of sampling and logging analogue 
signals at a maximum rate of 2 MHz. LabView was used to control the data acquisition 
system. Fig. 8a) shows a front view of the rotor and b) shows the shaft encoder. 
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Fig. 8. Illustration of experimental setup. a) an axial view of the turbomachine with the blisk and an 
eddy current probe indicated, b) the optical sensor and the zebra tape on the shaft. 

3.2. Experimental method 

It is hypothesised that the newly proposed method is more accurate than conventional trigger-
based methods. The reason for this is because the proposed method uses a larger portion of 
the pulse to determine the pulse shift than conventional methods. This hypothesis needs to be 
supported by experimental results. 

The ideal way to prove this would be to compare the triggering criteria results to the results 
from another, independent, method. The independent method must, by definition, be more 
accurate and reliable than the triggering criterion. It is unfortunate that such a method does 
not exist in BTT. Some attempts at alternative methods have, however, been made. One may 
attempt to use strain gauges along with some kind of calibration test to correlate strain to tip 
deflections. This approach simply does not yield reliable enough results for to validate the 
size of tip deflections [7], [22], [25] but can be used to validate vibration frequencies. 
Another option is to use a digital camera to capture the blade tip as it moves past the location 
of the probe. This method was used by [23]. In this approach, Perspex panels, with marked 
grid lines used to measure distance, were installed into the rotor’s casing above the blades. A 
digital camera was placed above the Perspex panels, looking down onto the blade tip chord. 
A strobe light was synchronised to the tachometer, and photographs of a blade’s position 
were taken over many revolutions. A comparison between the camera results and the BTT 
results showed good general agreement between the two methods. The method was, however, 
not used for quantitative comparison of every tip deflection measurement. Even if it is 
possible to compare individual tip deflection measurements with camera-measured results, 
the accuracy of the camera-based method itself would also have to be validated. BTT and 
Laser Doppler Vibrometry (LDV) have also been compared in [24] for out of plane 
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vibrations. It was found that both methods could be used to measure sinusoidal vibration, but 
the sizes of the tip deflections from the two methods were not close to one another. 

Instead of using an independent measurement, we are going to gradually increase the noise 
in the proximity probe signal and then measure each criterion’s performance on the noisy 
signal. It stands to reason that a triggering criterion’s performance will deteriorate as the 
noise increases. The triggering criterion that most closely reproduces the original noise-free 
tip deflections is therefore the most accurate criterion. The metric used to evaluate the 
accuracy of each increasing level of noise to the original noise-free result is given in Eq. 18. 

                   (18) 

In Eq. 18, Δ is the mean absolute error between all the tip deflections in a test compared to 
the noise-free reference for that triggering criterion. The number of revolutions in the analysis 
is denoted by M and b represents the blade index. There are five blades in the rotor. Note that 
the blades are vibrating because of the ambient air excitation. 

Given this metric and approach, five tests are performed. The five tests and their methods are 
listed below: 

 Test 1: Noise free test. In this test, the reference results for the three triggering 
criteria are determined. The rotor is run at three different shaft speeds; 600, 900, and 
1200 RPM. The analogue signals are then measured for 10 s at a rate of 2 MHz. The 
tip deflections for all blades are calculated using the proposed method, the fixed 
voltage threshold method, and the constant fraction crossing method. The results from 
the three tests are compared to one another as a sanity check to ensure they produce 
approximately the same tip deflections and have therefore been implemented 
correctly. The scaling parameter, ρ, for Tests 1, 2 and 3 is 0.012 radians. Test 4 shows 
why this value is used. 

 Test 2: Increasing Gaussian noise. Gaussian noise with a mean of zero is added to 
the reference signals measured in Test 1. Ten different levels of Gaussian noise are 
added. The standard deviations of the levels are 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 
0.4, 0.5 and, 0.6 V. At each noise level, the triggering criteria are used to obtain the 
tip deflections and each criterion is compared to its own reference from Test 1. Eq. 18 
is then used to determine the accuracies of the three triggering criteria. Testing for 
other kinds of noise falls outside the scope of this article. 

