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Abstract 
Pulmonary tuberculosis is a worldwide epidemic that can only be fought effectively with early and accurate diagnosis 
and proper disease management. The means of diagnosis and disease management should be easily accessible, cost 
effective and be readily available in the high tuberculosis burdened countries where it is most needed. Fortunately, the 
fast development of computer science in recent years has ensured that medical images can accurately be quantified. 
Radiomics is one such tool that can be used to quantify medical images. This review article focuses on the literature 
currently available on the application of radiomics explicitly for the purpose of diagnosis, differentiation from other 
pulmonary diseases and disease management of pulmonary tuberculosis. Despite using a formal search strategy, only five 
articles could be found on the application of radiomics to pulmonary tuberculosis. In all five articles reviewed, radiomic 
feature extraction was successfully used to quantify digital medical images for the purpose of comparing, or 
differentiating, pulmonary tuberculosis from other pulmonary diseases. This demonstrates that the use of radiomics for 
the purpose of tuberculosis disease management and diagnosis remains a valuable data mining opportunity not yet 
realised. 
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Introduction 

Pulmonary tuberculosis (PTB) is an ongoing global epidemic 
and has been identified as a research priority by the World 
Health Organization (WHO) and various countries' national 
health departments.1 Early and accurate diagnosis and proper 
disease management is key to fighting this epidemic. To 
diagnose and manage PTB clinicians generally use a 
combination of biological methods (such as the Mantoux 
tuberculin skin test, tuberculosis (TB) blood test or sputum 
smear tests),2 demographic data and radiological methods.3-4 
Biological methods are used as PTB biomarkers, with a sputum 
smear culture conversion (smear-positive to smear-negative 
status) currently the most widely accepted biomarker to predict 
a relapse-free cure of PTB.5 A meta-analysis study showed that 
this is not a reliable biomarker with a sensitivity of only 40% 
(95% CI 25–56) and specificity of 85% (95% CI 77–91) for 
predicting relapse.5 Researchers, therefore, still face the 
challenge of identifying more sensitive and specific biomarkers 
that can be used to evaluate TB disease progression and response 
to treatment quantitively.5-7 Another challenge in fighting this 
global epidemic is the burden of multi-drug resistant TB, where 
India (27%), China (14%) and The Russian Federation (8%) 
carry the highest number of cases globally.1 To ensure a 

