
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2022

Locality Analysis of Patched PHP Vulnerabilities Locality Analysis of Patched PHP Vulnerabilities

Luke N. Holt
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation Repository Citation
Holt, Luke N., "Locality Analysis of Patched PHP Vulnerabilities" (2022). Browse all Theses and
Dissertations. 2587.
https://corescholar.libraries.wright.edu/etd_all/2587

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/2587?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2587&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

LOCALITY ANALYSIS OF PATCHED PHP
VULNERABILITIES

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Engineering

by

LUKE N. HOLT
B.S.C.E., Wright State University, 2021

2022
Wright State University

WRIGHT STATE UNIVERSITY

GRADUATE SCHOOL
4/25/22

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION
BY Luke N. Holt ENTITLED Locality Analysis of Patched PHP Vulnerabilities BE
ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF Master of Science in Computer Engineering.

Junjie Zhang, Ph.D.
Thesis Director

Michael Raymer, Ph.D.
Chair, Computer Science and
Engineering

Committee on Final Examination:

Junjie Zhang, Ph.D.

Bin Wang, Ph.D.

Krishnaprasad Thirunarayan, Ph.D.

Barry Milligan, Ph.D.
Vice Provost for Academic Affairs
Dean of the Graduate School

ABSTRACT

Holt, Luke, N. M.S.C.E., Department of Computer Science and Engineering, Wright State Univer-
sity, 2022. Locality Analysis of Patched PHP Vulnerabilities

The size and complexity of modern software programs is constantly growing making

it increasingly difficult to diligently find and diagnose security exploits. The ability to

quickly and effectively release patches to prevent existing vulnerabilities significantly lim-

its the exploitation of users and/or the company itself. Due to this it has become crucial to

provide the capability of not only releasing a patched version, but also to do so quickly to

mitigate the potential damage. In this thesis, we propose metrics for evaluating the locality

between exploitable code and its corresponding sanitation API such that we can statisti-

cally determine the proximity of these two line(s) of code. By analyzing the source code

and its corresponding Abstract Syntax Tree we have defined metrics that can be applied

universally across PHP scripts. Although our current approach is specific to PHP scripts,

with future work our metrics could be applied across several programming languages to

further extend the ability to quickly find potential patches to program exploits.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

1.2.1 Collected Data . 2
1.2.2 Defining Metrics . 3
1.2.3 Deriving Distance . 3

1.3 Evaluation Results . 4
1.4 Goals . 4
1.5 Organization . 5

2 Related Work 6

3 Defining Locality 8
3.1 Guidelines . 8

3.1.1 Source Code . 9
3.1.2 Abstract Syntax Tree . 11

3.2 Evaluation . 12
3.2.1 Source Code . 13
3.2.2 Abstract Syntax Tree . 21

3.3 A Running Example . 29

4 Experiments 32
4.1 Dataset . 32
4.2 Results . 35

5 Conclusion and Future Work 40

Bibliography 41

A Appendix A 43

iv

List of Figures

3.1 AST Example . 12
3.2 Example Call Graph . 20
3.3 If Stmt Node Example . 23
3.4 Expr FuncCall Node . 25
3.5 Expr MethodCall Node . 27
3.6 Stmt Function Node . 29
3.7 Running Example Call Graph . 30
3.8 Running Example AST . 31

4.1 Percent of Samples Experiencing Locality 35
4.2 AST Node Length . 36
4.3 Source Code Locality . 37
4.4 AST Locality . 37
4.5 LLOC of Exploited APIs . 38
4.6 AST of Exploited APIs . 39

v

List of Tables

4.1 Sample Dataset . 33
4.2 Source Code Dataset . 34
4.3 AST Dataset . 34

vi

Listings

3.1 Example Source code . 10
3.2 LLOC . 13
3.3 Source Branch Statements . 15
3.4 Source Function Calls . 17
3.5 Source Accessory Function Calls . 18
3.6 Call Graph Source Code . 19
3.7 If Statement . 22
3.8 Function Calls . 24
3.9 Method Calls . 26
3.10 Function Declaration . 28
3.11 Running Example Source Code . 29
A.1 Interpreter.php . 43

vii

Introduction

We propose metrics for precisely and accurately evaluating locality, or the proximity

of a vulnerable section of code and the section that successfully prevents it from being

exploited. Our approach defines processes for evaluating locality from both a program’s

source code and the corresponding Abstract Syntax Tree (AST). We introduce metrics and

guidelines used to evaluate locality for each of these representations. By evaluating several

metrics based on multiple representations we can provide broader perspectives into the

data; thus, allowing for a more accurate determination of distance in a universal form.

Furthermore, by utilizing each of these forms ensures the ability to develop metrics to

analyze programs such the evaluation is less dependent on the source code.

1.1 Motivation

One of the most crucial times in the software development cycle is the time from

vulnerability discovery to the patch release. The ability to quickly and effectively re-

lease patches to prevent existing vulnerabilities significantly limits the exploitation of users

and/or the company. Despite the efforts of software developers the existence of software

vulnerabilities is an event that is inevitable to happen in every program[1]. Additionally,

the complexity and size of modern software programs continually grows and commonly

results in the underlying code bases consisting of tens of thousands of individual lines of

code making it impossible to analyze in entirety. In an attempt to mitigate the difficulty

of analyzing massive amounts of code we propose metrics that can statistically display the

1

proximity between vulnerable code and its corresponding sanitation API. By evaluating

these relations we can determine the approximate distance from the exploitable code that

sanitation is required such that a preventive patch can be more quickly developed.

While there are existing tools that are capable of detecting potential vulnerabilities,

they do not provide statistical metrics in relation to the patch. These solutions are of-

ten static analysis tools that are only capable of analyzing the program syntactically for

vulnerable lines. These static analysis methods are often used to analyze a program in en-

tirety whereas our focus is determining the relation within select critical section(s) of code.

Moreover, these are often platform or even programming language dependent making it

impossible to effectively translate the techniques universally. Our desire is to define these

metrics such that they can be effectively evaluated to determine the locality of a vulnerable

code segment with the code containing the preventative sanitation API.

1.2 Contributions

We have collected a sizable dataset containing programs with found vulnerabilities

discovered in production. From our dataset we defined several technical metrics to allow

evaluation of locality in this thesis. In this section, we describe how these metrics were

defined and how data was collected to experiment and evaluate them.

1.2.1 Collected Data

The data collected for experimentation and analysis consists of PHP server scripts

with known vulnerabilities. These scripts contain vulnerabilities found while the program

was being used in production. In order to properly diagnose the distance from the patch we

collected information on both the vulnerable version and the patch release version of the

script. Although we attempted to develop language independent metrics we chose to collect

and use PHP based samples due to its continual use and dominance on the internet. Despite

2

the increase in popularity of newer server-side technologies, historical trends continue to

show over seventy percent of websites being built with PHP[2]. Each sample was evaluated

to determine the vulnerability and all relevant meta-data was extracted. In addition to

the vulnerable and patched code segment the source file, file location and relative path

information was all collected.

