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ABSTRACT

Alexiou, Michail. Ph.D., Department of Computer Science and Engineering, Wright
State University, 2021. A Deep Understanding of Structural and Functional Behavior
of Tabular and Graphical Modules in Technical Documents.

The rapid increase of published research papers in recent years has

escalated the need for automated ways to process and understand them. The

successful recognition of the information that is contained in technical

documents, depends on the understanding of the document’s individual

modalities. These modalities include tables, graphics, diagrams and etc. as

defined in Bourbakis’ pioneering work. However, the depth of understanding

is correlated to the efficiency of detection and recognition. In this work, a

novel methodology is proposed for automatic processing of and

understanding of tables and graphics images in technical document. Previous

attempts on tables and graphics understanding retrieve only superficial

knowledge such as table contents and axis values. However, the focus on

capturing the internal associations and relations between the extracted data

from each figure is studied here. The proposed methodology is divided

into the following steps: 1) figure detection, 2) figure recognition, 3)

figure understanding, by figures we mean tables, graphics and diagrams. More

specifically, we evaluate different heuristic and learning methods for

classifying table and graphics images as part of the detection module. Table
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recognition  and deep understanding includes the extraction  of the knowledge

that is illustrated in a table image along with the deeper associations between

the table variables. The graphics recognition module follows a clustering based

approach in order to recognize middle points. Middle points are 2D points where

the direction of the curves changes. They delimit the straight line segments that

construct the graphics curves. We use these detected middle points in order to

understand various features of each line segment and the associations between

them. Additionally, we convert the extracted internal tabular associations and the

captured curves’ structural and functional behavior into a common and at the

same time unique form of representation, which is the Stochastic Petri-net

(SPN) graphs. The use of SPN graphs allow for the merging of different document

modalities through the functions that describe them, without any prior knowledge

about what these functions are. Finally, we achieve a higher level of document

understanding through the synergistic merging of the aforementioned SPN graphs

that we extract from the table and graphics modalities. We provide results from

every  step  of  the  document  modalities  understanding  methodologies  and  the

synergistic merging as proof of concept for this research. 
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1. Introduction

The rapid increase of published research papers in recent years has escalated

the need for automated ways to  process them and  capture their  illustrated

information. This  need has elevated the field of automatic technical document

understanding into a significant research topic. The accurate understanding of

technical documents depends on the proper processing of their individual

modalities. Modalities such as diagram and graphics images, tables and the natural

language text contain important information about the functionality and

architecture of the proposed methodologies. However, data analysis must not be

bounded to understanding of information that is visually accessible. It should be

expanded to accommodate the extraction of the deeper meanings and connections

between them. Thus, the retrieval and combination of their internal information can

lead to a better understanding of the overall document itself. 

As we have already mentioned, each of these individual modalities and their

associations with each other provide significant insight about the understanding of the

technical  document’s  represented  knowledge.  With  the  exception  of  the  natural

language  text,  we  consider  the  rest  of  the  extracted  modalities  as  “images”.  We

present  the  diagram  that  describes  the  aforementioned  technical  document

understanding methodology [75, 76, 86 - 91] in figure 1. This research is focused on

developing a methodology where all these modalities can be expressed into the same

1



format  (natural  language  sentences)  and  a  mathematical  model.  We  choose  the

Generalized Stochastic Petri-net graphs (SPN) as that mathematical model, in order to

examine  better  associations  and  achieve  a  deeper  understanding  of  the  technical

document. We achieve the deep understanding through 3 specific contributions. The

first  unique  contribution  is  the  enrichment  of  the  natural  language  text  part  with

additional natural language sentences extracted from the aforementioned tabular and

graphics “images” of the technical document. The second unique contribution comes

from  the  SPN  models  of  these  “images”  that  compliment  the  main  diagram  by

generating  a  simulator  for  the  architecture  that  the  input  technical  document

illustrates.  The  third  unique  contribution  is  the  generation  of  additional  new

knowledge through the combination of tabular and graphics SPN graphs, which was

not available prior to that synergistic merging.

In this research we consider a technical document (TD) as the composition of

two  parts.  The  first  part  contains  the  natural  language  text  and  text  captions  of

images, titles, sections, paragraphs and sentences. The second part includes all the

modalities that we consider “images”, which are system diagrams (block diagrams),

tables,  mathematical formulas,  graphics,  charts  and pictures.  Thus,  each technical

document has natural language parts and images parts which we detect and extract

through specific software tools.

2



Figure         1:   The Technical Document Deep Understanding Methodology [75, 76, 86 -

91].

More  specifically,  we introduce a novel methodology for the automatic

detection, recognition and understanding of tabular information and graphics

relations that is contained in technical documents. We define the table structure as

the collection of data variables and values, which are arranged in rows and columns.

The arrangement of these data must be in a meaningful way that indicates the

underlying associations between the variables, in order to be visually recognizable.

We define a graphics figure, which contains either curves or bars, as the visual

representation of the variations in the values of one or multiple variables with

respect to the progression of time. These variables correspond to either different

curves or bars. However, the arrangement of these data must be in a meaningful way
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so that their underlying associations are visually recognizable. We are motivated by

the work presented by Bourbakis et. al. [1], where a strategy is discussed for the

conversion of different technical document modalities into SPN  graphs. The

overall goal of our research is to recognize the knowledge that is illustrated in

different technical document modalities and combine them through a common

representation format, in order to achieve complete and better understanding.

Therefore, the SPN graph is selected as the optimal representation format, since

it is capable of describing the internal functionality of the processed modalities. 

Chapter Overview

The remainder of the dissertation is organized as follows.

Chapter 2: Literature Review details the literature review regarding tabular and

graphics  images  processing.  More  specifically,  in  Section  2.1  we  examine  work

related to table detection and recognition. In Section 2.2 we cover the work related to

graphics image detection, recognition and understanding. Additionally, in each section

we perform a subjective evaluation to determine which studied methodology best

aligns  with  the  current  research.  A different  maturity  score  is  assigned  to  each

methodology in order to make it comparable to the others. 

Chapter 3: Processing  of  Tables  Images examines  the  overall  proposed

methodology  for  the  detection,  recognition  and  understanding  tabular  images  in
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technical documents. Section 3.1 discusses the general table processing methodology

as well as its goals and contributions. Section 3.2 provides a comparative evaluation

on different table detection methodologies. These methodologies are categorized

into rule-based, machine learning based and hybrid.  Section  3.3  details the

grammar, alphabet and operators of the Pinakas formal language. We have

developed this language as the means to map the retrieved tabular information into

SPN graphs. Section 3.4 provides the methodology steps for the extraction and

recognition of tabular information, such as table variables and values. The

proposed methodology covers different types of table structures.  Section  3.5

discusses the methodology steps for the understanding of the internal associations

and relations between the different table values and variables. Furthermore, it

provides the results from the conversion of the retrieved knowledge into other

forms of representation. These formats include attributed graphs, natural language

sentences and SPN graphs.

Chapter  4: Processing  of  Graphics  Images discusses  the  overall  proposed

methodology  for  the  detection,  recognition  and understanding  graphics  images  in

technical  documents.  Section  4.1  presents  the  general  graphics  processing

methodology  and its  features.  Section  4.2  performs a comparative evaluation on

different graphics detection methodologies. These methodologies are separated

into rule-based, machine learning based and hybrid categories. Section 4.3 presents

the grammar, alphabet and operators of the Kyrtos formal language. We introduce
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this formal  language in order to help us map the extracted graphics relations into

SPN graphs. Section 4.4 provides the methodology steps for the extraction and

recognition of graphics information, such as axis legends text and the individual

line segments the produce the curves. The proposed methodology covers different 3

types of graphics  images.  Section  4.5  discusses  the  methodology steps for the

understanding of the structural and functional information that are illustrated in a

graphics image. We convert these information into natural languages sentences which

are later mapped into SPN kernels using the Kyrtos formal langauge.

Chapter 5: Function  Regeneration  from  Graphics  Images provides the

methodology for the recognition of the function that describes the behavior of a given

curve. Section 5.1 illustrates the algorithm that recognizes the corresponding funtion

type  of  the  curve.  Section  5.2  presents  the  methodology  and  results  of  function

regeneration for linear curves. Section 5.3 presents the methodology and results for

the  regeneration  polynomial  function  based  curves.  Section  5.4  illustrates  the

methodology and results for the function regeneration of asymptotic curves. Section

5.5  discusses  the  processing  steps  and  results  of  the  function  regeneration

methodology  in  the  case  of  sinusoidal  curves.  Finally,  Section  5.6  covers  the

processing steps for the approximation of functions that describe curves of arbitrary

shape using Cubic Splines.
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Chapter 6: Synergistic Merging of Graphical and Tabular Information examines

the proposed methodology for the combination of extracted tabular and graphical

information.  More  specifically,  Section  6.1  presents  the  overall  matching  and

merging methodology. Section 6.2 presents the results of the table recognition and

understanding methodologies for a given table use case. Section 6.3 illustrates the

results of the graphics recognition and understanding methodologies for a specified

graphics  image input.  Finally,  Secgtion  6.4  presents  the  results  of  matching and

combining the respective SPN graphs of the 2 modality images. It must be noted that

both of these images come from the same technical document and, thus, exists an

underlying association between them that needs to be found.

Chapter 8: Conclusions summarizes the  contributions  of  this dissertation.

Chapter 7: Future Work  discusses potential future work in terms of improving the

accuracy of the presented recognition and understanding methodologies, optimizing

their performance, introducing machine learning to their procedures and examining

more advanced and complex data.  
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2. Literature Review

2.1 Processing of Tables Images

2.1.1 Rule-based Detection of Tables

Laurentini et al. [56] present an algorithm for the identification of tables in

document images based on the location of intersecting horizontal and vertical lines, as

well  as  rectangular  regions  containing  text.  The algorithm initially  detects  image

connected components that form words. The  words are merged to form phrases based

on their  horizontal  or  vertical  distance.  The algorithm detects  lines  of continuous

black pixels. Whether the pixels are accepted as part of a line depends on a threshold

related to the average font size. In this way, the method also handles  skew images. If

the formed lines are too close to each other, they are merged into single vertical or

horizontal lines. If necessary, certain adjustments are applied to restore lines from

errors. Image regions  containing lines are potential regions interest.  If the layout

formed by the intersecting lines matches with the alignment of the rectangular texts in

a certain region, then the intersecting lines are considered to form table cells. The

final conclusion depends on whether  these formed table cells  appear  on a certain

pattern, in order to ensure to that the region of interest above  form a table structure.

Green  et  al.  [60]  proposed  a  methodology  for  detecting  logical  relations

between cells that belong to tables in document images. Their model describes  tables

based on the connections between table cells. A separate set of rules is applied to

8



distinguish a table from the background image. The algorithm iterates many times in

order to adjust confidence weights to vertical and horizontal lines that may form table

lines. Further iterations will extract inner cells in each detected table.

The solution by Tupaj et al. [50] applies a sequence of four steps: (a) image

segmentation in order to detect regions that may contain tables, (b) Optical Character

Recognition (OCR) within areas of interest for text extraction, (c) text analysis  for

detecting the start and ending of a table and, (d) semantic analysis for extracting table

components such as title, cell values etc. The image’s deskewing angle is computed

and the image is rotated (by the amount of skew) so that, the lines in the image are

aligned horizontally and vertically. Horizonyal and vertical lines in the image define

sections that may contain tables.  The method selects  those sections  that  are  most

likely to contain tables based on the white space distances and the keywords that have

been identified. OCR extracted text is parsed  and table boundaries are identified by

applying a set  of format rules for blank spaces and lines containing multiple text

words between any two of them. Vertical table separators are detected based on the

orientation of text chunks.

A similar approach by Mandal et al. [65]  makes the assumption that the gaps

between words in table cells are always larger than those between the words in text

areas. Image connected components are extracted first   in order to recognize any text

words and the lines containing those words. The text words are treated as blobs of

black pixels and each line as a set of blobs. The size of the gap between consecutive
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blobs  in  a  line  is  obtained  from  their  distance  histogram.  Based  on  distance

information, words that belong on a text line are combined to form a single text block

with no distances them. Otherwise, the method checks for table lines. A table line is

identified as one that contains multiple pixel blobs with a certain distance between

them. The method also attempts to recapture any missed table lines, by checking the

neighborhood of those that are already considered as candidate table lines. 

Shamilian et al. [43] present a methodology for detecting tables in images of

printed documents based on layout styles defined by the user. More specifically, the

user defines important details about the layout of the targeted table using a Graphical

User Interface (GUI). These details  include frequency of characters, ink template,

minimum and maximum characters that may be contained within a table field. The

algorithm begins by applying certain image processing operations on the document

image such as connected component extraction, skew correction, erasure of any ruling

lines and separation of text lines from the rest of the document. The text lines are

processed using the defined ink templates to determine whether they belong to a table

or not. The location and the total number of tables for a document image is based on

the length of ink templates associated with that document page. The method attempts

to match the template of the text lines with the predefined ink templates ones. The

text  lines  that  match  to  a  template  are  stored  for  further  processing.  Finally,  the

method retrieves the exact beginning and end of a table using horizontal shifts on the

stored text lines.
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Jianying et al. [59] propose two algorithms, which  in combination can detect

tables  in a  wide range of document types,  including images.   The first  algorithm

detects  candidate  table  lines  which,  when merged,  form regions  with tables.  The

method  applies  a  heuristic  rule  in  order  to  identify  image  regions  with  high

probability of containing tables and avoid overlays with (possibly erroneous) tables

that are detected with less confidence. The second algorithm computes the correlation

between words that belong to different text lines based on the spaces between them.

If two lines correlate well, they could potentially be part of the same table column. In

ASCII  documents,  this  algorithm searches  for  ASCII  words,  while  in  images  the

algorithm searches again for connected components.

Kieninger  et  al.  [70,71]  propose  T-Recs,  a  tool  for  detecting  tables  in

documents based on the bounding boxes of document words extracted by applying

OCR. In the first version of the tool [70], the authors cluster the recognized bounding

rectangles of the text words into segments. Words of adjacent text lines are clustered

into  the  same segment,  while  words  of  neighboring  columns  end-up in  different

clusters.  Detection of tables  is  based on the recognition of  multiple  column gaps

across  detected  horizontal  lines  in  the  segmentation  graph.  T-Recs  achieved  high

precision for recognition of tables in scientific documents, since these tables obey to

predefined templates. Corporate documents might not follow the same structural rule,

thus an improved version of T-Recs is presented in [71]. This version, groups text

bounding boxes with similar width and height, that might also overlap with each other
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on the vertical axis. The groups are called column fragments and can potentially span

over  multiple  table  cells.  The  algorithm  clusters  column  fragments  instead  of

bounding boxes. Any clustering errors are corrected using  the y-axis projections of

the column fragments.

Neves et al. [61] present a methodology for automatic detection of structures

enclosed  by  vertical  and  horizontal  lines.  Their  detection  relies  on  identifying

intersections between those vertical  and horizontal  lines.  The methodology begins

with locating intersections and proceeds by detecting and correcting any errors in the

identification process. Identification of intersections is accelerated by applying a set

of four rules  that define which pixels patterns are accepted as intersections. These

patterns when eroded and combined can produce a total of nine intersection pixel

formations.  In  order  to  identify  a  candidate  pixel  formation  as  intersection,  it  is

compared against all  intersection patterns,  even those that  come from unification,

starting with the highest level pattern.

Wang et al. [40] propose a methodology for automatic detection of tables in

images. They divide the problem into the sub-problems of identifying the table and

decomposing it. The algorithm begins by classifying the document layout into either

single column, double column or mixed column type based on the recognition of

blank separators in  the document structure.  Then,  it  proceeds to  detect  horizontal

blank blocks  and group those blocks  and their  adjacent  words  together  based on

vertical alignment criteria. These groups indicate the candidate regions for containing
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tables, which are going to be validated using a set of predefined features. Finally, the

algorithm computes the vertical projection of the words contained within each table.

Individual  table  columns  are  extracted  using  the  resulting  valleys  and  peaks  as

reference points.

Cesarini et al. [72] propose Tabfinder, a tool that detects tables in images of

document  pages  by  making  use  of  its  corresponding  Modified  X-Y (MXY)  tree

representation [73]. The algorithm is trained to identify specific table types, based on

certain information extracted by the MXY tree. The method starts with the recursive

parsing of the MXY tree for a given page, in order to identify regions enclosed by

vertical and horizontal lines. Then, it searches for more vertical and horizontal lines

inside  those  regions  and,  if  two  or  more  lines  are  detected,  these  regions  are

recognized as tables. Otherwise, it searches for perpendicular cuts within them. The

mage areas that are most likely to be part of the same table are accepted and merged

to form a table. Areas that are less likely to be part of a table are discarded (based on a

user-defined threshold). Two methods for computing optimal thesholds are proposed

and compared. The first method iterates over   all the possible threshold combinations

to  find  the  one  that  maximizes  the  table  detection  accuracy.  The second  method

applies a variation of the Nelder and Mead methodology [74], which is modified in

order to replace the value of the threshold with the closest from a set of values. The

closest value is the one with the minimum Euclidean distance.
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Gatos et  al.  [38] propose a methodology with 3 main stages for automatic

detection of tables in images. The first stage is image pre-processing, the second stage

is about spotting the vertical and horizontal lines in the image and, the final stage is

the one that  detects  the tables.  Pre-processing begins  with the binarization of the

image before  enhancing  it  followed  by adaptive  method,  which  is  useful  for  the

correction of distorted images.  Then,  the method deduces  the text-orientation and

corrects the skew by applying a fast Hough transform. Any noisy borders are ereases

and  the  average  character  height  is  computed.  Character  height  depends  on  the

rectangle  heights  of  the  neighboring  connected  components  in  the  image.   The

method then detects lines in the image of the document by following and combining

adjacent black pixels to form lines.  To accept the lines, they are compared to the

previously calculated average character height. Lines accepted are improved after the

removal of any image and text regions. These regions are detected after applying a

smoothing filter on the image. The table detection process depends on the recognition

of intersections between the previously detected horizontal and vertical lines. Once

the intersection detection process is complete, the method determines the structure of

the table by grouping all the intersections detected and restoring the line brakes where

necessary.

The  method  by  Deivalakshmi  et.  al.  [63]  also  relies  on  detection  of

intersections.  The  method  detects  horizontal  and  vertical  lines  on  the  binary

transformed version of the input document image. The detection of the lines is based
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on mathematical grouping operations applied on sequences of  adjacent black pixels.

The algorithm then detects the points of intersection between vertical and horizontal

lines by applying the AND operation in pairs of lines. These points of intersection

define tables that have ruling lines.

Harit  et  al.  [68]  present  a  technique  for  detection  of  tables  in  document

images, based on the recognition of header and trailer patterns from the documents

layout.  More specifically,  the  solution  analyzes  the  layout  next  to  the  recognized

vertical and horizontal separators, in order to detect patterns that indicate existence of

tables. It begins by searching for vertical and horizontal separators in the document

image, in order to segment the image into individual data blocks, called patches. A

user-defined set of rules for recognizing patterns based on the layout on these patches

is defined in correlation with the position of the separators that created them. These

rules require that different patterns will emerge, when there are differences in the

layout features and the contents of regions. These regions are left and right or up and

down from the detected separators. After the detection of patterns is completed, the

algorithm computes  the  boundaries  for  the  regions  that  contain  these  patterns.  If

vertical  ruling  lines  exist,  they  are  used  for  the  definition  of  the  left  and  right

boundaries. Otherwise, the left and right boundaries are deduced based on the spatial

expansion of the horizontal ruling lines, which border the top and bottom of the table.

If there are no ruling lines at all, whitespaces will be identified and used as conceptual

separators between columns and rows of tables. The final predictions are based on the
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analysis  of  the  text  components  next  to  separators,  as  well  as  the  separators

themselves.

Jahan et al. [58] propose a methodology for detecting and extracting tables in

scanned document pages  based on set  of rules.  The method searches  for  all  the

horizontal text lines in the image using X and Y projections. Then, the algorithm

calculates the space between the words in each line. In this way,  plain text lines are

distinguished from lines that belong to a table, since a text line has more words and,

thus,  a  greater  number  of  spaces  between  them,  than  the  lines  of  a  table.  The

thresholds  for  the  acceptance  of  table  line  heights,  as  well  as  for  the  distances

between the contents of each cell are based on the heights and spaces of the words in

the document image..

The  method  by  Tran  et  al.  [66]  is  rule-based  methodology  and  relies  on

recognition of alignment characteristics of connected components.  It  relies on the

assumption that a table will always contain aligned text blocks inside it. If an image

region is detected, if it  is enclosed by vertical or horizontal lines and, if there are

multiple text blocks within this region   aligned vertically and horizontally, then this

region is a table. After some standard pre-processing steps and after  line brakes are

corrected  (using  morphological  features),  the  algorithm extracts  image  connected

components and computes their bounding boxes. Then, it searches for regions that can

contain tables  by detecting bounding boxes  that  contain other  bounding boxes of

identified connected components or by detecting only horizontal lines. For the latter
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case, the algorithm finds an horizontal line and creates a region of interest around it. It

then  expands  this  region  of  interest  in  a  top-down direction,  in  order  to  enclose

bounding boxes of connected components. If there are multiple text blocks contained

within region and the text blocks are aligned vertically with the text blocks of the

other lines, then that region is recognized as a table. If any outcome region end-up

overlapping with other regions, they  are merged   to form a single table.

Anh et al. [35] present a solution as a follow-up of their original work [36],

which introduced a hybrid methodology for document page segmentation based on

the idea of multilevel homogeneity. in order to extract its contents and their structural

format. Initially, the image connected components are extracted [37] and classified

into text and non-text elements based on predetermined heuristics [36]. The text lines

are  detected  and then  deleted keeping their location only. Regions of potential tables

are extracted based on the layout features of text lines and non-text elements. These

tables are classified into ruling line tables (i.e. color, close, non-close, and parallel) or

non-ruling line tables. The detection of color tables relies on consolidating detected

rectangular components taking into consideration the (small) distance between them

and their size. If the detected components can be arranged into rows and columns,

then, the resulting region is a (potential) color table. In order to classify a structure as

close or non-close table region, three conditions are checked: (a) the density of the

contents within the rectangular components is low, (b)  components and text elements

do not overlap and (c) there are rectangular components that contain other smaller
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components.  If  all  of  these  conditions  are  satisfied,  then  the  candidate  region  is

classified as a potential close or non-close table region. On the other hand, the regions

that  contain  either  only  vertical  line  elements  or  horizontal  line  elements  are

categorized  as  potential  parallel  table  regions.  Finally,  for  non-ruling  line  table

detection, the method checks for homogeneity in the formed regions inside the text

line document. Eventually, table regions are derived as the combination of ruling line

regions and,  non-ruling line regions.

2.1.2 Machine Learning Based Detection of Tables

Gilani et  al.  [31] combine image processing and deep learning techniques.

Prior to detection, document pages or images are pre-processed to separate text from

non-text regions. Images in the output are processed by applying Faster R-CNN [54].

This happens in order to transform them into natural images, since the authors are

going to  use  the  Faster  R-CNN [54]  detection  and classification  framework.  The

transformation of  an  input  (binary)  image to  natural  image occurs  by applying a

combination  of  distance  transformation  techniques  (i.e.  Euclidean  distance,  linear

distance and max distance transformations) on all three channels of an RGB image

(red, green, and blue). The processed image is then passed into a fine tuned Zeiler and

Fergus model [34], which outputs the feature map. The Region Proposal Network

(RPN) of  Fast-CNN [54]  takes  the  resulting  feature  map and parses  it  through a

convolutional layer of its own in order to predict possible regions that contain tables.

Both  the  original  feature  map  and  the  proposed  regions  are  parsed  into  fully
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connected layers. Finally, a Fast R-CNN detection module classifies those regions as

tables or not  and returns the bounding boxes of the predicted table regions.

