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ABSTRACT

Gogineni, Venkatsampath Raja. P.h.D., Department of Computer Science & Engineering, Wright
State University, 2021. Goal Management in Multi-agent Systems.

Autonomous agents in a multi-agent system coordinate to achieve their goals. How-

ever, in a partially observable world, current multi-agent systems are often less effective in

achieving their goals. In much part, this limitation is due to an agent’s lack of reasoning

about other agents and their mental states. Another factor is the agent’s inability to share

required knowledge with other agents and the lack of explanations in justifying the reasons

behind the goal. This research addresses these problems by presenting a general approach

for agent goal management in unexpected situations. In this approach, an agent applies

three main concepts: goal reasoning - to determine what goals to pursue and share; theory

of mind - to select an agent(s) for goal delegation; explanation - to justify to the selected

agent(s) the reasons behind the delegated goal.

Our approach presents several algorithms required for goal management in multi-agent

systems. We demonstrate that these algorithms will help agents in a multi-agent context

better manage their goals and improve their performance. In addition, we evaluate the

performance of our multi-agent system in a marine life survey domain and a rover domain.

Finally, we compare our work to different multi-agent systems and present empirical results

that support our claim.
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Introduction

Humans work effectively in teams. They reason about people, share their knowledge and

cooperate to achieve goals simultaneously. Similarly, autonomous agents in a multi-agent

environment should work with each other to improve their efficiency and effectiveness.

For our purposes, we define a multi-agent system as a combination of autonomous agents

in an environment. Often, multi-agent systems function much better than a single agent

system because of their ability to achieve assigned tasks. Besides task achievement, multi-

agent systems can also share and delegate goals among themselves to overcome problems

or quickly achieve existing goals. In a dynamic world, several problems can occur con-

currently thus requiring autonomous agents to generate goals in response. However, given

limited resources, a single agent cannot always respond to new problems and still achieve

its current goals. Whereas in a multi-agent system, agents can delegate goals to others. To

effectively delegate their goals, agents must reason about other agents’ knowledge, select

an agent to which the goal will be delegated, and share knowledge about the problem with

the other agent. Acquiring such experiences improves the agents’ own knowledge about

other agents, which helps the agent better delegate goals in the future.

Answering when, what, whom and how to coordinate is central to understanding this

research problem. When does an agent need to coordinate? In a partially observable

multi-agent environment, several anomalous events might occur. These anomalous events

might hinder the ability of an agent or its mission. Furthermore, in the real-world agents

often have limited resources to respond to these anomalous events. Therefore, to achieve
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an agent’s mission with the limited resources available, it should coordinate with other

agents to delegate its goals. What should an agent coordinate? When an agent does not

have enough resources to achieve its mission. It must communicate the goals that achieve

its mission effectively with other agents. Therefore, an agent must coordinate the goals it

wants to delegate to other agents. Whom should an agent coordinate with? An agent should

coordinate with a potential candidate that can successfully achieve its delegated goals at a

minimum possible cost. How should an agent coordinate? An agent should coordinate in

such a way that the other agent will understand the importance of the delegated goal and

thus pursue it. Furthermore, it must minimize the amount of resources required to coordi-

nate between the agents in the system. Therefore, an agent must explain the motivations

behind the goal while minimizing its resources.

Much of the work in the multi-agent systems literature focuses on a centralized net-

work of agents [41, 57]. The focus of this proposed research, however, will be to work

toward a decentralized multi-agent system and to develop a communication framework

between the agents to better manage their goals with little human intervention. The com-

munication framework must assist the agents in coordinating with other agents that are not

necessarily designed to work together.

Problem statement: How can a set of agents manage individual and shared goals

in a dynamic world?

Autonomous agents must be able to function effectively even with the introduction of

new agents into the world. The agents must be able to learn quickly about the new agent

and must be able to share and delegate goals effectively to the newer agent with little human

intervention. This proposed research focuses on developing a solution to the problem using

the following three concepts:

• Multi-agent Goal Reasoning: helps an agent to determine what goals to share and

pursue among all its goals. This choice helps an agent conserve its resources and

improve its performance in the real world.
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• Theory of mind: helps an agent infer other agents’ beliefs, goals, and intentions.

This capability gives an agent the ability to reason about sharing its goals with the

right agent(s).

• Explanation: helps other agents understand the justification behind a shared goal

request. This supports a rational negotiation of the request in a joint decision.

The hypothesis we put forth is that theory of mind and explanations are essential for

effective goal management in multi-agent systems.

This research, with the help of the concepts above, will develop a computational

framework which can be used in multi-agent systems research. The work will also make

use of an existing cognitive architecture for implementation purposes. The next section

will focus on the motivation behind the research idea.

1.1 Motivation

Current technology encourages different organizations to build multiple autonomous agents

for different overlapping purposes. A need exists for these systems to interact and improve

performance in an open ended world. An agent with the capability to share knowledge and

goals with other agents allows it to improve its own adaptability, reliability, and reasoning

in unforeseen situations. Consider figure 1.1 below. It shows different classifications of

unmanned maritime vehicles as classified by the US Department of Defense. Some of them

are for surveillance purposes, whereas others are for specific tasks like mine identification

and clearance.

This research’s intention to understand and improve the efficacy of multi-agent sys-

tems is motivated by a vision of using heterogeneous vehicles for different purposes within

a common area. For the application of mine counter measures, their coordination will prove

to be a asset to their missions, and it will help agents to better survey and identify mines

3



Figure 1.1: Classifications of Unmanned Maritime Systems, from U.S. Department of De-
fense [18]

within a specified region.

1.2 Contributions

Goal Driven Autonomy (GDA) [7, 8, 14, 15, 43, 44, 45] is an appropriate approach for au-

tonomous agents to handle unexpected situations in a partially observable dynamic world.

It reasons about the unexpected events encountered, explains the cause of the events, and

performs operations on goals as a response [12]. In the event of a discrepancy (i.e., un-

expected event), an agent can pursue different operations on goals: goal formulation, goal

selection, goal change, goal delegation, goal monitoring, and goal achievement. The de-

scriptions of these goal operations are as follows:

• Goal formulation (δ∗): Whenever an agent encounters an unexpected event that

poses a threat to the agent, it can choose to formulate a new goal to respond to the

4



problem.

• Goal selection (δse): An agent performs goal selection to select an active goal from

the list of all its goals to pursue.