1.2.2 Defining Metrics

There are several techniques and forms to measure distance, each with varying mag-

nitude and accuracy. Specifically, measuring distance between lines of code can quickly

become subjective and convoluted based on a multitude of factors including the screen size,

language used, or even code commenting. Many of these factors are dependent on the de-

veloper style, which is by nature extremely inconsistent and malleable. Distance evaluation

must take these factors into consideration and provide a range of metrics to ensure accurate

results. Due to this high variability it can become difficult to define metrics capable of

being applied universally across programs, or even across languages. Each of these factors

were considered when we defined our metrics to ensure the ability to apply them to the

entire data set without any being dependent on a specific form/sample. Our metrics address

the programmatic characteristics as well as the execution paths within a program to allow

for a more independent evaluation ensuring higher accuracy and easy replication.

1.2.3 Deriving Distance

The locality distance can be derived from two forms: the original source code, and a

generated AST. Despite the desire to define metrics independent from the source code, we

were able to derive distance based on information from the structures and concepts used

rather than the format it was written. Using the source code we were able to define metrics

by evaluating the programmatic structures used and the path of execution that the program

follows to ensure we maintained this independence. Each of these represent the program

3

in a unique and different format allowing for analysis to encapsulate more information

and therefore be more extensive. For each vulnerable sample included in our data set we

evaluated it in both of these forms by first analyzing it at the source code level before

generating the AST. Through our experiments we were able to parse and build the AST for

the vulnerable file before extracting the vulnerable section of interest. Once the vulnerable

code section was found we were able to evaluate it and derive the distance values for each

metric.

1.3 Evaluation Results

We were able to evaluate and determine that many of the samples we collected ex-

perience locality between its exploitable code and the sanitation check that successfully

prevents the exploit. From these results we determined that 96% of the analyzed samples

experience locality from the Logical Lines of Code (LLOC) as well as 82% from the num-

ber of nodes contained in the Abstract Syntax Tree. Additionally, we determined that 92%

experience locality from the amount of conditional branching between the two code sec-

tions. From our results we have been able to determine that much of our collected data

experiences locality; therefore demonstrating that the locality within these critical sections

of code tends to have a close proximity.

1.4 Goals

In this thesis we define guidelines and metrics for performing Locality Analysis on

PHP scripts. We have defined locality as the distance, or proximity, of two sections of code.

While the metrics defined provide the capability of evaluating the distance between any

sections of code, in this thesis we focus on analyzing the locality between vulnerable code

segments and the relevant code segment that prevents it from being exploited. By applying

our metrics through experimentation in the form of locality analysis, we can accurately

4

determine that exploitable code and its relevant patch statistically are in close proximity.

As with all distance measurements, locality can be defined and evaluated using mul-

tiple metrics, in multiple forms, and all providing a variety of results. Furthermore, code

itself can take several forms depending on any number of factors including language or

even developer preference. Therefore, our approach needs to be capable of evaluating lo-

cality such that it provides multiple perspectives that each are independent from the source

code itself. By removing any dependence on the source code, we can ensure the reuse of

our metrics such that they can be applied across any dataset, potentially of any language.

The execution of different code blocks can change based on the control flow of a pro-

gram. Our approach needs to be able to evaluate the program in a way that only evaluates

the locality of the control flow that results in the execution of exploitable code. To refine to

precision of our distance measurements we need to ensure that only the relevant code paths

are included in the evaluation.

Source code can be written in multiple formats with differing spacing and even single

statements potentially spanning several lines. Therefore, our approach should be indepen-

dent to these formats and not be effected by extraneous information. Our approach should

analyze programs based on programmatic concepts that is not subject to the high variability

that occurs between programming styles.

1.5 Organization

Chapter 1 describes the motivation, collected data, and goals of this thesis. Chapter

2 describes how existing approaches differs from our own and as well as the efficiency of

each. Chapter 3 describes the locality analysis process and the guidelines developed for

evaluation. Chapter 4 describes the collected data, how it was collected, and the exper-

iments performed as well as our results. Chapter 5 identifies future work to expand our

approach.

5

Related Work

There are many static analysis tools that have been designed and utilized for measuring

and evaluating program metrics. Although there has been extensive work into static analy-

sis for PHP programs, we have found that there are limited approaches to locality analysis.

In this section, we discuss the existing approaches and their relation to the locality analysis

work we have performed.

Son and Shmatikov [3] developed a PHP static analysis framework named SAFER-

PHP. SAFERPHP provides algorithms to detect potential vulnerabilities by analyzing the

semantics of PHP scripts. The framework focuses on detecting vulnerabilities by evaluat-

ing the programs logic and control flow. SAFERPHP takes a PHP program and generates a

call graph for the entire program that is then used to evaluate for exploitable sections. The

call graph is evaluated specifically for sections that can potentially be exploited to initiate

an infinite loop, resulting in a Denial of Service, as well as those that contain inadequate

validation of authorization. The framework parses the program and generates the Abstract

Syntax Tree but performs its analysis on the subsequent call graph and control flow graphs

(CFG) that are generated.

In our approach we limit the scope required to analyze the program. Our analysis

targets the specific code section(s) that contain the exploitable code rather than attempting

to evaluate the program in entirety. Additionally, as the SAFERPHP framework primarily

focuses on the logic of the program, its analysis prioritizes the control flow graph over the

AST. Our approach similarly generates the AST and evaluates the call graph, although we

6

prioritize the evaluation of the AST. The AST provides the ability to extract significant

information regarding the program and allows us to evaluate a broader range of locality

metrics.

Another existing tool called PhpMetrics[4] has been developed to compute a variety

of metrics for a provided PHP program. PhpMetrics is a command line utility that takes

a folder containing an existing PHP program as input and from it generates source code

metrics. The metrics can then be outputted to multiple forms to be displayed and evaluated.

PhpMetrics evaluates the program for length metrics as well as qualitative metrics such as

complexity and cohesion. The metrics analyzed by PhpMetrics are extensive and provide

several that can be used to evaluate distance as well as several more subjective metrics such

as coupling.

In our approach, we perform a quantitative evaluation to determine appropriate dis-

tance metrics. PhpMetrics evaluates many of the same metrics used in our approach; how-

ever, it focuses on entire programs while we attempt to analyze only select code sections.

Furthermore, PhpMetrics performs metrics primarily focused in an effort for qualitative

analysis in order to determine the overall program size and complexity specific to the source

code. Although the metrics performed evaluating the source code are extensive, there is no

analysis done directly on the AST.

7

Defining Locality

In order to provide an extensive ability to precisely measure locality, we defined met-

rics based on both the source code as well as the corresponding AST. Within these two

forms, metrics are defined based on the characteristics exhibited by programs such as their

control flow and programming constructs used within its basic blocks. Defining metrics in

this way has allowed us to develop analytical techniques that provide a broader insight into

the data ensuring evaluation provides measurements capable of being universally applied

to our dataset, or any future dataset. In this chapter, we define our locality metrics and the

guidelines they follow.

3.1 Guidelines

In order to develop consistent and precise metrics several guidelines were defined.

Establishing standardized guidelines allows for more consistent measurements and help

to partially eliminate the subjectivity that can occur when analyzing vulnerable samples.

Additionally, in order to precisely measure distance within code blocks of interest it needs

to be evaluated from multiple perspectives. By providing these multiple perspectives into

the code we are able to determine distance such that it is less dependent on the source itself.