Schreiber et al. [46] propose a deep learning-based approach for the detection

of tables in document images and PDF files. Taking advantage of transfer learning,

the  method  employees  a  fine-tuned  pre-trained  Faster-RCNN  model  for  spotting

tables  in  documents.  Similarly,  they  apply  transfer  learning  for  recognizing  the

structural features of tables  by fine-tuning a Fully Convolutional Network model for

semantic  segmentation  [47].  Overall,  the  method  relies  on  Faster  R-CNN  and

suggests two versions of the model to be compared. The first is based on ZFNet [34]

and the second one is based on the VGG-16 network [48]. After locating the position

of the table in the image, the structural elements (i.e. rows, columns and cells) are

identified.  The  implements  an  FCN  -  2s  model,  which  includes  2  more  skip

connections.  These  connections  combine  characteristics  of  both  the  first  and  the

second pooling layers. To make the method scale invariant and capable of predicting

scaling factors from a training data set,  scale layers are replaced by normalization

layers  in the example of [49].

The method by Siddiqui et al.  [44] applies a combination of convolutional

neural  networks  (CNNs)  using  deformable  convolution  and  Faster  R-CNN  [54].

Traditional CNN approaches rely on extracting images features from their respective

layers. Each layer comprises a number of neurons, each receiving a feature map with

a specified size as input. This can be problematic for cases of tables in images of
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varying sizes, because important information can be lost during resizing. Deformable

convolution solves this problem by allowing the neurons to adapt their acceptance

size, based on the size of the previously given feature map. This type of convolution

is  achieved  through the  use  of  specific  offsets,  which  gain  their  values  from an

external convolutional module. The same issue can be detected in the ROI pooling

segment  as  well,  causing  again  loss  of  valuable  information  before  the  final

classification.  The  authors  also  introduce  deformable  ROI  pooling,  for  dynamic

adjustment  of the acceptance limits  to  the different  scales  of the received feature

maps. 

Arif  et  al.  [67]  illustrate  a  deep learning technique  for  detection  tables  in

document  images,  based  on  the  different  layout  and  foreground  features  of  the

document. The proposed methodology begins with pre-processing of the input image.

More specifically, the algorithm searches for numeric characters and text characters in

the image.  Any numeric data are marked in red and, all text is marked in green. Then,

Euclidean distance transformation is applied to the blue channel of the image, in order

to  enhance  the  background  features  of  the  document.  As  a  result,  red  and green

channels contain foreground information, while the blue channel contains background

information. Tables are detected by  a Faster R-CNN  module. Initially the image is

parsed by a pre-trained model like VGG-16 and ZF model (trained on ImageNet [55])

that performs accurate feature detection and outputs the corresponding feature maps.

These maps are passed to an RPN module (i.e. typically a CNN), that generates a list
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of proposals about what regions to search for tables in the document. The detector

network  is  a  Fast  R-CNN module,  that  accepts  the  region proposals  and outputs

prediction scores and bounding rectangle positions.

Saha  et  al.  [52]  present  a  deep  learning-based  methodology  for  detecting

graphical objects such as tables, equations and figures in technical document pages

that  are  converted  to  images.  They  composed  two  versions  of  the  model  for

comparative evaluation. The first version of the model is based on Faster R-CNN[54],

while  the  second one is  based  on Mask R-CNN[53].  These two algorithms were

selected because of their proven good performance. Both models are very similar and

they consist of a backbone CNN module and a standard RPN module. The difference

is that, Faster R-CNN uses ROI pooling to generate the respective feature maps to be

parsed by the fully connected layers for box and class prediction. On the other side,

the Mak R-CNN uses ROI align for generating the feature maps for parsing and final

prediction. In the case of Mask R-CNN the feature maps are also parsed through a

specific  module that  gives the segmentation mask for each candidate  region.  The

authors exploit the advantages of transferring learning for the training of their models,

by  deploying  the  pre-trained  VGG-16  and  ResNet  (trained  on  ImageNet  [25])

network as the basis for their implementation. 

Kavasidis et al. [5] propose a method for detecting tables and other graphical

objects in document images using a saliency CNN. More specifically, they handle the

problem of table detection as a semantic segmentation one,  thus they employ the
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saliency detector to perform the segmentation. Their implementation is based on a

VGG-16 network, but with kernels of size 7x3 instead of the traditional ones. In this

way, they ensure recognition of tabular features. The method generates specific binary

masks, where one mask corresponds to each class of the four author-defined classes.

These masks can detect the boundaries of detected document objects, as long as these

object belong to one of the set classes. A dilation layer at the end of the detector also

ensures  the  preservation  of  context  between  the  detected  objects.  A Conditional

Random Field (CRF) model is added as an extra module to the methodology, that

accepts the resulting feature maps and help correct any segmentation errors like false

unification  of  what  should  have  been separately  recognized tables.  Another  extra

module contains four binary classifiers each trained separately to recognized images

that belong to one of the four classes of interest. This step improves the accuracy of

the saliency CNN detector.

Riba  et  al.  [69]  present  a  deep  learning  technique  for  detecting  tables  in

images of invoice documents based on the recognition of repeated structural patterns

using Graph Neural Networks (GNN). They recognize tabular structures using the

connection  of  different  document  elements.  More  specifically,  the  graph  vertices

represent connected components detected in the image (i.e. text blocks or lines) and

the graph edges represent connections between them. The authors train a GNN model

to recognize graphs that represent tabular structures in documents using supervised

learning. The methodology begins with the analysis of the document image layout to
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retrieve regions that  correspond to either  text  or  graphics (vertical  and horizontal

lines). These regions are transformed to graph nodes that hold 7-dimensional vectors

with a histogram representation of their contents and the positions of their bounding

rectangles.  Graph  edges  are  placed  between  different  graph  nodes  based  on  the

connections  of  their  corresponding  document  regions.  The  GNN  contains  Graph

Residual Blocks that perform all the transformation on the vectors of the graph node

and propagate  the  corresponding information  to  other  nodes.  A Graph Adjacency

layer is used to learn the correlation between neighborhood connections and tabular

structure recognition by updating the adjacency matrix. The final classifier is used to

classify the graph nodes into different classes such as headers, tables etc. Once the

categorization is completed, the edge classifier erases the edges between nodes that

don’t belong to the same class, thus improving the accuracy of the detected tables.

The  remaining  graphs,  whose  nodes  have  been  classified  as  tables  with  a  high

confidence, are given as final detection predictions.

2.1.3 Hybrid Detection of Tables

Kasar et al. [57] propose a method that detects vertical and horizontal lines in

an image, extracts specific features of these lines and then parses these features using

a Support Vector Machine (SVM). The SVM predicts whether these lines are part of a

table  structure using only the  aforementioned features  and without  any developer

input rule set. Images are pre-processed to enhance certain characteristics (e.g. black

and thin lines) and   to correct skew. Then, the method searches for horizontal and
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vertical  lines,  and  their  intersections.  The  method  relies  on  the  assumption  that

regions with tables exhibit more line intersections  of horizontal and vertical lines as

opposed to the other document objects (e.g. graphics). Line features extracted   are

passed to an SVM classifier.

He et al. [62] propose a multi-scale model, which applies a pretrained VGG19

network  followed  by  full-convolutional  layers.  In  this  way,  the  context  of  each

detected document object is maintained. For example, text blocks inside tables are

detected as parts of the table and not as individual text objects. Then, the resulting

feature maps are parsed by two concurrent modules, one for semantic segmentation

and one for contour recognition. Both these modules are networks that have been

trained to  perform their  corresponding tasks,  in  contrast  to  other  implementations

which use dedicated heuristic algorithms. The generated feature maps are parsed by a

Conditional  Random Field (CRF) to  get  more optimized versions  of  the detected

segments and contours. CRF has the advantage of taking the context of pixels into

account  (e.g.  color  differences  and  contour  characteristics)  and,  therefore  it  can

correct any errors in the original predictions. The resulting predictions go through a

heuristic layer as an extra step to separate the tables from the extracted document

segments. This heuristic module includes thresholding of the image and searching for

connecting components that form tabular structures. A final CNN layer verifies if the

detected regions belong to actual tables with the use of an Intersection over Unition

(IoU) function. or not with the use of an Intersection over Union  (IoU) function.
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Li et al. [64] present a hybrid methodology for detecting tables, graphics and

mathematical  formulas  in  document  images.  Firstly,  image  components  and  their

vertical projections are detected. Then column and line boundaries are detected by

applying a set of heuristics. The lines detected are classified as tables, figures, text etc.

by applying a CRF model with two CNNs. The first CNN performs classification

based on individual line regions. The second CNN performs classification on each

line region and its neighbor line regions. The categorized lines are parsed through a

second CRF model, comprising (again) two individual CNNs. The second CRF model

merges  lines  of  the  same class  based  on locality  criteria.  There  are  cases  where

multiple figures that share the same region are recognized as a single figure. In order

to resolve the issue, the method applies vertical projection to split the central figure

region into sub-regions. T sub-regions are merged to form single figures based on

some heuristic rules. Finally, a verification CNN module is applied as an extra step to

correct any classification errors and increase the overall accuracy of the method. 

Huang  et  al.  [42]  propose  a  deep  learning  methodology  for  automatic

detection of tables in images using a model based on YOLO v3 [11]. YOLO is a

popular method that uses CNNs to detect natural objects rather than document objects

(e.g.  people,  cars,  building)  in  images  and  videos.  Therefore,  the  basic  YOLO

algorithm has been modified to make it work for table detection. YOLOv3 already

has its own anchor proposal system for regions that are most likely to contain tables.

However,  document objects and natural object are very different, and these anchors
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may not work well for tables. The method applies  K-Means clustering in the training

set of tables, in order to get anchor proposals which are more suitable for detecting

tables.  The prediction results are analyzed  to improve the precision of detection.

More  specifically,  post-processing  removes  the  extra  white  margins  (if  detected)

around  a  table.  Then,  document  features  such  as  page  headers  and  footers  are

removed. The final predictions have to comply with specific structural rules, in terms

of the number of pixels in the table area detected, the size ratios and the distance

between the table area and the page borders.

2.1.4 Comparative Evaluation of Table Detection Methodologies

We  evaluate  the  aforementioned  table  detection  and  recognition

methodologies subjectively based on a selection of features presented in table 1. Each

of the previously discussed methodologies has been trained and tested on different

datasets,  therefore  a  direct  evaluation  among  their  corresponding  accuracy

percentages would be pointless. Therefore, we have selected subjectively the features

from table 1 that represent generic functionality in order to be able to compare the

methodologies  based  on  their  calculated  maturity  score.  Table  2  illustrates  the

corresponding  weights  for  each  feature.  The  weights  for  each  each  feature  were

determined through a survey of 4 people. More specifically, we have 2 weights for

each features based on the user’s and and the developer’s perspective. 
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Table     I:     Selected Evaluation Features      

Features  Description

Reliability (F1) Methodology  produces  expected  results  under
normal conditions.

Robustness (F2) Methodology  produces  results  under  extreme
conditions.

Simplicity (F3) Easiness  of  understanding  and  implementing  the
methodology.

Complexity (F4) Computational  complexity  of  the  methodology
(e.g. Memory, CPU, and GPU requirements).

Product (F5) Potential  for  commercial  deployment  of  the
methodology.

Cost (F6) Amount of money needed to use this methodology.

Speed (F7) Processing time of the methodology.

Scalability (F8) Ability to handle large amounts of data.

Portability (F9) Easiness  of  deployment  on  various  different
systems.

Accuracy (F10) The accuracy of the prediction results.

Efficiency (F11) Methodology can achieve the desired results in an
efficient way.

Broadness (F12) Being  able  to  apply  the  methodology  in  various
datasets based on its generalization capability.

Further Improvements (F13) Amount  of  enhancements  required  in  the
methodology’s design.

Extendability (F14) Capability of the methodology to be extended and
adopt the new enhancements.

Friendliness (F15) The  presented  solution  offers  a  user-friendly
interface.
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Table     II:     Weights Associated with Each Feature      

Features User Weight (Wu) Developer Weight (Wd)

F1 10 10

F2 10 9

F3 4 10

F4 3 10

F5 7 10

F6 10 5

F7 10 10

F8 10 9

F9 8 10

F10 10 10

F11 10 10

F12 5 9

F13 2 9

F14 5 8

F15 10 8

From the available set of features, most of them benefit the overall maturity

score.  However,  certain  features  such  as  Complexity,  Cost  and  required  Further

Improvements counteract the maturity score growth, since they represent unwanted

characteristics. Therefore, we design a maturity score formula (1) that represents the
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effects of the aforementioned characteristics accurately. The results for the maturity

score  evaluation  of  rule-based techniques  is  illustrated  in  figure  2.  Similarly,  the

results for the machine learning and the hybrid techniques are illustrated in figures 3

and  4  respectively.  The  results  showcase  that  the  methodology  presented  in  [5]

achieves the highest maturity score overall. This proves that a properly trained and

developed machine learning methodology is sufficient in order to achieve the task of

accurate table detection. 

Mk = F3 + F10 + F11 + F15 + [(F5 x F9 x F12 x F14) + (F1 x F2 x F7 x F8)] / (F4 x F6 x F13)

(1)

Figure   2  :   Rule-based table detection maturity scores  for both users and developers

weights.
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Figure   3  :   Machine learning based table detection maturity scores for both users and

developers weights.

Figure   4  :  Hybrid table detection maturity scores for both users and developers weights.

2.2 Processing of Graphics Images

2.2.1 Detection of Graphics

Siegel  et.  al  [4]  present  a  methodology  consisting  of  training  an  object

detection model for localization and extraction of figures in academic documents.

More specifically, they generate a dataset consisting of document pages that contain

figures  and charts.  The authors  have induced ground truth  boxes  for  each of  the

30



existing  figures  of  each  document  page  in  the  training  set.  They achieve  this  by

making use of the initial LaTeX format of the documents and certain LaTex that result

in  the drawing of  bounding boxes  that  contain the figures.  Then,  they feed  each

labeled document from training set,  one page image at a time, into a ResNet-101

model that produces image embeddings. These embeddings are parsed through an

OverFeat detection model [28] that finds the drawn bounding boxes containing the

figures. The proposed methodology has been deployed as an application on the Cloud

and has achieved a score of 96% figure retrieval out of 13 million documents.

Kavasidis  et.  al.  [5]  propose  detecting  graphical  figures  in  technical

documents through the use of a saliency CNN. More specifically, they deploy a VGG-

16 network with custom kernel sizes in order to ensure the recognition of graphical

features. Additionally, they develop binary masks for 4 different heuristically defined

classes of objects. They also include an extra Conditional Random Field module that

receives the segmented results of the saliency CNN and corrects any existing errors in

the feature map. A final model that is trained to categorize detected objects into the 4

author-defined classes is added at the end of the architecture in order to improve the

detection accuracy.

Li et. al. [6] introduce PDFigCapX, a tool that extracts graphical figures and

their captions from documents using layout characteristics. More specifically, they

use the Xpdf parser [7] that separates the input PDF document into natural language

text and images of figures. The authors utilize certain keywords such as “Fig.” that
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indicate the existence of caption text in order to detect its position on the document

page layout. Then, they search either below or above the location of the caption text

for a figure image. These positions helps associate the images extracted from the

Xpdf parser to their  corresponding caption text from the document.  The proposed

methodology is tested specifically on a dataset containing biomedical documents. It

achieves a  total  of  97.3% accuracy score outperforming previous rule-based PDF

parsers. 

Choudhury et.  al.  [8]  present  a  strategy for  detecting  figures  in  document

pages and extracting some primitive metadata. Their work is a continuation of [9]

where a methodology is proposed for automatic detection of figures from technical

documents using heuristic rulesets on for layout characteristics, their extraction [10]

and classification [11] using either rule-based or machine learning based classifiers.

More specifically, they initially feed the PDF document through a standard parser that

separates  text  from  figures.  Then,  the  images  of  the  figures  are  parsed  through

classifiers that categorize them into either line graphs or bar graphs. These classifiers

are variations of the standard SVM [31] and Random Forests [32] models. Finally,

they use they positions from pixels of the curves in order to deduce each curve’s

trend.

De  et.  al.  [12]  focus  exclusively  on  the  detection  and  extraction  of  2-

dimensional  and  3-dimensional  pie  chart  figures  in  technical  documents.  More

specifically, they employ a pretrained SSD-Mobilenet [13] which is an R-CNN based
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model, capable of detecting figures in document page images. The model produces

equally well results for the detection of both 2D and 3D charts. Then, they parse the

resulting figures through a processing module that applies gradient analysis in order

to locate the individual slices in each pie chart.

2.2.2 Recognition of Graphics

Chester et.  al. [14] describe a visual extraction module that handles simple

black and white bar and curve charts. The authors aim to develop a tool that can

summarize automatically the information that is illustrated in a given graphics image.

The  goal  is  to  provide  such  a  tool  to  visually  impaired  people.  The  proposed

methodology begins with the extraction of all primary figure components such as text

and graphics features.  They initially detect  potential  words and then expand their

bounding boxes through dilation in order to capture the rest of the adjacent text. The

graphics  images  elements  are  recognized  as  individual  continuous  entities  and

characterized by their shapes.  Then, these components of arbitrary shape are merged

together based on their positions on the image. If these entities form long vertical

lines then the input image must contain bar graphics. If the formed shape has arbitrary

changes in its direction then the input image must contain curve graphics. All the

recognized information are then expressed in an XML format. 

Balaji et. al. [15] present a methodology for the recognition of information

that is illustrated in pie and bars charts. The authors initially parse the image through

Google’s Tesseract OCR [18]. This pretrained model detects every text element in the
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given chart as well as the graphics legends (axis names, title, etc.). Then, the authors

process each type of graphic with a different strategy. Bar charts are considered as

connected components. Thus, the authors form regions using these components until

they fit a certain criteria. The recognition of pie charts starts by parsing the image

through a Canny edge module in order to extract its edges and segments. Then, the

authors average the distance between two pixels with different intensities, until they

get a good enough circle. Both of these pixels however must be places on the edge.

Al-Zaidy et. al. [17] present an approach for automatic role recognition of the

various chart elements. The authors begin with the detection and extraction of text

components. This is achieved by considering the text as connected components on

which region growing is performed, Then, an OCR is used to read the located area.

Graphic components are classified with the use of CNNs into bars, legends, x-axis

and  y-axis  features.  Further  image  processing  techniques  are  used  in  order  to

understand the information that is presented in the bars chart of the document. Finally,

the authors apply a comparative evaluation between the proposed machine learning

strategy and a rule-based one. The proposed methodology outperforms the rule-based

approach with regards to data extraction accuracy.

Lu et. al. [19] propose a methodology for automatic recognition of curves with

highlighted data points. Their methodology starts with the extraction of data images

from the document and their categorizations into specific groups such as images of

charts, photographs, etc. More specifically, they extract certain line and text features
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which  are  then  parsed  through  a  trained  SVM  [31]  model  that  performs  the

classification. Then, they parse every image that has been recognized as 2-D plot

through an automatic analysis module. After some initial preprocessing, they detect

the axis lines using Hough transform. Additionally, they recognize the lines that form

the 2-D curves using the Freeman chain coding technique [30]. They combine it with

an additional K-Median filter that is able to discard the straight curves of the image.

The authors have applied specific heuristics during that procedure in order to detect

intersections and connections between the different curves of a 2-D plot. Finally, they

propose an algorithm for  curve reconstruction based on the information extracted

from the recognized graphics image. The same methodology has also been employed

in [20], with some additional rules in order to detect more accurately the highlighted

data points.

Nair et. al. [21] introduce a methodology automatic analysis of simple plotted

lines  with  slope.  They  focus  on  recognizing  both  solid  and  partitioned  lines  of

different colors. Their methodology initiates with the detection and extraction of all

text elements from the chart image using Google’s Tesseract OCR [18]. Then, the

employ the  Hough transform methodology in  order  to  detect  all  the  vertical  and

horizontal lines that constitute the axes of the image. Finally, process the plotted lines

on the image by tracing their pixels on curve at time. They recognize the directions of

the curves by calculating their corresponding slope gradient. 
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Cliche et. al [22] propose a methodology that aims to reverse engineer any

given scatter  plot in order to  generate  the numerical values of its  respective data

points. The methodology begins with the detection of the areas that contain the axes

values of the given chart image. Then, they recognize the actual numerical values of

these regions with the use of Google’s Tesseract OCR [18]. They proceed by applying

DBSCAN [23] once for each axis. The goal is to get the coordinates of all axis ticks

through clustering. Then, they use RANSAC regression [16] in order to map the pixel

coordinates  of  their  data  points  into  actual  chart  values.  ,  in  order  to  extract  the

original  table  data  values.  They  suggest  clustering  the  scatter  data  points  using

DBSCAN [23] once for each axis in order to get the corresponding axis ticks. Then,

they associate the data points values with the axis values using the ticks locations.

2.2.3 Understanding of Graphics

The  authors  of  [24]  [25]  recognize  the  underlying  message  and  semantic

meaning of a given bars chart with the use of an inference system. The underlying

message can either be about the trend of the bars, the associations between differently

colored bars of the same figure and high level messages. However, the authors make

the assumption that the input information graphics must already be processed and

their metadata must be expressed in XML format. The recognized metadata include

axes labels,  caption text,  bar  heights  over  time,  bar colors  and associated text  or

numerical values. Then, they parse that information through the Bayesian inference

system which aims to deduce the deeper semantic meaning of the input graphic such
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as the rising or declining trend of the bars. The goal of the authors is to produce a

novel document retrieval methodology, which is based on indexing the documents

using the underlying message of their figures rather than abstract text or title. 

Greenbacker et. al. [26] deploy the inference system from [24][25] but adapts

it for the case of graphics image that contain single curves. More specifically, they

detect and isolate the curves on the figure and then partition them into individual line

segments  using  a  trained  SVM [31]  model.  Then,  they  use  these  generated  line

segments in order to recognize the trend of the curves. Additionally, the authors create

a dataset of summaries for information graphics from human subjects. Then, they use

keywords in order to detect correlations between these human based summaries and

the  inference  system’s  resulting message in  order  to  learn how to  deduce deeper

meaning. 

Finally, Kim et. al. [27] present a methodology for classifying the information

that is displayed in information graphics images using a Multimodal neural network.

The authors aim to provide a system that will enable impaired people to understand

the underlying meaning that is illustrated in graphics images. The information of the

graphics are categorized into a set of of 6 predefined classes. These classes include

curves of rising trend, decreasing trend, changing trend and etc. The proposed model

consists of a Convolutional Neural Network which is later merged with a Bag of

Words  model  into  a  single  Multimodal  neural  network.  The  authors  evaluate  the

proposed Multimodal model against a standard CNN. Both networks are trained on an
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annotated dataset that is generated by surveying a number of human candidates on a

set of graphics images. The proposed model achieves a total accuracy score of 74.0%

surpassing both the CNN and the human accuracy scores.

2.2.4 Comparative Evaluation of Graphics Processing Methodologies

In  this  section  we  present  a  comparative  evaluation  among  graphics

processing methodologies  similar  to  the  comparative  evaluation  presented  for  the

table  detection  methodologies.  We  employ  the  same  set  of  subjectively  selected

features from table 1. The weights of the features are presented in table 2. This time

we use a different maturity score formula from the equivalent tables section. More

specifically,  we compute the  average  among the  scores  for  each features  as  their

achieved maturity scores. The corresponding formula is illustrated in (2). It must be

noted  that  contrary  to  the  tables  section,  we cannot  compare  the  maturity  scores

among  different  graphics  processing  fields  (i.e.  detection,  recognition  and

understanding) since they focus on different aspects of graphics image processing and

have  different  goals.  The  results  for  the  maturity  score  evaluation  of  graphics

detection techniques is illustrated in figure 5. Similarly, the results for the recognition

and  the  understanding  of  graphics  techniques  are  illustrated  in  figures  6  and  7

respectively. The results showcase that the methodology presented in [5] achieves the

highest maturity score overall in graphics detection. The methodology presented in

[21]  achieves  the  best  results  among  other  graphics  recognition  methodologies.