reduction in incidences and deaths, this epidemic needs to be 
addressed universally. 
 The top 8 highest TB burdened countries, who account for 
two-thirds of the global TB incidence, are all developing 
countries, with 44% of all global cases in the South-East Asian 
region.1 In these countries chest x-ray (CXR) remains the most 
common radiological imaging modality for PTB screening, as 
access to more sophisticated three-dimensional (3D) imaging 
modalities are limited.8-9 Even in countries where patients have 
easier access to 3D modalities, it was shown that CXR remains 
the foundation for imaging certain radiological expressions of 
PTB, e.g. parenchymal disease.10 But CT is more sensitive in 
detecting many other radiological expressions, e.g. 
lymphadenopathy and early bronchogenic spread in post-
primary TB.10 Not only is CXR the most widely accessible 
imaging modality,11 but radiation doses to the patients are kept 
to a minimum by using projection imaging.12 Radiation dose and 
long term radiation effects become a considering factor when 
screening large cohorts or when multiple follow-up images are 
acquired. Research has showed that CXR is a very effective 
diagnostic modality as it yields high sensitivity (0.78, 95% CI 
0.73-0.82) and moderate to high specificity (75.7%).8,13 But to 
utilise these properties expert readers are needed to interpret 
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these images, and these experts are often scarce in resource-
limited countries.3  
 With the fast development of computer science in recent years, 
various research studies have been conducted on the use of 
artificial intelligence (AI) applications (Machine Learning (ML) 
and Deep Learning (DL)) to assist with, among other things, 
medical image processing and interpretation.11 ML is a subset of 
AI that uses statistical algorithms that enable machines to 
improve with experience, while DL is a subset of ML and is 
based on artificial neural networks that enable algorithms to 
train themselves. Lately, ML and DL have allowed radiological 
image interpretation to evolve from subjective reporting to 
objective science,11 and from a primary diagnostic tool to a 
central role player in personalised precision medicine.14 
 PTB causes a wide variety of pathological changes in the lungs 
which lead to many different radiological manifestations, and AI 
systems that are developed must have the ability to adapt to and 
manage these distinct morphological patterns.15 Pathological 
changes visible on CXR include changes in the lung shape, size, 
and context (texture), which influence the lung-field symmetry.9 
When radiologists perform bi-lateral comparisons on CXR, the 
differences in corresponding regions between the left and right 
lung greatly assist in detecting these abnormalities.16 This same 
principle is mimicked when automatic TB detection systems use 
feature vectors of various sizes and combinations,9,17-18 with 
different classification algorithms to extract information from 
radiological images.9,19  
 To date AI applications are mainly used for the diagnosis of 
TB, but a few other studies have been done, for example on the 
automatic differentiation of drug-sensitive TB from drug-
resistant TB from CXR.19 This study tested various classifiers 
by using them in combination with a set of shape and texture 
features. It achieved the best performance, with an area under 
the receiver operating characteristic curve (AUC) of 66%, when 
using a traditional artificial network (ANN).19 Many studies 
have also been done on differentiating PTB from other 
pulmonary diseases, often lung cancer, using both CXR and CT 
scans. The reason for this is that PTB mimics various other 
pulmonary diseases, and diagnostic imaging of PTB remains 
challenging.10  
 Automatic PTB screening systems are extremely useful, 
efficient and can be a low-cost mass screening tool that can be 
well utilised in resource-constrained countries.20 DL methods 
for some diseases do not yet perform to the same accuracy as 
radiologists, but it has been demonstrated that automatic PTB 
detection from CXR has reached radiologist level 
performance.21 However, research into automated radiological 
image analysis for disease management and prognosis remains 
limited.21 For quantitative disease management, the automatic 
algorithms need to produce measurable outputs. One such 
method to quantify medical images is by using radiomic feature 
extraction. Although recently developed DL networks have led 
to more robust models for radiomics, and this has allowed the 
high-throughput extraction of quantitative features from 

radiological images, this has not been widely utilised as 
quantitative outputs need to be extracted from the networks and 
are generally hidden within the layers of the DL network or 
within the last layer of the algorithm.22  
 Radiomics is based on the hypothesis that the correct 
combination of these features, together with the clinical data, 
can identify significant tissue properties useful in the 
management of a disease.23 Radiomics differs from traditional 
Computer-aided-detection (CAD) systems in the sense that 
CAD systems were designed only to diagnose or detect a 
disease.24 Radiomic feature extraction can also be used to 
quantify disease characteristics and progression from medical 
images, as it makes use of statistically based imaging analysis 
algorithms to act as quantitative biomarkers for the identification 
of radiological features.24-25 These can be used to quantify 
change and categorisation and not only identify and categorise 
predicted outcomes or disease states. This feature extraction tool 
allows medical images to be converted into minable multi-
dimensional statistical data sets which characterise the 
relationship between the high dimensional data of the images.24  
Radiomics is a complex, multi-step field of study that includes 
the following identifiable steps: image acquisition, image 
segmentation, feature extraction and qualification, analysis and 
database development.25 Database development includes 
developing a radiomics signature or nomogram. A radiomics 
signature is a computational model built to meet specific clinical 
needs,26 whereas a radiomics nomogram integrates a radiomics 
signature with the clinical data to evaluate parameters such as 
prognosis or disease management.27 To develop accurate, robust 
and reproducible radiomics signatures, the knowledge and skills 
of qualified and experienced researchers are crucial. They need 
to understand the influence of exposure parameters, image pre- 
and post-processing, image segmentation and mask modelling. 
Experienced researchers also play a vital role in optimisation 
and standardisation of image acquisition protocols, modelling, 
developing algorithms and the statistical analysis of high 
dimensional data. 
 Extracted features can be sub-categorised into first-order 
statistical features, shape-based features (morphological 2D and 
3D), textural features (or second-order statistical features) and 
higher-order statistical features.28 Higher-order statistics are 
obtained by applying filters or mathematical transforms to the 
image before applying statistical algorithms.28 Each one of the 
steps in radiomics poses its own set of challenges. Rizzo et al. 
explained it well in a narrative review article; "Radiomics: the 
facts and the challenges of image analysis".23 
 Radiomics had its origin in the medical field of oncology,24 
and numerous articles have been published on the use of 
radiomics in tumours, but very few on the application in non-
neoplastic diseases such as TB.29 The purpose of this review 
article is to determine what research has already been done on 
the application of radiomics explicitly for the diagnosis and 
management of PTB or the differentiation of PTB from other 
pulmonary diseases. This will also reveal areas not yet addressed 
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in the available literature and the potential opportunities for 
future research. Even though this is a narrative review, a formal 
systematic research strategy was followed to ensure that all 
published journal articles on this topic were included. 
 

