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1. Introduction

There is an unending call for the improvement in the production 
and generation of electrical energy while simultaneously reducing 
its cost of production. In this regard, the operating parameters like 
the temperature and pressure are altered, and the useful life of the 
plant’s components are significantly influenced. The alteration 
of the operating parameters such as subjecting the components 
of the plants like the steam piping to daily operational cycles 
characterised by peak and off-peak periods left the component 
operating in the creep-fatigue regime. Hence, the unplanned failure 
of the component due to creep or fatigue or the combination of both 
failure mode becomes inevitable. Because power plant components 
such as the steam piping are subjected to high temperature and 
operating conditions, they are usually made of high creep resistant 
martensitic stainless steels such as X20 (12% Cr, 1% Mo, 0.25% 
V), P91 (9% Cr, 1% Mo) and P92 (9% Cr, 1.75% W, 0.5% Mo).

When considering the failure of a component that results from 
creep-fatigue interaction, the damage accumulated rate resulting 
from the complex loading cycles differ completely from those 
obtained by the linear summation of the damage rates produced by 
creep and the cyclic components.1,2 If the failure of a component is 
characterized by creep-fatigue interaction, the manifestation of the 
fatigue part of the failure is characterized by the formation cracks 
while the creep part of the failure is characterized by cavitation 
damage in the form of creep voids at grain boundaries. Hence, the 
combination of fatigue damage and creep cavitation is found in a 
component whose failure is a result of creep-fatigue interaction, 
and an accelerated failure that exhibits a mixture of transgranular 
and intergranular paths3 is observed. 

Several studies have been conducted on components subjected to 
cyclic loading at elevated temperatures to determine the occurrence 
of failure due to creep-fatigue.4-7 Despite the several types of 
researches conducted, there is still a strong controversy with regard 
to the failure mode, especially with steam pipes during an operation 
involving daily start-up and shutdown cycles.8 Over the years, 
technological development has made the assessment of fatigue 
and creep behaviour possible numerically. Finite element (FE) 
techniques have been explored by researchers in the determination 
of the creep behaviour of high-temperature components4,9,10 
but there is limited use of this technique in the investigation of 
the possible failure of components like steam piping due to 
creep-fatigue interaction in the presence of simultaneous high-
temperature and cyclic loading in the open literature.3 

The absolute understanding of the damage evolution of components 
subjected to service in creep-fatigue environment is vital to the 
understanding and structural evaluation of the component’s integrity 
in service.11,12 Time fracture rules recommended by RCC-MR13 and 
ASME BPV14 standard have been used for analysing cyclic loading 
at elevated temperatures while R5 standard15 recommends the use 
of ductility approach for the same operating conditions.

In this study, P92 martensitic stainless steel known for its excellent 
creep resistant properties and its use in power generation industries 
for the fabrication of steam pipes, is subjected to a steady-
state power plant operating condition and operating condition 
characterised 24 hours daily cycle, aimed at reducing the cost 
of production. The 24 hours daily cycle consists of a total of 6 
hours peak, 4 hours transient and 14 hours off-peak periods.8 Finite 
element (FE) software Abaqus CAE/2020 alongside FE-Safe/
Turbolife postprocessing software are employed to compute the 
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useful life and the dominant failure mode of the piping under the 
considered operating conditions.

2. Stresses developed in a steam pipe

Both mechanical and thermal stresses are developed in a thick-
walled cylinder or pipe subjected to operation in a high-temperature 
environment. To compute the stress (mechanical) developed in a 
pipe (thick-walled), Lamé16 developed mathematical expressions 
as shown below:
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The effective stress (mechanical), σm in the pipe is computed using 
von-Mises theory as:
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pipes at elevated temperatures,17,18 is computed
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and the effective therml stress is obtained using von-Mises theory as shown below: 

σT = �[σt2 + σr2 + σz2 − (σtσr + σtσz + σrσz)]       (8) 

where,   

σr, σt and σz represents the radial, circumferential and axial mechanical stress respectively, and σrT, σtT 
and σtT represents the thermal radial, circumferential axial stress respectively. σm and σT are the 
mechanical and thermal von-Mises stress. 

Finally, the consequential thermomechanical stress, σTM induced in the pipe (straight) at elevated 
temperature is obtained by summing the effective mechanical and thermal stresses. 