Finally, the graphics understanding methodology presented in [27] outputs the best
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performance in its field. We are going to use these 3 best performing methodologies

as the basis for our implementations.

(2)

 Figure   5  :   Graphics detection maturity scores for both users and developers weights.

Figure   6  :   Graphics  recognition  maturity  scores  for  both  users  and  developers

weights.
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Figure     7  :  Graphics  understanding  maturity  scores  for  both  users  and  developers

weights.
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3. Processing of Tables Images

3.1 Tables Processing Methodology

The literature review section proves that the topic of table detection in

document page images has been studied extensively. However, there hasn’t been

many research efforts towards the cases of table recognition and understanding as of

yet.  In  this  study we provide  a  complete  methodology for  all  3  cases  of  tabular

processing [3]. More specifically, we aim to achieve a holistic understanding of the

document  itself,  by  initially  processing  each  modality  individually.  The general

architecture diagram of the overall system is illustrated in figure 8. The extracted

knowledge resulting from the understanding of each modality is represented using an

SPN graph. Previous works [75, 76] have merged the SPN graphs resulting from the

understanding of natural language text and diagram images. In this study, we focus on

the understanding of tables and graphics images. 

The proposed methodology begins with the parsing of a technical

document in PDF format through the open source PDFBox software [77]. The

PDFBox receives any PDF document as input and returns the contained figures

and text of its separate pages. The figures can be of different types such as tables,

graphics and diagrams which are returned as images. Then, the output images are

processed by a detection module which recognizes the modality type of each image.

A pre-processing stage precedes the detection module, which deploys a variety of

41



image processing and enhancement techniques. We find that different pre-processing

techniques can influence the prediction results of the detection models, either by

improving or decreasing their confidence.

 

Figure   8  :     Architecture of the proposed general processing methodology.

The document  modality  images  are  parsed  to  their  respective  processing

modules  based  on their  predicted  category.  In  the  case  of  tables,  the  recognition

modules  analyzes  the  given  image  in  order  to  extract  title  information,  tabular

variables  from  rows  and  columns,  as  well  as  the  values  corresponding  to  these

variables. Finally, the table understanding module receives that extracted information

and. The retrieved structural information is represented with attributed graphs, which
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are then converted to  natural  language text.  The retrieval  behavior  information is

represented into SPN graphs, which are produced from the aforementioned natural

language sentences. For this reason, the Pinakas formal language is introduced as a

tool that helps us map the natural language text into SPN kernels.

Figure   9      :   Simple Table (left), Extended Table (middle) and Multidimensional Table

(right).

The goal of this research isn’t to design an application that covers any possible

table use case, but to prove that such an application can exist. Thus, we focus on 3

different  types  of  tables  as  proof  of  concept  for  the  presented  table  processing

methodology.  Figure  9 illustrates  examples  from these  types  of  tables,  which are

simple table (type 1), multidimensional table (type 2) and extended table (type 3).
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3.2 Detection of Tables

3.2.1 Image Pyramids

One of the aforementioned image enhancement techniques that we use is that

of creating image pyramids [96]. This pre-processing step aims to reduce the amount

of information for each candidate image before parsing them through the different

detectors. The intuition behind image pyramids is that the machine is able to

capture different features on different scales of the same image, just like a human

does. If the machine doesn’t have access to multiple scales, then the extracted

information might be incomplete. The authors describe many different approaches

onhow to construct image pyramids. However, we use the Gaussian pyramids

approach for our implementation.

We start by reducing the size of the input image to different resolution

scales. At each step of pyramidal reduction we apply the Gaussian smoothing filter.

Then, the image is resized back to its original dimensions. This procedure ensures

that only essential structural features of the image are preserved. An example of

pyramidal processing for a table image is illustrated in figure 10. The example

shows that by going too high on the level of pyramidal processing, the image

edges  can become  distorted to the point that the input image is unclassifiable.

We conclude through trial and error, that the optimal level for pyramidal reduction in

table images is level 3.
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Figure   10  :   Example pyramid image reduction for 4 levels

3.2.2 Learning Based Detection

Machine learning has revolutionized the area of image detection and

classification. Learning algorithms offer many advantages that range from the ease

of implementation to the decoupling of the programmer from the application, due

to its “black box” nature. For this applied comparative study, we focus on one-

class, binary, and multi-class models. Furthermore, we vary the researched methods

by testing for different types of pre-processed input images.  More specifically, we

implement the one-class classification algorithms of One-Class Support Vector

Machine (SVM) [78] and the Isolation Forest [79]. An SVM is supervised

learning algorithm for distinguishing input data between acceptable and outliers.

Similarly, Isolation forest is unsupervised learning algorithm, which is also used for

45



detecting inconsistent observations. One-class models are more commonly used

for anomaly detection in 1- dimensional data consisting of numerical series.

Hence, we convert the 2-dimensional images into 1-dimensional arrays using a

raster scan. Then, we feed them into the SVM and Isolation Forest algorithms

respectively. We train these algorithms purely on positive data. This implies that

any other types of images besides tables are considered outliers.

Additionally, we implement and train binary classification and multi-class

models with the use of Convolutional Neural Networks (CNN) [80]. CNN models

are the state of the art solution for fast and accurate image classification or

object detection. A CNN consists of convolution layers, pooling layers, and fully

connected layers at the end. For the convolution layer, a sliding kernel of

predefined size shifts over the input image, and performs convolutions and preserves

only the essential edges trough max or min pooling. Finally, the fully connected

layers receive the corresponding output and return a N dimensional array containing

the probabilities of the image being a member of class. The N is the number

of user defined categories for classification. A binary CNN model is trained on both

positive and negative data, and uses the binary cross-entropy as its loss function.

On the contrary, multi-class CNN model trains for images from all available

classes and uses the categorical cross-entropy as its loss function.

We train two versions for each of the aforementioned algorithms and

models, one for binary images and one for pyramidal processed images. The goal
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is to study the effects that a different pre-processing of data can have in the final

predictions. As an example of a CNN architecture, we illustrate the diagram of the

binary CNN model that have implemented in figure 11. This model is trained on

images that have been initially parsed through pyramidal reduction. The rest of the

CNN models that we have trained follow a similar structure.

Figure   11  :         Example of binary classification model for table images that have been

processed with pyramidal reduction.

3.2.3 Hybrid Based Detection

Recent advances in multi-agent applications have introduced the concept of

collaborative decision making [81]. The different agent programs negotiate with each

other in order to achieve an agreement that benefit all of them. Each agent get to

have a vote and at the end they all follow the majority. Different agents may have

different weights on specific topics based on their level of expertise. We have

implemented a similar methodology which is illustrated in figure 12.
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Figure   12  :     Architecture of the image classification based on a voting scheme.

For the current use case, we input every probe image through each trained

classification model concurrently and use their prediction results as the votes for

the collective decision. We take into account only those models that have

showcased an accuracy higher than 50% during the testing phase. The testing score

of each model is also used as the weight for each vote. If the majority of the models

agree on a specific class, then the image is categorized as its member. Otherwise,

the class of the image is deduced based on the prediction of the model that achieves

the highest training accuracy. In case that model can’t determine a class, then

we use the prediction of the second best model and so on until a class can be

deduced for input the image. The overall motivation for this approach is to try

and compliment each model’s individual performance with the advantages that

other models may offer.
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3.2.4 Rule-based Detection

The proposed rule based table detection methodology constitutes a

combination of image processing techniques and geometric mathematical formulas.

All tabular structures with ruling lines are characterized by table cells that are in

alignment and in order. So, we can detect the alignment between the contents of

the table cells in order to implicitly deduce that the input image is a table. The

programs starts  with the application  of binarization  and Gaussian pyramidal

reduction on the input image. The Gaussian pyramidal reduction enables the

preservation of the core tabular features and converts the cell contents into

masses of black pixels (connected components). Then, we discard all vertical and

horizontal lines from the image and locate the centroids of the newly formed pixel

regions. We use the position of these centroids as representatives of their

corresponding regions, in order to evaluate the alignment between them.

However, it is possible that few of these keypoints diverge from from the

average line of alignment. Hence, the evaluation of the alignment between the cell

contents is performed by a  variation of the unevenness criteria formula that is

described in [82]. The authors of this paper present a methodology for the

recognition of line segments, with emphasis to segments that showcase anomalies

or unevenness. The variable unevenness U for line segment SL is defined as the

number i of consecutive pixels with , that follow a different direction di, from

the main direction dmain of the line segment SL. More specifically, the authors
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develop and describe two connected equations in order to tackle this issue. The first

equation (3) describes the window that covers the line segment, which contains the

unevenness. WU represents the area of the window, HU represents the maximum

accepted unevenness and LU represents the length of the line segment

containing the unevenness. The second equation (4) defines the unevenness criteria

as the division between the height of the window covering the line segment,

which contains the unevenness (Wu), and that segment’s length. We present both

formulas below:

Wu = Hu x Lu (3). and e = Hu/Lu (4)

The value of the unevenness criteria variable affects the amount of details in

line anomalies that is covered during the procedure. A small unevenness criteria

threshold corresponds to a lower tolerance for divergence.

Figure    13      :         The  process  of  detection  the  connected  component  regions  after  the

pyramidal reduction and the recognition of lines that contain centroids using

unevenness.
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Figure 13 illustrates an example of the aforementioned rule-based table

recognition process. We deduce the value 0.04 as optimal for the unevenness

criteria threshold, through a trial and error process. We search once for alignment

between the table columns and once for alignment between table rows. In the first

case, we calculate HU by setting the length of the table as the value for LU. In the

second case, we set the table height as the value for HU and then calculate the

limit LU. Then, the algorithm initiates with the detection of the first row and column

of pixel regions. In case that many vertical and horizontal areas of size

WU=HUxLU include multiple centroids, then we deduce that the given image is a

table. The steps of the aforementioned alignment detection algorithm in tables

appear in detail on Algorithm I.

Algorithm     I:     Rule-based     Table     Detection      
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3.2.5 Evaluation Results

We generate both the training and testing datasets by scraping images of

tables and graphics from journals published by IEEE. The total number of training

images accumulates to 2100. Due to the small scale of the IEEE training set, we

employ the K-fold technique. The value K=10 is deduced as optimal through a trial

and error testing process. The IEEE test set contains a total number of 100 images,

with 52 being tables and 48 being graphics. Finally, we also use a portion of the

ICDAR-2013 test set for further evaluation of the studied methodologies. The later

dataset contains 53 images of tables and 29 images of graphics.

The tables (3 and 4) showcase the classification outcome scores for the

ICDAR-2013 and IEEE test sets respectively. We evaluate the studied

methodologies based on the precision, recall and F1-score metrics. TOCSVM

corresponds to one-class SVM for tables, PTOCSVM to one-class SVM for

pyramidally processed tables, TIF to Isolation Forest for tables, PTIF to

Isolation Forest for pyramidally tables, BCNN to binary classification for tables,

PBCNN to binary classification for pyramidally processed tables, MCNN to multi-

class classification, PMCNN to multi-class classification with pyramidal reduction,

RTC to rule-based table classification, HYBRID to the learning methodologies

that are combined through the voting system.
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Table     III:     Classification     Scores     using     ICDAR     test     set      

Accuracy F1-score Precision Recall

TOCSVM 0.646 0.79 0.65 1

PTOCSVM 0.24 0.09 0.20 0.06

TIF 0.646 0.79 0.65 1

PTIF 0.292 0.15 0.33 0.09

BCNN 0.67 0.72 0.81 0.64

PBCNN 0.878 0.91 0.91 0.91

MCNN 0.80 0.85 0.84 0.87

PMCNN 0.902 0.90 0.88 0.92

RTC 0.804 0.80 0.80 0.80

HYBRID 0.902 0.93 0.89 0.96
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Table     IV:     Classification Scores     using     IEEE     test     set      

Accuracy F1-score Precision Recall

TOCSVM 0.5 0.66 0.51 0.92

PTOCSVM 0.37 0.26 0.33 0.21

TIF 0.52 0.68 0.52 0.98

PTIF 0.37 0.34 0.37 0.31

BCNN 0.93 0.93 0.96 0.90

PBCNN 0.899 0.90 0.92 0.88

MCNN 0.899 0.91 0.88 0.94

PMCNN 0.91 0.91 0.92 0.90

RTC 0.733 0.73 0.73 0.73

HYBRID 0.92 0.92 0.94 0.90

The results illustrate that BCNN model achieves the best accuracy when it

comes to the IEEE test set, while the proposed HYBRID model achieves the best

accuracy for the ICDAR 2013 test set. Finally, it must be highlighted that the

pyramidal reduction helped improve almost all accuracy scores, except from those of

the one-class models.

3.3 The Pinakas Formal Language

A formal language is capable of representing the internal semantic and

syntactic features that are extracted from a natural language sentence. The goal of
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this research is to recognize the knowledge that is illustrated in different technical

document modalities and convert it into a common form of representation. As we

have already mentioned, we have chosen the stochastic Petri-net as that common

representation form, since it can describe the internal functionality of each

technical document modality. Therefore, we develop the Pinakas formal language

as the means to map the recognized tabular relations and associations into SPN

kernels. The presented work is based on the formal language Glossa presented in

[75]. Glossa is a language used for the representation of kernels of natural

languages sentences extracted from document text. This methodology proves to

be useful for later mapping of those extracted kernels into SPNs. The Glossa

language has its own set of alphabet, grammar, and operators, and aims to cover all

the different extracted kernel use cases. Similarly, we define our own alphabet,

grammar, and operators in an effort to fit every table type in our language.

3.3.1 Alphabet

The first step is to define the alphabet for Pinakas language. In order to

achieve this we have to consider each variable of the table as an agent and, therefore,

associate it with the symbol Ai. The symbol Ai now represents an alphanumeric

combination that is extracted from the table and is recognized as a table variable

name. So, Ai = {x|x is an alphanumeric combination string that constitutes a table

variable name or a symbol from group S}. We aim to formulate the connections

between different rows of values and the variables that these values correspond to.  
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We illustrate an example of formulation in figure 14. We use the extended

table (type 3) as the case study for this example. Row1(Salt Concentration) is the

the value in the first row, that corresponds to variable Salt Concentration.

However, an extended table contains columns of subvariables for each variable.

Therefore, we have to deal with this issue as well. In this case, Salt Concentration

does not have any sub-variables (sub_var_0). In the language of Pinakas the same

connection is represented as VAL1(SVR0(A1)),  where  A1 is the first variable of  the

table or the first agent. In the same example, SVR0() indicates non-existence of

any sub-variables, and VALA() is an agent’s corresponding value for that case. We

demonstrate the subvariables of a variable using their position (column number)

with respect to its main variable.

More specifically, SVR1(A2) represents the first subvariable of agent 2 while

SVR2(A2) represents the second subvariable of agent 2. This formulation strategy

is the most dominant, since it is capable of describing all possible relations between

rows,  variables, and  sub-variables, as well as cover more types of tables in

general. Therefore, we adopt it for Pinakas as well. Finally, we consider VALj()

= {x|x is the jth value of input variable in respect to the table’s column}. Also,

SVRk() = {x|x is the kth value of input variable in respect to the table’s row}.

56



Figure   14      :         Formulation Effort Example for Extended Table: This is the way of

representation we choose to use in Pinakas for all the connections between

variables, sub-variables and rows of values.

3.3.2 Grammar

Now that we have defined the alphabet  for Pinakas,  the second step is  to

describe the Grammar G. We define G = (VN, VT, T, F), where:

• VN is the set of non-terminal symbols with VN ={Q, A, V, P, T}

• VT is the set of terminal symbols with VT = {+, -, <, =, @, !, ~}

• T represents the starting symbol of the table

• F is the set of production rules

More specifically, the set of production rules F includes:

• T → [Q] @ [Q] @ … @ [Q]

• Q → (A)(V)(P)

• A → (A1 + A2 + ... + A3) ! (A1 - A2 - ... - A3) ! …
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• A1→VAL1(SVR0(A1))!VAL2(SVR0(A1))!…!VAL3(SVR0(A1)) ! … !
VALj(SVRk(A1))

• V → V1 ! V2 ! V3 ! V4 because we have only 4 options (is/are greater than or is/
are equal to)

• P → (P1 + P2 + ... + P3) ! (P1 - P2 - ... - P3) ! …

• P1 →  VAL1(SVR0(P1))  !  VAL2(SVR0(P1))  !  …  !  VAL3(SVR0(P1))  !  …  !
VALj(SVRk(P1))

3.3.3 Operators 

In the productions rules that we define above, we use some specific

symbols. The third and final step is to explain these symbols.

• Operators “+” and “-” represents the “plus” and “minus” operations

respectively between agents or patients

• “<” is an operator that represents the “is/are greater than” verb or action

• “=” is an operator that represents the “is/are equal to” verb or action

• The “@” operator represents the “and” connection between different questions

(generated and validated relations).

• The “!” operator represents the “or” connection between different possible

values of agents, verbs, and patients respectively.

• The “~” operator represents the “not” characterization for questions, agents, or

patients.

• [] and () are used to determine the scope of different operations
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3.4 Recognition of Tables

The methodology for both the recognition and understanding of tables

consists of a combination of image and natural language processing techniques,

as well as  graph representation models. The concept for this methodology is first

described by Bourbakis et. al. [1]. More specifically, he proposes a strategy on

how to successfully convert the different modalities of a technical document, such

as images, graphics, tables, mathematical formulas and algorithms into other forms

that describe information. His end goal is to transform all these different

modalities into a common form of representation and in that way gain a deeper

understanding of the information contained in the document. He presents the

stochastic Petri-net graph as the optimal single form of representation. For the

use case of tables, he proposes converting them first into an attributed graphs

first, in order to maintain their structural information. Then, we can convert the

attributed graphs into natural language sentences. Finally, the latter form of

representation enables the conversion of the initially extracted tabular information

into corresponding SPN graphs.

Initially, the designed tool receives an image of a table as its input. The table

image must belong to a technical document and conform to format guidelines from

one of the three acceptable table categories. Each table type presents information

in its own unique way, so a universal method for successful information extraction

is impossible. Any such attempt may lead to unnecessary loss of information. We
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avoid this issue by classifying the table images first. Then,  we  follow  different

processing  styles  based  on  the  category  that  the  input  table  is associated with.

In order to separate our tables into their three distinctive categories, we have

developed a classifying algorithm (Algorithm II). The algorithm decides the

category of the received table based on certain structural patterns concerning table

cells and rows.

More precisely, the algorithm applies box extraction on the table image in

order to get each cell of the table, one row at a time. We maintain only the title box

and the consecutive first two rows, because they hold the necessary information

about the variables of the table. That information is basically the positions of

each box's corners in each row. We use these edge positions in order to deduce

how much space in the row is covered by each box. The covered spaced in a row

by each box implies the type of the table. In the simple and multidimensional

tables (type 1 and 2) for example, all the boxes of the first row have the same

delimiters as the boxes of the second row. In the extended table (type 3), some

boxes in the first row cover more than one boxes in the second. This indicates the

existence of sub-variables in the table, and by extend a table of type 3. However,

there is also a difference between type 1 and type 2 tables. In the case the first box

in the first row is empty that indicates the existence of 2 dimensions in the table. So

the algorithm counts how many cells of the second row does a cell of the first

row cover. If it covers more than one, then we automatically have a table of type 3.

If each cell from row one covers exactly one cell from row two then we search
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whether the first box of the first row its empty or not. If it is empty, then we have a

type 2 table, otherwise we have a type 1.

Figure   15      :         Simple table after box recognition, extraction and content association

processes are performed.

After the completion of the classification step, each table follows different

processing strategies based on its type, in order to successfully extract the tables

information. The tool recognizes the variables and their corresponding values,

based on their positions in the table. It stores these values in tuples and links

these tuples to their corresponding variable names for further processing in future

steps. The general architectures of the processing methodologies for each table type

are illustrated in figures 1 6 , 1 7 , and 1 8  respectively. For the extraction and

recognition of the table variables and their values. we use a combination of a box

extraction the Table OCR [94]. The table cells are extracted following a direction

from right to left, starting from the title box of the table and moving downwards.
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We take advantage of the order of table cell extraction in order to recognize the

number of columns and rows. In addition, it works as an  indication  about the

neighborhood of association between table cells.  We illustrate an example of the

recognized neighborhoods of association between cells in figure 8. A table cell’s

neighborhood of association contains the direct left, right, upper and lower table cell.

We use the simple table image from figure 1 as the use case for this example.

Algorithm     II:     Table     Type     Classification      
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3.5 Understanding of Tables

3.5.1 General Understanding Methodology

As we have already mentioned, we have presented a general methodology

about the processing and understanding of the table contents in [1]. To the best of

our knowledge, there is no other standard methodology for the same task yet. In

the current work, we expand on that understanding methodology and include more

details about the processing steps for each table type. Figure 1 6  illustrates the

proposed methodology for the recognition and understanding of simple tables

(type 1). We aim to emulate the way that humans perceive a table through a

program .

Figure   16  :     Simple Table Recognition Methodology
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In order for a human to understand the information that is presented in a

given table, he or she asks questions. Examples of such questions could be “Are

all the values of the table positive?” or “Which table variable has the greatest

value?”. The outcome answers for these questions can determine relationships

between the variables of the table. However, a machine cannot be asked a natural

language question and return a valid answer.  That is why  we  transform these

questions to proper relational queries. For example, in case we have a table with 3

variable X, Y and Z the first question translates into “0 < X and 0 < Y and 0 < Z”.

As a second example, the question “Is the summation of the table variable X and Y

positive?” is converted into “0 < X + Y”. These relational queries reflect the potential

associations between table variables. Then, we can validate these relations based on

the corresponding values that appear on the image for each table variable.

As it is illustrated in figures 16, 17 and 18, we generate the initial queries

them from all the possible combinations of table variables, operational symbols and

the S symbol. The S symbol stands for “0” (zero), “ε” (epsilon), “π” (pi) and other” (epsilon), “π” (pi) and other” (pi) and other

mathematical constants that we might want to add in the future. However, some of

the produced combinations might be invalid, since they might either not hold up

mathematically (semantic error) or they may contain double characters (structural

error). Therefore, we filter the integrity of the initial queries by semantic and

structural validation algorithms. We explain the validation processes in greater detail

below. Each relation has to be verified by both algorithms. Finally, we follow

the proposed methodology from [1] and use the verified relations to generate the
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corresponding attributed graph  representations.  Then,  from  the  produced  graphs

we  generate  the  natural  language sentences. These sentences are converted into

their respective SPNs at the end of the procedure.

Figure     17:     Multidimensional Table Recognition Methodology

We present in figures 1 8  and 1 9  the methodology diagrams for tables

that belong to categories 2 and 3. It is apparent by these diagrams, that the general

methodology for these tables remains the same, however, the processing steps are

adapted to fit the needs of each table type. These processing steps are derivatives of

the Pinakas language described in the previous section. More specifically, in the

case of a type 2 table we recognize the row variables of the table. Then, we store the

row values into tuples that each corresponds to a specific column variable. This step
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proves useful for the semantic validation of the generated relations. A similar

processing rule applies to an extended table (type 3). However, this time we

only store the values of the subcolumn variables. After the association between

variables, subvariables and the values of the table is completed, we follow the same

processing path as before.

 

Figure     18:     Extended Table Recognition Methodology

3.5.1.1 Structural Validation Algorithm

Algorithm III showcases the pseudocode for the structural validation

algorithm. The algorithm receives a question sequence as input and finds

patterns of alternating occurrences between variable symbols and action symbols.
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We call variable symbols all of those that are variables of the input table or special

symbols that belong to set S. Action symbols are all symbols that indicate

operations such as “+” or “-”. Relation symbols are “<” and “=”, and generally

symbols that indicate a relation between agent and patient in the sequence.