Methods 

Review search strategy 
A comprehensive search for relevant literature was done by two 
independent information specialists at two separate universities. 
The following databases were included in the search: PubMed 
(US National Library of Medicine), OVID Medline, Scopus, 
OVID Embase, CINAHL and IEEE Xplore. 
 The search strategy that was applied to text-words can be 
summarised as follows: ((radiomics OR radiomic*) OR 
('imaging biomarker*' OR 'radiological biomarker*' OR 'texture 
feature*' OR 'texture analysis')) AND (tuberculosis OR TB). The 
year limit that was used was 2000 to May 2021 (week 2) when 
the search was concluded. The term 'radiomics' was first 
introduced in medicine in 2012,30 and the year 2000 was an 
arbitrarily selected date prior to 2012.  
 

Study selection criteria 
All journal articles were considered, but only studies that met 
the following inclusion criteria were included: 1) Original 
studies with full-text articles published in English. 2) Studies 
with a human study population who were diagnosed with 
pulmonary tuberculosis. 3) Articles that included medical 
images (from any imaging modality: CT, MRI, PET/CT and x-
rays) as datasets. 4) Studies that used radiomics or texture 
feature extraction methods. 5) Articles with the aim to develop 
imaging- or radiological biomarkers for PTB. 
 Exclusion criteria: 1) Articles that did not extract quantitative 
information from medical images. 2) Non-peer-reviewed 
academic journal articles, including conference proceedings. 
 

Search results and data extraction 
The search strategies returned a total of 66 journal articles (n = 
18 in the PubMed database, n = 16 in the OVID Medline 
database, n = 5 in Scopus database, n = 6 in OVID Embase, n = 
5 in CINAHL and n = 16 IEEE Xplore database). After 
duplicates were removed, n = 49 remained. Since a systematic 
review search strategy was followed, the search results were 
recorded and summarised accordingly in the PRISMA 
(Preferred Reporting Items for Systematic Reviews and Meta-
Analysis) flow diagram (Figure 1).31 

 

 

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram for journal article screening and 
selection 
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Results 

Despite the thorough search strategy that was followed to ensure 
complete inclusion of all available published data, only 5 articles 
could be found that met all the inclusion criteria on the 
application of radiomics to PTB. The relevant detail for each of 
the studies, such as radiomics libraries, models, algorithms, 
dimensionality reduction methods, clinical features, etc. used, is 
summarised in Table 1. 
 Study A: In the first article by Bei et al. [2019] radiomic 
features extracted from CT images were used to create a 
radiomics signature capable of distinguishing primary 
progressive PTB from community-acquired pneumonia in 
children.29 Manual segmentation was performed by a radiologist 
with more than 10 years of experience and verified by a second 
radiologist.29 The radiologist delineated the margins of 
pulmonary consolidation as the first region-of-interest (ROI) 
and the mediastinal lymph nodes as the second ROI.29 In this 
study, they developed two radiomics signatures, one from each 
ROI, and constructed a radiomics model by combining these two 
signatures.29 Finally, they used the least shrinkage and selection 
operator (LASSO) algorithm to build a predictive nomogram by 
combining the radiomics model with the clinical data.29 The 
predictive nomogram's classification outperformed the senior 
radiologist's clinical judgement (AUC = 0.971, 95% CI: 0.912-
1 vs. AUC = 0.832, 95% CI: 0.677-0.987).29 
 Study B: In the second article Shi et al. [2019], used radiomic 
features to assist with the identification of opportunistic 
pulmonary infections (OPIs) misdiagnosed as lung cancers in 
patients with human immunodeficiency virus (HIV).32 In this 
study 76.2% of the OPI cohort had PTB and 23.8% other 
pulmonary infections.32 Semi-automatic segmentation of the 
lesion was done using in-house software.32 The ROI borders 
were then manually adjusted by a radiologist to ensure that the 
lesion boundary was entirely included and that the bronchi and 
vessels were excluded.32 The morphological CT features, 
clinical data and radiomic features were statistically compared 
between the two disease groups. They concluded that radiomics 
might assist with the identification of OPIs mimicking lung 
cancers for central-type lesions. Four radiomic features in these 
lesions were significantly different (large dependence high gray 
level emphasis (LDHGLE) (P = 0.008), skewness (P = 0.017), 
inverse difference normalised (IDN) (P = 0.017) and kurtosis 
(P = 0.017).32 But they found that radiomics features of the 
peripheral-type lesions might not be useful for differentiating the 
diseases.32  
 Study C: In the third article Feng et al. [2020] used radiomic 
features to differentiate between lung tuberculoma and 
adenocarcinoma presenting as solitary pulmonary solid 
nodules.33 They used a U-net-based volume-of-interest (VOI) 
segmentation method to automatically delineate the lesions' 

