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Abstract. Let G2(q) be a Chevalley group of type G2 over a finite field Fq .

Considering the G2(q)-primitive action of rank 3 on the set of
q3(q3−1)

2
hyper-

planes of type O−
6 (q) in the 7-dimensional orthogonal space PG(7, q), we study

the designs, codes, and some related geometric structures. We obtained the

main parameters of the codes, the full automorphism groups of these structures,

and geometric descriptions of the classes of minimum weight codewords.

1. Introduction

In recent studies [17, 18], it was shown that codes from the row span over finite
fields of incidence matrices of regular graphs have uniform properties that can result
in the graphs being retrieved from the code. It was observed in those papers that
under certain hypothesis the minimum weight of the code is precisely the valency
k of the graph, and the minimum weight codewords are the rows of the incidence
matrix of the graph and their scalar multiples. These properties and the gap in the
weight enumerator between k and 2(k− 1) seem to be particularly characteristic to
codes of incidence matrices of regular graphs, (see [18] and its references). This is in
stark contrast with the codes from adjacency matrices. However, the binary codes
defined by the row span of the adjacency matrices of a number of strongly regular
graphs enjoy the property that their minimum weight is the valency of the graph
and the minimum weight codewords are exactly the rows of the adjacency matrix
and their scalar multiples. In addition, the reflexive graphs, i.e. graphs obtained by
including a loop at every vertex have been shown to also satisfy these properties.

For reflexive graphs whose codes possess these properties and which are related to
strongly regular graphs, see [33] for the binary codes from the strongly regular graph
related to the Conway group Co2, [34] for the binary codes of the strongly regular
graph related to the simple group Ru of Rudvalis, and [35] for the ternary codes of
the complement of the Higman-Sims graph. Other classes of reflexive graphs also
yielded interesting codes, see for example [21, 22] for the study of the binary and
ternary codes from reflexive uniform subset graphs on the 3-element subsets of a
set of size n.
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Note that the simple group G = G2(q) acts primitively of rank 3 on the set of
hyperplanes of type O−6 (q) in the 7-dimensional orthogonal space PG(7, q) only if

q ∈ {3, 4}. Let G denote the the strongly regular graph on q3(q3−1)
2 vertices, G its

complementary graph, GR and GR their corresponding reflexive graphs. For every

prime divisor p of |G| we examine the codes Cp(G), Cp(G), Cp(GR) and Cp(G
R

),
obtained by taking the p-ary row span of the adjacency matrices of the graphs. We
show that some codes of these matrices satisfy the property that their minimum
weight is the valency of the graph and the minimum weight codewords are the rows
of the adjacency matrix of the graph and their scalar multiples. In this way, we
extend the class of strongly regular graphs whose codes satisfy these properties.

Codes from the reflexive graphs can be quite different from those form the graph
itself, although they are clearly related (for example Cp(G)⊥ ⊆ Cp(GR)). There are
however, some significant differences that make most of these codes worthy exam-
ining. In particular, in the paper we present an instance where Cp(G) = Cp(GR),

whereas some of the codes Cp(GR) or Cp(G
R

) are the full space F|V |p . We summarize
these findings in Theorem 1.1 and through a series of lemmas, propositions and
theorems we prove our results in Sections 5 and 6.

Theorem 1.1. Let G = G2(q) be a Chevalley group of type G2 over a finite field
Fq where q ∈ {3, 4}. Let Γ and Λ be the strongly regular graphs defined by the rank

3 action of G of degree q3(q3−1)
2 on the set of hyperplanes of type O−6 (q) in the 7-

dimensional orthogonal space PG(7, q), and let Γ and Λ be their complements. Let

ΓR and ΛR be their reflexive associates (including the loops), Γ
R

and Λ
R

be their

complementary graphs. For G ∈ {Γ,Λ,Γ,Λ,ΓR,ΛR,ΓR,ΛR} and p||G|, let Cp(G)
denote the code obtained as a p-ary row span of the adjacency matrix of G.

1. Assume that G = G2(3).
(a) If G = Γ or G = ΓR then

(i) Cp(Γ) is a code of codimension 1 in F351
p for p = 2, 7, and C13(Γ) =

F351
13 .

(ii) C3(Γ) is a self-orthogonal [351, 27, 126]3 code and an irreducible

G2(3)-module, and Aut(C3(Γ)) ∼= O7(3):2. Its dual code C3(Γ)
⊥

is a
[351, 324, 6]3 code. The minimum weight of C3(Γ) is the valency of
the graph Γ and the minimum weight codewords are the rows of the
adjacency matrix of Γ and their scalar multiples.

(iii) Cp(Γ
R) = F351

p for p 6= 2.

(iv) C2(ΓR) = [351, 79, 48]2 and C2(ΓR) ∩ C2(ΓR)
⊥

= [351, 78, 48]2.

(b) If G = Γ or G = Γ
R

then

(i) C2(Γ) = C2(Γ
R

) is a self-orthogonal doubly-even [351, 78, 48]2 code.
Moreover, C2(Γ) is a faithful irreducible G2(3)-module and Aut
(C2(Γ)) ∼= O7(3):2.

(ii) Cp(Γ) = F351
p for p = 3, 13 and C7(Γ) is a code of codimension 1 in

F351
7 .

(iii) Cp(Γ
R

) = F351
p for p 6= 3.

(iv) C3(Γ
R

) = [351, 28, 108]3 and C3(Γ
R

) = C3(Γ) + 〈1〉.
2. Assume that G = G2(4).

(a) If G = Λ or G = ΛR then
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(i) Cp(Λ) = F2016
p for p = 2, 7, and C13(Λ) is a code of codimension 1 in

F2016
13 .

(ii) C3(Λ) is a self-orthogonal [2016, 651, d]3 code with d ≥ 975.

(iii) F2016
5 = C5(Λ) + C5(Λ)

⊥
and dim(C5(Λ)) = 650.

(iv) C2(ΛR) is a self-orthogonal triply even [2016, 14, 976]2 code, and its

dual code C2(ΛR)
⊥

is a [2016, 2002, 4]2 code. The minimum weight
of C2(ΛR) is the valency of the reflexive graph ΛR, and the words of
minimum weight are the rows of the adjacency matrix of ΛR. More-
over, Aut(C2(ΛR)) ∼= PSp6(4).

(v) Cp(Λ
R) = F2016

p for p 6= 2.

(b) If G = Λ or G = Λ
R

then
(i) C2(Λ) = C2(ΛR).

(ii) Cp(Λ) = F2016
p for p = 3, 7 and Cp(Λ) is a code of codimension 1 in

F2016
p for p = 5, 13.

(iii) Cp(Λ
R

) = F2016
p for p = 2, 7, 13.

(iv) C3(Λ
R

) is a self-orthogonal [2016, 651, d]3 code with d ≥ 1041.

(v) F2016
5 = C5(Λ

R
) + C5(Λ

R
)
⊥

and dim(C5(Λ
R

)) = 651.

Theorem 1.1 2(a) (iv) led us in Proposition 6.4 to examine a 13-dimensional
subcode L of the [2016, 14, 976]2 code, which is invariant under the action of G2(4)
as a permutation group of automorphisms of the code. We noticed that L is an
indecomposable F2-module of G2(4) whose radical is of dimension 1, and the full
automorphism group of L explodes in size in comparison to that given in Theorem
1.1 2(a) (iv). In fact the full automorphism group of this 13-dimensional subcode
uncovers an embedding of the groups G2(4) and PSp6(4) into the symplectic group
PSp12(2). Note from [24, p. 273] that G2(4) has an irreducible representation of
degree 6 over F4. This 6-dimensional representation gives a natural embedding of
G2(4) into PSp6(4). Now from [16, Lemma 11, Lemma 12] one can see that PSp6(4)
is embedded into PSp12(2) as C8-family in Aschbacher’s classification. Thus, G2(4)
is embedded into PSp12(2), giving an irreducible representation of dimension 12
over F2.