The algorithm begins by initializing three flag variables. The “variable_flag”

is initialized as True and will turn from False to True every time the next

symbol in order of appearance is expected to be a variable. The “action_flag”

works in a similar way, although it depends on whether we expect an action

symbol or not. The “relation_flag” becomes True only when we find the relation

symbol in of the sequence. The algorithm checks every character of the query

iteratively, starting from last to first, until the entire sequence is parsed or a

mistake in the query’s structure is observed. If at any point during this process the

appearance of symbols is not in an acceptable order, then the algorithm haults and

declares the query as structurally incorrect. If no such problem occurs, the algorithm

continues its function until no more characters are left in the sequence. A an

acceptable query must always start and end with a variable symbol

(variable_flag is False and action_flag is False), and contain always one relation

symbol (relation_flag is True) in order to be structurally correct. For example, a

query such as “ X < Z” is considered as structurally correct, while a sequence such

as “X Y < + Z” is not.
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Algorithm     III:     Structural     Validation      

3.5.1.2 Semantic Validation Algorithm

Algorithm IV presents the pseudocode for the semantic validation

algorithm for summation queries. Summation queries are those that contain

summation operators. The algorithm receives a given relation as its input and parses
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through its characters individually. For every character it comes across, it checks

whether it is a variable, an operation symbol, or the symbol “<”. The occurrence of

symbol “<”, indicates that we are at the right side of the relation. That is because,

the parsing of the sequence starts from the last character in the left side. If the

character is a variable then the algorithm reads the variable’s corresponding value

from the value tuples. Then, it appends that value in its corresponding (right or

left) summation list. If the character is an operation symbol, then the algorithm

sums all the values stored in the list and the list is emptied in order to store new

summations. After the calculations of both the left and right summations is

completed, the algorithm checks for the validity of the relation. This is achieved by

comparing the left and right summation result. The algorithm is repeated for every

row of values for the variables in the relation. The relation is considered as

verified if and only if it holds true for every row of values. Otherwise, it is not

accepted and doesn’t lead to the graph generation step. For the case of subtraction

queries the algorithm works in a similar way.
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Algorithm     IV:     Semantic     Validation      

3.5.2 Conversion of Tables into Attributed Graphs

The idea of using attributed graphs as a tool to represent information has

already been described from Bunke et. al. [83]. More specifically, he defines a set of

mathematical rules that these graphs have to obey. He uses the attributed graphs in

order to present   information regarding the data extracted from a circuit diagram.
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These data are positions of circuit modules on the board or connections between

them, and other information that would be very difficult to represent otherwise. As

we have already mentioned on the literature review section, there have also been

efforts to  use  the attributed graphs  in order  to  represent  the knowledge that is

extracted from database table [97] [98]. However, both of these works consider only

the problem of database tables. Database tables have an advantage over table

images regarding the processing and understanding of their information, since they

maintain the relationships between variables through private and foreign keys. 

The proposed methodology generates attributed graphs for each verified

tabular relation, directly after its validation process is completed. For the

conversion of a verified relation to attributed graph, we use the same strategy

with the papers that we mention. That strategy suggests representing the

variables as nodes, the values of the variables as attributes of the nodes, and the

operators between them as labeled arcs. These arcs connect the nodes that the

operators correspond to. The direction of the arcs depends on the priority of the

operation between two variables. Furthermore, we can aggregate the attributed

graphs of all relations into single attributed graphs. Different styles of aggregation

can help us highlight certain relations and conceal others. For example the right

graph in figure 18 helps us deduce the importance of the recognized table  variable

“Rated Maximum  Voltage ”, since it  is  the  node with the most associations with

any other variable. The developed tool performs aggregation on the nodes, and
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either simple or extensive aggregation on the arcs. Simple arc aggregation unifies all

the labeled arcs based on relation type, while extensive arc aggregation merges all

the labeled arcs despite any differences in label names. Figures 19 illustrates the

outcome attributed graphs for the case of the simple table that is presented in

figure 9. The left graph represents a summation relation and the right graph shows

an aggregated version of all the connections. Figure 2 0  shows the resulting graph

for the same simple table, but this time the nodes have been aggregated. some of the

outcome attributed graphs as given by the methodology here, for the case of the

simple table presented in figure 9.

Figure         19:         An attributed graph of relation “0 < Rated Maximum Voltage +

Power Frequency Withstand Test Voltage + Ratio of Test Voltage to Line-Ground
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Voltage” (left) and the aggregated graph based on arcs from the simple table in

Fig.9 (right).

Figure     20:   The attributed graph of all verified relations from the simple table in Fig.

8 based on the names of the nodes.

Figure 21  showcases attributed graphs generated by relations extracted

from the multidimensional table of figure 9 . This time we include the nodes

that represent the row variables as well. Each row variable is connected to a

column variable with an attributed arc. This connection represents the passing of

a value or action from between two variables. The label of each arc is the row

variable’s corresponding value for this specific  column variable. That value is
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extracted from the table image. Figure 22  illustrates an attributed graph for all

these relations, with aggregation based on the names of the nodes on each relation.

Figure   21      :         Example  attributes  graphs  of relations  that  are extracted  from  the

multidimensional tab l e in Fig. 9.

Figure   22      :         The attributed graph of all verified relations from the multidimensional

table in Fig. 9  based on the names of the nodes.

Similarly, figures 23 and 24 present separate attributed graphs of validated

relations and an attributed graph aggregated on node names respectively. The

relations for these graphs were retrieved from the extended table in figure 8. The
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main difference is the addition of the column subvariable nodes. Each column

subvariable is connected with each corresponding column variable through a

labeled arc. The value of the arc  is a tuple of all the extracted values from that

specific column subvariable. It should be highlighted, that the graphs in figure 22

might not be easily comprehensible to humans, but they were never intended to.

The goal of this research is to automate the understanding procedure, by emulating

the behavior of the humans. Therefore, we only need the program to actually

understand the produced graphs.

Figure   23      :         Example attributes graphs of relations that are extracted from the

extended table in Fig. 9.
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Figure   24      :         The attributed graph of all verified relations from the extended table in

Fig. 9 based on the names of the nodes.

3.5.3 From Graph to Natural Language Representation

After the successful generation of the attributed graphs, the tool proceeds

with their transformation into natural language sentences. These sentences prove to

be an important transitional step for the creation of the corresponding stochastic

Petri-net graphs. The conversion of each graph relation into a natural language

sentence is achieved through a modified version of the structural validation

algorithm (Algorithm III). For this specific task, we also introduce the concept of

conjunction words. These words fill in the semantic gaps between variables names

and action verbs. Conjunction words can either be Agent-to-Patient or Patient-to-

Agent words depending on the positions of the characters they refer to in the initial

variable relation.
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For  example, the variable relation “Y + X < Z” is transformed into “The

values of Y plus the values of X are greater than the values of Z”. In this example the

word “plus” is an Agent-to- Patient conjunction word, added to the sentence in order

to reinforce its meaning. More examples of produced natural language sentences

are presented below. These specific natural language sentences have been

generated from the extracted data of the simple table that is presented in figure

9 . They correspond to the attributed graph of figure 2 0 . NLS1 and NLS10

are the equivalent natural language sentences of the relations “Rated Maximum

Voltage < Power Frequency Withstand Test” and “ 0 < Rated Maximum Voltage +

Ratio of Test Voltage to Line- Ground Voltage” respectively. More specifically, in

the case of NLS10, this time the word “plus” is Patient_to_Agent conjunction

word. These relations are already verified by our tool,  during the process of

transforming the extracted table information into attributed graphs. The  final

natural language sentences represent the extracted internal associations between the

variables of the input table.

NLS1:         “The values of Power Frequency Withstand Test Voltage (kV) are greater

than values of Rated Maximum Voltage (KV)”

NLS2:         “The values of Rated Maximum Voltage (KV) are greater than values of

Ratio of Test Voltage to Line-Ground Voltage (pu)”

…

NLS5:     “The values of Power Frequency Withstand Test Voltage (kV) are greater
than zero”
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…

NLS10: “The values of Rated Maximum Voltage (KV) plus values of Power

Frequency Withstand Test Voltage (kV) are greater than the values of Ratio of

Test Voltage to Line-Ground Voltage”

We illustrate below some example the natural language sentences that are

produced from the multidimensional table in figure 9. They correspond to the

attributed  graph of figure 22. They have a similar structure to the sentences

produced from the simple table. The only difference is the addition of the “Row-X”

part of the sentence. We need this part to indicate both to the reader as well as to

the tool, the values of each row that the relation relation corresponds to. For

example, NLS1 represents the results of evaluating the “Ratio versus Bubble

Test” variable against the “Sensitivity” variable, when the values of both variables

come from row “Density Monitor”.

NLS1:         “Row-Density Monitor: The values of Ratio versus Bubble Test are

greater than the values of Sensitivity”

NLS2:         “Row-Infrared Absorption Spectroscopy: The values of Ratio versus

Bubble Test are greater than the values of Sensitivity”

NLS3:     “Row-Negative  Ion Detector:  The values of Ratio versus Bubble Test are

greater than the values of Sensitivity”

…
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NLS19:     “Row-Density Monitor: The values of Ratio versus Bubble Test are

greater than zero” NLS20: “Row-Infrared Absorption Spectroscopy: The values

of Ratio versus Bubble Test are greater than zero”

NLS21:         “Row-Negative Ion Detector: The values of Ratio versus Bubble Test are

greater than zero”

The natural language sentences that are produced from the extended table of

figure 9 follow the same structure as those of the multidimensional table. However,

we use “Column-X” instead of “Row-X” in order to highlight the subvariable that

the produced sentences correspond to. For example, NLS1 represents the results

of evaluating the “Transmittance” variable against the “Salt Concentration”

variable, when the former contains the values of the subvairable “Trial #1”. These

sentences correspond to the attributed graph of figure 24.

NLS1:         “Column-Trial #1 in Variable- Transmittance (%T):The values of

Transmittance (%T) are greater than the values of Salt Concentration (%)”

NLS2:         “Column-Trial #2 in Variable- Transmittance (%T): The values of

Transmittance (%T) are greater than the values of Salt Concentration (%)”

NLS3:         “Column-Trial #3 in Variable- Transmittance (%T): The values of

Transmittance (%T) are greater than the values of Salt Concentration (%)”

…

NLS6:         “Column-Trial #1 in Variable- Transmittance (%T): values of

Transmittance (%T) are greater than zero”
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NLS7:         “Column-Trial #2 in Variable- Transmittance (%T): values of

Transmittance (%T) are greater than zero”

…

NLS13:         “Column-Trial #3 in Variable- Transmittance (%T): values of Salt

Concentration (%) plus values of Transmittance (%T) are greater than zero”

3.5.4 From Natural Language to SPN Representation

 The aim of this research is translation of the information and relations

that we have extracted from a technical document table, into a common form of

representation with  the rest of the modalities. The generation of the natural

language sentences that describe the relations between the variables of a table,

have enabled us to produce the corresponding stochastic Petri-net graphs. For the

conversion of the natural language sentences to SPNs, we use the methodology

that  is  employed in [75, 76] combined with the Pinakas  formal language. The

proposed methodology suggests that every natural language sentence can be

described by the AVP format (agent → verb(action) → patient). This means that

a sentence can be reduced to agents, verbs, and patients. We consider as agents

the nouns that perform an action. Similarly, the patients are the nouns affected by

actions. This approach extracts the AVP kernels of natural language sentences and

converts them into stochastic Petri-net graphs, with agents and patients represented

by input and output places respectively, and verbs represented by transitions.
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The illustrated natural language sentence examples of the previous section,

the verbs are either  the “are greater than” or  “are  equal to”.  These sequences

represent  the  equivalent relations of the same name. A transition is always

generated for the verb. The agents and the patients are all the variable names on

the right and left side of the verb respectively. The developed tool initially

recognizes the variables as well as their respective conjunction words in the

natural language sentence. Then, it generates transitions for every conjunction

word, and places for every variable. It also generates places for the results of

relations implied by the set of either Agent-to-Patient or Patient-to-Agent

conjunction words. These places are categorized into “add”, “sub” or plain result

places depending on the type of relations between variables they represent. These

relations  can either be addition,  subtraction  or no relation at all. They are also

divided into results type “1” and “2” based on their positions in the sentence.

Result places type “1” are located left of the verb (Agent_to_Patient), indicating

relation between agents variables, while results type “2” are positioned on the

other side of the verb (Patient_to_Agent), indicating  relation  between  patient

variables. For example “add result 1” represents the result of an addition relation

between the agents of the sentence. All variable places are input places, while

result places can be both input and output places, working as a link between all

relations. Figure 25 illustrates the generated stochastic Petri-net graph of the

natural language sentence that correspond to the simple table in figure 9. The

resulting SPN includes information about all the recognized addition and
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subtraction relations, as well as which values are in ascending or descending

order. The latter semantic association can prove useful for the correlation of different

modalities in future work.

Figure         25:         The SPN graph that is generated from the sentences that correspond to

the simple table in figure 9.

Furthermore, figures 26 and 27 illustrate the resulting SPN graphs for the

multidimensional and extended tables of figure 1 respectively. Figure 2 6

contains additional  information  about the connection  of the row variables  to  the

column variables of the table image. to this method, a natural language sentence

can be reduced to its agent words, verb words and patient words. Similarly, figure

27 contains additional information about the connection of the table variables with
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their respective subvariables. Both SPNs include the aforementioned ascending and

descending semantic knowledge.

Figure     26      :         The   SPN   graph   that   is   generated   from   the   sentences   that

correspond  to  the multidimensional table in figure 9.

Figure         27:         The SPN graph that is generated from the sentences that correspond to the
extended table in figure 9.
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4. Processing of Graphics Images

4.1 Graphics Processing Methodology

The literature review section proves that  the fields of  graphics  detection,

recognition and understanding have been addressed using many different approaches.

However, previous recognition applications have been limited to capturing only the

information  that  is  easily  and  visibly  accessible  such  as  legend  text  extraction.

Similarly,  previous  graphics  understanding  works  focus  on  producing  basic

summarization of the illustrated information, without capturing the internal semantics.

In this study we focus on understanding the deeper information that are not visually

accessible in a graphics image and extract the underlying behavior that describes its

curves and bars.  We use the same architecture diagram that  describes  the overall

system in figure 8. The extracted knowledge resulting from the understanding of

graphics imagse is represented using an SPN graph. 

After the modality image is extracted from the input document and it has been

classified  as  graphics,  then  it  is  parsed  to  the  graphics  recognition  module.  This

module analyzes a given graphics image in order to isolate its curves or bars from the

axis. In case the graphics image contains curves, then the recognition methodology

proceeds with the detection each curve’s middle points. These are the 2-dimensional

(2D) points where the direction of a curve pivots. The deduced middle points are used

for the construction of the straight line segments that describe the curves. In case the
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input image contains bars, then we use the top points are their  respective middle

points. 

Figure   28      :   Mixed curves of different colors (left),  partitioned curves of the same

color (right) and bars chart (bottom).

Finally, the produced straight line segments in both curves and bars are used in

the  graphics  understanding  module  in  order  to  deduced  structural  and  functional

information. The deduced curve behavior and functionality is represented using SPN

graphs, which are produced from the aforementioned natural language sentences. For

this reason, the Kyrtos formal language is introduced as a tool that helps us map the

natural language text into SPN kernels.
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The goal of this research isn’t to design an application that can analyze any

possible graphics type, but to prove that such an application can exist. Thus, we focus

on 3 different types of graphics images as proof of concept for the presented graphics

processing methodology. Figure 28 illustrates examples from these types of tables,

which  are  partitioned  or  continuous  (mixed)  curves  of  different  colors  (type  1),

partitioned curves of the same color (type 2) and bars graphics (type 3).

4.2 Detection of Graphics

4.2.1 Image Pyramids

We apply the pyramidal reduction technique in order to study their effects on

the  prediction  accuracy  results.  Image  pyramids  [96]  reduce  the  amount  of

information that is illustrated in each input image and preserves only the essential

structural features. More specifically, we deploy the Gaussian pyramids approach into

our methodology. We start by reducing the size of the input image to different levels.

At each iteration of the procedure, we apply a Gaussian noise filter. Then, the image is

scaled back to its original size. We illustrate an example of pyramidal processing for a

graphic image in figure 29. It is noticeable that if pyramidal reduction is applied too

much, then there can be significant loss of information. Through trial and error, we

deduce that the best level for pyramidal reduction of graphics images is level 3.
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Figure     29:   Example pyramid image reduction for 4 levels

4.2.2 Learning Based Detection

Image detection using deep neural networks have increased their popularity in

years.  This  preference  can  be  attributed  to  the  multiple  advantages  that  neural

networks have to offer such as ease of implementation. In the current comparative

study, we employ one-class, binary, and multi-class models. Moreover, we vary the

studied techniques by including different types of preprocessing. More specifically,

we implement the one-class classification algorithms of One-Class Support Vector

Machine (SVM) [78] and the Isolation Forest [79]. An SVM is supervised learning

algorithm for distinguishing input data between acceptable and outliers.  Similarly,

Isolation forest is unsupervised learning algorithm, which is also used for detecting

inconsistent observations. One-class models are more commonly used for anomaly

detection in 1- dimensional data consisting of numerical series. Hence, we convert the
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2-dimensional images into 1-dimensional arrays using a raster scan. Then, we feed

them  into  the  SVM  and  Isolation  Forest  algorithms  respectively.  We  train  these

algorithms purely on positive data. This implies that any other types of images besides

tables are considered outliers.

Furthermore, we train binary classification and multi-class models with the

use of Convolutional Neural Networks (CNN) [80]. CNN models are the state of the

art solution for fast and accurate image classification. A CNN consists of convolution

layers, pooling layers, and fully connected layers at the end. For the convolution layer,

a  sliding  kernel  of  predefined  size  shifts  over  the  input  image,  and  performs

convolutions on a single neighborhood of pixels at  a  time. Then, a pooling layer

accepts the resulting image and preserves only the essential edges trough max or min

pooling.  Finally,  the  fully  connected  layers  receive  the  corresponding  output  and

return  a  N  dimensional  array  containing  the  probabilities  of  the  image  being  a

member of class. The N is the number of user defined categories for classification. A

binary CNN model is trained on both positive and negative data, and uses the binary

cross-entropy as its loss function. On the contrary, multi-class CNN model trains for

images from all available classes and uses the categorical cross-entropy as its loss

function.

We train two versions for each of the aforementioned models and algorithms.

The first  version receives pyramidal reduced images as input. The second version

accepts binary images without any additional processing. We illustrate the diagram of
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the binary CNN model that we have implemented in figure 30. This model is trained

on images that have been initially parsed through pyramidal reduction. The rest of the

CNN models that we deploy showcase similar structure.

Figure   30  :    Example of binary classification model for graphics images that have

been processed with pyramidal reduction.

4.2.3 Rule-based Detection

The proposed rule based graphics  detection methodology is a combination of

geometric  mathematical  formulas and image processing techniques.  The programs

initiates with the application of binarization and Gaussian pyramidal reduction on the

input image. Gaussian pyramidal reduction enables the preservation of the repeated

structural  characteristics  and  converts  them  into  black  pixel  chunks  (connected

components).  A common structural  feature for  each graphic is  that  all  curves  are

contained either inside a box or inside an axis. Next to these axis lines, there are the

corresponding names of each axis line.
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After the application of pyramidal reduction, the names of each axis line is

converted  into  chunks  of  black  pixels.  However,  the  centroids  of  these  chunks

maintain the central positions of their corresponding to the original text words. So, we

detect the chunks of black pixels that are positioned next to the axis, and calculate

their  respective  centroids  positions.  The  text  names  of  the  axis  lines  should  be

positioned in  their  middle  with respect  to  each axis  position.  Thus,  if  we extend

vertical lines from the centroids of the black pixel chunks, then these lines should be

perpendicular  with  each  other.  Additionally,  their  intersection  point  should  be

relatively close to  the center  of the box or the axis  that  delimits  the curves.  The

proposed rule-based classification method detects if such an intersecting point exists

in a given image. If it does, then the given image is assigned to the graphics category.

Figure 31 illustrates an example of our proposed methodology.

Figure   31  :   An example of the rule-based detection methodology for graphics based

on structural features.
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4.2.4 Evaluation Results

The training and testing datasets are generated from the scraping of tables and

graphics images in IEEE journals. The total number of training images accumulates to

2100. Furthermore,  we employ the K-fold technique,  due to the small  size of the

training dataset. We deduce the value K=10 as optimal through a trial and error testing

procedure.  The IEEE test  set  accumulates to a total  number of 100 images 48 of

which are graphics and 52 are tables. Finally, we also use a part of the ICDAR-2013

test  set  for  additional  evaluation  of  the  studied  methodologies.  The  latter  dataset

contains 53 tables images and 29 graphics images.

The tables (5 and 6) showcase the classification outcome scores for the IEEE

and ICDAR-2013 test sets respectively. We evaluate the studied methodologies based

on the precision,  recall  and F1-score metrics.  GOCSVM corresponds to one-class

SVM for graphics, PGOCSVM to one-class SVM for pyramidally processed tables,

GIF  to  Isolation  Forest  for  graphics,  PGIF  to  Isolation  Forest  for  pyramidally

processed graphics, GBCNN to binary classification for graphics, GPBCNN to binary

classification for pyramidally processed graphics, MCNN to multi-class classification,

PMCNN to multi-class classification with pyramidal reduction, RGC to rule-based

graphics classification,  HYBRID to the learning methodologies that  are combined

through the voting system. It must be noted that the HYBRID methodology follows a

similar approach to that from chapter 3, only this time we use the aforementioned

Graphics learning methodologies.
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The results of the IEEE dataset indicate that pyramidal preprocessing has a

negative impact on the total classification accuracy for the recognition of graphics

images. We notice that is decreases the achieved accuracy of the pyramidal based

models, when compared to the original models. More specifically, the binary CNN

model achieves the highest accuracy for the IEEE test set. In contrast, the ICDAR-

2013 test results highlight the multi-class CNN model which is trained on pyramidally

reduced images.

Table   V  :         Graphics     Classification Scores     using     IEEE     test     set      

Accuracy F1-score Precision Recall

GOCSVM 0.68 0.75 0.60 0.98

PGOCSVM 0.26 0.38 0.32 0.48

GIF 0.67 0.74 0.60 0.96

PGIF 0.27 0.39 0.32 0.48

GBCNN 0.93 0.93 0.90 0.96

GPBCNN 0.90 0.90 0.88 0.92

MCNN 0.90 0.89 0.93 0.85

PMCNN 0.91 0.91 0.90 0.92

RGC 0.43 0.43 0.43 0.43

HYBRID 0.90 0.90 0.90 0.94
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Table     VI:     Graphics Classification Scores     using     ICDAR     test     set      

Accuracy F1-score Precision Recall

GOCSVM 0.39 0.54 0.37 1

PGOCSVM 0.768 0.54 0.92 0.38

GIF 0.424 0.54 0.37 1

PGIF 0.756 0.52 0.85 0.38

GBCNN 0.671 0.61 0.53 0.72

GPBCNN 0.83 0.93 0.93 0.83

MCNN 0.804 0.71 0.74 0.69

PMCNN 0.902 0.85 0.96 0.76

RGC 0.62 0.62 0.62 0.62

HYBRID 0.793 0.70 0.71 0.69

4.3 The Kyrtos Formal Language 

In general, formal languages are deployed for the representation of internal

semantic and syntactic features that are recognized from a natural language sentence.