Eliminating the dependence on the direct source code allows us to apply our metrics across

PHP programs universally without the danger of being too dependent on the specific form.

In this section, we describe these guidelines.

8

3.1.1 Source Code

Our initial evaluation began with directly analyzing the source code. To properly de-

termine distance we first had to find and then evaluate the specific lines of code of which

we were interested. By analyzing the source directly we were able to define several metrics

separated into two categories: the path execution follows between the sanitation API and

the exploitable code, and the characteristics of the code section itself such as the program-

matic constructs used. There are several ways to initially evaluate source code distances;

however, source code has a high variability and therefore can be difficult to analyze across

programs. There are many factors that can contribute to source code size, several of which

are dependent on the styling and preferences of the individual developers. Due to this we

determined metrics that could be more universally applied to ensure we did not become

dependent on a single styling and format. Furthermore, this high variability resulted in the

source code metrics containing more strict guidelines as we attempted for the analysis to

remain as non-subjective as possible. These guidelines helped us to remain consistent and

precise in our metric evaluations.

Path Metrics

Path metrics were determined based on the control flow of the program when the vul-

nerable code is exploited. These metrics evaluate distance based the expected execution

path the program takes in order for the vulnerable code to be exploited. By evaluating

the path taken during execution we can determine a more direct distance while excluding

extraneous characteristics that may not be directly correlated with the exploitable code.

These metrics ensure that conditional statement blocks that would not be entered and sub-

sequently executed when the vulnerable code is exploited it not included in the evaluation.

As these conditional blocks can consist of several lines of code themselves, we limit the

scope of the analysis such that the necessary information is directly evaluated. By ignoring

these extraneous code blocks we ensure a more accurate and precise measurement of the

9

distance between the two lines of interest.

Characteristic Metrics

Despite the high variability between software programs, they all are built upon the

same programmatic concepts. From these concepts we were able to devise and evaluate

some core structures that are required of most, if not all, PHP scripts. By analyzing the use

of these structures we can evaluate the distance without being dependent on the indepen-

dent characteristics of each program. Using these concepts we can ensure our metrics are

applicable almost universally such that any PHP script can be evaluated. These concepts

helped us to define characteristics metrics based on the categorical data that can be deter-

mined within a program. These evaluate the summation of various program characteristics

or programming constructs such as branch statements, function calls, and the call depth.

In addition to these constructs we also defined metrics for evaluating based on the logical

lines of code (LLOC) between the vulnerable line and the patch line. These metrics allow

for a program to be analyzed in a quantitative way that provides evaluation of the locality

of code.

Listing 3.1: Example Source code

1 <?php

2 if (is_numeric($_GET['olimometer_id'])) {

3 $olimometer_id = $_GET['olimometer_id'];

4 } else {

5 $olimometer_id = 1;

6 }

7 $olimometer_to_display = new Olimometer();

8 $olimometer_to_display->load($olimometer_id);

9

10 function load($olimometer_id)

10

11 {

12 global $wpdb;

13 $table_name = $wpdb->prefix . $this->olimometer_table_name;

14 $query_results = $wpdb->get_row("SELECT * FROM ...

$table_name WHERE olimometer_id = $olimometer_id", ...

ARRAY_A);

15 }

3.1.2 Abstract Syntax Tree

We defined and evaluated metrics based on the Abstract Syntax Tree of a program.

Due to the nature of ASTs, we are able to evaluate the intermediate representation (IR) of

the program that provides a more concise form that does not contain extraneous information[5].

The AST allows programs to be analyzed in a purely syntactical way that is universally ap-

plied across all PHP programs. By using the AST we can eliminate dependence on the

source code itself and instead focus on the programmatic structures that are used. Analyz-

ing distance in this form eliminates the subjectivity that can occur in the source code due

to the additional information that is included. Furthermore, the AST becomes extremely

beneficial in locality analysis as the relation between complexity and lines of code can be

highly volatile, resulting in the ability to effectively evaluate distance being difficult. Met-

rics were determined based on node types that were found to be commonly used to modify

the control flow of the program. Based on the AST we were able to determine accurate

metrics for evaluating distance by analyzing the amount and types of intermediate nodes

between the vulnerable node and the preventative node.

An Abstract Syntax Tree can quickly grow to consist of hundreds of nodes with only

a few lines of code. This can make it difficult to evaluate the nodes of interest and their

distance from each other. However, the AST provides a more accurate depiction of the

source code as it eliminates all extraneous information, leaving only the node values and

11

Figure 3.1: AST Example

their relationship to each other. Because of this we are able to define precise and accurate

metrics that can be evaluated from the AST. Furthermore, these metrics are then ensured

to be more universal as the AST removes any potentially subjective information or styling

that can vary between developers. Additionally, since the AST is a tree structure by defi-

nition, it can be traversed with relative ease. These factors allowed us to create automated

processes in which to traverse the tree for analysis. By using these processes we are able

to significantly mitigate the complexity of the AST that prevents a more manual analysis.

3.2 Evaluation

Using the guidelines we described in section 3.1, we were able to develop several lo-

cality metrics to evaluate and determine an appropriate distance. These metrics each eval-

uate the different semantics and characteristics that a program can be built using. These

values were defined based on either the source code or the AST representation of the pro-

gram. In this section we describe these individual metrics that were defined and used in

evaluating locality.

12

3.2.1 Source Code

Several metrics were defined and evaluated from the source code of the program.

These metrics analyze the characteristics as well as the control flow, or path, that the ex-

ecution takes between the vulnerable code section and the patch code. We defined these

metrics using characteristics that can be applied independent on the format of the source

code. Each of the metrics defined can therefore be evaluated more universally across all

PHP programs. In this section, we describe each of those metrics.

Logical Lines of Code

The simplest metric for determining locality, logical lines of code (LLOC) evaluates

the number of executable lines of code between the vulnerable line and the line that suc-

cessfully prevents that line from being exploitable. These include all lines that are directly

interpreted and ran at execution, excluding extraneous lines such as blank lines or com-

ments. LLOC provides a distance measurement that directly evaluates the relevant lines of

code within the section of interest. We defined the metrics to be exclusive of these lines to

limit both the scope of the section being analyzed and any inaccuracies resulting from the

programming style used in the program, which can vary significantly. Due to the simplic-

ity of this metric it can be extremely useful for quickly evaluating locality and providing

a direct distance in the forms of lines of code. Furthermore, the LLOC provides a direct

distance between the two lines of code while also ensuring that only executable lines are

included.

Listing 3.2: LLOC

1 <?php

2

3

4 if (!isset($_REQUEST['_wpnonce']) || ...

13

!wp_verify_nonce($_REQUEST['_wpnonce'], 'acfbs-save')) {

5 return;

6 }

7 $this->saveFieldsTypes();

8

9

10 function saveFieldsTypes()

11 {

12 if (!isset($_POST['acfbs_save']) || ...

get_option('acfbs_lite_mode', false)) {

13 return;

14 }

15 $value = $_POST['acfbs_fields_types'] ? ...