The paper is organised as follows. In Section 2 we give some basic terminology
on graphs, designs and codes. In Section 3 we give the necessary background on
G2(q) and Section 4 gives a brief overview on the interplay between designs, graphs
and codes from G2(3) and G2(4), respectively. In Sections 5 and 6 we present our
results and their proofs. In the last section of the paper, we pose two open questions
which could lead to further development of the results presented in this paper. We
have placed a sample of the computations carried out using Magma in [28].

2. Terminology

The notation for designs and codes is as in [1]. An incidence structure D =
(P,B, I), with point set P, block set B and incidence I is a 2-(v, k, λ) design, if
|P| = v, every block B ∈ B is incident with precisely k points, and every two distinct
points are together incident with precisely λ blocks. The design D is symmetric if it
has the same number of points and blocks. A residual structure of D is the design
obtained by deleting a block of D and retaining those points not incident with the
block. A residual structure at any block of D is a 2-(v−k, k−λ, λ) design. A derived
structure of D is the design obtained by deleting a block and retaining those points
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incident with the block. A derived structure of D is a 2-(k, λ, λ − 1) design. The
numbers that occur as the size of the intersection of two distinct blocks are the
intersection numbers of the design. A 2-design is quasi-symmetric with intersection
numbers x, y (x < y) if any two distinct blocks intersect in either x or y points.
A 2-(v, k, λ) design is called self-orthogonal if the intersection numbers have the
same parity as the block size. An automorphism of a design D is a permutation on
P which sends blocks to blocks. The set of all automorphisms of D forms its full
automorphism group denoted by Aut(D).

The code CF of the design D over the finite field F is the space spanned by the
incidence vectors of the blocks over F . If the point set of D is denoted by P and
the block set by B, and if Q is any subset of P, then we will denote the incidence
vector of Q by vQ. Thus CF =

〈
vB |B ∈ B

〉
, and is a subspace of FP , the full

vector space of functions from P to F .
Terminology for graphs is standard: the graphs G = (V,E) with vertex set V and

edge set E, discussed here are undirected with no loops, apart from the case where
all loops are included, in which case the graph is called reflexive and denoted GR. If
u, v ∈ V and u and v are adjacent, we write u ∼ v, and uv or [u, v] for the edge in E
that they define. We also consider the complementary graph, G = (V,E) where for
u, v ∈ V , u 6= v, u ∼ v in G if and only if u 6∼ v in G. The set of neighbours of u ∈ V
is denoted by N(u), and the valency of u is |N(u)|. A graph is regular if all the
vertices have the same valency. An adjacency matrix A of a graph of order n is an
n×n matrix with entries aij such that aij = 1 if vertices vi and vj are adjacent, and
aij = 0 otherwise. With a slight abuse of notation, we also write G = (n, k, λ, µ)
to denote a strongly regular of type (n, k, λ, µ), i.e. a regular graph that has n
vertices, degree k, in which any two adjacent vertices are together adjacent to λ
vertices, while any two non-adjacent vertices are together adjacent to µ vertices.
The neighbourhood design of a regular graph G is the symmetric 1-(|V |, k, k) design
formed by taking the points to be the vertices of the graph and the blocks to be
the sets of neighbours of a vertex, for each vertex, i.e. an adjacency matrix is an
incidence matrix for the design. If G = (V,E) is a graph with adjacency matrix A
then A+ I|V | is an adjacency matrix for the reflexive graph GR.

A rank 3 graph is a graph that admits an automorphism group which is transitive
on the vertices, edges, and nonedges. Note that any rank 3 graph is a strongly
regular graph. The converse is not always true. The complementary graph of a
strongly regular graph with parameters (n, k, λ, µ) is a strongly regular graph with
parameters (n, n−k−1, n−2k+µ−2, n−2k+λ). A connected strongly regular graph
has diameter 2. If v and w are vertices of a connected strongly regular graph G such
that d(v, w) = i, i = 0, 1, 2, then the number pij of neighbors of w whose distance
from v is j, j = 0, 1, 2, are the intersection numbers of G. The 3 × 3-matrix with
entries pij , i, j = 0, 1, 2, is called the intersection matrix of G.

The code of a graph G over a finite field F is the row span of an adjacency matrix
A over the field F , denoted by CF (G) or CF (A). The dimension of the code is the
rank of the matrix over F , also written rkp(A) if F = Fp, in which case we will
speak of the p-rank of A or G, and write Cp(G) or Cp(A) (respectively Cp(GR) or

Cp(A+ I|V |)) for the code. The ambient space of these codes is F|V |p .
All our codes will be linear codes, i.e. subspaces of the ambient vector space. If

a code C over a field of order q is of length n, dimension k, and minimum weight
d, then we write [n, k, d]q to summarize this information. A generator matrix for
the code is a k × n matrix made up of a basis for C. The dual code C⊥G is the
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orthogonal complement under the standard inner product (, ), i.e. C⊥G = {v ∈
Fn | (v, c) = 0 for all c ∈ CG}. A code CG is self-orthogonal if CG ⊆ CG

⊥. The hull
of a code is the intersection of a code and its dual. A linear code C over any field
is a linear code with complementary dual (LCD) code if C ∩ C⊥ = {0}.

The all-one vector will be denoted by 1, and is a constant vector of weight the
length of the code. A binary code CG is doubly-even if all codewords of CG have
weight divisible by 4. A triply-even code is a binary linear code in which the weight
of every codeword is divisible by 8. The weight enumerator of CG is defined as
WCG (x) =

∑n
i=0Aix

i, where Ai denotes the number of codewords of weight i in
CG .

Two linear codes are isomorphic if they can be obtained from one another by
permuting the coordinate positions. An automorphism of a code is any permutation
of the coordinate positions that maps codewords to codewords and will be denoted
Aut(C). Any automorphism clearly preserves each weight class of C. In this note
we restrict our attention to permutation automorphisms.

If F is a field and G is a group then FG denotes the group algebra of G over
F. If U is an FG-module then U∗ denotes the dual FG-module. U=FGX ⊕ Y
denotes a direct decomposition of the FG-module U into FG-submodules X and
Y. If G is a finite group acting on a set Ω then the permutation module FΩ is by
definition the F -vector space with basis Ω = {α |α ∈ Ω} where α = (δβ,α)β∈Ω

and δ denotes the Kronecker δ symbol. The action of G on Ω naturally extends
by linearity to FΩ giving the canonical structure of an FG-module. Usually α is
identified with α and Ω with Ω, but for the sake of clarity it makes sense to keep
this distinction in this paper. Note that Ω will be considered as ambient basis for
codes which naturally will admit G as an automorphism group acting by permuting
the coordinate positions. The canonical bilinear form on FΩ has Ω as orthonormal
basis. It turns out that any code over a field F admitting G can be obtained as
a submodule of the permutation module FΩ over F, considering Ω as the ambient
basis. The reader is encouraged to consult [30] for details on permutation modules.

For the structure of groups and their maximal subgroups we follow the ATLAS
notation, see [13]. The groups G.H, G:H, and G·H denote a general extension, a
split extension and a non-split extension respectively. If NEG is a normal subgroup
with quotient Q = G/N then G is an extension of Q by N. When the sequence splits,
that is G has a subgroup isomorphic to Q that meets N trivially, G is called a split
extension of Q by N, or a semi-direct product of N and Q. Otherwise G is a non-split
extension of Q by N. For a prime p, the symbol pm denotes an elementary abelian p-
group of that order. The notation p1+2n

+ and p1+2n
− are used for extraspecial groups

of order p1+2n. If p is an odd prime, the subscript is + or − according as the group
has exponent p or p2. For p = 2 it is + or − according as the central product has an
even or odd number of quaternionic factors. Throughout the paper On(q) denotes
the simple orthogonal group in dimension n over Fq.