In this paper, we aim to retrieve the knowledge that is illustrated in different technical

document modalities and convert it  into a common form of representation. As we

have already mentioned, that common representation format is the stochastic Petri-

net, because of its capabilities to describe the internal functionality of each technical
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document modality. Therefore, we develop the Kyrtos formal language as the means

to map the retrieved associations of each curve’s line segments into SPN kernels. The

presented work is based on the formal language Glossa [75]. Glossa is a language

used for the representation of kernels of natural languages sentences that are extracted

from a document. This methodology proves to be useful for the mapping of those

extracted  kernels  into  SPNs.  The  Glossa  language  has  its  own  set  of  alphabet,

grammar,  and operators and aims to  formulate  all  the possible  different  relations.

Similarly, we define our own alphabet, grammar, and operators in an effort to fit every

graphics type in our language.

4.3.1 Alphabet

We begin with the definition of the alphabet for the Kyrtos language. In order

to achieve this we must consider each curve of the graphics image as its own entity.

Each curve consists of straight line segments that connect with each other for an angle

of specific degrees. For the case of bar graphics, we can form conceptual curves based

on the top middle points of each bar. The symbol SLij now represents the jth straight

line segment for the ith curve of the graphics image. So, Ci = {x|x is the ith curve of

the input graphics image GR}. Additionally, SLij = {x|x is a straight line segment that

constitutes part of the curve Ci from the input graphics image GR}. Finally, Qij = {x|x

is the associations of between the straight line segments of the ith curve and the jth

curves respectively from the input graphics image GR}. We  aim to formulate the
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connections  between different  line  segments  of  the  same curve.  We also  want  to

formulate the associations between straight line segments of different curves.

We illustrate an example of formulation in figure 32. This simple graphics

image GR is described by the structural information of its curves C1 and C2, as well as

their associations with each other. These associations are represented in the form of

intersection  and   parallelism  relations  between  their  corresponding  straight  line

segments. For example,    “SL13 >< SL22” corresponds to the intersection between

straight line segments SL13 and SL22 from curves C1 and C2 respectively. Furthermore,

“SL11 ~ SL12” illustrates the connection that is formed between segments SL11 and

SL12 from C1.  Finally,  VALCON()  represents  the  value  of  the  particular  connection

which the the degrees of the formed angle. Similarly, VALPAR() represents the value of

the common slope between parallel segments and VALINT() represent the location of

the intersection point between the segments of the corresponding curves.

Figure   32  :     Formulation Example for Simple Curves.
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4.3.2 Grammar

Now that we have defined the alphabet for Kyrtos, we have to describe its

grammar G. We define G = (VN, VT, GR, F), where:

• VN is the set of non-terminal symbols with VN ={Q, SL, C, GR}

• VT is the set of terminal symbols with VT = {V, @, !}

• GR represents the starting symbol of the graphics image

• F is the set of production rules

More specifically, the set of production rules F includes:

• GR → [Ci] @ … @ [CK] @ [Qi i+1] @ ... @ [QKN]

• QiN → [(SLi j = SLK N) @ ... @ (SLi j+1 >< SLK N-2) @ … ]

• Ci → [(SLi j ~ SLi j+1 ) @ (SLi j+1 ~ SLi j+2) @ … @ (SLi N-1 ~ SLi N)]

4.3.3 Operators

In the productions rules that we define above, we use some specific symbols.

We explain these symbols below:

• “><” is an operator that represents intersection between line segments of two

different curves.

• “=” is an operator that represents parallelism between line segments of two

different curves.
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• “~” is  an operator  that  represents  connection between line segments  of  the

same curve.

• The “@” operator represents the “and” connection between different generated

relations.

• The “!” operator represents the “or” connection between different generated

relations for the same curve. However, only of these relations can hold true. We

use this operator when there are multiple interpretations for the same graphics

image. Examples of such use case are the partitioned graphics images of the

same color.

• [] and () are used to determine the scope of different operations.

4.4 Recognition of Graphics 

4.4.1 Recognition of Colored Partitioned and Continuous Curves

4.4.1.1 Preprocessing of Input Graphics Image

The methodology initiates with the recognition of the axis and extraction of

the  subimage  that  is  contained  within  its  boundaries.  We  aim  to  extract  all  the

necessary information from the subimage and then associate these results with the

original graphics image. In order to accomplish that goal, we must first understand

what  type  of  axis  is  illustrated  in  the  graphics  image.  Figure  33  showcases  the

possible axis types that we could come across.
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Figure 33: Possible Axis Types

There is an abundance of existing image processing techniques for

recognizing pixels that form edges or lines, and the distinction of objects in images

from their background color. These techniques include standard binarization,

segmentation, etc. However, these approaches lead to significant loss of

information, when the input image is a graphic. Problems such as missing edges,

miscoloring of line segments, confusion between curves and grid during

recognition consist possible outcomes. In some cases there can be complete loss

of entire curves in the graphics image  during binarization. In order to avoid these

issues, we have developed an approach based on a combination of image enhancing

techniques and the HSV color space.

More specifically, we apply the contrast and sharpen filters on the original

image, before transforming their results into the HSV color space. Both techniques

enhance different aspects of the graphics image. They also allow for the recognition

of  any  curves  despite  their  color.  This  is  an  attribute  that  is  missing  from  the

methodologies  that  we  discuss  in  the  literature  review  section.  Contrast  is  the
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difference in light reflected by the objects in an image, making the objects easy to

distinguish from one another. To enhance the contrast factor in an image, means to

enhance that difference between objects’ reflected light. So we its respective result in

order to recognize the grid in the subimage that contains the curves. In addition, the

sharpening technique for colored images is similar to the skeletonization technique for

binary images. We use its respective  result  in  order  to  recognize  graphic  lines.  An

example  of  this  aforementioned methodology is illustrated in figure 34. It must be

noted that there was no background grid in the input graphics subimage and therefore

the grid result is empty. We can successfully distinguish the grid from the graphic

lines, by grouping all pixels of the input subimage based on their color. Then, we

recognize the colors that belong to the lines and parse their corresponding pixels with

a kernel. The background pixels always form the greatest group, since they cover the

most space in the image. The rest of the colors are either part of the background grid

(if such a grid exists) or the curves. 

Figure   34  :     The results of contrast, sharp and HSV homogeneity filters.
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Figure   35      :         The results of transforming the colorspace of a graphic to HSV,

applying the HSV homogeneity filter and then transforming back to RGB.

A colored graphics image appears in the human eye as if it contains a specific

set of distinctive colors (the background color, the color of the lines, and the color of

the grid). However, in reality the different colors that are contained in that same image

can be over 100. That is because there are actually different shades of the same color

for  neighboring  groups  of  pixels.  We  bypass  this  problem  by  transforming  the

colorspace  of  the  image  from  Red-Green-Blue  (RGB)  to  Hue-Saturation-Value

(HSV). Below we present the rules we apply for color grouping the pixels based on

their values of H and S. More detailed grouping can be achieved if we include rules

for the V variable as well. We refer to that HSV based color grouping as the HSV

homogeneity filter.

The rules for the HSV homogeneity filter are:
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• If 0O <= H < 60O, then the color group includes black, white, silver, gray, red

and maroon

• If 60O<= H < 120O, then the color group includes yellow and olive

• If 120O <= H < 180O, then the color group includes lime and green

• If 180O <= H < 240O, then the color group includes cyan and teal

• If 240O <= H < 300O, then the color group includes blue and cyan

• If 300O <= H < 360O, then the color group includes magenta and purple

• If S >= 28%, then we have pure colors

• If S < 28%, then we have white, black or gray shades

• If 20% < V < 70%, then we have gray

• If V > 70%, then we have black

We proceed by changing the value of the pixels to that of the dominant color

from their respective groups. Then we transform the image back to RGB colorspace,

and commence the curve segment recognition. An example of the results from the

HSV transformation and the following pixel color grouping is showcased in figure 35.

It is evident by the defined HSV rules, that colors like black, white and gray are going

to be categorized  into  the  same group.  This  creates  a  problem when it  comes to

recognizing a potential grid, since after the application of the HSV homogeneity filter,

the grid has the same color  as the background (the dominant  color of its  group).
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Therefore, we keep a second instance of the input graphics image, to which we apply

the contrast  enhancement filter. This step turns the dark colors of the image even

darker,  making  them more  distinguishable  from the  background  color.  Using  the

Value  variable  from HSV, we detect  the gray  and black  pixels  in  the  image that

constitute  the  grid  of  the  graphic.  We,  then,  transform  the  image  back  to  RGB

maintaining only the grid of the image.

 Based on that  grid  result,  we extract  all  vertical  and horizontal  line  that

constitute the axes lines. If the center of the horizontal line lies on the right side of the

vertical center with respect to the x-axis, then we have a type 1 axis. If the center of

the vertical axis has the same y position as the center of the horizontal line, plus or

minus an error, then we have type 2. Finally, if the centers of vertical and horizontal

lines intersect, then we have a type 3 axis. It is important to recognize the type axis, in

order to know which graphics subimage to extract. 

Afterwards, we use the previous outcome image that contains only the axis

information, in order to recognize the axis values and variables. Using the PyTessaract

OCR [85], we are able to detect the bounding boxes of the text words around the axes.

We also store the boxes centers for future use during the association procedure. We

follow a left to right downwards direction, so that the first element that we recognize

is the name of the y axis. If the second element corresponds to an alphanumeric value,

the this is its unit of measurement. Otherwise, if it is a real value, the it is a value of

the axis. Similarly, we recognize if the last 2 elements are either the name of the x-
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axis and it  unit  of measurement of just  the name of the x-axis.  There rest  of the

elements are recognized as values. Based on the positions of their centers with respect

to  the  graphics  image,  we  are  able  to  distinguish  y-axis  elements  from  x-axis

elements.  

Figure 36: PyTesseract Axis Values Recognition Results.

4.4.1.2 Recognition of Curve Straight Line Segments

A curve in a given graphics image is described by the straight line segments

that it consists of. Therefore, we must recognize those individual line segments before

we can understand that curve. The resulting sharpened image that has been parsed

through the HSV homogeneity filter contains lines of single color. This means that the

pixels that form a specific curve also have the same color. So the main trail of each

graphics curve is now traceable, while we also maintain their original color to help us

distinguish them from one another. The next step is to detect the unevenness in each

curve’s  trail.  This  helps  us  recognize  the  different  straight  line  segments  that

constitute that curve.
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We adopt the concept of detecting unevenness in straight line segments into

our methodology from Bourbakis et. al. [82]. The authors propose a solution to the

issue of line recognition with random anomalies occurring in the line. They refer to

these anomalies as unevenness. More specifically, they define unevenness U for line

segment  SL as  the  number  i  of  consecutive  pixels  with  ,  that  follow a  different

direction di, from the main direction dmain of the line segment SL. They develop and

describe two interconnected equations in order to tackle this issue. The first equation

(3) describes the window that covers the line segment, which contains the unevenness.

WU represents  the  area  of  the  window,  HU represents  the  maximum  accepted

unevenness  and  LU represents  the  length  of  the  line  segment  containing  the

unevenness. The second equation (4) defines the unevenness criteria as the division

between the height  of the window covering the line segment,  which contains  the

unevenness (WU), and that segment’s length. We the slope formula below:

λ = (y1 - y0) / (x1 - x0) (5)

The first formula describes a window that covers the line segment, where the

unevenness  appears.  In  that  formula,  WU represents  the  area  of  the  window,  HU

represents the maximum accepted unevenness and LU represents the length of the line

segment containing the unevenness. The second formula describes the unevenness

criteria  as  the  division between the  height  of  the  window covering line  segment,

which  contains  the  unevenness,  and that  line  segment’s  length.  The   unevenness
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criteria  is  typically  a  very  small  number.  The  smaller  the  value  of  the

unevenness criteria, the smaller the acceptance limit for the unevenness.

Figure   37  :         Example  of how  the  proposed methodology recognizes changes  in

direction using the slope equation and the unevenness criteria variable.

The straight line segment recognition is achieved by calculating the slope that

is formed between each pixel in the curve’s body. The equation for slope λ between 2

points (x0,  y0)  and (x1,  y1)  is  illustrated in (5).  If  the result  of the slope equation

surpasses a defined limit, then we have detected a new change in the direction of the

pixels. That limit is the value of the slope in the previous pixel, for which we detected

the change in direction, plus or minus the value of the aforementioned unevenness

criteria.  Through a trial  and error process we deduce that the optimal unevenness

criteria threshold depends on the resolution of each graphics image. So we adjust that

threshold accordingly by setting as HU  the height of the subimage and LU  the length

of the graphics subimage. An example of the aforementioned procedure is illustrated

in figure 37. The position of the pixel where the direction change was detected is

stored in memory for further use, and the point is marked. Now, the new slope limit is
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updated with the value of the slope that was calculated for that point. This procedure

continues until no more pixels of the same color are found. Then the program repeats

itself for the remainder of the recognized colors, except from the background color. 

Figure   38  :     Proposed Graphics Recognition Methodology.

The unevenness detection methodology works well for use-cases where the

curves in the graphics subimage have a width of one or two pixels. However, in cases

where the width is larger, the program might locate multiple unevenness points on the

same segment where the unevenness is detected. This is because it parses multiple

times through the same segment in order to cover the entire line width. We resolve

this issue by performing a clustering technique on the recognized 2-D unevenness

points. Then, we keep the middle points of each formed cluster. We use those as the
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respective start and end points of the straight line segments that constitute the entire

graphics curve. It must be noted that by initiating the recognition methodology with

the unevenness criteria analysis, we were able to maintain the direction of the lines

and disregard any small anomalies, which makes the recognition easier. However, if

the process is initiated with the clustering step, then the program takes into account all

the pixels of the line, including those that constitute anomalies.

A curve consists of any number of pixels and contains any number of groups

of unevenness  points.  This  makes it  very difficult  to define a  specific  number of

clusters  and  perform  clustering  using  the  standard  K-Means  methodology.  The

unpredictability of the required number of clusters leads us to hierarchical clustering

instead.  Hierarchical clustering is  a technique that groups data  points  into formed

clusters, based on a specified distance metric between them. For more accuracy we

apply hierarchical clustering to the points of each graphics line individually. Through

a trial and error process, we conclude that a distance metric of 3 pixels returns highly

detailed clusters  that  contain an excess of unevenness points than what is  needed

(larger number of clusters). In contrast, a distance metric of 4 pixels returns somewhat

good clusters, that cover the basic idea of the curve (smaller number of clusters). An

example  of  results  from both  hierarchical  clustering  procedures  are  illustrated  in

figure 39. The graphics subimage of the first graphics type from figure 28 is the input

for this example.
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Figure   3 9      :         The results of clustering the detected unevenness points for

threshold of 4 pixel distance (left column) and of 3 pixel distance (right column).

We run two instances of the hierarchical clustering, one for each of the two

distance metric values. We later use the resulting cluster numbers as upper and lower

limits for a K- Means clustering process. More specifically, the K-Means algorithm
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performs clustering on the recognized unevenness points of each curve in the graphics

image,  for  every  value  between  its  lower  and  upper  cluster  number  limits.  The

resulting  distortion  scores  are  passed  into  an  elbow  calculating   function   that

determines  the  distortion  score  for  each  clustering  iteration.  The position of the

elbow corresponds to the optimal clusters of numbers for that curve. However, we

notice that by running the K-Means algorithm multiple times for the same cluster

limits, it can return different elbow results. That is due to different initial centroids

positions  during  each  run.  We  deal  with  this  problem  by  running  the  K-Means

algorithm five times for each graphics curve, and then keep the elbow with the lowest

distortion score for each line on average. This empirical solution is based on the fact

that  a  lower  distortion  score  corresponds  to  higher  number  of  clusters  and  by

extension higher accuracy

Finally, we perform K-Means clustering on the unevenness data points using

the optimal cluster number that we have deduced for each curve. The results of this

clustering  step  are  presented  in  figure  40.  On the  right  column of  the  figure  we

illustrate the results of the elbow method, when the input image is the type 1 graphics

from figure 28. The elbow method indicates 26 and 33 as the optimal number of

clusters for the red and the blue curves (curves 1 and 3) respectively. However, no

optimal cluster number can be deduced for the magenta line (curve 2). This is due to

the low number of unevenness points that by extension produces a low number of

clusters. In such cases we keep the lowest number of clusters calculated during the

109



hierarchical clustering phase, and based on that we perform the K-Means clustering.

This solution leads to an accurate result, since a lower number of clusters intuitively

corresponds to the preservation of the essential curve information. Then, we calculate

the position of the middle point of each cluster. A cluster’s middle point is different

from a cluster’s centroid, since the middle point lies exactly in the middle of the

cluster, with respect to the other unevenness points in the cluster and the x- axis.

We use these middle points as the basis for the line segments that constitute the

curves of the graphic.
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Figure   40      :         The results of the elbow methodology (left column) and K-means

clustering using the elbow values (right column).

4.4.1.3 Recognition of Noise in Results

Another issue which arises after these processing steps is that of noise pixels.

These pixels share the same color with either one of the graphics curves even though

their positions are unrelated. They are preserved through the clustering which is an

issue, since they form clusters of their own. Eventually, this noise propagates to the

generated straight line segments which pass through the positions of the noise pixels.

We distinguish a potential noise pixel or a group of noise pixels from curve pixels by

creating creating a window around them. The window is delimited by the potential

group’s most left, most right, most up and most bottom pixels. Then, we extend that

window based the recognized size of the line width. A diagram describing this noise

correction methodology is presented in figure 40. If there are any pixels of the same

color, within the region covered by the line width extension (green area), then we
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consider  the  group  of  pixels  as  part  of  the  curve.  If  not,  then  these  pixels  are

categorized as noise and we discard them.

Figure   41  :     Example of windowing a line to detect if it is noise.

We compute the width of each graphics line, by detecting their corresponding

starting point first. Then, the program parses through the lines of pixels beneath and

upwards from the starting point of each line, in a left to right order. It is searching for

the  first  and final  occurrences  of  pixels  with  the  RGB values  of  their  respective

graphics curves. Then, it averages the distance of pixels between the first and final

occurrences in order to get each line’s width. We search in three rows upwards from

the starting point and three rows beneath it, in order to get an average result (figure

42).
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Figure   42  :     Example of the line width recognition method.

4.4.2 Recognition of Similarly Colored Partitioned Curves

4.4.2.1 The Feedback Methodology

In order to recognize and understand such curves, we establish that each

curve must consist of different shapes. We begin with the utilization of a spiral

algorithm, which recognizes the individual pixels that form shapes. We group these

recognized shapes based on their distance with each other, as well as their sizes and

number of sides. The order or processing steps is essential, since all the curves

have the same color, and therefore its difficult for the tool to distinguish one curve

from another. Therefore, the individual shapes are recognized and grouped together

into curves according to the aforementioned heuristics. When all recognized

shapes are categorized to their respective curves, the program assigns them a

different color, based on the curve that they belong to. Basically, we convert the

type 2 graphics image into a type 1 for which the previously described graphics

recognition and understanding methodology is applicable.
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A separate  feedback module  is deployed. It checks the  validity of the initial

pixel coloring results. Figure 43 illustrates the methodology including the

feedback module. More specifically,  the feedback  module analyzes  the colored

image and searches for disputable regions of pixels. The tool’s decisions are based

on the detection of backtracking, while it traces over the direction of each curve’s

outline. The detected disputable regions are categorized as gray areas by the

module. Then, the disputer curves which have potential claim over these regions

are identified. Finally, new versions of the colored images are generated, with the

disputed regions being assigned the color of their disputer curve. This

methodology generates different SPN graphs for each resulting image  of the

feedback module.

Figure   43  :     General methodology including the feedback module.
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4.4.2.2 Initial Recognition Results

The  methodology  begins  with  the  recognition  of  the  various  shapes  that

constitute the curves. We achieve through the use of a spiral algorithm in the graphics

image. It should be noted that we tested multiple established methodologies for their

extraction such as Hough Line transform, edge detection algorithms, or the OpenCV

blob detector. However,  none of the aforementioned techniques provide a delicate

solution  for  the  recognition   of  detailed  information.  The  proposed  methodology

begins with the application of the HSV homogeneity filter in order to assign the most

dominant pixel color to the curves for easier processing. Then, the spiral algorithm is

initiated,  starting  from the  relative  center  of  the  image  and  following  a  counter

clockwise direction around it.  The algorithm accepts only the pixels that have the

same RGB value with the recognized curve color, keeps track of their positions and

stores them into lists. These lists represent recognized curve subsegments. When the

program comes across a new pixel, it evaluates its position with respect to already

recognized subsegments. Then, the new pixel is assigned to the group that with a

distance of 1 pixel or less. In case no such group exists, then a new list is initiated in

order to store that pixel, forming a new subsegment.

Due to the order of parsing the pixels, some subsegments that should be united

are  falsely  recognized as  different  groups.  So  the  initial  merging rule  of  1  pixel

distance  is  reapplied  to  the  all  groups  iteratively,  until  no  more  groups  can  be

combined. We demonstrate an example of this  entire procedure with its  results  in
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figure 44. The upper left image is the original input image, and the upper right is the

result  of  the  HSV  homogeneous  representation  process.  The  bottom  left  image

contains  an  example  of  the  image’s  pixels  being  parsed  by  the  spiral  algorithm

starting from the center of the image. Finally, the bottom left image showcases the

result  of  all  the  recognized  curve  subsegments.  Each  group has  been  assigned  a

different color or shade (e.g. different colors of green, or magenta) in order to be

recognized as its own entity.

Figure   44  :     Results of pixel shapes recognition from the spiral algorithm.

Then, the methodology proceeds with the calculation of the sizes, number

of sides and the centroid of each recognized subsegment. The calculation of these

metrics is vital in order to accurately categorize similar shapes into the correct

curves. However, due to the application of the HSV homogeneity filter, many

outlier pixels appear where shades used to be in the original image subsegments.

This makes the detection of number of sides for each shape a challenging task.

The proposed solution consists of detecting the outline of each subsegment and
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then calculating the number of sides. During that calculation, we disregard any

outlier pixels that don’t follow the direction of the current side. An example of

the aforementioned approach is presented in figure 45.

Figure   45  :     Proposed solution for number of sides calculation, in case of degraded

shapes.

The next step of the procedure is to combine the formed pixel shapes into

curves. More specifically, the first layer of the combination algorithm classifies

the recognized shapes into overarching curves based on similar pixel masses and

number of sides. This procedure uses a heuristic error value, which has been

deduced through trial and error. In figure 46 we showcase the result from the first

layer of classification for the recognized subsegments into curves. The unclassified

shapes are highlighted with a green outline, while the rest of the curves are

highlighted using different colors. A second layer of classification assigns any

unclassified shapes into the already formed curves or recognizes new curves. This

assignment is based on the position of each subsegment’s centroids along with their

number of sides. Figure 47 illustrates the results of the second classification
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layer. We notice in these results that some regions of pixels have been classified

incorrectly. We solve this issue with the deployment of the proposed feedback

module. Finally, the tool color the categorized pixel segments using different colors

for each detected curve. By differentiating the color of the curves, we reduce the

problem of same color curves recognition and understanding to that of different

color curves recognition and understanding. Figure 47 illustrates an example of

the final coloring results. The curves have been assigned the colors of red, green

and blue respectively, as a tribute to the RGB colorspace. However, it must noted

that there are more colors available for the software to choose from, in case the are

more than three curves in the input image.

Figure   46  :     Left image shows the recognized outline of each shape. Right image

shows the results of the first classification layer.
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Figure   47  :    Left image shows the final classification result. Right image shows the

coloring result for the detected curves.

The graphics recognition module accepts the colored images as input and

follows all the processing steps that are described in the previous sections. More

specifically, we proceed with the search for unevenness points in each curve. Then,

we use  hierarchical  clustering based  on the distance  metric. In  figure  48 we

demonstrate the results of  hierarchical clustering for the cases of 4 and 3 pixel

distance. We use the elbow cluster validity measurement in order to calculate the

optimal number of clusters for each curve. Finally, the K-Means algorithm is

applied for the deduced optimal number of clusters. We use the K-Means results in

order to retrieve the middle points that construct the line segments for each curve.