σTM = σm + σT          (9) 

2.1 Creep-fatigue model 

A constitutive creep model that assumes the minimum creep rate to be the summation of the linear and 
power law stress function was formulated [19] such that the diffusion creep mechanisms and the power law 
involve different defects which may be assumed independently before adding their creep rates as shown 
below. The formulated creep expression is able to account for low and high stresses similar to those 
experienced in the power generation industries, and it also describes effectively the minimum creep rate for 
advanced steels [20, 21]. 
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where n represents the material constant, while εp(T) and σ0(T) represents the Arrhenius temperature 
functions. 

2.2 Model for creep damage 

Ductility exhaustion theory assumes that local strain developed in a component when subjected to a high-
temperature environment attains a critical ductility value which results in a forward crack propagation  [11, 
22]. At failure, the ratio of the creep rate to creep strain is used to determine the creep strain damage as 
shown below. 

dcr = εcr
εf
∗             (11) 

where  dcr is creep damage rate,  εcr is creep strain rate, and εf∗ is multiaxial creep failure strain. 

The failure of the component occurs when the summation of the individual creep damages equals 1. 

2.3 Fatigue damage model 

Since the daily cycle of the steam piping under the stated service conditions will only amount to low cycle 
fatigue, the low cycle fatigue of the pipe is computed using the already established thermodynamic principle 
of low cycle fatigue [1, 23], given as: 
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where α0, γ and φ represent material constants, Rv is the effect due to stress triaxiality, df represents 
damage due to fatigue, ∆p represents the accumulated plastic strain in one cycle, and can be obtained with 
the Ramberg-Osgood equation [4, 24]:  
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where K′ and n′ are material constants, while the equivalent or effective stress variation in one complete 
cycle is represented by ∆σe. 

2.4 Creep-fatigue interaction 

Lagneborg [25] proposed an expression for the determination of the damage resulting from creep-fatigue 
interaction as shown below. 

dcf = b�(df dN⁄ )(dc dN⁄ )�1 2⁄           (14) 

where, dcf represents the damage due to creep-fatigue interaction, b represents the coefficient of creep-
fatigue interaction, df dN⁄  represents the damage due to fatigue after one cycle as depicted in Equations 
(12)-(13) while dc dN⁄  represents the creep damage accumulated in one cycle. Hence, Equation. (11) is 
expressed as  
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where, th is one complete cycle hold time.  Hence, the expression for the creep-fatigue interaction damage 
model is given as 
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3.0 Finite element model 

The three-dimensional model (3D) of the pipe-insulation assembly was developed in Abaqus/CAE 2020 
such that the real dimensions of a typical steam pipe and insulation jacket was captured. Figure 1 shows the 
assembly model of the pipe and insulation jacket, while Table 1 shows their dimensions. 
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maximum operating pressure (18.0 MPa) was maintained at peak 
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Through curve fitting of the P92 steel creep data obtained 
experimentally, the constitutive creep model constants were 
obtained as shown in Table. 2. After which script for the creep 
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A plot showing the temperature distribution across thickness of the 
piping when it was subjected to steady-state analysis is shown in 
Figure 3. From the figure, it was discovered that the optimal applied 
operating temperature was maintained inside the piping, while the 
considerably low temperature value (42.9 ºC) developed on the 
insulation jacket signifies that the piping is well-insulated, and 
the characteristic low temperature value obtained on the surface Figure 1: Assembly model of pipe and insulation jacket

Table 1: Steel pipe and pyrogel insulation jacket dimensions26-29

Materials Length (m) Diameter (m)
Elbow Radius (m) Thickness (m)Internal External

Pipe 52.10 0.38 0.44 0.50 0.03
Insulation Jacket 52.10 0.44 0.54 0.50 0.05

Figure 2: Applied (a) boundary conditions and (b) pipe-insulation assembly mesh
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(outer) of the jacket buttresses the fact that pyrogel is indeed a good 
insulation jacket for high-temperature components.35

The plot for the creep stress and strain of the piping after one hour 
of steady-state analysis is shown in Figure 4(a) and (b) while the 
creep stress and strain after an hour of steady-state operation at 
the straight section of the piping is depicted in Figure 5. From the 
plots, it was discovered that the optimum creep stress (206.3 MPa) 
and strain (2.833×10-4) was developed at the intrados of the elbows 
in the piping. Thus, making this region of the piping more prone to 

failure. Figure 6 shows the creep stress and strain at failure when 
the piping was subjected to steady-state analysis and the analysis 
characterised by daily cycle. At failure, the maximum creep stress 
and strain are developed at the intrados of the piping just like that 
obtained in the steady-state analysis. However, the contour plot of 
the maximum stress and strain becomes obvious at the outer of the 
elbows. In both analyses (steady-state and the analysis involving 
daily cycle), the extensive plastic strain required for the initial and 
propagation fatigue crack was not observed. Hence, failure due to 
fatigue or creep-fatigue interaction is impossible.