3. The group G2(q)

Here we give a brief overview of the simple exceptional group G2(q) and its
primitive permutation representations via the coset action on the set Ω of hyper-
planes of type O−6 (q). For more information on the group we refer the reader
to [29, Proposition 1] or [37, Section 4.3]. The Chevalley group G2(q) of type
G2 is isomorphic to a subgroup of the orthogonal group O7(q) and acts transi-
tively on the set Ω of hyperplanes of type O−6 (q) in the 7-dimensional orthogonal
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geometry V over Fq related to the group O7(q). The group G2(q) has order

q6(q6− 1)(q2− 1) = q6(q− 1)2(q+ 1)2(q2 + q+ 1)(q2− q+ 1) and |Ω| = q3(q3−1)
2 . In

this action the point stabilizer is a subgroup isomorphic to PSU3(q2)·2. The rank

of G2(q) is q+1+(2,q−1)
2 . Each suborbit is self-paired and the non-trivial subdegrees

of G2(q) are

(q3 + 1)(q2 − 1),
q2(q3 + 1)

2
, and

(q − 3)

2
× q2(q3 + 1), if q is odd,(1)

(q3 + 1)(q2 − 1) and
(q − 2)

2
× q2(q3 + 1), if q is even.(2)

Moreover, any suborbit graph arising from this action of G2(q) when q > 2 has
diameter 2. It should be obvious from this that the only rank 3 representations of
exceptional type G2 having PSU3(q2) ·2 as a stabilizer of a point are those of degree
351 associated with the exceptional group G2(3) and of degree 2016 associated with
the exceptional group G2(4), respectively, see for example [8, Table 8, p. 19].

4. The graphs, designs and codes

In Section 3 we observed that the graphs derived from the suborbits of the rank
3 action of G2(q) when q = 3 and q = 4, respectively, are strongly regular on a

set Ω with |Ω| = q3(q3−1)
2 vertices. The stabilizer of a vertex u ∈ Ω is a maximal

subgroup isomorphic to PSU3(q2)·2, producing orbits Γ0 = {u}, Γ1, and Γ2 of
lengths 1, 126 and 224 using Equation (1), or orbits Λ0 = {u}, Λ1, and Λ2 of
lengths 1, 975 and 1040, when Equation (2) is used. The regular graphs Γ, ΓR and

their complementary graphs Γ, Γ
R

, that are examined in Section 5, result from the
sets Γ1, Γ0∪Γ1, Γ2, and Γ0∪Γ2 respectively. If A denotes an adjacency matrix for Γ
then A+ I|V | is an adjacency matrix of the reflexive graph ΓR while A = J − I−A,
where J is the all-one and I the identity |V | × |V | matrix, will be an adjacency
matrix for the complementary graph Γ on the same vertices. Thus, we examine
the neighbourhood designs of the graphs described earlier and corresponding codes
Cp(A), Cp(A+ I), Cp(A) and Cp(A+ I) defined by the p-ary row span of A, A+ I,

A, A+ I. Note that A+ I and A+ I are adjacency matrices for the graphs ΓR,Γ
R

obtained from Γ and Γ, respectively, by including all loops, and thus referred to as
reflexive graphs.

A similar discussion is carried out in Section 6 where we examine the p-ary codes

Cp(Λ), Cp(Λ
R), Cp(Λ) and Cp(Λ

R
) constructed from the graphs denoted by Λ,

ΛR, Λ and Λ
R
, respectively. The adjacency matrices of the corresponding graphs

are denoted B, B + I, B and B + I, respectively. Note that the latter codes are
constructed from the orbits Λ0 ∪ Λ1,Λ1,Λ2 and Λ0 ∪ Λ2, respectively.

5. Graphs, designs and codes from G2(3) of degree 351

In this section we discuss the examples arising in Theorem 1.1, considering the
groupG2(3) of degree 351. For this, letG beG2(3). Notice that |G2(3)| = 26·36·7·13
and G has an involutory outer automorphism, so its automorphism group is a
split extension of G2(3) by Z2. Notice from the ATLAS [13, p. 60] that there are
two classes of maximal subgroups (i.e. two pairwise inequivalent rank 3 primitive
permutation representations) of index 351, each having a representative isomorphic
to PSU3(3):2. These representations are interchanged by an outer automorphism of
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G. Therefore, it suffices to consider one action for G of degree 351. We consider only
those structures constructed from the first representation of this degree, since the
graphs, designs and codes obtained from the two representations are isomorphic.

We need some more detailed notation for the action of G on Ω. From Section 4
recall that G has the orbits Γ0 = {u}, Γ1, and Γ2 on Ω2 where

Γ0 = {(α, α) |α ∈ Ω} is the diagonal

Γ1 = {(α, β) | {α, β} ∈ E}
Γ2 = {(α, β) |α, β ∈ Ω, α 6= β, {α, β} /∈ E}.

We use the notation Γi(α) = {β | (α, β) ∈ Γi} for the corresponding Gα-orbits.
Thus Γ0 = the diagonal graph, Γ1 = Γ, and Γ2 = Γ are the suborbit graphs of
Γ with |Γi(α)| = 1, 126, 224. The matrix Ai in the centralizer algebra of (G,Ω) is
defined by

Ai = (fi(α, β))(α,β)∈Ω×Ω,

where fi(α, β) = 1, if (α, β) ∈ Γi and fi(α, β) = 0, otherwise, where 0 ≤ i ≤ 2.
Recall that F is the finite field Fq. Now, set FΩ to be the permutation module of
(G,Ω) over F so that to each Ai there is a naturally assigned endomorphism ai such
that

α 7→ αai =
∑
β

fi(α, β)β.

The endomorphism algebra E(FΩ) = EndFGFΩ has basis (a0,a1,a2) where a0 =
IdFΩ. This basis is called Schur basis in [30]. According to [30, Theorem 1.2.20] (see
also [10, Chapter 3] or [27]),

E(FΩ)→ F3×3, ai 7→ Ai = [aijk]j,k=1,...,3 (0 ≤ i ≤ 2),

gives the regular matrix representation of E(FΩ) with respect to the Schur basis.
The matrices Ai = ((ai)jk) are called the intersection matrices of the orbital graphs
(Ω,Γi) if char(F) = 0.

The structure of the graph Γ and of its complement Γ give the following values:

A0 = I3, A1 =

 0 1 0
126 45 45
0 80 81

 , A2 =

 0 0 1
0 80 81

224 144 142

 .
Remark 5.1. From results of [11, Chapter 2], for example, we deduce that the
eigenvalues and multiplicities for Γ are λi for 0 ≤ i ≤ 2 with multiplicities mi

respectively, those for ΓR are λ∗i = λi + 1 with multiplicities mi for 0 ≤ i ≤ 2, and

those for Γ and Γ
R

are λ0 = n− 1− k, λi = −λi− 1, λ
∗
i = λi + 1 for i = 1, 2, where

• λ0 = 126, λ∗0 = 127, λ0 = 224, λ
∗
0 = 225,m0 = 1;

• λ1 = 9, λ∗1 = 10, λ1 = −10, λ
∗
1 = −9, m1 = 168;

• λ2 = −9, λ∗2 = −8, λ2 = 8, λ
∗
2 = 9, m2 = 182.