• Goal change (δ∆): An agent performs a goal change operation to change its goal to

a similar goal.

• Goal delegation (δde): In unexpected situations, an agent can give its goal to other

agents in the environment.

• Goal monitoring: An agent monitors its goals to see if it is still valuable and valid

to pursue its goals.

• Goal achievement: An agent plans and executes its actions to achieve its selected

goals.

While goal delegation is the significant contribution of our research, we leverage the

concepts of GDA and the implementation of above goal operations through the MIDCA

[11] cognitive architecture. Below is the specific list of contributions of this research,

1. We describe a novel theory of mind approach for goal delegation operations in dis-

tributed multi-agent systems (see Chapter 2). This approach will help autonomous

agents delegate their goals to potential agents and identify required knowledge to

share with the receiving agent.

2. We introduce a new algorithm, DetectDelegation, to recognize the need for the goal

delegation operation in partially observable, dynamic environments. DetectDelega-

tion algorithm is a general solution to determine the selection of delegated goals

when there is the need for goal delegation (see Section 2.4.1.1).

3. We introduce the novel theory of mind methods, AgentSelection and KnowledgeShar-

ing, to help an autonomous agent in a distributed multi-agent system choose potential

5



agents to delegate its goals and share the knowledge required to achieve its goals suc-

cessfully. AgentSelection algorithm uses the delegating agent’s knowledge about all

other agents in a dynamic environment to select one or more potential agent(s) to

delegate its goals (see Section 2.4.2.1). The KnowledgeSharing algorithm uses the

delegating agent’s knowledge about other agents to intelligently identify the required

knowledge to share with the selected potential agent(s) (see Section 2.4.2.2).

4. We present an explanation framework to explain the motivations behind the goals

to the receiving agent. Such motivations will help the agent understand the priority

behind the delegated goals (see Section 2.4.3).

5. We present a general method, GoalAcceptReject, to help the receiving agents in a

multi-agent system make an informed decision on whether to accept or reject the

delegated goals (see Section 2.4.1.2).

6. We present experiments and empirical results demonstrating the performance im-

provements for DetectDelegation, AgentSelection, GoalAcceptReject, Knowledge-

Sharing, and Explanations in distributed multi-agent systems (see Chapters 3).

In this dissertation, we use experimental evidence to defend the following claims about

the quality of the solutions found by the new techniques DetectDelegation, AgentSelection,

GoalAcceptReject, KnowledgeSharing, and Explanations.

Claim 1: Goal delegation using a theory of mind approach causes the goal achievement

performance (i.e., percentage of goals achieved successfully) in a distributed, multi-agent

context to significantly improve relative to a traditional goal reasoning multi-agent system

which does not delegate goals.

Claim 2: Explanations helps the receiving agent understand the priority behind the del-

egated goals, thereby improving the performance of goal achievement in a multi-agent

system compared to a multi-agent goal reasoning system with only goal delegation.
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1.3 Assumptions

With the current technology trends moving towards distributed nature of multi-agent sys-

tems, we believe that the following assumptions are reasonable and will enable us to focus

on our research topic.

1. We assume that the operating multi-agent system is autonomous and distributed in

nature. Individual autonomous agents in the system have their own goals to achieve,

and without any unexpected situations, they all can achieve them.

2. We assume that every autonomous agent in a distributed multi-agent system has a

communication framework like Knowledge Query Markup Language for communi-

cating goals and information with other agents in the environment.

3. We assume that individual autonomous agents in a distributed multi-agent system

know other agents’ capabilities in the world (domain knowledge). However, they

lack knowledge about other agents’ current beliefs, states, and experiences.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents the concept

of our research and introduces the technical approach to the research problem in detail.

It begins by explaining the memory organization with aspects of storage, retrieval, and

knowledge acquisition. The chapter then provides solutions to the question of When, what,

whom, and how to delegate goals using the concepts of the theory of mind, goal reasoning,

and explanations.

Chapter 3 describes the Marine Survey domain and the Rover domain used in this re-

search. This chapter will describe the agent’s capabilities, goals, and the unexpected events

they might encounter in the respective domains. Furthermore, it also presents the experi-

mental design and empirical results across the respective domains. It begins by introducing

7



different multi-agent systems to compare our approach. The chapter then demonstrates do-

main descriptions, experimental designs, statistical significance tests, and empirical results

across the domains to test our hypothesis.

Chapter 4 presents the relevant work in related research fields. First, this chapter

discusses the work in multi-agent systems and then moves on to the relevant research in

the theory of mind. Finally, it discusses the work in goal reasoning research and the work

related to explanations.

Chapter 5 reviews our claims and contributions and presents possible planned oppor-

tunities for future work.
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Multi-agent Goal Management

Autonomous agents pursue goals that focus and direct their actions. However, when an

agent recognizes that it cannot achieve all of them, it should delegate some of its goals to

other agents. Our research focuses on how agents effectively coordinate with one another to

improve the functionality of the system. In this chapter, we discuss the research problem in

detail with an example followed by a technical approach to solve the problem. Furthermore,

we discuss each component of the approach and finally walk-through the components using

the example.

2.1 Research Problem and Example

Most of the current multi-agent systems [19, 21, 32, 55] take agents for granted in an envi-

ronment. They often assume that the agents are either cooperative or competitive in solving

problems (i.e., achieving goals). Cooperative agents (e.g., [31]) are designed to achieve

their common goals. Although there is some disagreement about the definition of competi-

tive agents, we can agree that they act selfishly to achieve their own goals. Such character-

istics make coordination difficult when they are not designed to work together. Moreover,

much of the multi-agent work deals with multiple agents that cooperatively search through

the problem space in coming up with a plan to solve a problem [59, 58]. This approach

requires combined effort and resources from all the agents to plan for a common goal.

However, this is not ideal for every task. So, our research problem is to determine how an

9



autonomous agent in a multi-agent environment can coordinate with any agent to manage

its goals while conserving resources. In this section, we demonstrate the research problem

through an example in a complex naval domain.

Figure 2.1: Simulation of the underwater mine clearance domain in Moos IvP. The Q-route
extends from the left to the right side of the map and represents the path that ships (10 in
yellow shown) will traverse. Grace (upper right in yellow) is a glider to survey the entire
region for fish and the fishing vessels (4 in yellow shown) will catch fish in the region. The
Remus AUV (red) must attempt to clear mines in green areas GA1 and GA2 to support the
goals of ships reaching shore. Unexpected mines also exist within the route, and the AUV
must delegate the goals.