$_POST['acfbs_fields_types'] : [];

16 $value = array_map('sanitize_text_field', $value);

17 $this->saveOption('acfbs_fields_types', $value);

18 }

19 private function saveOption($key, $value)

20 {

21 if (get_option($key, false) !== false) {

22 update_option($key, $value);

23 } else {

24 add_option($key, $value);

25 }

26 }

In Listing 3.2, we have an example containing a patched Cross-site Request Forgery

that demonstrates the usage and evaluation of the LLOC metric. The vulnerable function,

saveOption, attempts to update a user option value or add it if it does not exist. The vul-

nerable code can be seen on line twenty-two where the call to update option is made. To

prevent this exploit the if statement on line four was added to ensure the validity of the

request before attempting to save the fields. While the example consists of a twenty-six

14

lines of code it can be determined that there are seven LLOC separating the patched code

with the vulnerable code. Additionally, there are in actuality two potential vulnerable lines

in this example, add option, and as mentioned previously, update option. While these each

present a potential exploit only the initial vulnerable line following the patch is counted

toward the LLOC.

Branch Statements

We evaluated branch statements as a summation of all branching statements that cause

the program to jump to a different line of code. This summation includes all conditional

statements, such as if statements or switch statements, as well as all loop statements. Al-

though function calls do result in branching, they were not including in this metric as we

have used separate metrics for evaluating them. Additionally, since the number of iterations

made by a loop is dependent on program state and therefore unknown until execution, each

were counted a single time similarly to standard conditional statements. By design pro-

grams often do not execute each line of code but rather perform jumps to move to different

locations based on the current execution state. Therefore, the distance can be determined

from the number of jumps the program makes within the block of interest.

Listing 3.3: Source Branch Statements

1 <?php

2

3 if (!current_user_can('manage_options')) {

4 return;

5 }

6 if (!current_user_can('administrator')) {

7 return;

8 }

9 if (isset($_SERVER['REQUEST_URI']) && ...

15

strpos($_SERVER['REQUEST_URI'], '/wp-admin/plugins.php') ...

!== false) {

10 add_action('admin_footer', array($this, 'popup'));

11 add_action('admin_enqueue_scripts', array($this, ...

'includes'));

12 }

13 add_action('wp_ajax_twoj_slideshow_setup', array($this, ...

'twoj_slideshow_setup'));

14

15 function twoj_slideshow_setup()

16 {

17 if (isset($_POST['plugin'])) {

18 deactivate_plugins($_POST['plugin']);

19 }

20 }

Through Listing 3.3 we can demonstrate the analysis of branch statements within

a vulnerable section. The sample code displays an example of an unauthorized plugin

deactivation, where an unauthorized user can potentially disable a site plugin. The ex-

ploitable line of code can be seen on line eighteen where the function deactivate plugins is

used. Several branch statements can be traced between the vulnerable line and the result-

ing patched line found on line three. To successfully prevent the exploitable behavior the

user was verified for the ability to manage options before enabling any privileged actions.

As seen, the vulnerable section of code contains four branch statements, each of them if

statements.

Function Calls

As with branch statements, function calls are a useful metric for evaluating the branch-

ing within a program. These were evaluated as a summation of all function calls executed

within the vulnerable code section. This metric was defined such to include all function

16

calls that are found between the exploitable code and the patch regardless of whether the

function body is included in the LLOC. Similar to branching, it is beneficial to understand

the number of jumps the program makes to functions. In addition to the jumps performed

during execution, by evaluating the number of function calls we can gain further insight

into the potential stack frame of the program. Furthermore, evaluating the function calls

demonstrates a more complete call graph within the targeted section.

Listing 3.4: Source Function Calls

1 <?php

2

3

4 $sql = sprintf("DELETE FROM %sabctest_options WHERE id_option = %d",

5 $wpdb->prefix, self::sanitizeid());

6

7 $wpdb->query($sql);

8

9 private static function sanitizeid()

10 {

11 $idi = mysql_real_escape_string(trim($_GET['id']));

12 return (int) $idi;

13 }

Listing 3.4 demonstrates the evaluation of the function call metric. Although only

the LLOC contained within the sanitizeid are included in the total LLOC, the sample code

contains three function calls. Despite the simplicity of the function calls metric it can be

extremely useful in determining distance as we can evaluate the functions executed between

the two lines of interest.

17

Accessory Function Calls

To further evaluate function calls we defined an additional metric based on the Ac-

cessory Function Calls. We defined this metric as all function calls within the code block

that despite being executed, the function body is not included in the total LLOC. This is all

function calls that are not directly entered by the control flow of interest. These allow the

distance to be evaluated in terms of functions that are not directly correlated with the vul-

nerable code. Although not limited to, accessory function calls are often calls to external

functions or standard library functions. While these calls are useful in including in the total

amount of function calls, we found it to be beneficial to provide the ability to distinguish

between these two forms of function calls.

Listing 3.5: Source Accessory Function Calls

1 <?php

2

3 wp_localize_script('accordions_admin_js', 'accordions_ajax', ...

array('accordions_ajaxurl' => admin_url('admin-ajax.php'), ...

'nonce' => wp_create_nonce('accordions_nonce')));

Code blocks can contain many function calls but they may not all be directly corre-

lated with the exploitable line(s). Therefore it is useful to evaluate the frequency of these

functions so that we can distinguish between functions that are directly included in the

call graph and those that are ignored. Listing 3.5 demonstrates how a code section of

interest can contain a low number of LLOC or have a shallow call graph depth but con-

tain a higher number of accessory function calls. The function calls to wp localize script,

wp create nonce and array each represent accessory functions as they each are executed

by the program but the code within them are not evaluated in any locality metrics. In this

example, each of the accessory functions are calls to library functions provided by either

Wordpress or the standard PHP library and as such we do not evaluate the distances within

18

them.

Call Graph Depth

Programs are commonly represented and evaluated in the form of a call graph. These

are directed graphs capable of displaying the flow of the program by tracing the individual

function calls. The call graph allows for accurately depicting the relationships between

individual functions [6]. The call graph can be effective in visualizing the flow of the

current program as it displays how functions relate and connect to each other. These factors

contribute to making the call graph an effective metric for evaluating the distance between

lines of code. By analyzing the call graph between the exploitable code and the sanitation

patch, we can determine the distance in relation to the functions entered and executed. This

allows use to analyze the path of execution from a higher level to visualize the direct flow

of the program between functions. From the filtered call graph we can accurately depict the

distance by the depth at which execution reaches before the exploitable code. Analyzing

the depth of the call graph enables us to determine how deep in the graph the execution

goes before executing the exploitable code. We can then further evaluate this metric to

determine the frequency at which the lines of code occur within the same function.

Listing 3.6: Call Graph Source Code

1 <?php

2

3 public function parseFolderForImages($d = array()) {

4 ...

5 $folderFixed = basename($folder);

6 $folder = $wpUploadDir['basedir'] . DS . $folderFixed;

7

8 $files = getFolderInUpload($folder);

9 ...