Note that λ1 + λ2 = λ− µ.

• The rows of the adjacency matrix A for Γ give the blocks of the neighbour-
hood design of Γ which we denote D126. Note that D126 is in fact a self-dual
symmetric 2-(351, 126, 45) design. We write Cp(Γ) to denote the p-ary codes
spanned by the rows of the incidence matrix of D126.

• From the rows of an adjacency matrix A + I of the reflexive graph ΓR we
obtain the self-dual symmetric 1-(351, 127, 127) design D127, and the p-ary
code Cp(Γ

R).
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• The rows of an adjacency matrix A for Γ give the self-dual symmetric 1-
(351, 224, 224) design D224, and p-ary code Cp(Γ).

• From the rows of an adjacency matrix A + I of the reflexive graph Γ
R

we

get the self-dual symmetric 2-(351, 225, 144) design D225. We write Cp(Γ
R

) to
denote the p-ary codes of D225.

In the ensuing results of this section we examine the p-ary codes Cp(Γ), Cp(Γ),

Cp(Γ
R) and Cp(Γ

R
), where p||G|, from the graph Γ, its complementary graph and

those of their respective reflexive associates. Notice that the Chevalley group G2(3)
acts on each of these graphs, designs and codes.

5.1. The 2-(351, 126, 45) design. Recall that in Section 2 we established that the
neighborhood design of a regular graph is a symmetric 1-(|V |, k, k) design. This is
the case here, for the 1-(351, 126, 126) design constructed from the regular graph
Γ on 351 vertices invariant under G2(3). The graph Γ is strongly regular with
parameters (351, 126, 45, 45). Since λ = µ = 45, Γ is called a (351, 126, 45)-graph.
The 351 vertices serve as both points and blocks of the design and adjacency in
the graph is incidence in the design. Conversely, a 2-(351, 126, 45)-design having a
polarity with no absolute points (meaning that it has a symmetric incidence matrix
with zero diagonal), corresponds to a strongly regular (351, 126, 45, 45) graph. In
this section, we will make use of the incidence matrix of the design and the adjacency
matrix of the graph interchangeably.

Symmetric 2-(351, 126, 45) designs belong to the series with parameters

v =
3l(3l − 1)

2
, k =

3l−1(3l + 1)

2
and λ =

3l−1(3l−1 + 1)

2
,

where l > 1. Let (V, f) be a non-degenerate orthogonal space of dimension 2l + 1
over F3 with discriminant (−1)l. Then all anisotropic 1-dimensional subspaces W =
〈w〉 ≤ V for which f(w,w) = 1 form the set P of points of this design, while the
blocks have the form B(W ) = {U ∈ P : f(W,U) = 0}, W ∈ P, see [3]. For l = 3
we obtain a 2-(351, 126, 45) design isomorphic to the neighbourhood design of Γ,
namely D126.

Dempwolff in [19], and more recently Braić et al in [3] determined all symmetric
designs that admit a group which has a non-abelian socle and is primitive rank
3 on points and on blocks. As a by-product, the existence and uniqueness of the
symmetric 2-(351, 126, 45) design having the simple Chevalley group G2(3) as a
non-abelian socle of the automorphism group and acting primitively of rank 3 on
points and on blocks of the design was established.

Lemma 5.2. Let G = G2(3) and let D126 = (Ω,B). Then D126 is a self-dual, sym-
metric and self-orthogonal 2-(351, 126, 45) design with G ≤ Aut(D126) ∼= O7(3):2
acting flag-transitively, and point primitively. Moreover, up to isomorphism, D126

is the only flag-transitive, point primitive symmetric 2-(351, 126, 45) design with
these parameters admitting G as an automorphism group.

Proof. From the definition of Ω and B it is clear that G ⊆ Aut(D126). It follows
from the ATLAS [13, p. 60] that G acts primitively on both Ω and B of degree
|Ω| = |B| = 351, and the stabilizer GW of a point W has exactly three orbits
in Ω. From the definition of B(W ) we have that GW fixes setwise each of {W},
B(W ) and Ω \ (B(W ) ∪ {W}) and these are all GW -orbits. This shows that D126

is a flag-transitive, point primitive, symmetric 1-design. Using an argument similar
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to that of [19, Lemma 3.3] we deduce that D126 is a 2-design, and self-duality of
D126 follows readily from [26, Proposition 1]. Since for an isometry h ∈ I(V, f)
we have hB(W ) = B(hW ), it follows that O7(3):2 is an automorphism group of
D126. Moreover, since O7(3):2 is a maximal subgroup of the symmetric group S351,
it is the full automorphism group of D126. Again, from [19, Lemma 3.3] we have
D126 is a rank 3 design, and G2(3) is a primitive rank 3 group on D126. Now
from the embedding G2(3) ≤ O7(3) and |Aut(D126)| = |O7(3):2| we deduce that
Aut(D126) ∼= O7(3):2. Finally if i 6= j, consider two distinct blocks Bi and Bj in
D126. Since |Bi ∩ Bj | ≡ k ≡ 0 (mod 3), (where i, j ∈ {1, . . . , b}, and b and k are
respectively the number of blocks and the block size) we have D126 is self-orthogonal.
The proof of last statement of the theorem follows from [3, Section 3, Case (30)] or
[19, Lemma 3.3].

5.2. The codes of the graphs Γ and Γ and those of their reflexive
associates. Recall that if A is an incidence matrix of a 2-(v, k, λ) design and
rkp(A) < v − 1, then it is well-known (see [36, Theorem 1.86]) that this code is
interesting only when p divides r − λ, the order of the design. Notice that for
the particular case of a design with parameters those of D126 and D225, the order
r − λ = 126 − 45 = 225 − 144 = 81 = 34, and so only the ternary codes of such
designs will be of interest for characterization purposes. Thus, in Theorem 5.3 and
in Theorem 5.4 we deal with the ternary codes of these designs and examine their
combinatorial properties. In particular, we show that the code C3(Γ) is spanned by
the minimum weight codewords, which are the rows of the adjacency matrix and
their scalar multiples, and the minimum weight of the code is the valency of the
graph.

Theorem 5.3. Let Cp(Γ) and Cp(Γ
R) denote the p-ary codes of Γ and of ΓR,

respectively. Then

(i) C3(Γ) is a self-orthogonal [351, 27, 126]3 code and C3(Γ)
⊥

is a [351, 324, 6]3 code
with 458640 words of weight 6. The minimum weight of C3(Γ) is the valency of Γ,
and the minimum weight codewords are the rows of the adjacency matrix A of Γ
and their scalar multiples; C3(Γ) is spanned by its minimum weight codewords.
(ii) 1 ∈ C3(Γ) and Aut(C3(Γ)) ∼= O7(3):2.
(iii) Cp(Γ) is a code of codimension 1 in F351

p for p = 2, 7.

(iv) C13(Γ) = F351
13 .

(v) Cp(Γ
R) = F351

p for p 6= 2.

(vi) C2(ΓR) = [351, 79, 48]2 and C2(ΓR) ∩ C2(ΓR)
⊥

= [351, 78, 48]2 = C2(Γ).