 Test 3: Decreasing sampling rate. The sampling rate of the reference signals are 
reduced in 20 different levels and the accuracies of the three triggering criteria are 
determined at each level. Sampling rate reductions, or decimation, are performed in 
the following degrees: 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 
and 120 times. In other words, the resulting sampling rates for the 20 levels are 
1 MHz, 666.67 kHz, 500.0 kHz, 400.0 kHz, 333.33 kHz, 285.71 kHz, 250.0 kHz, 
222.22 kHz, 200.0 kHz, 100.0 kHz, 66.67 kHz, 50.0 kHz, 40.0 kHz, 33.33 kHz, 
28.57 kHz, 25.0 kHz, 22.22 kHz, 20.0 kHz, 18.18 kHz, and 16.67 kHz. 

 Test 4: Sensitivity to ρ. The proposed method depends on the choice of ρ. The same 
methodology as used in Test 2 and Test 3 can be used to determine an adequate value 
for ρ. Test 2 and Test 3 is therefore repeated for the proposed method only and ρ is 
varied between 0.005 radians to 0.05 radians. It becomes clear that this analysis can 
be used to determine a reasonable value for ρ. 
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 Test 5: Computational comparison. The computational time of the three methods 
are compared against one another for the implementation used in this article. 

4. Results and discussion 

The shaft speed profiles from the three measurements are shown in Fig. 9. We do this to 
demonstrate to the reader that, although the claims made in this paper are limited to constant 
speed cases, the speed does in fact vary. It is seen from Fig. 9 that all three shaft speed 
profiles, though almost constant, varies approximately 1 RPM above and below their 
intended values. The results presented in this article are therefore valid where small speed 
fluctuations are present. 

 

Fig. 9. Shaft speed variations for the a) 600 RPM b) 900 RPM and c) 1200 RPM measurements. 

 

The parameters for the three triggering criteria are: 

 Phase based method: The scaling parameter, ρ, is chosen as 0.012 radians. The filter 
width is 8ρ and it is made up of 1601 equidistant samples in the angular domain. 

 Fixed voltage threshold method: The threshold for the fixed voltage threshold 
method is −4.7 V on the rising edge of the pulse. This value results in the most 
accurate answers for the fixed voltage threshold method. 

 Constant fraction crossing method: The constant fraction crossing method is 
triggered at a 50 % fall from the maximum of each pulse. 

4.1. Test 1: Noise free test 

The tip deflections for all three shaft speeds are calculated using the three triggering criteria. 
The results are used throughout Test 2 and Test 3 as the reference results. To give the reader 
an idea of the tip deflection size for these experiments, the blade 1 tip deflections over the 
first 5 revolutions for each triggering criterion is given in Table 1. 
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Table 1. Table showing the tip deflections of the first blade over the first 5 revolutions. It is seen that the tip 
deflections from the different triggering criteria are close to one another. 

Revolution Phase based Fixed voltage threshold Constant fraction crossing 
1 −108.044738 −107.185851 −105.601921 
2 30.483787 26.368992 35.364730 
3 80.057773 79.727256 81.249474 
4 −42.354994 −41.468956 −42.103858 
5 103.148690 102.873084 101.785767 

It is important to establish that the three triggering criteria produce approximately the same 
results under noise-free conditions. We can plot the tip deflections from all three methods 
against one another and perform a linear fit between them. The results should yield an  

value close to one. This is illustrated in Fig. 10. 

 

Fig. 10. A scatterplot of the tip deflections from different triggering criteria plotted against one 
another. This plot is for the reference test case, i.e. the noise-free case. 

In Fig. 10, the tip deflections from the different triggering criteria for the noise-free case are 
plotted against one another. In Fig. 10 a), the phase based approach is compared to the fixed 
voltage threshold method. Since the tip deflections from the two criteria are so close to one 
another, it is difficult to discern the results for different shaft speeds. The 1200 RPM case was 
plotted last and as such appears on top. It is clearly seen that the tip deflections from the two 
methods are very close to one another. The R2 values for the 600, 900, and 1200 RPM 
measurements are 0.99911, 0.99867, and 0.99959 respectively. Similar R2 values are found in 
Fig. 10b) where the phase based method is compared to the constant fraction crossing (CF) 
method and in Fig. 10c) for the CF method vs the fixed voltage threshold method. These 
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results confirm that the triggering criteria have been implemented correctly and perform very 
well in the absence of noise. 