19

10 }

11

12 function getFolderInUpload($folder) {

13

14 $files = array();

15 if(is_dir($folder)){

16 $dirHandle = opendir($folder);

17 }

18 }

Although we are not interested in the entire call graph, we can evaluate it between

the vulnerable section and the sanitation API patch code. Despite the program call graph

containing all function calls, we decided to focus only on functions that have a direct cor-

relation with the exploitable code. The section of the call graph that was of interest was

that containing functions that are directly correlated and therefore directly evaluated when

determining distance values. From this we decided to exclude functions such as the acces-

sory functions described in Section 3.2.1 to ensure we only traced the call graph through

functions directed related and capable of evaluation. By excluding these functions we can

evaluate the functions that are directly entered and evaluated for locality.

parseFolderForImages getFolderInUpload opendir

Figure 3.2: Example Call Graph

Figure 3.2 is representative of an example call graph that was evaluated as a result

of the code contained in Listing 3.6. Although the parseFolderImages function contains

several additional function calls, our call graph focuses on the path of the execution required

20

to directly exploit the vulnerable section of code. From this we can visualize the direct route

taken to reach the vulnerable code. By limiting the call graph to include only those methods

directly related we can more accurately depict the distance such that only the exploitable

path is considered and all extraneous function calls that occur between are not included.

3.2.2 Abstract Syntax Tree

An Abstract Syntax Tree contains the necessary syntactical information required to in-

terpret and evaluate a program. The tree by nature provides the source code in an abstracted

form through a collection of nodes representing the parsed tokens. Due to the abstraction

provided by the AST, programs can be analyzed such that the extraneous information is re-

moved leaving only the crucial syntactical information. Furthermore, this abstracted form

allows for a program to be evaluated in a way that eliminates much of the dependency

on the source code which can have high variability. By leveraging the PHP Parser [7] we

were able to generate an AST for each of our collected samples. The AST allowed us to

be able to analyze the characteristics of the program and determine appropriate methods

for evaluating locality. From the evaluation of these AST characteristics we were able to

define several metrics to analyze locality in an abstracted form to eliminate the potentially

subjectivity of the source code. In this section, we describe these metrics.

If Statements

If statements represent a location within the program that a jump execution can occur

such that execution continues on a different line than the next sequential one. Due to this

characteristic of if statements, they can be representative of distance between lines of code.

Additionally, that means that lines of code are often not executed in a purely sequential

way and therefore making this a useful evaluation metric. These are standard program-

matic structures that are used almost universally in programs such that we can evaluate

them without being dependent on the source code. As if statements are by nature executed

21

conditional, they can be difficult to evaluate in an static environment. This resulted in us

refining this metric to only evaluate and enter if statements that are directly required for

execution to reach the exploitable code. By only using these necessary if statements we

were able to evaluate the distance in a more direct route between to lines of interest.

Listing 3.7: If Statement

1 <?php

2

3 if (FALSE === array_search($page, array('signup', 'signedup', ...

'reports'))) {

4 $page = 'signup';

5 }

As with the source code we also can evaluate the AST representation of if statements.

If Stmt nodes can contain a significant amount of nodes itself depending on the complex-

ity of the conditional itself as well as the contained statements. Each If Stmt node con-

tains two primary properties: cond, a node representing the boolean conditional for the

statement, and stmts, a collection of nodes representing the statements contained in the if

statement. From the AST representation we can evaluate the potential program branching

in an abstracted form that can be more easily analyzed. An If Stmt node can be visual-

ized in Figure 3.3 where the if statement is parsed into a node containing a binary operand

node representing the comparison in the statement FALSE === array search($page, ar-

ray(’signup’, ’signedup’, ’reports’)) and a collection of statements containing the body of

the conditional block. In this example the only statement node contained in the AST is

representative of the line $page = ’signup’;.

22

Figure 3.3: If Stmt Node Example

Function Calls

The AST can be analyzed to determine the number of function call nodes that it con-

tains. We have evaluated function calls as all calls to subroutines that are not contained

or defined within the context of a class. These are exclusive of calls to functions defined

within the context of a class to narrow the evaluation of all function calls. Limiting the

context of which function calls are included in this metric we can determine the distance

while distinguishing the scope at which execution occurs. By analyzing the function calls

made during execution we can trace the progression and flow of the program. As with if

23

statements and conditional branching, function calls perform jump operations to move to a

different location in memory before containing executions. From evaluating this metric we

can determine a more precise distance relating to the amount of jumps the program makes

during execution as a result of function calls.

Listing 3.8: Function Calls

1 <?php

2

3 $this->fileName = $this->data['files']['name'][0];

4 $this->tmpFileName = $this->data['files']['tmp_name'][0];

5 if (substr($this->fileName, -5) != '.sgbp') {

6 $this->fileName .= '.sgbp';

7 }

8 $dirPath = $this->getDestinationDirPath();

9 $file = $dirPath . $this->fileName;

10 $data = file_get_contents($this->tmpFileName);

11 file_put_contents($file, $data, FILE_APPEND);

Function calls can be represented by an AST node consisting of a Name node and an

args node. While the Name node is simply the identifier that is used to reference can call

the function, the args node can become complex as it consists of all the arguments required

by the called function. Using the AST we can evaluate and find all instances of function

calls within the targeted code section. Figure 3.4 demonstrates the structure of a parsed

function call within the Abstract Syntax Tree. The function call file put contents($file,

$data, FILE APPEND) is parsed into a function call node containing a name identifier

node, as well as a collection of expression nodes representing each of the three parameters

being passed.

24

Figure 3.4: Expr FuncCall Node

Method Calls

We can analyze the AST further by evaluating the occurrences of Stmt MethodCall

nodes. These nodes represent method calls made within the program and are parsed simi-

larly to function calls. Method calls, similar to function calls, result in execution jumping

to another place within memory before continuing. We defined our evaluation of method

calls as subroutines contained within the context of a class. Determining the amount of

method calls executed within the vulnerable code block allows us to evaluate the distance

by analysing the subroutines executed within the current class/object. Distinguishing be-

25

tween function calls and method calls we can provide a separation in our metrics such that

we can evaluate not only the frequency of calls made but also the context at which they

are defined. As with function calls we can trace the program to analyze the execution path

as well as further evaluate the path for the frequency at which the path jumps within the

current class.

Listing 3.9: Method Calls

1 <?php

2

3 if (bbp_is_valid_role($new_role)) {

4 if (!empty($role)) {

5 $user->remove_role($role);

6 }

7 if (!empty($new_role)) {

8 $user->add_role($new_role);

9 }

10 }

Despite the similarity to function calls, AST nodes representing method calls encode

additional information. Each node is constructed from three child nodes: variable, name,

and args. The variable node is an expression node representing the object responsible for

calling the method and therefore represents the calling context of the method. As with

function call nodes, the name node is an identifier used to represent the method, while

the args is the statement nodes representing the arguments required by the method. We

can represent a parsed method call with Figure 3.5, where the method is called within the

context of the $user variable and it is provided with a $new role variable.

26

Figure 3.5: Expr MethodCall Node

Function Declarations

We were able to further define our metrics by evaluating the functions declared within

the critical section. Function declarations are defined as sections of code that define the con-

text of the function and the required parameters/arguments required for execution. These

declarations define how a function can be called and used throughout the program. Al-

though similar to our metric on function calls, this allows us to analyze the amount of

functions declared before reaching the vulnerable code. The PHP language supports the

use of anonymous functions, a form of closure [8], which not only allows functions to be

defined namelessly but also in a nested format. Due to PHP supporting the use of these

anonymous functions this can be especially useful as we can further distinguish between

27

function calls and nested function calls.