Proof. (i) We start by determining the 3-rank of A, i.e. the dimension of C3(Γ).
By Remark 5.1, the eigenvalues of the adjacency matrix A of Γ are λ0 = 126,
λ1 = 9, and λ2 = −9 and their corresponding multiplicities are m0 = 1, m1 = 168
and m2 = 182. Since p | (λ1 − λ2) i.e., 3 | 18, we have from [6, Section 3] that
rk3(A) ≤ min(m1 + 1,m2 + 1) = 169. However, the 3-rank of A is much smaller
and equals 27. To show this we rely on the ATLAS [13] and the Atlas of Brauer
characters [24]. According to [24, p. 141], the irreducible 3-modular characters of
G2(3) have degree 1, 7, 27, 49, 189 and 729. Let χπ denote the ordinary permutation
character π of G2(3) of degree 351, and ϕπ denote its 3-Brauer character. From the
ATLAS [13, p. 60] we have that the permutation character of G2(3) of degree 351
is the sum of three irreducibles, i.e., χπ = χ1 + χ168a + χ182b, where the subscript
numbers denote the degree, and the subscript letters indicate the sequence as in



10 Tung Le and Bernardo G. Rodrigues

Table 1. The weight distribution of C3(Γ)

i Ai i Ai

0 1 243 1899969548750

126 702 252 376258697100

144 132678 261 22893588900

162 264810 270 1272627720

180 15877134 279 107557632

189 125095689 288 3027024

198 2147437656 306 88452

207 26912233530 315 88452

216 395941284648 324 21840

225 1844882687232 351 756

234 3055067224272

the ATLAS. Restricting these to the elements of order prime to 3 and decomposing
into 3-modular irreducibles we obtain from [24, p. 141] (see also [4]) that ϕ168a =
2ϕ1+ϕ7a+ϕ7b

+ϕ27a+ϕ27b
+2ϕ49 and ϕ182b = 2ϕ1+ϕ7a+2ϕ7b

+ϕ27a+ϕ27b
+2ϕ49. It

follows from this that ϕπ = 5ϕ1+3ϕ7a+3ϕ7b+2ϕ27a+2ϕ27b+4ϕ49. This shows that
the dimension of the smallest non-trivial irreducible submodule (code) C ≤ F351

3 is
at least 7. We argue using the weight distribution calculated through computations
with Magma [2] and given in Table 1, where i represents the weight of a codeword
wi in C3(Γ) and Ai denotes the number of codewords of weight i. We can easily
see that C3(Γ) does not contain an invariant subspace of dimension 1, and also has
no invariant subspace of dimension 7. Moreover, we establish that G2(3) of degree
351 has no irreducible modules over F3 with dimensions between 7 and 26. Hence
C3(Γ) is a 27-dimensional F3-module on which G2(3) and Aut(C3(Γ)) act absolutely
irreducibly. Now, from [24] (see also [38]) we deduce that the 27-dimensional module
is not unique.

Note that the code C3(Γ) is the code spanned by the adjacency matrix A of Γ.
Moreover, self-orthogonality of C3(Γ) follows readily by noticing that in the second
row of A1 all values are divisible by 3. Alternatively, recall that Γ and D126 are
being used interchangeably when necessary. So, for example we could use the fact
that D126 is self-orthogonal, and deduce the self-orthogonality of C3(Γ) since the
block-point incidence matrix of D126 spans a self-orthogonal code of length 351.

Since the block size of D126 is divisible by 3, we have that 1 ∈ C3(Γ)
⊥

.
The minimum distance 126 can be deduced from the weight distribution of C3(Γ)

which is given in Table 1.

Denote by d⊥ the minimum weight of C3(Γ)
⊥

. From [1, Lemma 2.4.2] we have
that d⊥ ≥ r

λ + 1 = 126
45 + 1 > 3. We will show next that for d⊥ ≥ 6 and we do

so by showing that if d⊥ ∈ {4, 5} we get a contradiction. Since the argument goes
through smoothly for either choices of d⊥ we consider d⊥ = 5. Let p be a fixed point

in the support S of a non-zero codeword u ∈ C3(Γ)
⊥

of weight s = d⊥ and pi be the
number of blocks of the design D126 (recall here that Γ is a (v, k, λ)-graph which
is identified with D126) passing through p and meeting S in i points. A counting
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argument gives

(3)

k∑
i=1

pi = r,

k∑
i=2

(i− 1)pi = (s− 1)λ.

From Equation (3) we obtain

(4)

k∑
i=3

(i− 2)pi = (s− 1)λ− r,

and Equations (3) and (4) imply that p2 = r −
∑k
i=3 pi ≥ r −

∑k
i=3(i − 2)pi =

r− [(s− 1)λ− r] = 2r− (s− 1)λ. Hence we have p2 ≥ 252− 180 = 72 for any point

of S. Now examine the entries of u. Denote S = {qi | 1 ≤ i ≤ 5}, since 1 ∈ CΓ
⊥ we

must have entries +1 at four points, say qi, for i = 1 to 4 and −1 at q5. However,
every block meeting S in two points and passing through q1 must pass through q5,
but there are only four points remaining once q1 is chosen; thus not all 72 blocks
which meet S in two points can pass through q5; thus we have a contradiction.
Now, direct calculations show that the weights of the rows of the generator matrix

for C3(Γ)
⊥

equals 6, so the minimum weight d⊥ ≥ 6, and the assertion follows.

(ii) That 1 ∈ C3(Γ) follows since the sum (modulo 3) of all rows of a generator
matrix of C3(Γ) is the all-one vector.

Notice from Table 1 that there are 702 codewords of minimum weight 126 in
C3(Γ). Thus the words of weight 126 in C3(Γ) are the incidence vectors of the blocks
of D126 and their scalar multiples. Moreover, these codewords form a spanning set
for C3(Γ). Since by Lemma 5.2 we have Aut(D126) = O7(3):2 ⊆ Aut(C3(Γ)), and
since |O7(3):2| = |Aut(C3(Γ))| it follows that Aut(C3(Γ)) ∼= O7(3):2.

(iii) Since λ0 is the only eigenvalue which vanishes modulo p, we obtain rkp(A) =
n−m0 = 350.

(iv) and (v) follow from [5, Proposition 13.7.1(iv)], since none of the λi vanishes
modulo p, for p as given in the proposition. So, rkp(A) = 351.
(vi) See proof of Proposition 5.4(i) below.

We now examine the codes of the complementary graph Γ and those of its reflexive

graph Γ
R
.

Theorem 5.4. Let Cp(Γ) and Cp(Γ
R

) denote the p-ary codes of Γ and of Γ
R
,

respectively. Then
(i) C2(Γ) is a self-orthogonal doubly-even [351, 78, 48]2 code with 9828 codewords
of weight 48. Moreover, C2(Γ) is an irreducible and faithful F2-module invariant
under G2(3) and Aut(C2(Γ)) ∼= O7(3):2.
(ii) Cp(Γ) = F351

p for p = 3, 13.

(iii) C7(Γ) is a code of codimension 1 in F351
7 .

(iv) Cp(Γ
R

) = F351
p for p 6= 3.

(v) C3(Γ
R

) = [351, 28, 108]3 and C3(Γ
R

) = C3(Γ) + 〈1〉.

Proof. (i) Since λ1− λ2 = −18, and divisible by 2 we have from [6, Section 3] that
rk2(A) ≤ min(m1 + 1,m2 + 1) = 169. In what follows we sketch an argument that
shows that the 2-rank of A is 78. From [24, p. 140] it follows that the irreducible
2-modular characters of G2(3) have degrees 1, 14, 64, 78, 90, 378, 448 and 832,
respectively. Recall that the permutation character of G2(3) of degree 351 is the
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sum of three irreducibles: χπ = χ1 +χ168a+χ182b. Restricting these to the elements
of order prime to 2 and decomposing into 2-modular irreducibles we obtain from [24,
p. 140] (see also [4]) that ϕ168a = ϕ78 + ϕ90a

and ϕ182b = ϕ14 + ϕ78 + ϕ90c
. It

follows from this that ϕπ = ϕ1 +ϕ14 + 2ϕ78 + 2ϕ90. Now rk2(J − I −A) = 78, and
C2(Γ) = 〈J − I −A〉2 is the unique irreducible (absolutely irreducible) F2-module
of dimension 78 invariant under G2(3).