4.2. Test 2: increasing Gaussian noise 

The reference results have been obtained. Now we present the performance of the three 
triggering criteria when subjected to increasing levels of noise. As mentioned earlier, zero-
mean Gaussian noise is added in 10 different levels. The standard deviations (std) of the 
added noise are 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 V. Fig. 11 shows the 
results of this test. It is clear from Fig. 11 that the phase based method performs more 
accurately than the constant fraction crossing and fixed voltage threshold methods throughout 
all levels of noise and all shaft speeds. Our hypothesis concerning the proposed method’s 
accuracy as it pertains to Gaussian noise is therefore confirmed. Even under the most severe 
noise of 0.6 V, the phase based approach is, on average, only 20 µm less accurate than the 
noise-free case. This compares favourably to the other two methods, where an average error 
of between 200–1000 µm appears for the same noise level. To get a sense of how much noise 
0.6 V is, Fig. 12 plots a noise-free pulse along with the same pulse that has been corrupted by 
0.6 V Gaussian noise. It is seen in Fig. 12 that a lot of noise is present in the pulse. The fixed 
threshold of −4.7 V is crossed many times. A black-out window the length of the pulse was 
used to stop multiple triggers from the fixed voltage threshold method. 

 

Fig. 11. Test case 2 results where zero-mean Gaussian noise is added in 10 different levels to test the 
robustness of the triggering criteria to noise. a) The results for the measurement at 600 RPM, b) the 
results for the measurement at 900 RPM and c) the results for the measurement at 1200 RPM. 
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Fig. 12. A single pulse from the 1200 RPM measurement. The pulse is shown without any additional 
noise using a solid black line. The same pulse that has been corrupted with 0.6 V standard deviation 
Gaussian noise is shown using a dotted line. 

 

 

Fig. 13. The three figures show how the triggering criteria perform when the proximity probe signal’s 
sampling rate is reduced several times. a) The average mean error of the three triggering criteria for 
the 600 RPM measurement, b) the results for the 900 RPM measurement and c) the results for the 
1200 RPM measurement. 
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4.3. Test 3: decreasing sampling rate 

As stated earlier, a decrease in the sampling rate should generally result in less accurate tip 
deflections. For this test, the reference signals are decimated, (i.e. their sampling rates 
decreased) using progressively more severe reductions. The following 20 levels of 
decimation are used: 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, and 120 
times. In other words, if the decimation level is 10, then only every 10th sample from the 
original signal is retained. These levels of decimation result in the following sampling rates: 
1 MHz, 666.67 kHz, 500.0 kHz, 400.0 kHz, 333.33 kHz, 285.71 kHz, 250.0 kHz, 
222.22 kHz, 200.0 kHz, 100.0 kHz, 66.67 kHz, 50.0 kHz, 40.0 kHz, 33.33 kHz, 28.57 kHz, 
25.0 kHz, 22.22 kHz, 20.0 kHz, 18.18 kHz, and 16.67 kHz. The results are shown in Fig. 13. 

It is seen from Fig. 13 that the phase based method performs more accurately than the fixed 
voltage threshold method in all cases. The phase based method performs better than the 
constant fraction crossing method initially, but for all three shaft speeds there are points at 
which the constant fraction crossing method becomes more accurate than the phase based 
approach. 

The reason this happens can be explained by showing a pulse where the sampling rate has 
been reduced 100 times. This pulse is shown in Fig. 14. 

 

Fig. 14. A single pulse from the 1200 RPM measurement is shown. 