Listing 3.10: Function Declaration

1 <?php

2

3 function load($olimometer_id)

4 {

5 global $wpdb;

6 $table_name = $wpdb->prefix . $this->olimometer_table_name;

7 $query_results = $wpdb->get_row("SELECT * FROM ...

$table_name WHERE olimometer_id = $olimometer_id", ...

ARRAY_A);

8 }

AST nodes representing function declarations can be the most complex node type

we have evaluated and consists of several child nodes. As with method call nodes, these

nodes contain a name identifier and a collection of nodes params representing the parameter

arguments required by the function. In addition to these properties, function declaration

nodes also contain a node returnType representing the type of the value returned from the

function as well as a stmts node(s) representing the body of the function. Due to these stmts

node(s), the AST representation can become complex and contain several other node types

included in our metrics; however, we are only concerned with the function declaration as

the body of the function is evaluated with our separate metrics. Figure 3.6 represents the

parsed AST of the function declared in Listing 3.10. As shown the node contains the name

identifier specifying how the function is referenced as well a params node containing a

child node representing the required $olimometer id parameter.

28

Figure 3.6: Stmt Function Node

3.3 A Running Example

We can demonstrate the evaluation of each of the metrics defined using a simple exam-

ple from our dataset. The sample code in Listing 3.11 contains a database query vulnerable

to SQL injection attacks and the sanitation API patch the prevents these exploits. The vul-

nerable code is exploitable due to not performing any validation on the input provided from

the user. The patch code was successfully able to prevent this exploit by both sanitizing the

input and verifying that its value is numeric.

Listing 3.11: Running Example Source Code

29

1 <?php

2

3 public function process_bulk_action() {

4 ...

5 $sanitized_id = sanitize_html_class($post_info[1]);

6 if (is_numeric($sanitized_id)) {

7 $wpdb->query("DELETE FROM {$wpdb->posts} WHERE ID = "

$sanitized_id);

8 }

9 ...

10 }

Evaluating the source code we can determine that the exploit is successfully prevented

from the sanitation call to sanitize html class. This function will successfully sanitize the

input provided and ensure the original vulnerable line of code, the call to query, is no

longer exploitable. Analyzing the distance between these lines using our defined metrics

we can conclude a LLOC count of two. We can then determine the sample contains a

single branch statement, being the if statement verifying that the value is numeric, and

three function calls. As none of the function calls made in the example are directly entered

they are all accessory function calls.

process bulk action query

Figure 3.7: Running Example Call Graph

The call graph can then be represented by Figure 3.7, containing two functions: the

enclosing function and the query function responsible for performing the database query.

30

From the call graph we can determine that this sample only reaches a depth of one before

executing the vulnerable code.

Figure 3.8: Running Example AST

Parsing the code from the sample we can build an AST as shown in Figure 3.8 to

further evaluate the locality. By analyzing the AST we can determine that the tree is made

of twenty-seven nodes. As with the source code, the AST shows that there is a single if

statement node. Evaluating the function calls we can show the AST contains two function

calls and a single method call, being the final line calling query. Finally, the AST contains

no function declaration nodes.

31

Experiments

Several experiments were performed in order to define and evaluate our defined met-

rics for locality. In this section, we describe our testing data and the results of our experi-

ments.

4.1 Dataset

To develop and analyze our metrics we collected PHP scripts containing known vul-

nerabilities. Our collection contains real-world examples that have been found to contain

vulnerabilities but have since been patched. We chose to use PHP scripts due to its exten-

sive use in across the internet. PHP continues to be a dominant programming language and

therefore victim of a plethora of exploits. The primary focus of our collection was Word-

Press plugins due to their wide use in modern websites [9]. Furthermore, the source code

for many of these plugins are open-source allowing us to perform in-depth analysis of each

program. In addition to being open-source, vulnerabilities found in WordPress plugins are

well documented by their security researchers such that patched vulnerabilities can be more

easily acquired [10].

Despite the diligence of the WordPress security researchers, many vulnerabilities can

have limited or unclear documentation expressing the exploit and its location. This required

us to perform a more manual and thorough analysis of the samples we collected as it was

often required to not only collect information on the exploit, but also determine its file

location and code block. From the vulnerability we then determined the corresponding

32

program version and line of code that successfully prevented the vulnerability from being

exploited. To ensure our dataset was as thorough and complete as possible we collected

all the required meta-data for both the vulnerable code version as well as the patched one.

After the vulnerability and the corresponding patch was determined we were able to collect

the code segments themselves as well as all important information relevant to the sample,

such as the file name and location within that file. In addition to the program characteristics

we were able to further develop our dataset by labeling and categorizing the samples by key

information regarding the vulnerability including its type and the API that was used in the

exploit. By analyzing these characteristics of the vulnerability we were able to evaluate the

locality across a series of exploit types through the use a different APIs.

Table 4.1: Sample Dataset

Plugin Name Version Vulnerability Type API File Name Function Name File Location

2j-slideshow 1.3.40 Plugin Deactivation User Authorization setup.class.php init 53

acf-better-search 3.3.1 CSRF Property Set Save.php initSaving 16

360-product-rotation 1.4.7 XSS Property Fetch
class-

yofla360-utils.php construct iframe content 454

advanced-database-cleaner 3.0.1 SQL Injection Input Validation

class clean
revision

draft trash.php process bulk action 270

Using the core information collected we were able to process the data by finding the

correct file and extracting code sections between the vulnerable code and the patched code.

From these extracted code sections we then built the corresponding AST to express the ex-

ploitable code block. Since we were only concerned with the exploitable code block rather

than the program as a whole, we were able to only build the AST for these sections. The

extracted source code and the AST both could then be evaluated to determine appropriate

locality metrics.

From our dataset we then evaluated the vulnerability information to analyze the local-

ity and determine the distance for each of our defined metrics. Using our metrics we were

able to evaluate the source code for each sample to determine and collect the distance val-

ues. Table 4.2 demonstrates how the metric values were collected during the evaluation of a

33

sample’s source code. We were able to evaluate the call graph to allow us to then calculate

the depth reached before reaching the vulnerable code. Similarly, we collected additional

information to denote if each of the lines of code were contained within the same function.

This allowed us to further evaluate the call graph to determine the frequency at which the

patch occurs within the same function as the vulnerable code.

Table 4.2: Source Code Dataset

Plugin Name Call Graph LLOC Branches Function Calls Call Graph Depth Accessory Functions Same Function

2j-slideshow

init →
twoj slideshow setup →

deactivate plugins 6 4 9 2 8 No

acf-better-search

initSaving →
saveFieldsTypes →

saveOption 7 3 9 2 7 No

360-product-rotation

construct content →
sanitizeGetParameter →

htmlspecialchars 1 0 2 2 1 No

advanced-database-cleaner
process bulk action →

query 2 1 3 1 3 Yes

As shown in Table 4.3, we were similarly able to collect metrical data from each

sample’s AST. Although there is a high number of node types that can be contained within

an AST, we focused on those that are better representative of the locality between the two

lines of code. By building the AST of these critical sections of code defined in Table 4.1

we were able to evaluate a much smaller section of the entire program to show that the

distance between these vulnerabilities and their patches are statistically small. Despite the

high variability of node types that can often result in highly complex ASTs, our dataset was

focused on the nodes that are capable of accurately representing distance. Additionally, the

nodes we focused on are commonly found across different programs such that the dataset

could not be coupled to specific programs or program forms.