We notice that for curve 3 no elbow can be detected. This is due to the low number

of unevenness points that by extension produces a low number of clusters. In such

cases we keep the highest number of clusters calculated during the hierarchical

clustering phase and apply the K-Means based on that. This solution leads to an

accurate result, since a higher number of clusters intuitively corresponds to a higher
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number of details for the curve. We present the corresponding results of the elbow

method for each curve along with the outcome of the associated K-Means clustering

results in figure 49.

Figure   48  :     Hierarchical  clustering results  for  threshold of 4 pixel  distance (left
column) and of 3 pixel distance (right column).
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Figure   49  :     Elbow results (left column) and K-Means clustering results (right
column).

4.4.2.3 Feedback Recognition Results

In the previous coloring result (figure 47), there are some noticeable regions of

pixels that are assigned to the wrong curve. This is due to fact that all the curves in the

original image have the same color. So, after the HSV homogeneous representation

filter is applied, certain pixels of different curves that intersect with each other, end up
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merged.  As  a  solution  to  this  problem,  we  have  developed  a  separate  feedback

module,  that  is  presented  in  figure  43.  This  module  searches  for  any  disputable

regions of pixels within the image. We call this process feedback recognition. If it

finds any, then it triggers a separate process called feedback analysis. During feedback

analysis, the tool investigates the disputable regions and finds the curves, to which

they might potentially belong. It must be noted, that the feedback module is integrated

for both partitioned curve graphics as well as continuous curve graphics.

The feedback recognition procedure starts with the tracing of the outline for

each  curve.  If  the  curve  consists  of  individual  shapes,  then  it  recognizes  their

respective outlines. After the outlines have been detected, it proceeds to parse through

the  recognized pixels  of  the  curve  body or  partition  outlines.  The parsing begins

always from the most left pixel of the outline and continues in a successive  manner,

always  checking  for  any  changes  in  direction.  Multiple  successive  changes  of

direction in a sort amount of parsed pixel indicate backtracking. Backtracking means

that the general direction of the curve’s outline changes to a different state, and then it

changes  back to  its  original  direction  soon after.  Incidents  of  backtracking imply

detection of abnormalities, which by extend indicate disputable regions. On the other

side, if a change in direction has happened, without any other change for more than

ten pixels, then we consider this as a general change of direction in the curve. In that

case there are  no disputable regions.  The threshold number of ten pixel  has been

determined through a trial and error process. Figure 50 showcases the detected outline
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of one example curve. Figure 51 illustrates the backtracking detection in that curve, as

well as the results of recognizing disputable regions.

Figure 50:         Left image is the input graphics image (previous coloring result). Right

image shows the outline of one of the curves.

Figure   51      :         Left image shows the detection of backtracking pixels. Right image shows

the results of recognizing disputable regions.
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Figure   52      :         Left image shows the input graphics image (previous coloring result).

Right image shows the result of the feedback module.

After  the  disputable  regions  have  been  recognized,  the  resulting  image  is

pushed to the feedback analysis  procedure.  Feedback analysis  processes the given

graphics image containing the disputable regions, and calculates the probability of

each region belonging to some of the other curves. If the body of a curve passes over

a disputable region, then there is a possibility that this region belongs to it.  If the

centroid of a disputed region is placed before or after the initial or final recognized

line segments of a curve respectively and they have similar directions (plus or minus a

given unevenness error), then there is a possibility that the disputed region belongs to

this curve. The directions are defined based on calculating the corresponding slopes.

More specifically, in the first case, we calculate and compare the slope formed by the

centroid of the disputed region and starting point of the first line segment of the curve,

with  the  slope  of  the  same first  segment.  We perform the  necessary  calculations

accordingly for the second case. Figure 52 illustrates the final coloring results of the
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disputed regions. The feedback module uses these probabilities in order to assign new

colors to the disputed regions. The new color of each region is based on the curve it

belongs to. So far the methodology doesn’t offer a definitive answer for the origins of

the disputed regions. Instead it produces the aforementioned probabilities. So, it can

potentially  produce  multiple  different  versions  of  coloring  for  the  input  graphics

image, based on all these probabilities. We have developed a separate probabilistic

model, based on the Bayesian Theorem [93] that can solve this problem, which we

discuss in subsection 4.4.2.4.

The rest of the procedure follows the established processing steps of the the

graphics  recognition  and  understanding  methodology.  More  specifically,  the  tool

applies the HSV homogeneous coloring filter to the graphics image, and then detects

the unevenness points of each curve. Then it clusters these points in order to find the

middle point of each cluster, which describe the curve. Figure 53 demonstrates the

results of hierarchical clustering for the cases of 4 and 3 pixel distance. We present the

corresponding results of the elbow method for each the clusters of each curve, along

with the outcome of the associated K-Means clustering results in figure 54. When no

elbow can be detected, we keep the highest number of clusters perform the K-Means

clustering. 
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Figure   53  :     Hierarchical  clustering  results  for  threshold of 4 pixel  distance (left

column) and of 3 pixel distance (right column). These results correspond to the

output colored image of the feedback module.

126



Figure   54      :         The results of the elbow methodology (left column) and K-means

clustering using the elbow values (right column). These results correspond to

the output colored image of the feedback module.
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4.4.2.4 Feedback Probabilistic Modeling

In the previous section, we introduce a feedback module, which checks the

validity of the initial coloring results for a given image of partitioned curves

with the same color. In this section, we attempt to formulate this procedure, using

mathematics instead  of heuristic rules. We consider this issues as a problem of

uncertainty. Similar to other uncertainty problems, such as navigation in a

dynamic environment, we must also make decisions about the origins of the

disputed pixel regions in the image, when there are not many available information.

The proposed solution for such problems of uncertainty relies on the formulas

and associations described in the Bayesian Theorem [93]. More specifically, we

use this theorem, in order to express the uncertainty of where each disputed region

belongs to, through probabilities.

After the  combination of the Bayesian equations with the available

information, we reach the following formulas:

P(bLN / KB) = [P(KB / bLN) x P(bLN)] / P(KB) (8)

P(KB) = P(KB / Modality1) x P(Modality1) + … + P(KB / ModalityN) x P(ModalityN)
(9)

where

Modality1   = Table ^ Modality2   = Diagram ^ Modality3  = Text ^ Modality4  =

Formula ^ Modality5 = Algorithm

and etc. So for example:
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P(KB / Modality1) x P(Modality1) = P(KB / Table) x P(Table)

and so on according to the available modalities.

P(KB/Modalityi) is the accuracy of the recognition of the individual

modality i, with P(Modalityi) being either 0 or 1. Its value depends on whether

that modality exists in the input technical document or not. On the contrary,

P(bLN) depends on the direction of that curve and the distance of the disputed

region to it. More specifically, if that direction of the curve agrees with the

disputable region, then we consider it as a potential part of that curve. Then,

the probability of that disputed region belonging to that curve depends on its

distance from all other curves that it can potentially be part of. The calculation

of the final probabilities is not yet feasible. This is because some of them depend

on the calculation of the proposed methodologies accuracy for table and graphics

images recognition and understanding. We plan on concluding this methodology in

future work. Here we make an effort to only define the problem in terms of

mathematics and uncertainty.

4.4.3 Recognition of Bars

Initially,  we detect  the  axis  type  illustrated  in  the  input  bars  chart  image.

Similarly to the results from the curves graphics, we extract the inner subimage that

contains  only  the  bars.  Then,  we  analyze  that  image  independently  in  order  to

recognize its structural information and deduce the illustrated behavior of the bars.

After the application of the HSV homogeneity filter, we extract the graphics grid
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which is analyzed in order to detect the axis legends text and their pixel positions.

Figure 55 illustrates the extracted grid in the use case of type 3 graphics image from

figure 28.

Figure 55: HSV and grid filter results

The  next  step  in  the  proposed  bars  recognition  methodology  consists  of

recognizing the different features of the resulting subimage. These features include

the heights and widths of the bars as well as their relative locations in the image. The

given subimage can also contain further information about the association of the bars

colors to variable names. So we process the given subimage accordingly in order to

extract all that information. We begin with the detection of the bar names using the

PyTesseract library. More specifically, we locate the bounding boxes of their names

and then store the centroid of these boxes. Then, we proceed with the recognition of

the  associations  between  colors  and  variable  names.  The  tool  applies  the  HSV

homogeneity filter to the bars image in order to replace all the differently colored

pixels with the most dominant color of their group. Then, we binarize and invert the

image in order to get all its connected components. The goal is to detect the colors
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that are associated with previously detected name boxes, so we don’t mind that the

bars  might  appear  conjoint.  Thus,  we evaluate  their  positions  with  respect  to  the

names bounding boxes centroids. Initially, we find the most common height and most

width  pixel  positions  from each  name’s  bounding  box.  Then,  we  get  the  closest

lefthanside connected component. Finally, we associate the color of that connected

component  to  each name using their  respective centroids.  After  the association is

completed, we erase all that information from the image and proceed with the next

steps  of  the  methodology.  Figure  56  illustrates  the  results  of  the  aforementioned

processing steps.

Figure 56: Detection of color names and association processing steps.

Then, we proceed with the detection of the highest points from each bar and

use  them  as  input  for  the  previously  presented  curves  graphics  understanding

methodology.  Figure  56  illustrates  an  example  of  this  idea.  We  begin  with  the

detection of the top corners of each bar in the graphics image. Then, we keep the

middle point that is placed between them and use that as the new middle point in
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order  to  understand  the  graphics  subimage  contents.  The  conversion  of  the  bar

graphics image into a curve graphics image allows for a deeper understanding of the

internal associations that are represented in the graphics image. 

Figure 57: Detection of bars middle points.

In figure 57 we demonstrate the results of detecting the corners of each bar in

the input subimage. We use the middle point between each two corner pixels of the

same  color  in  order  to  form  the  resulting  straight  line  segments  that  form  the

corresponding curves. Figure 58 illustrates the results of recreated curves superposed

over the input bars image. We use the straight line segments in order to extract the

different  associations  between  curves.  These  results  also  serve  as  proof  that  the

proposed methodology recognizes  accurately  input  graphics  images.  The resulting

curves are already in their definitive form so there is no need to use any clustering or

merging  techniques  in  order  to  optimize  them.  Therefore,  we use  their  extracted

behavior directly in order to understand the underlying functionality of the initially

illustrated bars.
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Figure  58: Curve  reconstruction  using  the  recognized  line  segments  (right)  and

superposed results over the original bar graphics image (left).

4.5 Understanding of Graphics 

4.5.1 Understanding of Colored Partitioned and Continuous Curves

4.5.1.1 General Graphics Understanding Methodology

We illustrate the proposed graphics understanding methodology in figure 59.

To the best of our knowledge, there is no other standard methodology that offers the

same level  of understanding and analysis  for graphics  images yet.  We expand on

previous graphics understanding attempts in an effort  to capture a graphics image

underlying  semantic  meaning.  In  order  to  accomplish  this  task,  the  methodology

receives the resulting line segments as input from the recognition module. Then, we

use two different merging rules based on the geometrical positions and characteristics

of the segments. We use their results in order to generate the corresponding attributed

graphs of  the  structural  features  and the  natural  language sentences  that  describe

them.  Finally,  we  convert  these  sentences  into  stochastic  Petri-net  graphs,  which
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describe the functionality of the recognized curves. Although, the results of the second

merging rule maintain structural features, they don’t include any information about

semantic associations between the segments. For this reason we apply a third merging

rule. By combining the resulting graphs and natural language sentences of both

merging rules, we can deduce an enhanced SPN graph, which maintains both

functionality and semantic meaning.

Figure   59  :     Proposed Graphics Understanding Methodology.

Then,  we  continue  processing  the  retrieved  curves  image,  with  the

aforementioned  graphics  recognition  and  understanding  methodology.  We  also

include an additional module that recognizes the growth rates of each curve that is

illustrated  in  the  graphics  subimage.  This  is  accomplished  by  recognizing  the
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individual growth rates of each line segment that constitutes the curves. Additionally,

we transfer the recognized middle points into the original image containing the axis

information. We achieve that by keeping a matrix containing the surrounding pixels of

middle point. This transforms the middle points to a location invariant data points.

Finally,  we  associate  the  resulting  information  that  we  extract  from the  graphics

subimage with the original graphics image, which contains the axis. This is the final

processing  step  in  order  to  gain  more  accurate  and  detailed  understanding  of  its

underlying information.

4.5.1.2 Merging of Straight Line Segments

We can merge some of these segments based on their geometrical attributes in

correspondence to each other. However, if we consider the recognized line segments

as straight lines, then many issues arise when calculating the slopes of vertical and

horizontal lines respectively. That is because the vertical line has no slope, and the

horizontal line has a slope value of always zero. Such special cases make the program

unable  to  calculate  the  angles  between  the  connected  line  segments,  since  the

mathematical equations don’t hold true. We avoid this issue by treating the recognized

line segments as vectors instead.

We showcase three distinct levels of merging for the recognized line segments.

The first level of merging is an effort to erase unnecessary direction changes, that are

formed by the recognized line segments. Then, we replace them with a single larger

segment, which represents both of them. We deal with such issues by defining a
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worst case lemma. When the endpoint of the first segment has a distance of 1 pixel

from the starting point  of the second segment,  with respect to the y-axis, and a

distance of less or equal to the detected line width value minus 1 pixel, with respect

to the x-axis, then we consider it as the worst case. We present an example of the

first level merging rule in figure 6 0 . The results of applying the first level

merging rule in the recognized line segments are illustrated in figure 62.

Figure   60  :   Example of the first level merging rule.

The  first  merging  rule  produces  solid  results,  however,  many  overlapping

segments might be preserved. Therefore, we define a second level merging rule, that

merges line segments based on their slope values. More specifically, it combines line

segments whose slope values’ difference is less or equal to a defined threshold. As we

have already mentioned, we consider each line segment as a vector. We also consider

each vector’s direction to be the opposite of its counterpart connected segments. So,

we calculate the slopes of these line segments as if they were vectors of opposite

direction. The value of the threshold is the outcome of the aforementioned worst
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case lemma. More specifically, the threshold is equal to the the worst case y-axis

distance, which is 1, divided by the worst case x-axis distance. The worst case x-

axis distance is equal to the detected line width minus 1 pixel. We demonstrate an

example of this merging rule and its results when applied to the input graphics

image in figures 61 and 62 respectively.

Figure   61  :   Example of the second level merging rule.

The second merging rule returns results with higher accuracy. However, there

can still  be  cases  of  overlapping segments  that  should  be merged.  Therefore,  we

define a third and final merging rule. The third rule uses the produced attributed graph

results that correspond to the second merging rule. Then, it merges their respective

line segments based on their common features. More specifically, if two lines are

connected and both are parallel to the same third line segment, then they are merged

into a single line. The parallelism is concluded based on their attributed graphs. The

results of the third merging rule are illustrated in figure 62. It is evident by the results,

that while the rule discards almost all unnecessary line segments, it can also lead to
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potential loss of information. However, this information is associated more with the

structural  features  of  the  lines,  and  less  with  the  general  sense  of  directions  and

proportions between different curves. So we maintain both the results of the second

level merging and third level merging rules, since each result offers a different aspect

and highlights different attributes of the same graphics curves.

Figure   62      :         The recreated curves (yellow) superposed over the original graphics

image (black). We include the resulting curves from each merging rule.

We include  color  name recognition  as  part  of  the  proposed understanding

methodology  of  the  information  that  is  illustrated  in  a  graphics  subimage.  The

application of the HSV homogeneity filter maintains the original color group (e.g. red,

yellow, blue). That is achieved by selecting the most dominant RGB values in each

group. These RGB values represents different shades of the most commonly used

138



colors  (such  as  red,  blue,  green,  yellow,  magenta,  etc.),  thus  making  difficult  to

recognize their actual names. For example dark red and light red colors are different

shades of the same color red. We resolve this issue by maintaining a knowledge base

of the RGB values of the most commonly used colors. We then calculate the

euclidean distance between the recognized RGB value of the curves and the those

values in the knowledge base.

Figure   63      :         Colored reconstructed curve after the 2nd merging rule (right) and 3rd
merging rule (left) respectively.

Finally we keep the knowledge base RGB value which corresponds to the

minimum distance for each curve and then retrieve their actual names from the

knowledge base. Figure 63 illustrates the results of reconstructing the original

graphics line, using their corresponding recognized line segments and their

respective recognized colors. These results correspond to the type 1 graphics image

from figure 28. The left reconstructed graphics image is the result of the second

merging rule, and the right image is the result of the third merging rule. We recreate

the studied graphics images based on the merging rules outcomes, in order to

evaluate the recognition and understanding results of the proposed methodology.
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It is evident from these results, that the second rule favors the preservation of

structural characteristics. In contrast, the third merging rule highlights the direction

and growth rates of the line segments. However, both the recognition and

understanding modules are highly accurate for all merging rules.

4.5.1.3 Intersection of Straight Line Segments

We consider two different cases of intersections. The first one is the

intersection between line segments that form the curves. The second one is the

overlapping between line segments of the curves. For the first case, we detect

intersections between line segments of different curves by using the equations (6),

(7), (8), and (9). Each of the two line segments consists one start point (xi, yi) and

one endpoint (xi+1, yi+1). We can express the position of a random point between them,

as a relation of the start point (x1, y1) plus the difference (x2 – x1, y2 – y1)

between them, multiplied by a variable T. Similarly we can express a random

point for the second curve this time using variable U. Now, we are looking for a

common point between these segments by solving the system of equations that is

produced. That system of equations is solved by our program for each

combination of line segments from different curves. If the results for the

variables T and U satisfy the conditions 0 < T < 1 and 0 < U < 1, then we have

a point of intersection between these segments. Otherwise, we don’t. Figure 40

demonstrates the results of detecting intersections using the positions of the

recognized line segments as input for the equations. The 2-dimensional
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intersection points are colored as blue pixels and we contain them inside a blue

circle in order to make them distinguishable.

(x, y) = (x1, y1) + T(x2 - x1, y2 - y1)  (6),  (x, y) = (x3, y3) + U(x4 - x3, y4 - y3)  (7),  T =
[x3   + U(x4 - x3) – x1] / (x2 - x1) (8), and U= [(y4 - y3)(x2 - x1) – (x4 - x3)(y2 - y1)] / [y1(x2

– x1) - y3(x2 – x1) + (x3 - x1)(y2 - y1)] (9)

Figure   64  :     Intersection points detection (left) and overlapping detection (right).

It is evident by the results in figure 64, that these equations fail to recognize

the intersection at the start of the red and magenta colored lines. That is because this

intersection is actually an overlapping. In order to detect overlapping pixels between

different lines we employ a different approach. We first define a kernel of 3x3 pixels

and  create  all  possible  diagonal  color  combinations,  using  strictly  the  recognized

colors of the graphics lines. However, we discard the masks that are combinations of

only a single color. We then parse through each line of pixels in the image using these

masks, and store the positions of the pixels that satisfy them. These pixels are parts of

intersections between lines. We can filter out the pixels that correspond to already

recognized  intersections  between  line  segments  by  using  the  previously  detected

intersection  points.  More  specifically,  any  pixel  that  is  part  of  the  recognized
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overlapping points, and also has a distance equal to line width or less, from one of the

detected intersection points, is deleted from the list. After this process is done, the

only intersecting pixels that are left are part of the overlapping pixel group and imply

overlapping between their  respective lines.  The results  of overlapping intersection

pixel detection are illustrated in figure 64. We represent them as green pixels within

green circles superposed over the black colored curves.

Figure   65      :         Connection graph example (upper left), intersection graph example
(upper right), parallel graph example (bottom image).

4.5.1.4 Conversion of Graphics into Attributed Graphs

We represent  the  information  that  the  program extracts  from the  graphics

subimage into attribute graphs. These information concern the recognized straight line

segments  that  the  curves  consist  of.  Additionally,  they  include  other  internal
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associations between the curves, such as which line segments intersect, or which line

segments  showcase  parallelism.  The  program  searches  for  parallel  segments  of

different lines, based on two rules. The first rule is that the parallel lines must not

share any common points. The second rule is that all parallel lines have the same

slope. For the case of detecting parallel segments in graphics image, we employ a

threshold which is equal to the recognized line width minus 1 pixel.  We use that

threshold  as  means  to  correct  any errors  that  occur  during  the  curve  recognition

process. These errors include minor differences in computed slope values because of

the line width.

The produced attributed graphs correspond to each recognized relation that is

extracted from the graphics subimage. The recognized line segments consist the nodes

of the graphs. The (x0, y0) and (x1, y1) positions of their respective start and end points

constitute the attributes of each node. The label of the arc which connects the two

nodes represents their type of relation. This relation can imply a simple connection,

parallelism, or intersection. Figure 65 showcases examples for each type of attributed

graph  we  produce  so  far.  The  connection  graphs  represent  connections  between

different line segments of the same curve. The connection graph example of  figure

64  includes  the  connection’s  angle  degrees  as  the  label  of  the  arc.  Parallel  and

intersection  graphs  represent  parallelism  and  intersections  between  different  line

segments. The parallelism graph illustrates the common slope value as the label of the

arc. In contrast, the intersection graph shows the location of the intersection point as
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the label of the graph arc. These example attributed graphs correspond to the graphics

image type 1 from figure 28. All of the illustrated example graphs are produced using

the resulting line segments, after the application of the second merging rule (figure

63). Finally, we produce an aggregated  version of all the connection graphs for each

curve, however, we omit these results for simplicity. In general, we use different styles

of graph aggregation which aim to highlight certain relations or conceal others.

4.5.1.5 From Graph to Natural Language Representation

After the successful generation of the attributed graphs, the tool proceeds with

their transformation into their corresponding natural language representation. This is

achieved with the use of the information that is stored in the nodes and arcs of each

graph relation. These sentences  prove  to  be  an  important  transitional  step  for  the

creation  of  the  corresponding stochastic Petri-net graphs. For the generation of the

natural language sentences, we use the concept of Agent-Verb-Patient (AVP kernels)

that is presented in [75]. More specifically, the two nodes in each attributed graph

relation are considered the agent (first node) and the patient (last node) of the sentence

respectively.  The  label  of  the  arc  corresponds  to  the  verb  of  the  sentence.  The

potential verbs are “is connected to”, “is parallel to”, “is intersecting with”. Certain

conjunction words are also deployed in order to enhance the semantic validity of the

produced sentences.

For example the connection attributed graph from 65 is converted into “the

straight-line segment L1S8 is connected with (112.33544256530391 degrees) to
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the straight-line segment L1S9”. We present a few additional examples of

generated natural language sentences below. These sentences correspond to the

relations that we retrieve from the type 1 graphics image in figure 1. It must be

noted that these sentences are generated from the attributed graph results, after the

application of the second level merging rule (figure 63).

NLS0:     the curve L2 is color magenta

...

NLS3:         the straight-line segment L1S2 is connected with (13.314701615698201

degrees) to the straight-line segment L1S3

NLS4:         the straight-line segment L1S3 is connected with (21.583969241769584

degrees) to the straight-line segment L1S4

…

NLS111:     the straight-line segment L2S3 is parallel to the straight-line

segment L1S9

NLS112:     the straight-line segment L2S3 is parallel to the straight-line

segment L1S16

NLS113:     the straight-line segment L2S3 is parallel to the straight-line

segment L3S11

NLS114:     the straight-line segment L2S3 is parallel to the straight-line

segment L3S14

…
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NLS423:         “The straight-line segment L2S0 is intersecting in coordinates X=111

and Y=126 with the straight-line segment L3S11”

4.5.1.6 From Natural Language to SPN Representation

The conversion of the natural language sentences to stochastic Petri-net graphs

is based on the methodologies described in [75, 76] combined with the Kyrtos formal

language.  According  to  this  methodology,  each  natural  language  sentence  can  be

described by the AVP format (agent → verb(action) → patient). This means that a

sentence can be reduced to agents (nouns that perform an action), verbs, and patients

(nouns  affected  by  actions).  We can extract  the  AVP kernels  of  natural  language

sentences  and  use  them  to  generate  the  SPN  graphs,  with  agents  and  patients

representing  the  input  and  output  places  respectively,  and  verbs  representing  the

transitions.