boundary.33 A radiomics signature consisting of 6 features was 
identified and combined with clinical data to build a predictive 
radiomics nomogram using LASSO logistic regression.33 The 
signature showed improved diagnostic accuracy compared to 
any single model (AUC = 0.9064, 95% CI: 0.9390-0.9931).33 
 Study D: In this article, Cui et al. [2020] developed a 
radiomics nomogram model, using LASSO algorithms to 
differentiate TB from lung cancer from preoperative lung CT 
data.34 They have also evaluated different radial dilation 
distances outside the lesion to determine the best performance.34 
The nomogram showed good discriminative performance in 
distinguishing TB from lung cancer (AUC = 0.914, 
sensitivity = 0.788, specificity = 0.907).34 This quantitative 
study again shows improved detection and discrimination 
performance of medical images when using the radiomics 
nomogram compared to decisions made by radiologists alone.34 
 Study E: In the final article, Du et al. [2021] developed CT, 
PET and PET/CT radiomics signatures. These signatures were 
combined with semantic features to develop radiomics 
nomograms to differentiate between active pulmonary TB and 
lung cancer.35 Nine CT-based semantic features (maximal tumor 
diameter, tumor location, cavitation, vacuole, spiculation, vessel 
convergence, lobulation, pleural indentation and air 
bronchogram) and two PET-based semantic features 
(radionecrosis and metabolic activity greater that the adjacent 
mediastinal blood pool) were included.35 They showed that the 
performance of the CT signature was superior to that of the PET 
signature (AUC = 0.86 vs. 0.79, p = 0.1585), and that the 
PET/CT signature improved diagnostic performance even 
further compared to CT alone (AUC = 0.91 vs. 0.86, 
p = 0.0247).35 They concluded that PET and CT radiomic 
features could offer complementary diagnostic value when used 
in combination with the semantic features defined by 
radiologists.35 
 

Discussion 

In this review study, only five articles could be identified that 
met the inclusion criteria. In all 5 articles, radiomic feature 
extraction was successfully used to quantify images to compare 
or differentiate pulmonary tuberculosis from other pulmonary 
diseases (pneumonia29, lung cancers32,34-35 and adeno-
carcinomas33). All imaging modalities (CT, MRI, Molecular 
imaging and Planar imaging) were included in the search, but 
only CT and PET/CT (study E only) scans were used for feature 
extraction. It is also interesting to note that all five studies were 
carried out in China. This might be because China is the third 
highest TB burdened country (accounting for 8.4% of all global 
instances),1 they are technologically very advanced and most 
patients have access to 3D imaging resources. 
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Table 1. Summary table that includes comparative, relevant information for the three studies reviewed in this article. 

Study A B C D E 

Author Bei et al. Shi et al. Feng et al. Cui et al. Du et al. 