For the reader’s convenience, in Table 2 we give the 2-module structure of the
permutation module F2Ω = F351

2 of dimension 351 computed using Magma [2].
Since the table is symmetric about the diagonal we omit the lower half for clarity.
In addition, we place a 1 or . in the table according to whether or not a submodule
is contained in a given module (sometimes itself). The socle of F351

2 , denoted here
by Soc(F351

2 ) has dimension dim(Soc(F351
2 )) = 79 = 78 + 1. From this we deduce

that Soc(F351
2 ) = C2(ΓR) = C2(Γ) + 〈1〉. See also, the partial lattice of submodules

for F3Ω given in Figure 1 which depicts the code inclusions.

Figure 1. Partial submodule lattice for the 351-dimensional rep-
resentation over F2

351

273 350

272

79

...

78 〈1〉

{0}

The code C2(Γ) is the code spanned by the matrix A over F2. The self-
orthogonality of C2(Γ) follows by noticing the divisibility of the parameters of Γ by
2. This can be read off from the third row of A2 found above Remark 5.1.

For items (ii), (iii) and (iv), respectively, the proof is virtually the same as that

given for Proposition 5.3 with Γ and ΓR replaced by Γ and Γ
R
, respectively. Thus

we omit it.

(v) The code C3(Γ
R

) is the code of the complementary 2-(351, 225, 144) design,
and so it has parameters [351, 28, 108]3 and thus contains C3(Γ). Moreover, 1 ∈
C3(Γ

R
).

5.3. Codes of residual and derived designs. In this section we examine the
ternary codes of the residual and derived designs of D126 and describe some of their
properties. The residual design of the 2-(351, 126, 45) design D126 is a 2-(225, 81, 45)
design, denoted here D81 and the derived design is a 2-(126, 45, 44) design denoted
D45.
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Table 2. Incidence matrix of the poset of submodules of F2
351×1

dim 0 1 78 79 92 93 168 168 169 169 182 182 183 183 258 259 272 273 350 351

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 . 1 . 1 . 1 . . 1 1 . . 1 1 . 1 . 1 . 1
78 . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
79 . . . 1 . 1 . . 1 1 . . 1 1 . 1 . 1 . 1
92 . . . . 1 1 . . . . 1 1 1 1 . . 1 1 1 1
93 . . . . . 1 . . . . . . 1 1 . . . 1 . 1
168 . . . . . . 1 . 1 . 1 . 1 . 1 1 1 1 1 1
168 . . . . . . . 1 . 1 . 1 . 1 1 1 1 1 1 1
169 . . . . . . . . 1 . . . 1 . . 1 . 1 . 1
169 . . . . . . . . . 1 . . . 1 . 1 . 1 . 1
182 . . . . . . . . . . 1 . 1 . . . 1 1 1 1
182 . . . . . . . . . . . 1 . 1 . . 1 1 1 1
183 . . . . . . . . . . . . 1 . . . . 1 . 1
183 . . . . . . . . . . . . . 1 . . . 1 . 1
258 . . . . . . . . . . . . . . 1 1 1 1 1 1
259 . . . . . . . . . . . . . . . 1 . 1 . 1
272 . . . . . . . . . . . . . . . . 1 1 1 1
273 . . . . . . . . . . . . . . . . . 1 . 1
350 . . . . . . . . . . . . . . . . . . 1 1
351 . . . . . . . . . . . . . . . . . . . 1

Proposition 5.5. (i) Let C225 denote the ternary code of the residual 2-(225, 81, 45)
design D81. Then C225 is a self-orthogonal [225, 26, 81]3 code, with 700 codewords
of weight 81. The minimum weight codewords of C225 are the blocks of D81 and
their scalar multiples. The dual code C⊥225 of C225 is a [225, 199, 6]3 code. Further,
Aut(D81) ∼= 2·PSU4(3)·(22)122

∼= Aut(C225).
(ii) Let C126 denote the ternary code of the derived 2-(126, 45, 44) design D45. Then
C126 is a self-orthogonal [126, 21, 36]3 code, with 252 codewords of weight 36. The
minimum weight codewords of C126 span the code, and its dual code C⊥126 is a
[126, 105, 6]3 code with 23250 words of weight 6.

Remark 5.6. (a) Notice that Aut(D81) = StabAut(D126)(B) ∼= 2·PSU4(3)·(22)122

where B ∈ B is the block used to construct D81. For the notation (22)122, consult
the ATLAS [13, p. 109].
(b) The central involution of Aut(D81) acts trivially on C225. As stated in Propo-
sition 5.5(i) the central involution of Aut(C225) sends v to −v for every codeword
v ∈ C225.
(c) Observe that the minimum weight of C225 is 81 and this is the block size of D81.
(d) The code C126 is isomorphic to the code discussed in [15, Section 5.2]. Observe
that the code examined in [15, Section 5.2] has been obtained as the code of a
strongly regular (126, 45, 12, 18) graph. The latter graph denoted G126 is one of two
strongly regular locally GQ(4, 2) graphs, see [31]. G126 is isomorphic to NO−6 (3),
the graph on one class of nonisotropic points of PG(5, 3) equipped with a nonde-
generate quadratic form, where two points are joined when they are orthogonal (i.e.
when the connecting line is elliptic).

6. Graphs, designs and codes from G2(4) of degree 2016

The action of the group PGO2m+1(2t) on an orbit of non-singular hyperplanes
of PG(2m, 2t) is isomorphic to the action of PSp2m(2t) on Q, the set of quadratic
forms of V, polarizing into the given symplectic form f, where V is a 2m-dimensional
vector space over F2t . The quadratic form could be hyperbolic or elliptic. It was
proved in [20, Lemma 1] that if Q(x) ∈ Q, then the members of Q are the various
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Q(x) + (f(x, q))
2

for q ∈ V. In addition, Q(x) + (f(x, q))
2

are in the same orbit
under Sp2m(2t) if and only if Q(q) = s2 + s for some s ∈ F2t . Hence Sp2m(2t) is of
rank 3 when t = 2, i.e., Q(q) ∈ {0, 1}. It was proven in [14, Section 5] that G2(q) is
a maximal subgroup of PSp6(q) for q > 2, even. In particular, here we consider G =
G2(4) < PSp6(4). So, let Q be an elliptic form. As stated earlier, the two orbits of

GQ correspond to the quadratic form Q(x)+(f(x, q))
2

for Q(q) = 0 or 1, but in this
case the stabilizer GQ is isomorphic to PSU3(4):2 acting naturally on V = F6

4. One
can deduce from [14, Section 6] that the diagonal of a hermitian form on F3

q2 is an

elliptic quadratic form on F6
q, so PSU3(4) is a subgroup isomorphic to O−6 (4), which

is in fact the stabilizer of an elliptic form in PSp6(4). Notice that |G2(4)| = 212 ·33 ·
52 · 7 · 13 and G2(4) has an involutory outer automorphism, so its automorphism
group is a split extension of G2(4) by Z2. Recall from Section 3 that G2(4) of degree
2016 has a rank 3 action on the setQ of elliptic forms. Here, we consider the designs,
graphs and codes defined by this rank 3 action. By Equation (2), the orbits of GQ
are of lengths 1, 975, and 1040, respectively. We denote by Λ the strongly regular
(2016, 975, 462, 480) graph constructed from the orbit of length 975, and denote Λ
its complement which has parameters (2016, 1040, 544, 528). The structure of Λ and
Λ give the following values:

B0 = I3, B1 =

 0 1 0
975 462 480
0 512 495

 , B2 =

 0 0 1
0 512 495

1040 528 544

 .
The common eigenspaces ξi(bj) of the intersection matrices over a field of charac-
teristic zero are displayed in the “character table” [ξi(bj)]1≤i,j≤3 given below

[ξi(bj)] =

 1 975 1040
1 15 −16
1 −33 32

 .
• The rows of the adjacency matrix B for Λ give the blocks of the neighbourhood

design of Λ which we denote D975. Notice that D975 is a self-dual symmetric
1-(2016, 975, 975) design. We write Cp(Λ) to denote the p-ary codes spanned
by the rows of an incidence matrix of D975.