Creep damage and the useful life plot of the P92 steam piping under 
the two operating conditions understudy is depicted in Figure 7. It 
was observed from the plot that the steady-state analysis survived 
a useful creep life of 21.31 years with creep damage of 5.361×10-6 
at failure, while the analysis with cycles survived a creep life of 

Figure 3: (a) P92 material properties29,33 and (b) 24-hours operational cycle
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The plot for the creep stress and strain of the piping after one hour of steady-state analysis is shown in 
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Table 2: P92 steel creep constants for the used model at 550ºC34

εp(T)
(× 10-8 h-1)

σo(T)
(× 108 Pa)

n

2.145 1.284 17.929
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8.88 years with creep damage of 1.286×10-5 at failure. Similar to 
the creep stress and strain, the worst damage and creep life in both 
analyses were obtained at the intrados of the piping. This further 
buttress the fact that failure of steam piping in the creep or creep-
fatigue regime would initiate from the intrados of the piping.

To determine the possibility of failure resulting from creep-
fatigue interaction, the steady-state analysis and analysis involving 
daily cycle output database result was post-processed in fe-safe/
Turbolife software, and the outcome further confirmed that the 
steam piping cannot fail due to creep-fatigue interaction since the 
required plastic strain needed for such to occur was not induced.  
Figure 8 is a plot obtained from the analysis conducted using fe-

safe/Turbolife software and the plot shows that the 
failure of the piping is mainly due to creep alone.

For components operated in creep regime, the 
developed stress are known to relax with an increase 
in the time of operation. Depicted in Figure 9(a) is the 
creep strain and stress relaxation pattern of the steam 
piping when subjected to steady-state operation, and 
operation involving daily cycle.  From the plot, it 
was observed that the piping subjected to steady-state 
analysis experiences a faster stress relaxation with 
a much higher creep strain at every time increment. 
The difference in the characteristic stress relaxation 

and developed creep strain behaviour observed is attributed to 
the amount of time spent by the piping in both analyses at high-
temperature creep regime. The stress relaxation in the steady-
state analysis is faster and its creep strain is higher because the 
piping spent its entire duration in the high-temperature condition 
while the analysis involving daily cycle spent only a fraction of its 
entire duration in the high-temperature environment. Nevertheless, 
the evolution of creep damage in both analyses shows that faster 
creep damage accumulation occurs in the analysis involving daily 
operational cycles because of its constant operation at higher 
stresses. Depicted in Figure 9(b) is the accumulation of creep 
damage for both analyses prior to failure. The accumulation of 
the creep damage with daily cycle reached 1 (failure) after 77 788 

7 
 

Figure 3: Temperature distribution plot 

The plot for the creep stress and strain of the piping after one hour of steady-state analysis is shown in 
Figure 4(a) and (b) while the creep stress and strain after an hour of steady-state operation at the straight 
section of the piping is depicted in Figure 5. From the plots, it was discovered that the optimum creep stress 
(206.3 MPa) and strain (2.833 × 10−4) was developed at the intrados of the elbows in the piping. Thus, 
making this region of the piping more prone to failure. Figure 6 shows the creep stress and strain at failure 
when the piping was subjected to steady-state analysis and the analysis characterised by daily cycle. At 
failure, the maximum creep stress and strain are developed at the intrados of the piping just like that 
obtained in the steady-state analysis. However, the contour plot of the maximum stress and strain becomes 
obvious at the outer of the elbows. In both analyses (steady-state and the analysis involving daily cycle), 
the extensive plastic strain required for the initial and propagation fatigue crack was not observed. Hence, 
failure due to fatigue or creep-fatigue interaction is impossible. 