Year of publication 2019 2019 2020 2020 2021 

Imaging modality CT CT CT CT PET & CT & PET/CT 

Institution where 
data sets were 
acquired 

Beijing Childrens Hospital, 
Beijing, China 

Shanghai Public 
Health Clinical 

Center, Shanghai, 
China 

2 Unknown Centres 
in China 

Liaoning Cancer Hospital 
in China 

1 Unknown Hospital 
in China 

Date data sets were 
obtained Jan 2011 - Jan 2018 Jun 2013 - Feb 2018 Jan 2014 - Dec 2018 Jan 2012 - Oct 2018 Jan 2013 - March 2019 

Sample size 115 (53 TB, 62 CAP) 
73 (24 OPI & 
49 LungCA) 

426 
478  

(244 TB & 234 LungCA) 
174 

(77 TB & 97 LungCA) 

Primary cohort 86 
24 (19 TB, 5 other 

OPI) 
123 319 122 

Validation cohort 29 49 
303 (121 - Internal & 

 182 - External) 
159 52 

Significant clinical 
features used Duration of fever 

Age, Smoking, 
HAART duration, 
CD4+ T cell count, 
CD4+/CD8+ ratio 

Gender, Age, Lesion size, 
Location, Lesion margin, 

Lobulated sharp, 
Spiculation sign 

No clinical features 
included 

9 CT based & 2 PET based 
semantic features 

Segmentation 
method 

Manual segmentation 
by radiologist (>10yrs 
experience).  Second 

radiologist verification. 

Semi-automatic 
inhouse software.  

(Manual adjustment 
by 2 radiologists) 

U-net based Deep Learning 
model (Python) 

Manual segmentation 
by 2 radiologist (12yrs 
& 14yrs experience) 

Manual segmentation by 
nuclear physician (>3yrs 

experience). Second 
physician verification. 

Feature extraction 
software Matlab PyRadiomcs Matlab PyRadiomics Matlab (SERA software) 

Number of features 
extracted 970 99 3556 1967 487 

Type/Category 
of features extracted 

Gray intensity (First order 
statistics), Shape & Size, 

Texture, Wavelet 

First order statistics, 
Shape, Texture 

First order statistics, Shape 
& Size, Texture, Wavelet 

First order statistics, 
Shape and Texture 

First order, Morphological, 
Intensity based,  

Higher order statistics 
Dimensionality 
reduction method LASSO n/a LASSO LASSO 

Pearson correlation analysis 
& LASSO 

Classifier used 
to build predictive 
nanogram 

Linear SVM n/a Not specified 
Multivariable Logistic 
Regression analysis  
('rms' package in R) 

Multivariable Logistic 
Regression analysis 

Number of  
radiomic features 

11 4 6 8 PET: 3, CT: 5, PET/CT: 9 

Features selected 
to build radiomics 
nomogram or 
signature 

X7_fos_maximum 

X0_GLCM_maximum 
_probability 

X6_GLCM_IMC1 

X1_GLRLM_LRLGLE 

X1_GLRLM_LRE 

Max3D 

Sph_dis 

Compactness1 

Surface_to_volume 
_ratio 

X2_fos_minimum 

X0_GLRLM_LRHGLE 

LDHGLE 

Inverse difference 
normalised (IDN) 

Skewness 

Kurtosis 

ZSV_GLSZM 
0.5_0.67_Equal_8 

Kurtosis_Global 
_1_1.5_Equal_8 

complexity_NGTDM 
_1_1.2_Lloyd_16 

HGZE_GLSZM 
_1_0.67_Lloyd_8 

SZHGE_GLSZM 
_1_0.67_Lloyd_8 

SRHGE_GLRLM 
_1.5_0.67_Lloyd_64 

lbp_2D_firstorder 
_Entropy 

lbp_3D_k_firstorder 
_10Percentile 

log_sigma_3_0_mm 
_3D_glcm_ldn 

log_sigma_5_0_mm 
_3D_RunLength-
NonUniformity 

squareroot_gldm 
_Dependence-
NonUniformity 

wavelet_HLH 
_glcm_ldn 

wavelet_HLL 
_glcm_ldn 

wavelet_LLL 
_glcm_ldmn 

P
E

T
 S

ig
n

a
tu

re
 

stat_p10 

morph_asphericity 

cm_info_corr1 
_2D_avg 

C
T

 S
ig

n
at

u
re

 