In the case of graphics natural language sentences, the verbs are either “is

parallel to”, “is connected to”, or “is intersecting with” sequences representing the

equivalent associations between line segments. We generate a transitions for each

detected verb. The agents and the patients are the line segment names, located on the

right and left side of the verb respectively.  The program recognizes these names,

along with their respective tokens. We consider as tokens all the X and Y coordinates

that are included in a natural language sentences. These tokens are used to activate

their corresponding transition, generated from the verb of the same sentence. Not all

sentences contain such tokens, but only those that require information about location.
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Examples of such sentences consists those about connections and intersections. We

also generate  places  that  connect  to  the transition for each recognized agent  and

patient of the sentence. If the place corresponds to an agent line segment, then it is

created as an input place, otherwise it is an output place. Finally, depending on the

color  that  the program recognizes  for  each  curve,  we create  a  colored  stochastic

Petri-net graph [92] that describes its functionality. Despite including the token of

equivalent color to the color name, we also assign that same color to some particular

arcs. We only color the arcs that connect the places and transitions, that participate in

connection relations. This color assignment represents the course that the color token

takes throughout the entire SPN graph, when its transitions are fired.

Figure 66 is the combination of the generated color SPN graphs for all the

curves from the same subimage into a single SPN graph. Finally, figure 67 illustrates

the combined SPN that describes all the extracted information of the same subimage,

including relations about parallelism and intersection. It should be noted, that while

the latter SPN graph   is difficult to interpret by a human, it still can be understood by

the computer. After all, the goal of this research is to automate the graphics image

understanding procedure by emulating the human perception.
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Figure   6 6      :         The SPN graph from the sentences that correspond to the red

curve of type 1 graphics image in figure 28.

Figure   67      :         The SPN graph that is generated from all the sentences that correspond

to the type 1 graphics image in figure 28.
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Figure  68: Example  of  how  the  proposed  matrix  keeps  the  color  of  the  pixels

surrounding the middle point pixel.

4.5.1.7 Curve Growth Understanding

Initially, we associate the recognized middle points from the subimage with

their  respective  counterparts  from  the  original  graphics  image.  This  is  achieved

through the use an 81x81 sized pixel matrix. The optimal  size for that matrix was

deduced through trial and error. That matrix is set around each middle point pixel and

contains  the  surrounding  neighborhood  pixels  information.  Then,  we  search  and

locate the area within the original graphics image that matches a given matrix. The

designated pixel that matches the position of the middle point from the matrix is the

corresponding middle point pixel from the original image. Figure 68 showcases an

example of the aforementioned matrix. An example of the association among middle

points from the subimage to the original image is illustrated in figure 69.
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Figure  69: The  results  of  the  middle  point  pixel  association.  Left  image  is  the

graphics subimage, right image is the original.

In  order  to  recognize  the  growth  or  decay  information  of  each  curve  we

analyze the slopes of their respective line segments. A positive slope indicates growth,

while a negative slope represents decay. A steady line is recognized by a slope with 0

value.  Further  analysis  of the slope information among consecutive line segments

results in the deduction of more detailed growth conclusions. For example, continuous

positive slopes with similar values correspond to linear growth. However, consecutive

positive slopes with decreasing values correspond to exponential growth. Finally, we

associate the deduced line segment growth results with the information recognized

from the axis legends. The association is achieved by cross referencing the starting

and ending pixel positions of the segments to the pixel positions of the axis values.

The extracted knowledge is represented using natural language sentences. Examples

of these sentences are illustrated below. The sentences are later converted into an SPN
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graph for easier combination with the rest of the deduced SPN functional information.

Figure 69 illustrates the resulting SPN graph of the curves’ growth understanding

from figure 63. 

NLS0: the curve L3 is color blue

…

NLS15: the straight-line segment L3S4 illustrates linear decay lower than 10 %)

during 5 Semester

NLS16: the straight-line segment L3S6 illustrates linear decay lower than 10 %)

during 7 Semester

Figure 70: The resulting SPN illustrating the growth rate of the understood curves

from type 1 graphics in figure.
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4.5.2 Understanding of Similarly Colored Partitioned Curves

4.5.2.1 Initial Understanding Results

We illustrate the results of the recognized straight line segments that form the

curves, along with the results for the first merging, second and third merging rules in

figure  71.  The straight  line  segments  are  highlighted  as  yellow against  the  black

colored original image partitioned curves. In figure 72 we present the reconstructed

curves with their respective recognized colors. All of these results correspond to the

type 2 graphics image from figure 28.

Figure   71      :         The results recognized straight line segments before and after the

application of the merging rules.

In figure 73 we present the results of intersection. More specifically, use case 1

results showcase points of intersection between lines, and use case 2 results indicate

possible areas of overlapping. It  must  be noted that due to errors in the coloring

process  of  some regions,  we  have  potential  loss  of  information  in  the  aspect  of
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overlapping recognition. We correct these errors with the deployment of the feedback

module.  We illustrate  the  corresponding attributed  graph results  in  figure  74.  We

include examples of a connection graph for degree of angle, a parallelism graph and

an intersection graph.

Figure   72      :         Colored reconstructed curve after the 2nd merging rule (right) and 3rd

merging rule (left) respectively.

Figure   73  :     The results of intersection.
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Figure   74      :         Attributed graph results for partitioned graphics input image. A

connection graph (upper right), a parallelism  graph (bottom image) and an

intersection graph (upper left).

Below we showcase some of the produced natural language sentences that

correspond to the attributed graphs retrieved relations from the type 2 graphics image

of figure 72.

NLS0: the curve L2 is color green

…

NLS8: the straight-line segment L2S7 is connected with (117.25110201818276

degrees) to the straight-line segment L2S8

…
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NLS24: the straight-line segment L2S4 is parallel to the straight-line

segment L3S3  

NLS25: the straight-line segment L2S4 is parallel to the straight-line

segment L3S4

Finally, we showcase the generated colored stochastic Petri-net graphs of the

natural  language  sentences.  Figure  75  illustrate  all  the  extracted  information  that

describe all the curves of the type 2 graphics image from figure 28, combined into a

single SPN. The X and Y coordinates of the starting points for each segment serve as

extra tokens. 

Figure   75      :         The SPN result for the extracted information that describe the type 2

graphics image from figure 28.
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4.5.2.2 Feedback Understanding Results

We illustrate the results of the recognized straight line segments that form the

curves, along with the results for the first, second and third merging rules in figure 76.

The straight line segments are highlighted as yellow against the black colored original

image partitioned curves.  Figures  77 demonstrates  the  colored  reconstruction  line

results after the application of the second and the third merging rules respectively.

These results come after the recognition of the color name for each curve. 

Figure   76      :         The results recognized straight line segments before and after the

application of the merging rules. These results correspond to the output colored

image of the feedback module.

In  figure  78  we  illustrate  the  results  of  intersection  recognition.  More

specifically, use-case 1 showcases the intersecting points between the curves, while

use case 2 illustrates the results of potential overlapping. The results in use case 2
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highlight the success of the feedback module, since the feedback analysis procedure

restores any previously lost information and color corrects the graphics image.

Figure   77      :         The results recognized straight line segments before and after the

application of the merging rules. These results correspond to the output colored

image of the feedback module.

Figure   78      :         The results of intersection. These results correspond to the output

colored image of the feedback module.

We  illustrate  the  corresponding  attributed  graph  results  in  figure  79.  We

include examples  of  a connection  graph for  degree of angle,  a parallelism  graph
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and a graph for intersections. Below we give an example of the produced natural

language sentences results that correspond to the attributed graphs for the example of

the type 2 graphics image from figure 28.

NLS0:     the curve L2 is color green

NLS1:         the straight-line segment L1S0 is connected with (134.82095127186102

degrees) to the straight-line segment L1S1

NLS2:            the  straight-line  segment  L2S0  is  connected  with  (20.07711581786

degrees)  to  the straight-line segment L2S1

…

NLS111:     the straight-line segment L2S4 is parallel to the straight-line

segment L3S2

Finally, we showcase the generated colored stochastic Petri-net graphs of

the natural language sentences. Figure 80 illustrate all the extracted information

that describe all the curves of the type 2 graphics image from figure 28, combined

into a single SPN.
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Figure   7 9      :         A connection graph (upper right), a parallelism graph (bottom

image) and an intersection graph (upper left). These results correspond to the

output colored image of the feedback module.
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Figure 80:   The SPN result for the extracted information that describe the type 2

graphics image from figure 28. These results correspond to the output colored

image of the feedback module.

4.5.3 Understanding of Bars

We use the corresponding recognized middle points in order to get the ratios of

heights between the bars of the graphics image. Different bars may have same or

different heights which represent their  current value.  However,  the variations of a

bar’s height with respect to other bars, both from its group and from the other groups,

reflect their growth over time. Therefore, we compute the fractions between the ratios

of the bars. We convert the extracted information in natural language sentences for

easier  processing  and  mapping  into  SPN  graphs.  We  present  examples  of  these

sentences below.
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NLS4: the bar 1-1 has a size of 275/351 of bar 1-2

NLS5: the bar 1-1 has a size of 275/373 of bar 1-3

…

NLS47: the bar 2-8 has a size of 329/296 of bar 2-10

Figure 81:   The results of the middle point pixel association. Left image is the

bars subimage, right image is the original bars image.

Additionally, we store a matrix of size 81x81 around each recognized middle

point in order to deduce the location of the middle point in the original bars chart

image.  We  use  the  produced  auxiliary  array  in  order  to  convert  the  understood

conclusions for the original axis graphics. We also use that auxiliary array to associate

the  understood growth rates  with  the  values  extracted  from the  axis,  in  the  next

section. Figure 81 showcases the association results. It is evident by the results, that

the detection of the middle points and their corresponding association is successful.
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Figure 82:   Upper left image illustrates a connection graph, upper right image

illustrates an intersection graph, bottom image illustrate a parallelism graph.

After the association between the original and the subimage is completed, we

apply the same understanding methodology as the one that we introduced for the

curves in graphics images. More specifically, we transform the structural information

that  the program extracts  from the new curves image into attribute  graphs.  These

information concern the recognized straight line segments that constitute the curves

when they are combined. They also include the points of intersection between the

different line segments, as well as any illustrated parallelism. The produced attributed
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graphs correspond to each recognized relation extracted from the graphics image. The

recognized line segments consist the nodes of the graphs, and the X and Y positions of

their respective start and endpoints consist the attributes of each node. The label of the

arc which connects the two nodes represent their  type of relation.  These relations

might  be  simple  connection,  parallelism,  or  intersection.  Figure  82  showcases

examples  for  each  type  of  attributed  graph that  we can  produce.  The connection

graphs represent connections between different line segments of the same curve, with

the arc label being the angle of connection.  Parallel  graphs shows the parallelism

between two different segments with the label of the arc being their common slope

value.  Finally,  intersection  graphs  represent  intersection  between  different  line

segments with the label of the arc being the location of the intersection. 

Each graph represents a different recognized association and relation between

the curves generated from the bars. So, we convert the information that is stored for

each relation  into  their  counterpart  corresponding natural  language representation.

These sentences are important since they help map the recognized functionality that is

illustrated in the given image into SPN graphs. The generation of the natural language

sentences follows the same A-V-P format that we have defined in previous sections of

this  work.  We  present  a  few  of  the  generated  natural  language  sentences  that

correspond to the input graphics image of the previous examples. It must be noted that

these  sentences  are  generated  from  the  attributed  graphs  that  correspond  to  the

information extracted after the second level merging rule is applied.
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NLS1: the curve L2 is color red

NLS2: Men is color red

…

NLS6: the straight-line segment L1S3 with starting point at [297, 30] is connected to

straight-line segment L1S4

…

NLS22: the straight-line segment L1S2 is intersecting in coordinates X= 199 and

Y=50 with the straight-line segment L2S2

…

NLS69: the straight-line segment L1S1 shows linear growth until the

straight-line segment L1S2

In the case of graphics natural language sentences, the verbs are “is parallel

to”, “is connected to” or “is intersecting with” sequences representing the equivalent

associations between line segments. We add the verb “has a size of” when the natural

language sentence contains information about bars. We generate a transition for each

detected verb. The agents and the patients are the line segment or bar names, which

are located on the right and left side of the verb respectively. The program recognizes

these names, along with their respective tokens. We consider as tokens all the X and Y

coordinates information included in a natural language sentences. These tokens are

used to activate their corresponding transition, generated from the verb of the same

sentence.  Not  all  sentences  contains  such  tokens,  but  only  those  that  require
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information about location. Examples of such sentences are those about connections

and intersections.

In  addition,  we  generate  places  that  connect  to  the  transition  for  each

recognized agent and patient of the sentence. Finally, depending on the color that the

program recognizes for each bar, we create a colored stochastic Petri-net graph  that

describes its functionality. Despite including the token of  equivalent color to the color

name, we also assign that same color to some particular arcs. We only color the arcs

that connect the places and transitions, that participate in connection relations. This

color assignment represents the course that the color token takes throughout the entire

SPN graph, when its transitions are fired. Figure 83 illustrates and example of the

generated  colored  SPN graph regarding  the  connection  information  of  the  curves

generated  from  the  bars  graphics  image.  Figure  84  presents  an  example  of  the

generated colored SPN graph regarding the recognized bar size ratios. Finally, figure

85 showcases the resulting colored SPN graphs of all the information that we have

extracted from the input bars graphics image. All resulting SPN graphs correspond to

the type 3 bar graphics image from figure 28.
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Figure 83:   The SPN results of all bars combined.

Figure 84:   The SPN results for the recognized bar size ratios.
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Figure  85:   The  SPN  results  for  the  combined  extracted  information  that

describe the graphics image.
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5. Function Regeneration from Graphics Images

5.1 Curve Type Recognition

The  purpose  of  the  current  research  work  has  been  to  understand  all  the

information  that  is  contained  within  the  images  of  modalities  from  a  technical

document. In the case of graphics images, that information contains both the visually

available  data  such as  axis  text  and the  embedded functionality  of  the  illustrated

curves  such  as  parallelism,  intersections  and  monotonic  growth.  However,  the

extraction  of  that  kind  of  information  enables  us  to  generate  new and additional

knowledge about  the  curves  contained in  the graphics  image,  without  necessarily

requiring apriori knowledge from the document’s text. More specifically, we aim to

deduce  the  functions  that  describe  the  curves  that  are  contained within  the  input

graphics  image.  This  is  achieved  by  using  the  previously  extracted  knowledge

regarding  the  monotonic  behavior  of  their  corresponding  line  segments.  The

algorithm 5 is developed in order to categorize the curves into the respective function

type that describes them. In case no function type can be deduced, then we introduce

an adaptive scheme based on Cubic Splines. It must be noted that since we have 2D

pixels as the available dataset, the functions will describe the captured pixel behavior.

The  algorithm  initiates  by  receiving  a  list  containing  the  monotonic

characteristics  of  each  curve  from  a  given  graphics  image.  Such  characteristics

include the  deduced growth or  decay,  linear  or  exponential  for  each straight  line
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segment. Then, the algorithm checks for the occurrence number of the words linear,

growth and decay in the list. If more than the 2/3 of the list’s nodes are characterized

as linear, then the curve is probably described by a linear function. The occurrence

counting of growth and decay indicates whether the linear function has a positive or

negative  slope  respectively.  In  case  the  curve  is  not  linear,  then  we  deduce  the

function type based on the number of times that the curve changes its direction and

therefore  its  monotonic  sign.  More  specifically,  if  the  curve  illustrates  initially

continuous growth or decay before following a steady pattern,  then it  is probably

described by the asymptotic function. Alternatively, if the curve’s direction changes

only once from growth to decay and vice versa, then it is probably described by the

polynomial  function.  Finally,  multiple  changes  in  the  direction  of  the  curve  are

recognized as the sinusoidal function. 
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Algorithm   V  :     Function Type Recognition      
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5.2 Function Regeneration of Linear Curves

We  input  the  graphics  image  that  is  illustrated  in  figure  86  through  the

aforementioned graphics processing methodology presented in the previous chapter.

More specifically, we begin with the application of pyramidal reduction in order to

preserve the essential structural information of the image. This procedure converts

any text in the axis legends into pixels forming boxes. The resulting image is eroded

in order to  enhanced the box formations. Then, we use Table OCR [94] combined

with a box detection algorithm in order to recognized the contents of each box, which

are the corresponding axis values. Then, the HSV homogeneity filter is applied to the

image in order to remove coloring noise and isolate the curve from the grid. The

results from each step of this procedure are illustrated in figure 86.

The graphics recognition methodology proceeds with the computation of the

unevenness  points  for  each  curve.  Then,  the  hierarchical  clustering  algorithm  is

applied in order to extract the 2D middle points that form the straight line segments

for each curve in the graphics image. More specifically, we apply two versions of the

hierarchical  clustering  algorithm,  1  using  a  minimum  and  1  using  a  maximum

distance threshold among the pixels of each cluster just like in the previous chapter.

Then, we compute the optimal cluster number using the elbow metric before using

that number in the K-means clustering algorithm, that results in the clusters of each
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line segment.  The 2D middle points are  computed from these clusters.  Figure 87

illustrates the results each of the aforementioned clustering steps.

Figure 86:   Linear Curve Preprocessing Results.

Figure 87:   Linear Curve Clusters Analysis Results.
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The graphics understanding methodology uses the deduced 2D middle points

in  order  to  construct  the  respective  straight  line  segments  of  the  curve.  As  it  is

described in the previous chapter, we apply 3 consecutive merging rules in order to

remove any unnecessary segments.  The result  from the recreated curve using the

segments remaining after the 3rd merging rule are illustrated in figure 88. Finally, we

compute the monotony of each curve using the slopes of its straight line segments and

using that information we recognize that the curve is described by a linear function ( y

= a*x + b). We solve that equation for every remaining 2D middle point in order to

get the best possible approximations for the parameters a and b. The resulting pixel

based linear function is y = -1.015 * x + 216.65. It must be noted that the resulting

function has a negative slope, due to the fact that we parse the image following a

direction from top to bottom. The result of the recreated curve using the deduced pixel

based linear function is illustrated in figure 88.

Figure 88:   The linear curve recreated from 2D middle points (left image) and

from the deduced pixel function (right image).
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The computation of the pixel based function enables the computation of the

actual function that is represented in the graphics image. That is due to the recognition

of the axis values and their conversion into actual floating numbers as discussed in

previous chapters. More specifically, we solve the deduced pixel based linear function

using the  x  positions  of  the  values  2  and  3  from the  x-axis.  This  outputs  the  y

positions of the corresponding y-axis values. These results are 58.2 and 104.93 which

correspond to the values 2 and 3 from the y-axis respectively. The results from the

calculations of the pixel based function given these values as input are illustrated in

figure 89. Then, a system of equations is generated (2 = a * 2 + b and 3 = a * 3 + b)

which can be solved to deduce the a and b parameters’ values. Therefore, the resulting

actual function of the input graphics image is y = 1 * x + 0 = x, which is true.  

Figure 89:   The y position solutions of function y = -1.015 * x + 216.65 for the x

position of the x-axis value 2 (left) and x-axis value 3 (right) respectively.
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5.3 Function Regeneration of Polynomial Curves

Similarly to the linear curve, we parse the graphics image that is illustrated in

figure 90 through the aforementioned graphics processing methodology presented in

the previous chapter. The results from the application of the pyramidal reduction, the

erosion and the isolation of the curve using the HSV homogeneity filter are illustrated

in  figure  90.  Then,  the  graphics  recognition  methodology  proceeds  with  the

computation of the 2D middle points that form the straight line segments for each

curve in the graphics image. Figure 91 illustrates the results from the application of

the maximum and minimum distance based hierarchical clustering algorithms, the

computation of the elbow and the application of the K-means algorithm.

Figure 90:   Polynomial Curve Preprocessing Results.
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Figure 91:   Polynomial Curve Clusters Analysis Results.

The graphics understanding methodology uses the deduced 2D middle points

in order to construct the respective straight line segments of the curve and capture its

monotonic  information.  The  result  from  the  recreated  curve  using  the  segments

remaining after the 3rd merging rule are illustrated in figure 92. Finally, the function

type  recognition  algorithm  deduces  that  the  curve  is  described  by  a  polynomial

function (y = a*x ^2 + b*x + c). We solve that equation for every remaining 2D

middle point in order to get the best possible approximations for the parameters a, b

and c. The resulting pixel based polynomial function is y =  2.56 * x^2 – 0.0069*x +

5.95. The result  of the recreated curve using the deduced pixel based polynomial

function is illustrated in figure 92.
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Figure 92:   The polynomial curve recreated from 2D middle points (left image)

and from the deduced pixel function (right image).

Figure 93:   The y position solutions of function y =  2.56 * x^2 – 0.0069*x +

5.95 for  the x  position of  the x-axis  value -2 (left)  and x-axis value 4 (right)

respectively.

Similarly to  the previous section,  we solve the deduced pixel based linear

function using the x positions of the values -2 and 4 from the x-axis in order to

deduce  the  actual  function  that  is  represented  in  the  input  graphics  image.  This

outputs the y positions of the corresponding y-axis values. These results are 197.18

and 35.63 which correspond to the values -2 and 4 from the y-axis respectively. The

177



results from the calculations of the pixel based function given these values as input

are illustrated in figure 93. Then, a system of equations is generated, which are 3.5 =

a*(-2) ^2 + b*(-2) + c and 15.5 = a*4 ^2 + b*4 + c. The third equation of the system

is the solution for x=0, which is equal to c = 0. Therefore, the resulting actual function

of the input graphics image is y = (15/16)*x^2 + (1/8)*x.  

5.4 Function Regeneration of Asymptotic Curves

Similarly to the previous curves, we parse the graphics image that is illustrated

in figure 94 through the aforementioned graphics processing methodology presented

in the previous chapter. The results from the application of the pyramidal reduction,

the  erosion  and the  isolation  of  the  curve  using  the  HSV homogeneity  filter  are

illustrated in figure 94. Then, the graphics recognition methodology proceeds with the

computation of the 2D middle points that form the straight line segments for each

curve in the graphics image. Figure 95 illustrates the results from the application of

the maximum and minimum distance based hierarchical clustering algorithms, the

computation of the elbow and the application of the K-means algorithm.
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Figure 94:   Asymptotic Curve Preprocessing Results.

Figure 95:   Asymptotic Curve Clusters Analysis Results.

The graphics understanding methodology uses the deduced 2D middle points

in order to construct the respective straight line segments of the curve and capture its
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monotonic  information.  The  result  from  the  recreated  curve  using  the  segments

remaining after the 3rd merging rule are illustrated in figure 96. Finally, the function

type  recognition  algorithm deduces  that  the  curve  is  described  by an  asymptotic

function (y = 1/( a*x)). We solve that equation for every remaining 2D middle point

in order to get the best possible approximations for the parameter a. The resulting

pixel based asymptotic function is y =  1 / (0.003 * x). The result of the recreated

curve using the deduced pixel based polynomial function is illustrated in figure 96. It

must be mentioned that the red partitioned line in these results represents the initially

deduced function is inverted due to the parsing direction of the image (top to bottom).

Thus,  we  compute  the  intersection  point  between  the  data  points  and  the  red

partitioned line and using its location we invert the function once again in order to

match the 2D data points. 

Figure 96:   The asymptotic curve recreated from 2D middle points (left image)

and from the deduced pixel function (right image).

Similarly to  the previous section,  we solve the deduced pixel based linear

function using the x position of the values 100 from the x-axis in order to deduce the
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actual function that is represented in the input graphics image. This outputs the y

position which corresponds to y-axis value 0.765 as shown in figure 97. Then, we

solve the equation 0.765 = 1 / (a*x). Therefore, the resulting actual function of the

input graphics image is y = 1 / (0.00013 * x).  