   

   (a)       (b) 

Figure 4: Contour plot for creep (a) stress and (b) strain 

 

Figure 5: Result of distribution of creep stress and strain at the straight section of the piping 
Figure 5: Result of distribution of creep stress and strain at the straight section 
of the piping

8 
 

   

Figure 6: Developed creep (a) stress and (b) strain at failure for the two operating conditions 

Creep damage and the useful life plot of the P92 steam piping under the two operating conditions 
understudy is depicted in Figure 7. It was observed from the plot that the steady-state analysis survived a 
useful creep life of 21.31 years with creep damage of 5.361 × 10−6  at failure, while the analysis with 
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Figure 8: Plot showing creep as the only mode of failure 

    

Figure 9: (a) Stress relaxation and creep strain, and (b) creep damage accumulation 

For components operated in creep regime, the developed stress are known to relax with an increase in the 
time of operation. Depicted in Figure 9(a) is the creep strain and stress relaxation pattern of the steam piping 
when subjected to steady-state operation, and operation involving daily cycle.  From the plot, it was 
observed that the piping subjected to steady-state analysis experiences a faster stress relaxation with a much 
higher creep strain at every time increment. The difference in the characteristic stress relaxation and 
developed creep strain behaviour observed is attributed to the amount of time spent by the piping in both 
analyses at high-temperature creep regime. The stress relaxation in the steady-state analysis is faster and its 
creep strain is higher because the piping spent its entire duration in the high-temperature condition while 
the analysis involving daily cycle spent only a fraction of its entire duration in the high-temperature 
environment. Nevertheless, the evolution of creep damage in both analyses shows that faster creep damage 
accumulation occurs in the analysis involving daily operational cycles because of its constant operation at 
higher stresses. Depicted in Figure 9(b) is the accumulation of creep damage for both analyses prior to 
failure. The accumulation of the creep damage with daily cycle reached 1 (failure) after 77 788 hours while 
the analysis subjected to steady-state reached 1 after 186 675 hours of operation.  

4.1 Validation of creep strain 

Steam piping networks are characterized by complex shapes which makes the validation of the creep strain 
in the entire piping practically impossible. Nevertheless, the thermo-mechanical stress developed in the 
straight section of the piping can be computed using Lame’s equations for the mechanical stress in thick-

Figure 8: Plot showing creep as the only mode of failure
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hours while the analysis subjected to steady-state reached 1 after 
186 675 hours of operation. 

4.1 Validation of creep strain

Steam piping networks are characterized by complex shapes 
which makes the validation of the creep strain in the entire piping 
practically impossible. Nevertheless, the thermo-mechanical stress 
developed in the straight section of the piping can be computed 
using Lame’s equations for the mechanical stress in thick-walled 
pipes while the thermal stress is computed using the expressions for 
the thermal stress in straight pipes after which the effective thermo-
mechanical stress is obtained and substituted into the equation for 
the constitutive creep model to determine the developed analytical 
creep strain in the straight section of the piping after one hour 
of steady-state operation. Shown in Table 3 is the analytically 
computed and FE simulated creep strain at the straight section of 
the piping. From the table, it is observed that a good correlation 
exists between the calculated and simulated creep strain of the pipe.

5. Conclusion

FEA of steam piping fabricated from P92 steel and subjected to 
two different operating conditions was simulated in Abaqus to 
determine the dominant failure mode. The temperature distribution 
profile, creep stress, creep strain and stress relaxation pattern 
developed in the piping was determine using Abaqus CAE/2020, 
while the useful life, creep damage, creep damage accumulation 
and the possibility of the failure of the piping due to creep-fatigue 
interaction was determined using fe-safe/Turbolife software. The 
results of the analyses show that the failure of the steam pipe under 
the two operating conditions considered (steady-state and analysis 
with daily cycle) is due to creep alone as both analyses lacked the 
required plastic strain needed to induce fatigue crack. In addition, 
the maximum creep stress, strain, worst creep life and damage was 
located on the intrados of the elbows in both analyses. Furthermore, 
the analysis involving daily cycle gave the worst creep life and 

damage because of the faster creep damage accumulation that 
results from the higher stresses in operation during the analysis. 
Finally, a good correlation was achieved when the calculated 
and FE simulated creep strain at the straight section of the steam 
pipe were compared, as the percentage deviation between the two 
creep strain is within the acceptable 0-10% range for engineering 
components.
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