szm_sze_3D 

ngl_lde_3D 

dzm_zdnu_3D 

morph_a 
_dens_mvee 

cm_clust_shade 
_2D_mrg 

P
E

T
/C

T
 S

ig
n

at
u

re
 

PET_cm_info_corr1 
_2D_mrg 

PET_cm_info_corr2 
_2D_mrg 

PET_stat_p10 

PET_morhp_asphericity 

CT_szm_sze_3D 

CT_ngl_lde_3D 

CT_morph_a 
_dens_mvee 

CT_cm_clust 
_shade_2D_mrg 

CT_dzm_zdnu_3D 

Abbreviations: TB = Tuberculosis, CAP = Community Acquired Pneumonia, OPI = Opportunistic Pulmonary Infections, LungCA = Lung Cancer, HAART = Highly 
Active Antiretroviral Therapy, LASSO = Least absolute shrinkage and selection operator, SVM = Support Vector Machine, GLCM = Gray Level Cooccurrence Matrix, 
GLSZM = Gray Level Size Zone Matrix, GLRLM = Gray Level Run Length Matrix, GLDM = Gray Level Dependence Matrix, NGTDM = Neighboring Gray Tone 
Difference Matrix, LDHGLE = Large dependence high gray level emphasis 
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Table 2. Summary of radiomic features used in each reviewed study. 

Study A B C D E* 

  Bei et al. Shi et al. Feng et al. Cui et al. Du et al. 

1st order 
features 

X7_fos_maximum 

X2_fos_minimum 

Skewness 

Kurtosis 
Kurtosis_Global 
_1_1.5_Equal_8 

lbp_2D_firstorder 
_Entropy 

lbp_3D_k_firstorder 
_10Percentile 

PET_stat_p10 

Shape 

Max3D 

Sph_dis 

Compactness1 

Surface_to_volume_ratio 

--- --- 

log_sigma_3_0_mm 
_3D_glcm_ldn 

log_sigma_5_0_mm 
_3D_RunLength-
NonUniformity 

PET_morhp_asphericity 

CT_morph_a_dens_mvee 

T
ex

tu
re

 

GLCM 
X0_GLCM 

_maximum_probability 

X6_GLCM_IMC1 

Inverse difference 
normalized (IDN) 

--- 

wavelet_HLH 
_glcm_ldn 

wavelet_HLL 
_glcm_ldn 

wavelet_LLL 
_glcm_ldmn 

CT_cm_clust 
_shade_2D_mrg 

PET_cm_info 
_corr1_2D_mrg 

PET_cm_info 
_corr2_2D_mrg 

GLRLM 

X1_GLRLM_LRE 

X0_GLRLM_LRHGLE 

X1_GLRLM_LRLGLE 

--- 
SRHGE_GLRLM 

_1.5_0.67_Lloyd_64 
--- --- 

GLDM --- LDHGLE --- 
squareroot_gldm 
_Dependence-
NonUniformity 

--- 

GLSZM --- --- 

HGZE_GLSZM 
_1_0.67_Lloyd_8 

SZHGE_GLSZM 
_1_0.67_Lloyd_8 

ZSV_GLSZM 
_0.5_0.67_Equal_8 

--- CT_szm_sze_3D 

GLDZM --- --- --- --- CT_dzm_zdnu_3D 

NGTDM --- --- 
complexity_NGTDM 

_1_1.2_Lloyd_16 
--- --- 

NGLDM --- --- --- --- CT_ngl_lde_3D 

Abbreviations: GLCM = Gray Level Cooccurrence Matrix, GLRLM = Gray Level Run Length Matrix, GLDM = Gray Level Dependence Matrix, GLSZM = Gray Level 
Size Zone Matrix, GLDZM = Gray Level Distance Zone Matrix, NGTDM = Neighboring Gray Tone Difference Matrix, NGLDM = Neighboring Grey Level 
Dependence Matrix 

*Since the PET/CT signature is simply a combination of the CT and PET signatures, only the PET/CT features are listed to avoid duplication.  