Figure 2.1 shows an underwater mine clearance domain [25, 40]. The Q-route [42]
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indicated by the parallel green lines in the figure, is an area through which ships transport

their cargo. The blue octagons GA1 and GA2 (Green areas) are areas where mines are

expected to be present and the green triangles represent these mines. The environment is

also divided into a 5x5 grid consisting of 25 cells. Four different types of agents exist in this

domain, and each have their own goals. Remus is an autonomous underwater vehicle whose

goals are to survey certain regions (i.e., GA1 and GA2) to make the Q-route void of mines.

Grace is a glider whose goals are to search certain cells in the grid to find concentrations

of fish. Fishing vessels (3) have goals to catch fish; and ships (10) transport freight from

the left end of the Q-route to the other end. While everyone pursues their individual goals,

Remus encounters mines between GA1 and GA2 which it did not expect to be present.

So it generates a new goal to search the area between GA1 and GA2 to find new mines.

However, the Remus does not have enough resources (time) to achieve all these goals. If it

cannot achieve all its goals within a certain time, ships traversing the Q-route might hit a

mine and damage the shipments. Furthermore, underwater communication incurs a heavy

cost.

In this scenario, it is an open question how the Remus can achieve all its goals. If it

tries to delegate its goals to other agents, it is not clear with whom it should coordinate.

Furthermore, it is unclear how to coordinate to keep the communication cost to a mini-

mum. In critical missions such as these, addressing such issues is essential. We present

an approach to address them in the next section and revisit this example at the end of the

chapter.

2.2 Technical Approach

Figure 2.2 shows a hierarchical set of concepts that address the research problem. Agents

in a multi-agent environment with limited resources must reason about one another and

communicate effectively to achieve their goals. Such a task would require an agent to
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store and acquire knowledge about other agents and use it for effective coordination. Such

functionalities come under Memory Organization and Agent Coordination. In Memory Or-

ganization, the agent must represent the world’s knowledge and other agents’ capabilities,

preferences, beliefs, and experiences. This further decomposes into acquiring new knowl-

edge, representing, storing, and retrieving such knowledge. In Agent Coordination, the

agent must use the knowledge of other agents in reasoning about both collaboration and

communication, which breaks down into Multi-agent Goal Reasoning, Theory of Mind,

and Explanations. In Multi-agent Goal Reasoning, the agent tries to answer when and what

to collaborate with other agents and further makes an informed decision around the mode

of collaboration (delegation or sharing). In Theory of Mind, the agent uses its knowledge

to answer the question of whom it should collaborate with to share the required knowledge

for successful collaboration. Furthermore, Explanations explain the motivation behind the

collaboration to make the other agent understand the priority of the situation, thereby ex-

plicitly answering the question on how to collaborate. The following subsection covers

each concept in some detail.

Figure 2.2: Major concepts that address multi-agent goal management.
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2.3 Memory Organization

To be effective, an agent in a multi-agent environment must organize its knowledge about

itself and other agents. In our research, such knowledge includes beliefs, goals, experi-

ences, domain knowledge and a case-base of explanations which an agent could refer to

while making a rational decision. In this section, we will discuss our view towards each of

these categories of knowledge, their representation and their usefulness to an agent.

The domain knowledge of an agent a is represented formally as the state transition

system Σa = (Sa, Aa, γa). Sa is the set of all possible states, and Aa is the set of all

possible actions. In addition, gamma is a state transition function γa : Sa × Aa → Sa that

returns the resulting state of an executable action given a current state sac . The Beliefs ŝa of

an agent are the states that the agent holds to be true in the world sa ∈ Sa, which is given by

ŝa = ŝe
a∪ ŝca; where ŝea and ŝca are the expected and currently observed states of an agent.

The Goal Agenda Ga ⊂ Sa are the states that an agent desires to achieve. Since an agent

cannot work on all the goals at the same time, it applies the goal selection operation gac ←

δse(Ga) to select a subset of current goals to pursue. Furthermore, an agent plans to achieve

its current goals. A plan πa is a sequence of actions πa = 〈αa
1, α

a
2...α

a
n〉 ∈ Πa, where

αa
i ∈ Aa which when executed achieves the current goal gac ← γ(γ(sac , π

a[1]), πa[2..n])

[9]. Πa is a set of all possible plans. To obtain a plan πa, an agent uses a planning function

φ : Sa × Ga × Πa → Πa [9]. While an agent executes its actions, it gains experiences

εac = 〈sa0, αa
1, ...s

a
c−1, α

a
c 〉, where αa

c is the current action of an agent [10].

Explanations help an agent when it encounters an anomaly; an anomaly occurs when

expectations do not entail the observations of an agent i.e., ŝea 6|= ŝc
a. In such a situation the

agent retrieves an explanation χa from the case-base of explanations La to understand the

reasons behind the anomaly. The agent then formulates a goal in response to the anomaly,

which is given by ga ← δ∗. We will now discuss each of these knowledge categories in

detail.

Beliefs ŝa are often represented in a first-order predicate logic and are useful to an
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agent in planning for goals Ga, goal formulation δ∗ and in goal delegation δde. While

planning to achieve its current goals gac ∈ Ga, an agent finds the best actions 〈αa
1, α

a
2, ...α

a
n〉

that when applied to the agent’s current state sac achieves gac ; in goal formulation δ∗, an

agent generates its own goals as a response to a problem state; in goal delegation δde, an

agent asks other agents to achieve some of its goals. In a dynamic multi-agent environment,

an agent’s belief states are updated in the following cases.

• Agent’s own action results in a state change.

• Agent’s perception of another agent’s action results in a state change.

• Agent learns a state through coordination with other agent.

• Agent perceives an exogenous action (i.e., an agent less event such as a rain storm)

or a resultant state after the exogenous action.

• Agent believes in a state that is responsible for the cause of an unexpected state while

perceiving the world.

• Agent believes in a state that is responsible for the cause of an unexpected state while

coordinating with another agent.