In Fig. 14, a single pulse sampled at two different sampling rates is shown. The original pulse 
sampled at 2 MHz is shown using a solid line. The pulse after decimation by a factor of 100 
is shown by a dotted line with circular markers. The sampling rate of this decimated pulse is 
therefore 20 kHz. It is seen that the 20 kHz pulse has a different apparent shape than the 
2 MHz pulse. The 20 kHz pulse appears to have raised edges. The phase based method 
therefore finds energy next to the pulse where no energy is present in the reference signal. 
The phase based method does not perform as well where the pulse shape changes, only when 
the pulse position changes and the shape remains approximately constant. 
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It is of course true that any reduction in sampling rate does change the pulse shape. The 
performance of the phase based method is not affected by small changes in pulse shape. 
Large shape changes and significant apparent new energy needs to be present before the 
performance starts to deteriorate. The smallest decimation factor where the phase based 
method becomes less accurate than the constant fraction crossing method is 45 (i.e. at a 
sampling rate of 44.4 kHz) in the 900 RPM measurement. It is worth mentioning that this is 
an extremely low sampling rate for BTT. Most laboratories can easily manage 100 kHz and 
above. 

It also appears in all three figures that the error of the phase based approach stabilises after a 
decimation rate of 100. We do not believe this is the case. We believe this is rather because of 
the using a log scale to show the results. 

The hypothesis that the proposed method performs more accurately than the other two 
methods is therefore confirmed given the limitation that the pulse shape must be captured 
relatively accurately. The precise definition of when a pulse is captured properly lies outside 
the scope of this article. 

It must be noted here that the sampling rate of the tachometer is never reduced. 

4.4. Test 4: sensitivity to  

Fig. 15 below shows the sensitivity of the proposed method to the choice of ρ if varying 
levels of white noise are added to the reference signals. Three levels of noise are added with 
the following standard deviation (std) values: 0.01, 0.1, and 0.5 V. 

 

Fig. 15. This figure shows the sensitivity of the proposed method to the scaling parameter ρ for the a) 
600 RPM, b) 900 RPM and 1200 RPM case. 
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It is seen from Fig. 15 that all the results have the same trend. At ρ = 0.005 all the analyses 
results in large errors. The accuracy of the phase based method increases as ρ enters the 
0.012–0.02 range. The value for ρ that most often results in the most accurate answer is 0.012 
radians. The scale in Fig. 15 is a log scale. When considering this, it seems that choosing any 
value between 0.012 and 0.02 is sensible. 

We now present, in Fig. 16, the sensitivity of the phase based method to ρ as the sampling 
rate is reduced. Three different levels of decimation are performed, the sampling rate is 
reduced 2, 10, and 50 times; resulting in sampling rates of 1 MHz, 200 kHz and 40 kHz. 

 

Fig. 16. This figure shows the proposed method’s sensitivity to reductions in sampling rate for a) 
600 RPM, b) 900 RPM and c) 1200 RPM. 

Similar trends are observed in Fig. 16 as those in Fig. 15. It is seen that, for most of the 
analyses, a ρ  = 0.012–0.02 yields the most accurate answers. The exception to this is for a 
sampling rate of 40 kHz at 600 RPM and 900 RPM. In these analyses, the optimal ρ value is 
smaller than ρ  = 0.012. This makes sense, a smaller ρ leads to the phase based method using 
less of the pulse and therefore “seeing” less of the apparent pulse shape change. The 40 kHz 
analysis for the 1200 RPM case does not seem to have a well defined minimum, rather an 
asymptote. Of all the analyses done here, the combination of a 40 kHz sampling rate and a 
shaft speed of 1200 RPM results in the least samples over the pulses. We believe the phase 
based method simply cannot deal with this shape change, resulting in higher inaccuracies 
than obtained using the optimal ρ values for 600 RPM and 900 RPM. 

The approach taken in this section can be taken for any other combination of probe and blade 
tip. One can take the original signal and add increasing levels of noise to find an adequate 
value for ρ. This is why a value of ρ radians was chosen for tests 1, 2 and 3. 
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4.5. Test 5: computational time analysis 

A comparison of the computational time required to perform the reference analyses is now 
shown. The computation for each shaft speed is performed 20 times and the average over the 
20 times is reported in Fig. 17. 

 

Fig. 17. The average computation time required to perform 20 analyses at each shaft speed for every 
triggering criterion. 