Figure 97:   The y position solutions of function  y =  1 / (0.003 * x) for the x

position of the x-axis value 100.

5.5 Function Regeneration of Sinusoidal Curves

Similarly to the linear curve, we parse the graphics image that is illustrated in

figure 98 through the aforementioned graphics processing methodology presented in

the previous chapter. The results from the application of the pyramidal reduction, the

erosion and the isolation of the curve using the HSV homogeneity filter are illustrated

in  figure  98.  Then,  the  graphics  recognition  methodology  proceeds  with  the

computation of the 2D middle points that form the straight line segments for each

curve in the graphics image. Figure 99 illustrates the results from the application of
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the maximum and minimum distance based hierarchical clustering algorithms, the

computation of the elbow and the application of the K-means algorithm.

Figure 98:   Sinusoidal Curve Preprocessing Results.

The graphics understanding methodology uses the deduced 2D middle points

in order to construct the respective straight line segments of the curve and capture its

monotonic  information.  The  result  from  the  recreated  curve  using  the  segments

remaining after the 3rd merging rule are illustrated in figure 100. Finally, the function

type  recognition  algorithm  deduces  that  the  curve  is  described  by  a  polynomial

function (y = a * sin(b * (x - c))). For this function type solving the equation for every

remaining 2D middle will not result in possible approximations for the parameters a,

b,  c  and  d  because  they  are  essentially  different  metrics.  Therefore,  we  apply

computer vision and image processing techniques in order to find the solutions for the

parameters. 
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Figure 99:   Sinusoidal Curve Clusters Analysis Results.

Figure 100:   The sinusoidal curve recreated from 2D middle points (left image)

and from the deduced pixel function (right image).

More specifically, parameters a stands for the amplitude of the curve, b stands

fro the period, c for the phase shift and d for the midline. We compute the midline d

parameter  using  the  maximum  and  minimum  positioned  pixels  from the  curve’s

middle points in the 2D plain. Similarly, the amplitude a is the distance between the

183



maximum  point  and  the  midline.  We  compute  the  period  b  by  computing  the

frequency  of  the  curve  first.  Then,  the  phase  shift  is  calculated  using  the  pixel

positions of the start of the axis, the first maximum positioned data point of the curve

and the intersection of the latter’s projection with the midline. The resulting pixel

based sinusoidal function is y = 123 * sin(0.02434 * (x - 157)) + 172. The result of

the recreated curve using the deduced pixel based polynomial function is illustrated in

figure 100.

Similarly to  the previous section,  we solve the deduced pixel based linear

function using the x positions of the values 0.2 and 1.6 from the x-axis in order to

deduce  the  actual  function  that  is  represented  in  the  input  graphics  image.  This

outputs the y positions of the corresponding y-axis values. These results are 49.23 and

258.129 which correspond to the values 1 and -0.702 from the y-axis respectively.

The results from the calculations of the pixel based function given these values as

input are illustrated in figure 101. However, in this case we cannot create a system

using  sinusoidal  equations  because  it’s  not  allowed  mathematically.  Thus,  we

associated  the  previously  computed  parameters  with  their  corresponding  actual

counterparts using the actual values from the axis legends. Therefore, the resulting

actual function of the input graphics image is y = 1 * sin(3.14 * (x – 1.57)) + 0.  
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Figure 101:   The y position solutions of function y = 123 * sin(0.02434 * (x -

157)) + 172 for the x position of the x-axis value 0.2 (left) and x-axis value 1.6

(right) respectively.

5.6 Function Regeneration of Arbitrary Curves

In  case  of  very  complex  complex  curves,  which  cannot  be  represented

accurately  by  a  single  function  we use  a  different  approach in  order  to  find  the

corresponding function. More specifically, in this case we use the middle points of the

bars that can form conceptual behavioral curves. We use these middle points as the

different ranges of values between which search for functions. In addition, we have to

ensure that each one functions is also continuous with its prior and posterior function.

We deal with this issue by employing the cubic Spline interpolation technique. This

methodology requires that the first derivatives of two consecutive line segments are

equal for a given x, where x is the value of their common point. So f’i-1,i(xi) = f’i,i+1(xi).

We also require  that  their  respective second derivatives  are  also equal  f’’i-1,i(xi)  =

f’’i,i+1(xi) = ki.  Only then, we can ensure continuity between consecutive curves, and
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by extend their functions. This concept is equivalent to maintaining the respective

slopes  and  bending  moments  equal.  Using  this  lemma  we  solve  the  produced

equations and arrive into formulas (10) and (11). :

fi,i+1(x) = (ki/6) [((x – xi+1)^3) / (xi – xi+1) – (x – xi+1)(xi – xi+1)] - (ki+1/6) [((x – xi+1)^3) /

(xi – xi+1) – (x – xi)(xi – xi+1)] + (yi(x – xi+1) – yi+1(x – xi))/(xi – xi+1) (10), ki-1(xi-1 – xi) +

2ki(xi-1 – xi+1) + ki+1 (xi – xi+1) = 6[(yi-1 – yi)/(xi-1 – xi) - (yi – yi+1)/(xi – xi+1)] (11)

Figure 102 showcases  an example of how we perceive the different  cubic

functions  for  a  given  curve,  in  order  to  compute  the  corresponding  cubic  Spline

function. Therefore, a Spline is actually cubic curve consisting of other consecutive

cubic curves all combined together. In order to compute the individual functions, we

use the recognized middle points as input for the formula (10). In this way, we create

a system of linear equations, which we solve using Gaussian elimination. This results

in the possible ki values, which we then input to formula (11), in order to interpolate

and get any y-axis values we need. 

Figure 102:   Cubic Spline example consisting of consecutive cubic functions.
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We  use  the  x-axis  values  of  the  pixels  as  input  for  the  aforementioned

formulas. Thus, the interpolant formula (11) outputs the  corresponding y-axis values

for any x-axis value. Below we illustrate some examples of the functions that we

deduced using cubic Splines for the first curve (red). We consider the values of the

recognized middle points in the x-axis of the image as the initial input range points.

Furthermore, we print these produced functions a combination of text and pseudocode

format.  The  outcome  sentences  can  later  be  used  as  input  for  other  processing

modules,

NLS1: In  range  80<=x<=189  the  curve  corresponds  to  function  0.004*x**2  -

1.169*x + 203.883

NLS2: In range 189<=x<=297 the curve corresponds to  function -0.002*x**2 +

0.749*x – 41.632

NLS3: In range 297<=x<=515 the curve corresponds to  function -0.005*x**2 +

3.597*x – 719.232

As mentioned above, the extraction of the functions of the curves lead to a

greater understanding of their internal functionality and behavior. Therefore, the next

logical  processing  step  is  to  use  the  collected  data  and  try  to  predict  the  future

behavior  of  each  curve.  So  the  goal  is  to  try  and  get  that  dataset  first.  In  the

introduction we propose a reverse engineering methodology for the extraction and

understanding of datasets from graphics images. That methodology depends on the
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initial recognition of the middle points. Figure 103 showcases the results of the cubic

Spline interpolation procedure, with the recreated dataset of pixel positions colored

blue. It is evident by the results, that the recreated dataset has multiple inaccuracies.

We attribute these inaccuracies to the fact that there is no actual pattern behavior that

we can recognize in these curves. That specific graphics image is just an example

containing random curves without any actual meaning or goal. While cubic Splines

are a handy methodology for data interpolation and thus dealing with missing data, it

is not recommended to use them for extrapolation purposes. Therefore, we choose to

use a standard LSTM neural network, which we train only on the reproduced dataset

of y-axis values. 

An LSTM neural  network is  a  subtype of  recurrent  neural  networks.  It  is

capable of training in time series data and forecast their next values. We consider the

problem of predicting future curve behavior as a time series problem, since a curve

can evolve in any direction through the progression of time. More specifically, we

train the LSTM on 70% of the interpolated dataset, and test it on the remaining 30%.

The training lasts 100 epochs and has a batch size of 1. We consider a different LSTM

model for each curve. Figure 103 illustrates the plotted datasets as well as the results

of the training and testing prediction for each curve. We use the blue color for the

dataset plotting, the green color to represent the training accuracy results, and red

color for the testing accuracy results. It is evident by the prediction results, that the

future  predicted  y-axis  values  almost  overlap  completely  with  the  original.  This
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proves that the after its training, the LSTM model is capable of producing accurate

forecasting results for each curves future behavior. It is also proves the concept that

we can reverse engineer a given graphics image and reproduce the dataset that was

used to generate it.

Figure 103:   The results of the LSTM forecasting model. Left image corresponds

to the first  conceptual curve for red bars showing the accuracy results  of  the

training  process  (green)  and  validation  process  (red).  Similarly,  right  image

corresponds to the second conceptual curve for the blue bars.

As  further  proof  for  the  LSTM  model’s  forecasting  accuracy,  we  have

computed the corresponding Root Mean Square Error values. Since the dependent

variable in this problem is the value y, it can range anywhere from 0 to the 403 which

is the total height of the image. Table 7 illustrates the corresponding RMSE results. A

smaller RMSE value with respect to the dependent variable value indicates that the
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experiment is successful. Thus, the small values illustrated in table 1 also imply that

the forecasting of the LSTM model is accurate for both curves. 

Table   VII  :     RMSE results of the LSTM forecasting model      

Train Accuracy RMSE Test Accuracy RMSE

Curve #1 (blue) 3.82 3.76

Curve #2 (red) 11.30 0.56
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6. Synergistic Merging of Graphical and Tabular 
Information

6.1 Synergistic Merging General Methodology 

The purpose of this research has been not only to capture and understand the

underlying behavior that is contained in images of tables and graphics, but to also

generate new additional knowledge. In the case of the table modality this is achieved

through the validation of the generated relations among table variables and relational

operators.  These  validated  relations  represent  the  upper  and  lower  limits  of  the

functionality that is illustrated in a given table image. Similarly, in graphics images

we  also  understand  the  functional  information  of  the  curves  by  extracting  their

monotonic behavior. Using that information, we are able to generated new knowledge

by computing the pixel based and actual value functions that describe them.

However, in case that we are given a table and a graphics image from the same

document,  we  can  combine  their  extracted  functionalities  and  gain  additional

knowledge as well as a better understanding of the document itself. The presented

synergistic  merging methodology is  achieved because of  the previously generated

SPN graphs that represent the extracted functionality from each respective modality.

More specifically, the use of SPN graphs allows for the mathematical merging of the

individual graphics and tables information based on the functions that describe them,

however, without the requirement of any prior knowledge about these functions. It
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must be noted that the synergistic methodology requires that there is an underlying

connection that needs to be found between the two given graphics and tables images.

Otherwise, it cannot generate any results, since there isn’t any associations between

the images.

Figure 104:   Examples of produced SPN graphs for tables and graphics.
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Figure 105:   The architecture of the synergistic merging methodology.

The  overall  diagram of  the  presented  synergistic  merging  methodology  is

illustrated in figure 105. The methodology receives the extracted results from the two

input images (graphics and table) and then performs two types of matching. More

specifically,  semantic  matching  is  performed  using  the  recognized  table  variable

names and graphics axis names. If there is a match among two variables . Otherwise,

the methodology proceeds with the behavioral matching that is performed using the

produced SPN graphs. More specifically, the methodology checks for similar patterns
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among the ascending or descending of table variable values and the growth or decay

of the the given curve. Figure 104 demonstrates an example of a given curve and a

table  along  with  their  corresponding  SPN graphs.  Since,  there  aren’t  any  names

available  for the curve,  the match is  going to  be performed using their  extracted

functionality. More specifically, the descending information from table variable X is

matched with the decay information of the red curve. Similarly, there is a matching

among the ascending and growth information from the table variable X and the red

curve respectively. Thus, the two are matched based on their extracted behavioral

information that are represented in their corresponding SPN graphs. 

Figure 106:   The test cases for the synergistic merging methodology.

Figure 106 demonstrates  a  table  of  power parameters from a single phase

system. These parameters are the Root Mean Square Voltage, the Current and the

Peak Voltage. Additionally, figure 106 presents the graphical representation of the AC

voltage value in the span of time for the same single phase system.  as proof of
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concept. These two images are connected with an underlying association, which can

be deduced after their individual analysis is performed. We are going to apply the

previously presented tables and graphics understanding methodologies respectively to

the  corresponding  images  of  figure  106.  Then,  we  will  use  the  aforementioned

synergistic merging methodology on their results in order to prove the concept of the

discussed idea based on an actual use case.

6.2 Tables Image Processing Results

In  chapter  3  we  present  the  overall  tables  image  processing  methodology

which  includes  the  table  recognition  and  understanding  methodologies.  More

specifically, the recognition methodology receives the table image as input and extract

its variables and their corresponding values based on the location of the table cells.

Then,  the  methodology  generates  all  the  possible  permutations  among  the  table

variables and the special symbols from chapter 3. These permutations are validated

both  structurally  and  then  semantically  using  the  recognized  values.  The

understanding methodology converts the validated relations are into attributed graphs

that represent the structural information that is extracted from the table image. The

results from each of the aforementioned processing steps for the table image of figure

107 are illustrated in figure 106. Figure 108 also showcases the resulting aggregated

attributed graph that contains all the extracted and validated relations among the table

variables.
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Figure 107:   The table recognition process for the table of figure 106.

Figure 108:   Aggregated attributed graph for table image of figure 106.

The aggregated graph from figure 108 is used in order to produce the natural

language  sentences  that  describe  the  information  extracted  from  the  given  table

image. As discussed in chapter 3, these sentences follow a predefined A-V-P format.

We illustrate  some of  the  resulting natural  language sentences  for  the  table  from
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figure 106 below as an example. The sentence 49 contains the information about the

ratio between the Peak Voltage (Vpeak) variable and the Root Mean Square Voltage

(Vrms) variable. That ratio is computed to be 1.414. This specific result is important

due to the fact that it corresponds to the actual inverse ratio between the theoretical

Vrms and Vpeak values, which must always be the square root of 2. It also proves that

we generate new knowledge that was not initially available from the given image. We

don’t capture its semantic meaning, however, that would go beyond the purposes of

the current research.  Finally, the natural language sentences are converted into SPN

kernels using the Pinakas language introduced in chapter 3. The final SPN graph that

represents the understood tabular behavior is illustrated in figure 109.

NLS5: zero is greater than values of Current (Irms) minus values of Root Mean

Square Voltage (Vrms)

NLS6: values of Root Mean Square Voltage (Vrms) minus values of Current (Irms)

are greater than zero

…

NLS15: values of Current (Irms) are greater than 1 divided by values of Root Mean

Square Voltage (Vrms) divided by values of Peak Voltage (Vpeak)

…

NLS49: values of Peak Voltage (Vpeak) and values of Root Mean Square Voltage

(Vrms) have a ratio of 1.414
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Figure 109:   The SPN graph of the table image from figure 106.

6.3 Graphics Image Processing Results

In chapter 3 we present the overall graphics image processing methodology

which  includes  the  table  recognition  and  understanding  methodologies.  More

specifically, the recognition methodology receives the graphics image as input and

extract  its  axis  information  and the  line  segments  of  the illustrated  curves.  More

specifically, the methodology starts with the application of the pyramidal reduction,

the erosion and the isolation of the curve using the HSV homogeneity filter.  The

respective  preprocessing  results  to  the  graphics  image  from  figure  106  are  are
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illustrated in figure 110. Then, the methodology detects the 2D middle points that

constitute the straight line segments for the curve of the input graphics image. Figure

111 illustrates the results from the application of the maximum and minimum distance

based  hierarchical  clustering  algorithms,  the  computation  of  the  elbow  and  the

application of the K-means algorithm.

Figure 110:   Preprocessing results of input graphics image from figure 106.

The graphics understanding methodology uses the deduced 2D middle points

in order to construct the respective straight line segments of the curve and capture its

monotonic  information.  The  result  from  the  recreated  curve  using  the  segments

remaining after the 3rd merging rule are illustrated in figure 112. Finally, the function

type  recognition  algorithm  deduces  that  the  curve  is  described  by  a  sinusoidal

function (y = a * sin(b * (x - c))). Therefore, we apply computer vision and image

processing techniques in order to find the approximations for the parameters a, b, c
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and d. More specifically, we use the sinusoidal function regeneration methodology

which we described in chapter 5. The resulting pixel based sinusoidal function is y =

144 * sin(0.00997 * (x – 3887.32)) + 184. The result of the recreated curve using the

deduced pixel based polynomial function is illustrated in figure 112.

Figure 111:   Clusters analysis results of input graphics image from figure 106.

Figure 112:   The sinusoidal curve recreated from 2D middle points (left image)

and from the deduced pixel function (right image).
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As proof for the efficiency the pixel based function, we solve it using the x

positions  of  the  values  0  and 270 from the  x-axis  in  order  to  deduce  the  actual

function that is represented in the input graphics image. This outputs the y positions

of the corresponding y-axis values which are 0.2 and 1 respectively. The results from

the calculations of the pixel based function given these values as input are illustrated

in figure 113. Then, we proceed to compute the actual parameters of the function

based  on  the  methodology  described  again  in  chapter  5  for  sinusoidal  function

regeneration. The resulting actual function of the input graphics image is y = 1 *

sin(0.01711 * (x – 1.372)) + 0. 

Figure 113:   The y position solutions of function y = 1 * sin(0.01711 * (x – 1.372))

+ 0 for the x position of the x-axis value 0 (left) and x-axis value 270 (right)

respectively.

 Bellow  we  present  a  sample  of  the  overall  produced  natural  language

sentences that are generated from the extracted information from the graphics image

of figure 106. As discussed in chapter 3, these sentences follow a predefined A-V-P
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format. As demonstrated in sentence 40, we also maintain the information regarding

the  understood functions  that  describe  a  curve’s  functionality.  Finally,  the  natural

language  sentences  are  converted  into  SPN  kernels  using  the  Kyrtos  language

introduced in chapter 4. The final SPN graph that represents the understood graphics

behavior is illustrated in figure 114.

NLS7:  the  straight-line  segment  L1S6  is  connected  with  (147.00220336262106

degrees) to the straight-line segment L1S7

NLS8:  the  straight-line  segment  L1S7  is  connected  with  (114.83829451548637

degrees) to the straight-line segment L1S8

…

NLS26: Line segment L1S1 illustrates linear growth greater than 0.5 Single Phase

VOLTAGE % during 0 TIME

…

NLS40: Pixel TIME is input to y = 114.00000 * sin(0.00997 * (x - 3887.32000)) +

184.00000 and outputs Pixel Single Phase VOLTAGE
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Figure 114:   The corresponding SPN from graphics image of figure 106.

6.4 SPN-based Combination of Information

Finally, we present the results from the synergistic merging of the SPN graphs

that correspond to the table and graphics images from figure 106 respectively. As we

have mentioned in section 6.1, there isn’t a clear correspondence among the table

variable  names  and  the  axis  name.  Thus,  the  synergistic  matching  methodology

proceeds to the step of behavioral matching with the use of the generated SPN graphs.

More specifically, the methodology will recognize the correlation between the table

variable Vpeak and the curve due to their matching fluctuation in values. This is a

correct assumption since the two variable essentially describe the same information.

After the matching is completed, the methodology initiates the combination of the
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two SPN graphs. Figure 115 illustrates the first  step of the combination,  with the

curve’s  matched named colored  green and the  table  variable’s  name colored  red.

Figure 116 shows the next step of the combination procedure, where both names are

colored  red.  Finally,  figure  117 illustrates  the  last  step  of  the  process,  where  the

curve’s name has been converted into the same name from the table variable. 

Figure 115:   First step of merging the SPN graphs
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Figure 116:   Second step of merging the SPN graphs.

Figure 117:   Final step of merging the SPN graphs.
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7. Conclusions

In conclusion, we have presented a complete methodology for the detection,

recognition and understanding of tables and  graphics  images  in technical

documents.  The tables  processing  methodology covers  3  different  types  of  tables

which  are  distinguished based on their  structural  features.  Similarly,  the  graphics

processing methodology can analyze 3 different types of graphics. These are graphics

images containing 1) segmented or continuous curves of different color, 2) segmented

curves of the same color and 3) bars. The extracted knowledge from both tables and

graphics is represented using SPN graphs. Additionally, we present a methodology for

the combination of the retrieved information from tables and graphics of the same

document  based  on  their  SPN  graphs. This  SPN  based  synergistic  merging

method enables us to combine the information of tables and graphics using the

functions that describe, without requiring any prior knowledge about them.

The presented method accepts images from modalities of technical

documents as input and categorizes them into tables and graphics images. The tables

are parsed through a classification algorithm that categorizes them into three

different types. Each table type follows a unique processing path in order

recognize and understand its contents   accurately.   Initially,   the   recognition

module  locates  the  table  title  and  the  table variables. The tables variables are

associated with their  corresponding values of on their  location and the table type.
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Then, we produce all possible permutations among the table variables and specific

relational operators. The generated permutations are validated both syntactically and

semantically. The validated relations are converted to attributed graphs in order to

preserve  the  structural  information  of  the  table.  The  attribute  graph  relations  are

translated into natural  language sentences,  which are then combined into an SPN

graph.  The  Pinakas  formal  language  is  introduced  in  order  to  map  the  natural

language sentences into the SPN kernels.

The  detected  graphics images  are  parsed  into  the  graphics  recognition

module. More specifically, this module extracts the text information of this axis and

then isolates the curves from the original input image. The presented methodology

proceeds to compute the 2D middle points which delimit the line segments that form

each  curve.  These  data  points  are  computed  using  a  combination  of  clustering

techniques  iteratively.  The  graphics  understanding  methodology  filters  these  2D

middle points through different merging rules in order to preserve only the essential

line segments. These line segments are used to deduce both structural and functional

information  of  about  the  illustrated  curves  such  as  intersections,  parallelism  and

monotony. Furthermore, we recognize the type of function that describes each curve’s

behavior using the aforementioned monotonic information. Different processing steps

are performed to compute both the pixel based and the actual value functions, based

on their type. Finally, we generate the natural language sentences that contain all the

understood structural and functional information. Then, we use the presented Kyrtos
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formal language in order to map the natural language sentences into the SPN kernels .

The produced SPN graph describes the input graphics image underlying functionality.

The  purpose  of  this  research  has  been  both  to  understand  the  underlying

knowledge that is illustrated in images of technical document modalities, as well as to

generate new knowledge if possible. The experiment results from chapter 6 prove that

the  presented  methodology  achieves  this  goal,  by  combining  successfully  the

functional information that are extracted from input table and graphics images of the

same document into a synergistic SPN graph. That synergistic SPN graph now holds

information from both modalities and can associate them using their matched variable

and curve names.
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8. Future Work

As part future work, the primary goal is to improve both the accuracy

and  the  processing  speed  of  the  presented  methodologies.  More  specifically,

while  the  graphics  recognition  and understanding methodology returns  correct

results,  they  could  improve  in  terms  of  detecting  accurately  the  positions  of

curve’s  middle  points.  The  accuracy  of  table  and graphics  understanding  also

depends on the relations that we are validating for. Additional and more complex

relations can contribute to the overall accuracy of the extracted functionality.

Furthermore,  we  have  found  that  the  computational  complexity  of  the

tabular  processing  methodology  depends  directly  on  the  number  of  table’s

variables  and  operator  symbols.  That  is  because  we  generate  all  the  possible

permutations among them, before preserving those that are validated. Similarly,

the graphics processing methodology’s computational complexity depends on the

size of the image. That is because we parse all the pixels multiple times in order

to get as much accurate results as possible. Therefore, the optimization of both

methodologies  is  important  in  order  to  improve the overall  speed.  Finally,  we

plan on testing the methodology on more complex tables and graphics in order to

expand the methodology to capture more advanced knowledge. 
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