Goal agenda Ga are the states that an agent desires to achieve. Similar to beliefs

ŝa, goals Ga are also represented in first-order predicate logic. In our research, an agent

should distinctly store its current goals gac , suspended goals, and already achieved goals

{ga0 , ga1 , ...gac−1} with their resource consumption. Note that retrieving already achieved

goals {ga0 , ga1 , ...gac−1} that are similar to the current goals gac may help an agent estimate

the resources required to achieve gac . Such a resource estimate can help an agent select

the goals it can achieve and suspend the others. Similarly, an agent should also store the

information of other agents’ past goals, current goals and its future goals. This will help

the agent determine the goals that can be achieved by other agents.
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Experiences εac represent the history in terms of state-action pairs of an agent in the

environment. This will help the agent predict or adapt its behavior if a similar experience

arises in the future. Similarly, experiences εoc of other agents will help an agent determine

the competency of other agents in achieving the delegated goals gad .

Domain knowledge Σa includes the actions Aa and possible states Sa of an agent in

an environment. Having this information will help an agent plan for its current goals gac .

Similarly, an agent having domain knowledge Σo of other agents will help it determine the

capability of other agents during goal delegation δde.

Case-base of explanations La is a memory repository of generalized explanations

of events that may happen in the domain [51, 13]. Such information enables an agent to

understand the cause of an unexpected state. We assume that the initial cases in the case-

base are prepared by experts in the domain.

2.3.1 Knowledge Acquisition

This research is not focused on developing learning algorithms to predict the categories

of knowledge as discussed above. For example in multi-agent reinforcement learning

(MARL) [5], the agents are trained across large amounts of training data to make them

learn to work with each other to maximize the reward function. However, real world sce-

narios often lack such large amounts of training data. Moreover, we work in a distributed

environment with different types of autonomous agents which makes the application of

MARL challenging. So instead, we focus on obtaining such knowledge through the inter-

action between agents in the environment. For example, this knowledge can be obtained by

the agent’s observations, expectations and interactions with other agents in the world. This

allows an agent to make a rational decision and to resolve its conflicting knowledge with

the acquired new knowledge.
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2.3.2 Storage and Retrieval

Similar to the previous section, this research does not develop optimized algorithms to

store and retrieve information from specific knowledge categories. However, for each au-

tonomous agent, we focus on storing each knowledge category separately in memory, in-

cluding the knowledge categories of other agents. In our research, an autonomous agent

possesses two types of memory for storing knowledge categories: working memory and

long-term memory. Working memory is the short-term memory that the agent currently

possesses, which includes its current beliefs, observations, goals, and recent experiences.

Long-term memory contains the history of all the knowledge categories, domain knowl-

edge, and the agent’s case-base of explanations. This memory is helpful for an agent to

look back and retrieve knowledge whenever necessary.

Retrieval is an essential component of our memory. In our research, an agent retrieves

information from long-term memory for three critical tasks. In the first task, when an agent

encounters an anomaly, it tries to retrieve an explanation from its case-base of explanations.

This retrieved explanation will help an agent understand the anomaly and further formulate

new goals as a response [23, 25]. In the second task, an agent often requires knowledge of

other agents’ capabilities for successful coordination. In such situations, the agent would

retrieve other agents’ domain knowledge from its long-term memory. Finally, in the third

task, an agent should retrieve the knowledge of past interactions with other agents for

successful coordination. In such situations, the agent would retrieve those interactions

from the list of past experiences.

Figure 2.3 depicts the process of storage and retrieval in long term and working mem-

ory. We retrieve knowledge categories from long-term memory to working memory and

store them the other way. In long-term memory, an agent stores knowledge of itself and

knowledge about other agents. In an agent’s knowledge of self, it stores the history of

its own beliefs, goals and experiences along with domain knowledge and case-base of ex-
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Figure 2.3: Long-term and working memory.

planations. Although the agent’s domain knowledge and case-base can be updated, for the

most part they remain constant. Similarly, within the agent’s knowledge about other agents,

it stores a history of beliefs, goals, experiences and domain knowledge about other agents.

Here, there is a clear distinction between storing an agent’s domain knowledge of itself and

the domain knowledge of other agents. The former remains relatively constant while the

latter changes over time and stores those changes in its history.

In the working memory, an agent maintains its current beliefs, goals and experiences.

It also retrieves information from knowledge categories in long-term memory to make ra-

tional decisions and act in the world. For example, to achieve goals, an agent retrieves its

domain knowledge from long-term memory to plan and perform a set of actions. Further-

more, to rationally delegate goals to other agents, an agent retrieves information from its

long term memory storage about other agents and moves that knowledge to its working

memory. Furthermore, an agent stores a history of each of their knowledge categories from

working memory into long-term memory.

Each of these knowledge categories will help an agent in every possible task. In the

next section, we will see how these knowledge structures will help an agent to successfully

coordinate with other agents in the environment.
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2.4 Agent Coordination

When an agent anticipates that it cannot achieve its goals in a dynamic environment, it

should delegate its goals to other agents. For successful goal delegation, the agent needs

to coordinate with other agents. To effectively coordinate, the agent needs to perform the

following actions:

• Recognize when to delegate its goals.

• Decide what goals to delegate.

• Decide about whom the agent should request and share its knowledge.

• Decide how to delegate its goals.

Instrumental to implementing these actions are the concepts of multi-agent goal rea-

soning, theory of mind, and explanations. Multi-agent goal reasoning will enable an agent

to recognize when and what goals to delegate. Theory of mind will help an agent identify

the best capable agent using its knowledge. Finally, explanations will explain the motiva-

tions behind the goals to the requesting agent, thereby explicitly deciding how to perform

goal delegation. We will review each of these concepts and provide algorithmic solutions

in the following sections.

2.4.1 Multi-agent Goal Reasoning

Goal reasoning is a viable computational component in managing an agent’s goals [1, 50].

In the event of unexpected events, it enables an agent to perform different goal operations.

Such goal operations will help the agent make rational decisions as a response to these

exogenous events. In this research, we leverage the implementation of several goal oper-

ations but focus more on goal delegation. Furthermore, in a dynamic environment where

unexpected situations occur, an agent should often respond to the developing problems. An
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intelligent agent should generate new goals in response to the developing problems. How-

ever, with limited resources, an agent cannot always pursue its new goals and still achieve

its current goals. So, to balance this conflict an agent can decide to delegate some of its

goals to other agents. To perform goal delegation, an agent needs to address the following

problems:

• Recognize when to delegate its goals. and

• Determine what goals to delegate.