In Fig. 17 it is seen that 14–17 s are required to process 10 s’ worth of BTT data. The fixed 
voltage threshold method is the most expensive. The reason for this is because of the black-
out window that was implemented to prevent multiple triggering of ToAs. The phase based 
method and the constant fraction crossing method runs for close to the same computational 
times, though it seems as if the phase based approach becomes more expensive as the shaft 
speed increases. This makes sense because a higher shaft speed results in more pulses that 
needs to be convolved with the quadrature filter. Convolution is more expensive than 
determining a trigger. Nonetheless, no method can be considered prohibitively expensive 
when compared to the other methods. Note that the code used for this analysis is not 
optimised for maximum speed. It is written for maximum readability as the code is open 
source and can be found at https://github.com/dawiediamond/pyphasetoa. 

5. Conclusion and limitations 

This article presented a new method to determine the tip deflections of rotor blades from BTT 
data. The method has three steps. Firstly, the proximity probe signal is expressed in the 
angular domain instead of the time domain. Secondly, a quadrature filter is used to expose the 
instantaneous phase of each pulse and, finally, the instantaneous phase is converted into a tip 
deflection. 

Experiments are conducted at three different shaft speeds, i.e. 600, 900, and 1200 RPM. In 
the experiments, the proposed method is compared to the constant fraction crossing and fixed 
voltage threshold methods. All three triggering criteria are first used to determine the tip 
deflections in the absense of noise. These results serve as the reference results. Two tests are 
then conducted where noise is added artificially in increasing degrees. In the first test, 
Gaussian white noise is added and in the second test the proximity probe sampling rate is 
reduced. It is demonstrated that the proposed method recovers the noise-free tip deflections 
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more accurately than the other two methods for all levels of Gaussian noise addition. It is also 
found that the proposed method performs more accurately than the fixed voltage threshold 
method for all levels of sampling rate reduction. It is found that the proposed method is more 
accurate than the constant fraction crossing method in the initial levels of sampling rate 
reduction but becomes less accurate later on. This is ascribed to the apparent change in pulse 
shape caused by the reduction in sampling rate. Finally, a method is proposed whereby one 
can determine the scaling parameter, ρ , of the proposed method. 

Some limitations of the proposed method are now discussed: 

 Constant shaft speed limitation. The claims made in this article are only applicable 
to a rotor operating at a constant shaft speed. The proposed method has not yet been 
proven for transient speed cases. Transient speed cases may be more difficult to 
process because the pulse shape changes as the shaft speeds up. This is a problem that 
all triggering criteria have, not only the proposed method. Future investigations 
should assess whether the proposed method has the same advantages for transient 
shaft speeds. 

 Scaling parameter determination. The scaling parameter, ρ, must be determined for 
every combination of probe and blade tip geometry. There is no single scaling 
parameter for all combinations of probes and blade tip geometries. 

 Blade resonance effect. In this article, the blades are not experiencing resonance. The 
blades vibrate because of excitation from the ambient air. The presence of resonance 
would not affect the proposed method unless the shape of the pulse is changed by the 
resonance. It must be said that, if the shape of the pulse is affected by resonance, all 
triggering criteria will be affected. Studies need to be conducted to understand the 
effect resonance has on all triggering criteria. 

 Non-Gaussian forms of noise. Gaussian noise is used in this article to demonstrate 
the proposed method’s robustness to noise. There are other forms of noise in BTT. 
Examples being pulse shape changes due to increasing/decreasing temperature, axial 
shaft position shifts, pulse shape changes due to erosion etc. These sources of noise 
will affect the accuracies of all forms of triggering criteria. To the knowledge of the 
authors, no study has been conducted on how these sources of noise effect the 
accuracy of triggering criteria. Such a study would be very valuable for the BTT 
community. 

The proposed method shows great promise to produce accurate tip deflections in the presence 
of noise or low sampling rates. This could lower the hardware cost of BTT systems, and 
consequently make its use more widespread. The proposed method has been open sourced 
and can be found at https://github.com/dawiediamond/pyphasetoa. 
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