• From the rows of an adjacency matrix B + I of the reflexive graph ΛR we
obtain the self-dual symmetric 1-(2016, 976, 976) design D976, and the p-ary
code Cp(Λ

R).

• The rows of an adjacency matrix B for Λ give the self-dual symmetric 1-
(2016, 1040, 1040) design D1040, and p-ary code Cp(Λ).

• From the rows of an adjacency matrix B+ I of the reflexive graph Λ
R

we get

the self-dual symmetric 1-(2016, 1041, 1041) design D1041. We write Cp(Λ
R

)
to denote the p-ary codes of D1041.

Remark 6.1. It follows from [11, Chapter 2] and the ATLAS [13, p. 97] that
the eigenvalues and multiplicities for Λ are αi for 0 ≤ i ≤ 2 with multiplicities mi

respectively, those for ΛR are α∗i = αi + 1 with multiplicities mi for 0 ≤ i ≤ 2, and

those for Λ and Λ
R

are α0 = n−1−k, αi = −αi−1, α∗i = αi+1 for i = 1, 2, where

• α0 = 975, α∗0 = 976, α0 = 1040, α∗0 = 1041,m0 = 1;
• α1 = 15, α∗1 = 16, α1 = 32, α∗1 = 33, m1 = 1365;
• α2 = −33, α∗2 = −32, α2 = −16, α∗2 = −15, m2 = 650.
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Let B denote the adjacency matrix of the graph Λ and B the adjacency ma-
trix of its complementary graph Λ. In this section we examine the p-ary codes
Cp(B), Cp(B+I), Cp(B) and Cp(B+I) from the matrices B, B, B+I and B+I.
We denote these codes according to the notation of their graphs, i.e. Cp(Λ), Cp(Λ

R),

Cp(Λ) and Cp(Λ
R

), respectively. We start by examining the codes Cp(Λ) and
Cp(Λ

R).

Theorem 6.2. Let Cp(Λ) denote the p-ary code of Λ and Cp(Λ
R) be the p-ary code

of the reflexive graph ΛR of Λ. Then
(i) Cp(Λ) = F2016

p for p = 2, 7.
(ii) C3(Λ) is a self-orthogonal [2016, 651, d]3 code with d ≥ 975.

(iii) F2016
5 = C5(Λ) + C5(Λ)

⊥
and dim(C5(Λ)) = 650. Moreover, C5(Λ

R
) and

C5(Λ
R

)⊥ are LCD codes.
(iv) C13(Λ) is a code of codimension 1 in F2016

13 .

(v) C2(ΛR) is a self-orthogonal triply-even [2016, 14, 976]2 code, and C2(ΛR)
⊥

is
a [2016, 2002, 4]2 code with 83701800 codewords of weight 4. The minimum weight
of C2(ΛR) is the valency of ΛR and the words of minimum weight are the rows of
the adjacency matrix of ΛR. Moreover, C2(ΛR) is spanned by its minimum weight
codewords.
(vi) 1 ∈ C2(ΛR) and Aut(C2(ΛR)) ∼= PSp6(4).
(vii) Cp(Λ

R) = F2016
p for p 6= 2.

Proof. (i) By Remark 6.1 we have that the eigenvalues of B are α0 = 975, α1 = 15,
and α2 = −33 with multiplicities m0 = 1,m1 = 1365 and m2 = 650. Since none of
the αi vanishes mod p, for p = 2, 7 it follows from [5, Proposition 13.7.1(iv)] that
rkp(B) = 2016.

(ii) From [5, Proposition 13.7.1] we obtain an upper bound on the 3-rank of B, i.e.,
rk3(B) ≤ min(m1 + 1,m2 + 1) = 651. Since by computations with Magma [2] we
have dim(C3(Λ)) equals 651, the result follows. Furthermore, self-orthogonality of
C3(Λ) follows since in Λ all parameters are divisible by 3. Now, d ≥ 975 follows
since the valency of Λ is 975.

(iii) rk5(B) = 650, since α0 ≡ α1 (mod 5), α2 6≡ 0 (mod 5) and 5 |µ, by [5, Proposi-

tion 13.3.2 (iii)]. Now, C5(Λ)∩C5(Λ)
⊥

= {0} implies that F2016
5 = C5(Λ) +C5(Λ)

⊥

and the result follows. Observe that this shows that C5(Λ) and C5(Λ)
⊥

are LCD
codes.

(iv) Finally, since α0 is the only eigenvalue which vanishes modulo 13, we obtain
rk13(B) = n−m0 = 2015.

(v) That the dimension of C2(ΛR) is as stated in the proposition follows by using

the Atlas of Brauer characters [24, p. 273]. Moreover, C2(ΛR)∩C2(ΛR)
⊥

= C2(ΛR)
and thus C2(ΛR) is self-orthogonal. That the minimum weight equals the valency
of ΛR follows at once. By computations with Magma [2] we obtain the weight
distribution of C2(ΛR) which is given as follows

(5) A0 = A2016 = 1, A976 = A1040 = 2016, A1008 = 4160, A992 = A1024 = 4095.

Now, notice from Equation (5) that there are exactly 2016 codewords of minimum
weight 976 in C2(ΛR). Thus the adjacency matrix of ΛR is determined up to
a column permutation by the set of all minimum weight codewords, and these
correspond to the rows of ΛR. Consequently, these are spanning vectors of C2(ΛR),
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and since the spanning words of C2(ΛR) have weight divisible by eight, it follows
that C2(ΛR) is triply-even.

(vi) That 1 ∈ C2(ΛR) can be deduced from Equation (5). From the fact that
an automorphism of the code must preserve weight classes and thus the minimum
words which correspond to the rows of ΛR we deduce that Aut(ΛR) ⊆ Aut(C2(ΛR)).
Order considerations shows that Aut(ΛR) = Aut(C2(ΛR)) ∼= PSp6(4).

(vii) Follows as in (i).

In Theorem 6.3 we list the properties of the p-ary codes from the graphs Λ and

Λ
R
. The proof follows by arguing similarly as in Theorem 6.2.

Theorem 6.3. Let Cp(Λ) denote the p-ary code of Λ and Cp(Λ
R

) be the p-ary code

of Λ
R

the reflexive graph of Λ. Then
(i) C2(Λ) = C2(ΛR).
(ii) Cp(B) = F2016

p for p = 3, 7.

(iii) Cp(Λ) is a code of codimension 1 in F2016
p for p = 5, 13.

(iv) Cp(Λ
R

) = F2016
p for p = 2, 7, 13.

(v) C3(Λ
R

) is a self-orthogonal [2016, 651, d]3 code with d ≤ 1041.

(vi) F2016
5 = C5(Λ

R
) + C5(Λ

R
)⊥ and dim(C5(Λ

R
)) = 651. Moreover, C5(Λ

R
) and

C5(Λ
R

)⊥ are LCD codes.

The preceding theorems, lemmas and propositions give the proof of Theorem 1.1
stated in the introduction.