An agent with goal reasoning ability can address the above mentioned problems. In

our previous work [26], we presented an approach for an agent to select the goals it can

achieve in a dynamic environment. Similarly, [34] also presented another goal selection

strategy for an agent in dynamic environments. Such strategies, can help an agent determine

the goals it can achieve and delegate the remaining goals. Furthermore, we will discuss

when an agent should delegate and share goals in the following subsections.

2.4.1.1 Goal Delegation

Autonomous agents often pursue goals that are critical to the mission. When an agent

anticipates that it cannot achieve its goals, goal delegation enables the agent to delegate its

goals to other agents in the environment. In doing so, the agent can still achieve its goals

and improve its performance towards the mission. The primary step involved in a goal

delegation process is to recognize the need for delegation. We use goal specific resource

estimation and priority functions [26] to select the goals an agent can achieve, and delegate

the remaining goals in the order of maximum priority.

Table 2.1 shows an algorithm that returns a set of delegated goals gd when there is a

need for goal delegation. DetectDelegation takes the following inputs: goal agenda of the

current agent (Ĝc = {g1, g2, ...gc, ...gm}) and current state of agent’s perception (scc). While

there are enough estimated resources R̂(scc) in the world (line 2), the agent tries to compute
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the order of goals it can achieve gachievable. Such a goal ordering is possible by applying

goal-specific priority P̂ (g, scc) and resource estimation functions R̂(g, scc) [26]. The agent

then selects a set of goals gs which has maximum priority (line 3) and minimum resource

consumption (line 4). Later, it computes the estimated resources to achieve selected goals

gs (line 5). Furthermore, the agent adds the selected goals to its achievable goals gachievable

(line 6). The agent then continues executing these steps until all the goals in its goal agenda

are ordered (line 7). Finally, it computes the goals it must delegate (gd) by subtracting the

goals in its agenda with the goals it can achieve (line 9). The function finally returns the

set of delegated goals (line 10).

Table 2.1: A method for detecting goal delegation by the current agent (agentc). Parameter
Ĝc is the goal agenda of the current agent, and scc is the known observed state of agentc.

DetectDelegation (Ĝc, scc)
1. gachievable ← ∅
2. r̂ ← R̂(Ĝc, scc) // Estimation of agent’s resources
3. while r̂ > 0 do // Loop until the agent has enough resources
4. gs ← argmax

g∈(Ĝc−gachievable)

P̂ (g, scc) // Select goals with maximum priority

5. gs ← argmin
g∈gs

R̂(g, scc)
// From the goals with the same priority,

select goals with minimum resources

6. r̂ ← r̂ − R̂(gs, scc) // Estimate the remaining resources
7. gachievable ← gachievable ∪ gs // Add selected goals to agent’s achievable goals
8. if (Ĝc − gachievable) is ∅ then // Break, if agent can achieve all its goals
9. break

10. gd ← (Ĝc − gachievable) // Goals agent cannot achieve
11. return gd // Return delegated goals

To understand the application of the above goal delegation algorithm, let us revisit the

example scenario from section 2.1. In this example, Remus has achieved its goal to clear

mines in GA1. While pursuing the goal to clear mines in GA2 by transiting from GA1 to

GA2, it encounters mines between the two areas and formulates a new goal to clear mines

in GA3, as shown in figure 2.4.

Following the algorithm, the agent anticipates that it does not have enough resources
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Figure 2.4: Simulation of the underwater mine clearance domain. Remus (red) choose to
pursue clearing mines in GA3 and decides to delegate its goal to clear mines in GA3 to
other agents in the environment.

(time) to achieve its goals to clear mines in GA2 and GA3. Although both goals have

the same priority, clearing mines in GA3 takes less resources than in GA2. So, the agent

decides to clear mines in GA3 and delegates the goal to clear mines in GA2 to other agents

in the environment.

In this section, we have seen how the agent uses DetectDelegation algorithm to deter-

mine when and what goals to delegate. The following section describes how a receiving

agent should respond to the goal requests.
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2.4.1.2 Goal Acceptance and Goal Rejection

Often an autonomous agent in a multi-agent system cannot accept all requested goals. It

is often limited by its resources and must reason about its current goals while accepting or

delegating the remaining ones. We use DetectDelegation algorithm from section 2.4.1.1 to

identify the goals the agent cannot pursue. Then, the agent rejects the requested goals that

are unachievable and accepts the remaining goals.

Table 2.2 shows an algorithm that returns the goals the agent can achieve given the

agent’s goal agenda Ĝi, current state sci and delegated goals gd. A requested agent agenti

estimates the goals it cannot achieve gunachievable using the MonitorDelegation algorithm

from section 2.4.1.1 (line 1). Later agenti adds delegated goals gd to its goal agenda Ĝi if

they are not in unachievable goals gunachievable (line 2 and line 3). Finally this returns the

list of goals agenti can achieve (line 4) while rejecting the remaining goals.

Table 2.2: A method to accept/reject a delegated goal by the selected agent agenti. Param-
eter Ĝi is the goal agenda of the selected agent, sci is the known observed state of agenti,
and gd is the set of goals delegated by the current agent (agentc) to the selected agent
(agenti).

GoalAcceptReject (Ĝi, sci, gd) // agent′is goal agenda, its current state and delegated goals
1. gunachievable ← DetectDelegation(Ĝi ∪ gd, sci) // Obtain unachievable goals
2. if gd 6∈ gunachievable // If delegated goals are achievable
3. Ĝi ← Ĝi ∪ gd // Add delegated goals to goal agenda
4. return Ĝi

From the example in the previous section, let us assume that Remus delegates its

goals to clear mines in GA2 to Grace. Since Grace is an underwater glider and cannot clear

mines, following the GoalAcceptReject algorithm, the requested goal remains in the list of

unachievable goals. Therefore, Grace rejects the requested goal. In the next section, we

will see how goal sharing can help Remus and Grace achieve all the goals.
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2.4.1.3 Goal Sharing

When an agent cannot successfully delegate its goals to another agent, it should at least

share the goals between multiple agents. One approach to split goals is through Hierarchi-

cal Goal networks (HGN) [54]. HGN is a method where a higher level goal is subdivided

into smaller constructs which, when all achieved, will achieve the higher level goal. Using

these HGNs an agent could share the subdivided goals with multiple agents in the environ-

ment to complete a higher level goal which one agent could not achieve on its own. Note

that this work on goal sharing is in the preliminary stage, and we intend to pursue it in the

future.

To understand the application of Goal Sharing, let us revisit the example from the

previous section. Remus delegates the goal to clear mines in GA2, and Grace rejects it.