Table 4.3: AST Dataset

Plugin Name AST Nodes If Stmt Switch Stmt While Stmt Call Expr Function Decl Method Call

2j-slideshow 78 4 0 0 7 1 0
acf-better-search 98 3 0 0 6 2 2
360-product-rotation 24 0 0 0 1 1 1
advanced-database-cleaner 27 1 0 0 2 0 1

34

4.2 Results

We have evaluated several vulnerabilities discovered within production programs for

locality to determine the distance between the known vulnerability and the preventative

patch code. Results were generated from an analysis of our dataset containing these pro-

gram’s source code, relevant information regarding the exploit, and the corresponding AST

that was built from the vulnerable section of the source code. Our experiments provided

us with adequate metrics to evaluate distances between lines of code within a critical sec-

tion. Based on the results found in these experiments we were able to determine that many

of our vulnerable samples experience locality, or share a close proximity to the patched

sample. Our results have shown that of our evaluated samples 96% of the vulnerable lines

fall within ten LLOC the corresponding sanitation API patch code. Additionally, 82% of

ASTs analyzed consists of less than seventy-five nodes. Similarly, we found that 82% of

patches were contained within the same function as the vulnerable code in addition to 88%

that were separated by less than one function call. Based on these results we were able to

determine that most of our collected samples experience locality.

Figure 4.1: Percent of Samples Experiencing Locality

Further evaluation of our results helped us to determine that in addition to the 82%

of parsed ASTs containing less than seventy-five nodes, 58% of them were also less than

35

twenty-five nodes. An additional 16% contained less than fifty nodes, showing that of

the samples collected most experienced locality with a low number of AST nodes. These

results demonstrate that the locality of the nodes within the programs exploitable section

of code is small.

Figure 4.2: AST Node Length

Our results determined from an analysis of the source code of the program demon-

strated that many of the samples experience locality in this form as well. From our dataset

we found that many vulnerable sections have a proximity of three LLOC from its corre-

sponding patch code. Additionally, by removing the two outliers, lengths of eighteen and

thirty, the proximity falls to only two LLOC. Furthermore, we determined that these sam-

ples average a call graph depth of one, with several samples having the two lines within the

same call within the call graph. From this we also determined that many samples experi-

ence locality by the critical section being contained in a single function.

36

Figure 4.3: Source Code Locality

Figure 4.4 demonstrates our results from evaluating different types of AST nodes

within our dataset. As with the source code results we found that there was a low num-

ber of nodes for each of our metrics demonstrating that the locality between the nodes of

interest was often low. The node type with highest number of nodes we found to be function

calls. This is to be expected as these are often a more common structure found throughout

PHP programs. Our results have shown that the ASTs built from exploitable sections often

contain only two conditional nodes (i.e. if, switch, for and while statements). From this

we were able to determine there is often a low frequency of branching within these critical

sections.

Figure 4.4: AST Locality

37

In addition to evaluating total LLOC for each sample, we evaluated the LLOC in

relation to each of the API types collected in our dataset. Based on our dataset and the

exploited APIs that had been collected we were able to determine the size, in LLOC, of the

critical sections for each of these APIs. We found that exploits resulting from loose type

checking and property fetches to have the fewest LLOC while those resulting from poor

input validation and user authorization to have the highest. Although the proximity varies

for each exploited API, they each demonstrate a close locality from the patch code.

Figure 4.5: LLOC of Exploited APIs

As with LLOC we also were able to evaluate total nodes contained in the AST in rela-

tion to each of the API types collected in our dataset. Figure 4.6 demonstrates the amount

of nodes contained in the AST for each exploited API. We found similar results displaying

that the node size was much lower in exploits involving type checking and property fetches.

Although we did not find a direct correlation between the LLOC and the AST size, we did

find that the locality for these APIs to be much smaller.

38

Figure 4.6: AST of Exploited APIs

39

Conclusion and Future Work

In this thesis, we have presented metrics and their guidelines for analyzing the locality

of vulnerable PHP code and the corresponding patch code containing the sanitation API.

We defined our metrics based on the syntactical and path characteristics of the source code.

Additionally, we discussed how we further refined our metrics by building and utilizing the

Abstract Syntax Tree representation of the source code. By utilizing each of these formats

we are able to evaluate distance between two lines of code using several metrical forms.

Each of the forms demonstrated that the locality, or proximity, between the exploitable

code and its preventative code segment is small.

Our work can further be improved by extending it to additional languages. Although

the data used in this thesis was collected from programs using PHP, our metrics can be

universally applied to other languages. Other widely used languages such as JavaScript

and C would be ideal candidates to be evaluated using the metrics we have defined. By us-

ing these metrics locality analysis can be performed on programs of different languages to

determine a statistical measurement of distances. Our work can then be integrated with ex-

isting or future static analysis techniques to allow for quickly determining potential patched

for vulnerable programs. Utilizing our metrics in this way could allow for exploits to be

more quickly analyzed, therefore more quickly providing the ability to write and release

the patch.

40

Bibliography

[1] Peter A. Loscocco, Stephen Smalley, D, Patrick A. Muckelbauer, Ruth C. Taylor,

S. Jeff Turner, and John F. Farrell. The inevitability of failure: The flawed assumption

of security in modern computing environments. In Proceedings of the 21st National

Information Systems Security Conference, pages 303–314. National Security Agency,

October 1998.

[2] Historical trends in the usage statistics of server-side programming languages for

websites. https://w3techs.com/technologies/historyoverview/programminglanguage.

[3] Son Sooel and Shmatikov Vitaly. SAFERPHP: Finding Semantic Vulnerabilities in

PHP Applications.

[4] Php Metrics. https://github.com/phpmetrics/PhpMetrics.

[5] Ruslan Spivak. Let’s Build A Simple Interpreter. Part 7: Abstract Syntax Trees.

https://ruslanspivak.com/lsbasi-part7/, 2015.

[6] Peter Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph construc-

tion in object-oriented languages, October 1997.

[7] A PHP parser written in php. https://github.com/nikic/PHP-Parser.

[8] PHP Anonymous Functions. https://www.php.net/manual/en/functions.anonymous.php.

41

[9] Wordpress Plugins. https://wordpress.org/plugins/.

[10] WordPress Plugin Vulnerabilities. https://wpscan.com/plugins.

42

Appendix A

Program Code

Listing A.1: Interpreter.php
1 <?php
2

3 declare(strict_types=1);
4

5 namespace Interpreters;
6

7 require_once('../vendor/autoload.php');
8 include_once('Visitors/CommentVisitor.php');
9 include_once('Visitors/NullVisitor.php');

10 include_once('Visitors/NodeCountVisitor.php');
11 include_once('utilities.php');
12

13 use Exception;
14 use utilities;
15 use Visitors\{NodeCountVisitor, NullVisitor, CommentVisitor};
16 use PhpParser\{Node, NodeFinder, NodeTraverser, NodeDumper, ...