Codes with few weights have gained recent interest. In particular, three-weight
codes have been studied in [9]. We show in the next result that a subcode of
codimension one of C2(ΛR) is a projective triply-even three-weight code.

Proposition 6.4. The codewords of weight 992 in C2(ΛR) span an indecomposable
code L of co-dimension 1. The code L is a projective three-weight [2016, 13, 992]2
self-orthogonal and triply-even code and its dual L⊥ is a [2016, 2003, 4]2 code with
167567400 codewords of weight 4. Furthermore, 1 ∈ L, Aut(L) ∼= PSp12(2) and L
meets the Grey-Rankin bound with equality.

Proof. Observe first that C2(ΛR) = L ⊕ 〈1〉. The weight distribution

(6) A0 = A2016 = 1, A992 = A1024 = 4095

of L can be deduced from Equation (5).
Now, since L ⊂ C2(ΛR) it follows that L is self-orthogonal and triply-even, since

subcodes of triply-even codes must be triply-even. It is clear from Theorem 6.2 (vi)
that 1 ∈ L, see also [25, Lemma 2.2(iv)].

Taking the support of the codewords of weight 992 in L we observe that these span
a 1-(2016, 992, 2015) design D with 4095 blocks. This is in fact a quasi-symmetric
2-(2016, 992, 991) design D with 4095 blocks, i.e. totally isotropic 1-spaces. By
computations with Magma we observe that D admits a 2-transitive automorphism
group of order 236 · 38 · 53 · 72 · 11 · 13 · 17 · 31 with point stabilizer isomorphic
to PGO−12(2) and with block stabiliser isomorphic to 211:PSp10(2). Now by the
classification of primitive groups of degree 2016 we have Aut(D) ∼= PSp12(2). Since
Aut(D) ⊆ Aut(L) we deduce by order considerations that Aut(L) ∼= PSp12(2).
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The fact that L meets the Grey-Rankin bound with equality follows from [25,
Theorem 2.8].

As a direct application of [12, Lemma 2.4], we deduce the following:

Proposition 6.5. The code generated by the incidence matrix of the design D is
contained in L. There are no other self-orthogonal 2-(2016, 2k, λ) designs invariant
under PSp12(2).

Remark 6.6. The design D of Proposition 6.4 forms part of a family of non-
symmetric 2-(v, k, λ) designs with parameters

(7) v = 22m−1 − 2m−1, k = 22m−2 − 2m−1, λ = 22m−2 − 2m−1 − 1

known to have the symmetric difference property (SDP), i.e. designs for which the
symmetric difference of any two blocks is either a block or the complement of a
block. According to [25, Lemma 2.2(ii)] designs of the form (7) are derived designs
of symmetric designs with the symmetric difference property with parameters

(8) v = 22m, k = 22m−1 − 2m−1, λ = 22m−2 − 2m−1.

The number of non-isomorphic quasi-symmetric SDP designs grows exponentially
and the exact number of non-isomorphic symmetric SDP designs with parameters 2-
(22m, 22m−1−2m−1, 22m−2−2m−1) depends on the number of inequivalent univariate
bent functions over F2m . According [7, Section 7.6] this number equals 896 for
m = 6. In Corollary 6.4 the constructed 2-(2016, 992, 991) design D admits a 2-
transitive automorphism group. To the benefit of the reader, we remark that our
construction differs from that presented in [7, Proposition 7.6.2] and [25].

By enumerating all G2(4)-submodules of G2(4) of degree 2016 over F2, we deter-
mine the number of distinct G2(4)-invariant codes of length 2016. We use this fact
to give a non-existence result on self-dual codes of length 2016 over F2 invariant
under G2(4).

Proposition 6.7. Let F be an algebraically closed field of characteristic 2. Then
there is no G2(4)-invariant self-dual code of length 2016.

Proof. Consider G = G2(4) ≤ PSp6(4). Recall that in this case we are dealing
with the rank 3 representation of degree 2016. For this let ϕπ denote the 2-Brauer
character of the permutation character of G2(4) of degree 2016, and χπ denote
its ordinary permutation character. By the ATLAS [13, p. 97] we have χπ =
χ1 + χ650 + χ1365, and from [4] ϕπ decomposes into

ϕπ = 28ϕ1 + 19ϕ6a + 19ϕ6b
+ 10ϕ14a + 10ϕ14b

+8ϕ36 + ϕ64a
+ ϕ64b

+ 4ϕ84a
+ 4ϕ84b

+ 2ϕ196.

Since all simple submodules of ϕπ appear with even multiplicity, then [23, Theo-
rem 2.1] would imply existence of a self-dual code of length 2016 invariant under
G2(4). However, examining the Atlas of Brauer characters [24, p. 273] (see also
[38]) we see that the representations of degrees 6, 14, 64 and 84 are not realizable
over F2. The smallest field of realization of these representations is F4. Hence, there
is no self-dual code of length 2016 invariant under G.

In the case of arbitrary fields F ⊇ F2 we have essentially the same situation, since
FΩ ∼=F⊗F2

F2Ω and almost all completely reducible factors are multiplicity-free.
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7. Concluding remarks

We note here that the p-ary codes with parameters those listed in Theorem 1.1
are codes with moderately large length and small dimension and as such are not
listed in any known database of linear codes. The interest in studying them was
mainly prompted by their geometric connections to groups of exceptional type,
irreducibility properties, by the large size of their automorphism groups which in
the binary case might make them useful to permutation decoding. An additional
motivation for their study is the fact that they satisfy the property that their
minimum weight is the valency of the graph and the minimum weight codewords
are exactly the rows of the adjacency matrix and their scalar multiples. For the
reader’s convenience in Table 3 we list the main parameters of the codes obtained
in the paper and provide a structure description of their automorphism groups.

Table 3. p-ary codes from the rank 3 actions of G2(3) and G2(4)

p G2(3) code Aut G2(4) code Aut

2 [351, 78, 48] O7(3):2 [2016, 14, 976] PSp6(4)
2 [351, 79, 48] O7(3):2 [2016, 2002, 4] PSp6(4)
2 [2016, 13, 992] PSp12(2)
2 [2016, 2003, 4] PSp12(2)
3 [351, 27, 126] O7(3):2 [2016, 651, d], d ≥ 975 −
3 [351, 324, 6] O7(3):2 [2016, 651, d], d ≥ 1041 −
3 [351, 28, 108] O7(3):2
5 [2016, 650, d] −
5 [2016, 651, d] −

We note that the designs that we examine from the given strongly regular graphs
are in accordance with the designs constructed from finite primitive groups by using
a method of construction outlined by Key and Moori in [32]. For q ≥ 5, the action

of the group G2(q) on q3(q3−1)
2 points is no longer of rank 3. However, the current

work together with some additional computer experimentations (up to q = 9) led
us to the following questions which are of theoretical significance.

Question 7.1. For odd q ≥ 5, let G = G2(q) act primitively on the set Ω of degree
q3(q3−1)

2 and α ∈ Ω. Let ∆ be the orbit of size q2(q3 + 1) of the stabilizer StabG(α).
Let D = (Ω,B) be the design constructed from G with B = {∆g : g ∈ G}. Then is
the core of the full automorphism group Aut(D) of D isomorphic to O7(q)?

A computer search performed in Magma with limited computing power, has not
yielded another example of subcodes whose properties are similar to those of the
code studied in Proposition 6.4 for G2(4). Thus, we pose the following

Question 7.2. Is there any generalization for the construction of this G2(2m)-
subcode, i.e., does there exist a G2(2m)-code C over F2 having a nontrivial proper
subcode L such that

• L is a G2(2m)-subcode of C and
• The full automorphism group of L explodes in size, to possibly a group iso-

morphic to Sp6m(2)?
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