Figure 2.5 shows the HGN for the delegated goal. Following the approach of HGN’s,

Remus would pursue the goal to neutralize mines in GA2 and delegate the goal to identify

mines in GA2 with Grace.

Figure 2.5: HGN representation of the goal to clear mines in GA2.

In this section, we have seen using DetectDelegation algorithm, when an agent should

delegate its goals and what it should delegate. Furthermore, using GoalAcceptReject, we

have also seen how the receiving agent should respond to the requested goals. In the follow-

ing section, we will look at the theory of mind approach to whom an agent should delegate

its goals.
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2.4.2 Theory of Mind

There are two major competing theories in psychology on the theory of mind: Theory

theory and Simulation theory. Theory theory, states that an agent holds a naive algorithm

to infer beliefs, goals and intentions of others and, eventually, improves its algorithm as it

gains more experience. Simulation theory states that an agent simulates the actions of other

agents to predict their behavior. For our purposes, theory of mind will be grounded in the

Simulation theory.

In a distributed multi-agent environment, an individual agent often acts on its own.

It is not feasible for the agent to know all the information about other agents’ goals and

current states. So to delegate goals, the agent is limited by its knowledge about other

agents. Theory of Mind refers to reasoning about other agents’ mental states using the

agent’s knowledge about other agents.

In our multi-agent system, we developed a theory of mind approach to select an agent

among all the other agents in the environment for goal delegation. This approach is rep-

resented in section 2.4.2.1. Furthermore, following this approach also aids the delegating

agent in sharing required knowledge with the selected agent. Such knowledge can help

the selected agent to successfully achieve the delegated goals. This knowledge sharing

algorithm is represented in the section 2.4.2.2

2.4.2.1 Agent Selection

A delegating agent must select another agent capable of achieving its delegated goals

among all the other agents in the environment. Selecting an agent must use its knowledge

about other agents’ states, goals, and domain knowledge to simulate their ability to achieve

the delegated goal. To perform such an agent selection, we use landmarks [30] for the

delegated goals and select the agent that takes minimum cost to achieve these landmarks.

Landmarks are the states that exist in all possible plans to achieve the goal.

Table 2.3 represents the algorithm that the current agent agentc applies to select an
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agenti to delegate its goals gd. The AgentSelection algorithm takes the following inputs: all

the candidate agents in the environment CA = {agent1, agent2, ...agentk}, their domain

knowledge (Σ1,Σ2, ...Σk) where Σ is a state transition system represented as (S,A, γ),

agentc’s own domain knowledge Σc and set of goals to delegate gd. Agentc then computes

the landmarks L[1..m] to achieve the delegated goals gd (line 1). Later, it selects agenti

that has the minimum estimated cost to reach the first landmark (line 2 and line 3). Finally,

agentc makes a delegation request to agenti.

Table 2.3: A method for selecting an agent (agenti) by the current agent (agentc) to del-
egate its goals gd. Parameter CA is the set of all candidate agents in the environment,
(Σ1...Σk) are corresponding candidate agents’ domain knowledge known to the current
agent (agentc), Σc is the current agent’s domain knowledge, scc is the known observed
state of agentc, and gd is the set of goals to delegate by agentc.

AgentSelection((CA, (Σ1...Σk),Σc, scc, gd)
1. L[1, 2, ..m]← Landmarks(Σc, scc, gd) // Obtain landmarks to achieve delegated goals

2. agent index← argmin
j∈CA

cost(Π̂(Σj , scj , L[1])
// Select agent with minimum cost

// to achieve the first landmark

3. agenti← CA [agent index]
4. return agenti

To better understand the algorithm, let us revisit the example from the underwater

mine clearance domain as shown in the figure 2.6. Remus decides to delegate the goal to

clear mines in GA2. For simplicity, let us make an assumption that Grace is now equipped

with mine clearing equipment. To delegate its goals, Remus follows the AgentSelection

algorithm to obtain the landmarks for the goal. These landmarks include the state of an

agent being at the location and identifying mines at GA2. Remus then estimates the plan-

ning cost of every agent based on its knowledge about others and selects the agent Grace

to delegate its goals. Grace not only has the capability to identify mines but also takes less

time to reach GA2 compared to all the other agents in the environment.

Now that the agent has decided on whom to delegate its goals. In the next section, we

will see our theory of mind approach on what knowledge would it decide to share with the
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Figure 2.6: Simulation of the underwater mine clearance domain. Remus (red) choose to
pursue clearing mines in GA3 and decides to delegate its goal to clear mines in GA2 to
other agents in the environment.

receiving agent.

2.4.2.2 Knowledge Sharing

Given the selected agent agenti from section 2.4.2.1 and the goals to delegate gd from

2.4.1.1, the delegating agent agentc should share required knowledge to achieve the goal.

However, due to partial observability and the distributed nature of the multi-agent envi-

ronment, agentc cannot know what knowledge the other agents necessarily require. How-

ever, agentc should reason using its knowledge to determine some information required

by agenti to achieve the delegated goals. To obtain such information, the agent computes

expectations by planning to achieve the first landmark using its own knowledge. These

expectations are the future states of the requesting agent when it tries to achieve the goal.

Furthermore, the agent then chooses to share all the knowledge related to the attained ex-
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pectations that it believes agenti does not know. Such knowledge will help the receiving

agent understand the problems it should avoid and the benefits from available opportunities.

Table 2.4 formally represents the knowledge sharing algorithm which outputs the

states (sshare) that agentc should share with agenti. KnowledgeSharing algorithm takes

the following input: agenti’s domain knowledge Σi = (Si, Ai, γi), agentc’s known state of

agenti (sci), agentc’s current state of the world (scc) and the first Landmark L[1]. agentc

plans 〈a1, a2, ...an〉 to achieve the first landmark (line 1). agentc then computes expecta-

tions for every action of the plan (line 5). These expectations comes from the preconditions

and the effects of the actions. Later agentc then tries to retrieve all the states (sr) that

are abstractly related to the computed expectations (sei) and its current state (scc) (line 6).

Abstractly related states are those states that have similar predicates or contain arguments

that exists in both the given state representations. Later, agentc adds it to the states sshare

to share with agenti while removing the states it has already shared sci (line 7). Finally

agentc updates its knowledge about agenti (line 8) and returns the states sshare to share

(line 9).