PrettyPrinter};
17 use PhpParser\Node\FunctionLike;
18 use PhpParser\NodeVisitor\ParentConnectingVisitor;
19 use PHPAstVisualizer\Printer;
20

21 class Interpreter
22 {
23

24 private $NOFUNC = 'Unable to find target Function';
25

26 protected array $ast = [];
27 public $traverser = NULL;
28 protected $nodeFinder = NULL;
29 protected $prettyPrinter = NULL;
30 protected $Function = '';
31

43

32 public function __construct(array $ast, Node $sample = NULL, ...
string $targetFunc = NULL)

33 {
34 $this->AddDefaultVisitors();
35 $this->nodeFinder = new NodeFinder();
36 $this->prettyPrinter = new PrettyPrinter\Standard();
37 // if a sample is given and no function name, then try ...

and find the function name
38 // then build the AST as normal
39 if ($sample != NULL && ($targetFunc == null || ...

strlen($targetFunc) == 0))
40 $targetFunc = $this->FindFunctionName($ast, $sample);
41 $this->ast = $targetFunc === NULL || $targetFunc === ...

$this->NOFUNC
42 ? $ast
43 : [@$this->FindTargetFunction($ast, ...

$targetFunc)];
44 $this->Function = $targetFunc;
45 }
46

47 public function Interpret()
48 {
49 $this->ast = $this->traverser->traverse($this->ast);
50 }
51

52 public function DumpAST()
53 {
54 $dumper = new NodeDumper;
55 return $dumper->dump($this->ast);
56 }
57

58 public function ASTtoJSON($outputDir)
59 {
60 utilities::writeFile($outputDir, json_encode($this->ast,
61 JSON_PRETTY_PRINT | JSON_INVALID_UTF8_IGNORE | ...

JSON_PARTIAL_OUTPUT_ON_ERROR));
62 }
63

64 public function DumpToFile($outputDir)
65 {
66 utilities::writeFile($outputDir, $this->DumpAST());
67 }
68

69 public function Reconstruct()
70 {
71 if ($this->prettyPrinter == null)
72 $this->prettyPrinter = new PrettyPrinter\Standard;
73 return $this->prettyPrinter->prettyPrintFile(
74 array_filter($this->ast, function ($n) {
75 return !is_null($n);
76 }));
77 }
78

79 public function ReconstructToFile($outputDir)

44

80 {
81 utilities::writeFile($outputDir, $this->Reconstruct());
82 }
83

84 public function GenerateImage($filename, $imageFormat)
85 {
86 $printer = new Printer;
87 $printer->print($this->ast)->export($imageFormat, $filename);
88 }
89

90 public function ASTLength(): int
91 {
92 $nodeVisitor = new NodeCountVisitor();
93 $traverser = new NodeTraverser(); visitors
94 $traverser->addVisitor($nodeVisitor);
95 $traverser->traverse($this->ast);
96 return $nodeVisitor->nodeCount;
97 }
98

99 public function DetermineFuncLength()
100 {
101 $php_lines = preg_split('/\n|\r/', $this->Reconstruct());
102 return count($php_lines);
103 }
104

105 public function FindInstanceCount(string $nodeType)
106 {
107 return count($this->nodeFinder->find(
108 $this->ast, function (Node $node) use ($nodeType) {
109 return $node->getType() === $nodeType;
110 }));
111 }
112

113 public function FindFunctionName(array $ast, Node ...
$targetNode): string

114 {
115 try {
116 return $this->FindFuncNameInternal($ast, $targetNode);
117 } catch (Exception) {
118 return $this->NOFUNC;
119 }
120 }
121

122 public function BuildDataFile($outputDir, $sampleName, ...
$version, $code)

123 {
124 // generate a new file containing relevant data we want ...

to track
125 $file = ...

fopen("{$outputDir}/{$sampleName}_data_{$version}", ...
"w") or die("Unable to open file!");

126 $fileLength = count(preg_split('/\n|\r/', $code));
127 fwrite($file, "Function Name: {$this->Function}\n");
128 fwrite($file, "File Length: {$fileLength}\n");

45

129 fwrite($file, "Function Length: ...
{$this->DetermineFuncLength()}\n");

130 fwrite($file, "AST Nodes: {$this->ASTLength()}\n");
131 fwrite($file, "IfStmt: ...

{$this->FindInstanceCount("Stmt_If")}\n");
132 fwrite($file, "SwitchStmt: ...

{$this->FindInstanceCount("Stmt_Switch")}\n");
133 fwrite($file, "WhileStmt: ...

{$this->FindInstanceCount("Stmt_While")}\n");
134 fwrite($file, "ForStmt: ...

{$this->FindInstanceCount("Stmt_For")}\n");
135 fwrite($file, "GotoStmt: ...

{$this->FindInstanceCount("Stmt_Goto")}\n");
136 fwrite($file, "Call Expr: ...

{$this->FindInstanceCount("Expr_FuncCall")}\n");
137 fwrite($file, "FunctionDecl: ...

{$this->FindInstanceCount("Stmt_Function")}\n");
138 fwrite($file, "Method Call: ...

{$this->FindInstanceCount("Expr_MethodCall")}\n");
139 fwrite($file, "Property Fetch: ...

{$this->FindInstanceCount("Expr_PropertyFetch")}\n");
140 fwrite($file, "Array Dim Fetch: ...

{$this->FindInstanceCount("Expr_ArrayDimFetch")}\n");
141 fclose($file);
142 }
143

144 // private functions:
145

146

147 private function FindTargetFunction(array $stmts, string ...
$funcName): Node|NULL

148 {
149 return $this->nodeFinder->findFirst($stmts, function ...

(Node $node) use ($funcName) {
150 return $node instanceof Node\FunctionLike
151 && $node->name != null
152 && $node->name->toString() === $funcName;
153 });
154 }
155

156 private function FindFuncNameInternal(array $ast, Node ...
$targetNode)

157 {
158 $ast = $this->traverser->traverse($ast);
159 $targetNode = $this->prettyPrinter->prettyPrintFile(
160 $this->traverser->traverse([$targetNode]));
161 $parentArr = $this->nodeFinder->find($ast, function (Node ...

$node) use ($targetNode) {
162 return $targetNode == ...

$this->prettyPrinter->prettyPrintFile([$node]);
163 });
164

165 $parent = $parentArr != null ? $parentArr[0] : null;
166

46

167 while ($parent != null && !($parent instanceof FunctionLike))
168 $parent = $parent->getAttribute('parent');
169

170 return $parent == null ? "" : $parent->name->toString();
171 }
172

173 private function AddDefaultVisitors()
174 {
175 if ($this->traverser == null)
176 $this->traverser = new NodeTraverser();
177 $this->traverser->addVisitor(new CommentVisitor);
178 $this->traverser->addVisitor(new NullVisitor);
179 $this->traverser->addVisitor(new ParentConnectingVisitor);
180 }
181 }

47

48

	Locality Analysis of Patched PHP Vulnerabilities
	Repository Citation

	Abstract
	Introduction
	Motivation
	Contributions
	Collected Data
	Defining Metrics
	Deriving Distance

	Evaluation Results
	Goals
	Organization

	Related Work
	Defining Locality
	Guidelines
	Source Code
	Abstract Syntax Tree

	Evaluation
	Source Code
	Abstract Syntax Tree

	A Running Example

	Experiments
	Dataset
	Results

	Conclusion and Future Work
	Bibliography
	Appendix A