 
Four of the reviewed studies29,33-35 built radiomics nomograms, 
while one study32 only developed a radiomics signature. Table 2 
is a summary of the significant radiomic features organised 
according to the feature groups. There was a minimal correlation 
between the features selected as significant in the five studies. 
The only two features that were identified by more than one 
study to be significant were Kurtosis32-33 and 10th Percentile34-35. 
Kurtosis is a measure of the sharpness of the peak of the 
distribution of the values in the region of interest,28 and 10th 
percentile of the Nth voxel in the ROI is a first-order statistical 
feature.28 Not one study identified any higher-order statistical 
features as significant.  
 There were some weaknesses noticed in the articles reviewed. 
The training and validation cohorts of most studies (all except 
for study C which had both an internal and external validation 
cohort) were from the same centers. However, it is preferable to 
have external validation cohorts when DL methods are used to 
reveal the possible overfitting of the training data sets. All 

studies were also retrospective studies, which is the only way to 
obtain a reasonable sample size in a new field of study. But the 
downside to this is that the researchers had no control over the 
acquisition parameters and the management of the data sets. 
Unfortunately, acquisition and post-processing play a vital role 
in high throughput quantitative image analysis. 
 The studies identified between 4 and 11 (mean 7.6 ± 2.4) 
radiomics features as significant from 99 to 3556 (mean 1415.8 
± 1239.3) features extracted.29,32-33 Small data sets are generally 
a limitation of radiomic studies. Thousands of radiomic features 
are available for extraction, but datasets are often smaller than 
the number of possible features to mine. This was also the case 
in the reviewed articles where the primary cohort sample sizes 
ranged from 24 to 319 (mean 134.8 ± 98.9) patients, while the 
number of features extracted ranged from 99 to 3556 (mean 
1415.8 ± 1239.3).32-34,36 The number of features extracted is 
almost ten times more than the number of patients. A prospective 
multicenter study with larger cohorts is necessary to confirm the 
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results and improve the reliability of all studies. This suggestion 
was also acknowledged by most authors from the reviewed 
studies. From the limited number of studies available no 
preliminary conclusions can be made regarding which features 
or feature groups are likely to produce robust and reliable 
quantitative image information from PTB radiological images. 
 Radiomics is intrinsically a complex multi-step process, but to 
further complicate this is a lack of standardised guidelines and 
definitions. A lack of consensus on general definitions makes 
study intercomparison difficult. Since reproducibility and 
robustness are vital in radiomics studies, all image processing 
and feature extraction details should be clearly recorded and 
disclosed. The Image Biomarker Standardization Initiative 
(IBSI) was  published in 2019 and hopes to address various 
issues that will improve the validation and reproducibility of 
radiomics studies.37 All five of the reviewed articles did well to 
comply with these guidelines, with the most recent35 conforming 
the best.  
 The low number of studies included in this review article 
might seem like unconvincing evidence to address the purpose 
of this study, but this does indicate two things. Firstly, high-
throughput quantitative image analysis, especially in non-
neoplastic deceases, is a new but rapidly growing field of 
study.37 This is evident from the publication dates of the 5 
articles that qualified to be included in this review study (2019 
to 2021). Secondly, it shows that the possibility of using 
radiomics for quantitative image analysis for the purpose of PTB 
disease management and differentiation from other pulmonary 
diseases is still an under-investigated field of study. 
 

Conclusions 

Six data bases were searched and only five articles could be 
found detailing the application of radiomics to pulmonary 
tuberculosis. In all five articles reviewed, radiomic feature 
extractions from CT or PET/CT images were used effectively to 
quantify digital medical images for the purpose of comparing or 
differentiating tuberculosis from another pulmonary disease.  

The outcome of this study evidently raises two questions.  
1. Firstly, why has no attempt yet been made to use radiomics 

for the quantitative management and prognosis of pulmonary 
tuberculosis? Particularly while researchers still have a 
major challenge to identify more sensitive and specific 
biomarkers that can be used to identify the different stages 
of tuberculosis and to quantitively evaluate disease 
progression or response to treatment.  

2. Secondly, why are all current radiomics studies on 
pulmonary tuberculosis performed from three-dimensional 
imaging modalities (CT or PET/CT scans) when patients in 
countries where pulmonary tuberculosis is most prevalent 
have very limited access to these modalities? 

It can be concluded from this review that the application of 
radiomics feature extraction and analysis of pulmonary 
tuberculosis, for the purpose of quantitative decease 
management and prognostication from chest x-rays, is a 
valuable data mining opportunity yet to be realised. This might 
seem challenging at this point, but with the fast development of 
computer science and the creative application of established 
mathematical solutions, this might be realised in the near future.  
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