Table 2.4: A method for computing the knowledge the current agent (agentc) must share
with the delegated agent (agenti). Parameter Σi is the known domain knowledge of agenti,
sci is the currently observed state of agenti, scc is the known observed state of agentc, and
L[1]) is the first landmark.

KnowledgeSharing (Σi, sci, scc, L[1])

1. 〈a1, a2, ...an〉 ← Π̂(Σi, sci, L[1]) // Estimated actions to achieve first Landmark
2. sshare ← ∅ // Knowledge states to share with agenti
3. sei ← ∅ // The expected states of agenti
4. for a in 〈a1, a2, ...an〉
5. sei ← sei ∪ pre(a) ∪ a+ − a− // Expectations of agenti stemming from the results of action a
6. sr ← AbstractRelatedStates(sei, scc) // Related states of agentc to expectations
7. sshare ← sshare ∪ (sr − sci) // Add related states to share with agenti
8. sci ← sci ∪ sshare // Update knowledge of agenti
9. return sshare

To understand the KnowledgeSharing algorithm, let us revisit the example from the

previous section. Remus chooses Grace to delegate its goal (i.e., to clear mines in GA2).
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Now it uses the KnowledgeSharing algorithm to share the required knowledge. First, Re-

mus using its own knowledge about Grace, obtains expectations from its plan to achieve

the first landmark (i.e., being at GA2 to identify mines). These expectations include the

future state of Grace being at the Q-route (area between the two parallel lines in 2.6. Since

Remus already knows the location of some mines in the Q-route (GA3), it shares those

locations with Grace. This information will help Grace traverse those regions carefully or

avoid them altogether to stay safe and continue pursuing the delegated goal. In the next

section we will see how an agent should delegate its goal using explanations.

2.4.3 Explanation

After the requesting agent selects an agent for delegation, it should coordinate with the

selected agent. We use explanations to coordinate, and an explanation from a requested

agent helps the selected agent understand the justifications behind the delegated goals. In

this subsection, we will discuss the structure of the explanation and its representation in the

goal delegation process.

We represent these explanations in terms of an explanation pattern (XP) [13, 23, 52]

structure. An XP (Figure 2.7) is a data structure that represents a causal relationship be-

tween multiple states and/or actions. An action or state is referred to as a node, and different

types of nodes are described based on their role in an XP as follows.

• Explains node: An unexpected observed action or state (i.e., the target of the XP).

• Pre-XP node: An observed action/state. These must be true for the XP to apply.

• XP-asserted node: An action, state, or XP that contributes to the cause of the Ex-

plains node.

• Internal node: Optional nodes between the antecedent and the consequent.
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Figure 2.7: XP structure.

An explanation pattern represents a causal structure in which XP-asserted nodes form

an antecedent and Pre-XP nodes form the consequent. Note an XP also contains internal

nodes which links the antecedent of the XP with the consequent. In the following subsec-

tion we will discuss how a receiving agent coordinates with the selected agent.

To request a selected agent to achieve its goals, the requesting agent should explain

the motivations M = {m1, ...,ms} behind the delegated goal. Such motivations will help

the selected agent make a rational decision to accept or reject the delegated goals. To fit

into the context of coordinating goals to other agents, we adapt the definition of nodes in

the XP structure as follows:

• Explains node: (gx) state desired by the requesting agent (i.e., delegated goal).

• Pre-XP node: (ρx) state/action that should be true to achieve the desired state (i.e.,

conditions for a goal to be valid).

• XP-asserted node: (mx) Motivated action, state, or XP that contributes to the reason

behind the request.

Figure 2.8 shows the tweaked explanation structure to justify a delegated goal (gx).

The antecedent includes the agent’s motivations {m1, ...,ms} to pursue the delegated goal
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Figure 2.8: XP structure for justifying a delegated goal.

(gx) while the consequent contains Pre-XP nodes and an explains node. Pre-Xp nodes

are the conditions ρ1, ..., ρq for a delegated goal to be valid while the explains node is the

delegated goal (gx) itself. The above explanation structure will help the selected agent un-

derstand the importance of the delegated goal among its own goals. Such an understanding

will aid the selected agent to reason about its commitment to the delegated goal.

To understand the importance of explanations in the goal delegation process, let us re-

visit the underwater mine clearance domain example from the previous section. Until now,

Remus decides to delegate the goal to clear mines in GA2 to Grace and decides to share

the knowledge of existing mines in the Q-route. Now, Remus uses an explanation pattern

to convey the goal’s motivations and establish conventions. The convention1 for this goal

is the future state of ships traversing the Q-route while the motivation behind the delegated

goal is to make a safe passage for the cargo-carrying ten ships. This information will help

Grace understand the priority of the delegated goal and thereby plan accordingly to achieve

it. The following section will show how an agent performs the delegation operation by

putting together the outputs from DetectDelegation, AgentSelection, KnowledgeSharing,

and Explanation algorithms.

1For instance, if the ships change their passage to a different Q-route, Grace no longer needs to achieve
the goal as it is not valid. Thus conventions help agents determine if the goal is still valid to pursue or not.
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2.5 Conclusion

After the requesting agent decides on when, what, to whom, and how to dele-

gate its goals, the next step is to coordinate with the receiving agent for success-

ful delegation. To perform this operation, the agent generates the following goal

requested(agentc, agenti, gd, sshare, χ) where agentc is the requesting agent, agenti is the

receiving agent, gd is the delegated goal, sshare is the information to share with agenti and

χ is the explanation.

The requesting agent agentc will plan to achieve the goal. It then executes its plan to

successfully make the request. Furthermore, the agent waits for an acknowledgement form

agenti before continuing to pursue its own goals.

In the underwater mine clearance example. Remus will generate the following goal

requested (Remus, Grace, cleared mines(GA2), sshare, χr) where sshare contains the fol-

lowing set of states ( mine-at(GA3, mine1) ... mine-at(GA3, mine4) ). It then plans to

achieve the goal, executes the plan and receives an acceptance form Grace. Thus, both Re-

mus and Grace creates a successful passage to the ships and heads to their initial locations

as shown in the figure 2.9.
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Figure 2.9: Simulation of the underwater mine clearance domain. Remus (red) and Grace
(yellow) clears mines in GA2 and GA3 and makes a safe passage for the Ships to transit.
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Experimental Design and Evaluation

We have implemented our work in the marine life survey domain and the rover domain

to test our claims. The marine life survey domain is a simulated version of surveying un-

derwater marine life in the real world. The agents in this domain are underwater vehicles

that possess similar capabilities to find oceanic life concentrations. The Rover domain is

one of the classic planning benchmark domains introduced as a simple representation of

the NASA Mars Exploration missions. The agents in this domain are equipped with differ-

ent but possibly overlapping sensors to perform experiments on a planet’s surface. While

both environments are partially observable and distributed in nature, they are different in

many ways. For example, they differ in the goals they pursue, the observations made, the

problems that occur, and the challenges they encounter.

This chapter describes each of these domains in detail and provides experimental ev-

idence to our claims presented in chapter 1. Here, we have performed experiments with

different design parameters across both domains. In the following sections we will look at

these experimental designs and the empirical results in detail.

• Claim 1: Goal delegation using a theory of mind approach causes the goal achieve-

ment performance (i.e., percentage of goals achieved successfully) in a distributed,

multi-agent context to significantly improve relative to a traditional goal reasoning

multi-agent system which does not delegate goals.

• Claim 2: Explanations helps the receiving agent understand the priority behind the
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delegated goals, thereby improving the performance of goal achievement in a multi-

agent system compared to a multi-agent goal reasoning system with only goal dele-

gation.

3.1 Comparison with Different Multi-agent Systems

To evaluate the performances of each of our algorithms introduced in Chapter 2 and to

compare them with external multi-agent systems we introduced eight variations. They are

as follows,

1. Ideal: Unexpected events (i.e., anomalies) do not occur in the ideal multi-agent

system’s environment. Everything goes according to the plan, and the agents can

achieve their own goals without goal delegation. Having this type of multi-agent

system implemented in a domain will help us understand the highest performance

the system can perform at any given time. As such, it provides and upper bound on

performance.

2. Traditional goal reasoning: In the traditional multi-agent goal reasoning condition,

agents encounter anomalies and, in response, they perform relevant goal operations

(except goal delegation). These goal operations include goal selection, goal formu-

lation, goal change, and goal achievement. Comparing this multi-agent system with

others will enable us to understand the importance of delegating goals to other agents

using our theory of mind approach.

3. Delegation (DetectDelegation, AgentSelection): In the multi-agent delegation

condition, agents perform different goal operations in response to the encountered

anomalies. Furthermore, they decide when and what goals to delegate using the

DetectDelegation algorithm (see 2.1) and finally coordinate them to the agent(s) de-

termined by the AgentSelection algorithm (see 2.3 . Here that the receiving agent

34



will always accept the goals delegated to it. However, it prioritizes achieving its own

goals first and only later achieves the delegated goals. This multi-agent condition will

show us the impact of the algorithms mentioned above on a traditional multi-agent

goal reasoning condition.

4. Accept reject (DetectDelegation, AgentSelection, GoalAcceptReject): The ac-

cept reject multi-agent condition enhances goal delegation with an additional

decision-making ability for the receiving agent. It can either accept or reject the

delegated goals as determined by the GoalAcceptReject algorithm (see 2.2. Note

that if the receiving agent(s) denies the given goal(s), the requesting agent will then

delegate its goals to the next best agent provided by the AgentSelection algorithm.

5. Knowledge sharing (DetectDelegation, AgentSelection, GoalAcceptReject,

KnowledgeSharing): Agents in the knowledge sharing delegation condition do

everything similar to the agents in the Accept reject multi-agent condition. In

addition, they share the required knowledge with the receiving agent determined by

the KnowledgeSharing algorithm (see 2.4). This multi-agent condition will enable

us to evaluate the impact of sharing such knowledge with the receiving agent. Note

that the receiving agent(s) will prioritize achieving their own goals first and later

pursue the delegated goals.

6. Explanation (DetectDelegation, AgentSelection, GoalAcceptReject, Knowledge-

Sharing, Explanation): Multi-agent explanation condition is very similar to the

knowledge sharing condition. However, in this condition, requesting agent(s) will

also share motivations behind the delegated goals through explanations. Such rea-

sons will enable the receiving agent(s) to understand the priority of the given goals

and achieve them accordingly. The performance of the explanation multi-agent con-

dition represents our complete approach towards the goal delegation process using

theory of mind.
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7. Random (DetectDelegation, RandomAgentSelection):

The multi-agent aandom condition shares the same capabilities as the traditional goal

reasoning multi-agent system. However, agents in this multi-agent system will decide

when and what goals to delegate using the DetectDelegation algorithm and randomly

choose an agent to pursue its goals. Comparing this multi-agent system with the goal

delegation multi-agent system will help us understand the impact of the AgentSelec-

tion algorithm on the agents’ performance.

8. Auction mechanism (external multi-agent system):

The auction mechanism is the most standard agent-coordination approach in the

multi-agent systems community. In this multi-agent condition, requesting agents will

make their goals available for bidding. Other agents will take the goals and provide

their cost to achieve them. The requesting agent will then delegate the goals to the

receiving agent with the lowest bid. Note that the agents still use the DetectDelega-

tion algorithm to determine when and what to delegate. Furthermore, the receiving

agent will still prioritize achieving its own goals over the given goals.

Evaluating the performance of each process in our goal delegation approach (2-6)

while comparing them to some external multi-agent systems (7-8) is the primary intent be-

hind the introduction of these eight multi-agent conditions. In the following sections, we

will see the implementation of these multi-agent systems in different experimental scenar-

ios of the marine life survey domain and the rover domain.

3.2 The Marine Life Survey Domain

Surveying marine environments using autonomous underwater vehicles (AUVs) is often

time-limited and challenging. These autonomous vehicles typically collect readings of

temperature, salinity, and pressure throughout the survey region and investigate key aquatic
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life features. One such critical element is to detect the areas of high fish concentrations un-

derwater, which we refer to as fish hot spots in our research. Finding these locations of

major fish hot spots is essential for researchers to study aquatic behavior to maintain eco-

logical balance. In addition, these studies significantly help conserve endangered species

in oceanic environments. Therefore discovering locations of major hot spots is the prime

mission of these AUVs. However, several barriers exist in marine environments that make

this mission challenging to achieve. For example, sea creatures may attach themselves to

the AUVs and hinders their movement. Tides and currents in water also make the under-

water traversal more challenging. Furthermore, several obstacles such as coral reefs or

underwater rock formations may appear, requiring a change in the course of these AUVs.

Figure 3.1 shows the region of Gray’s Reef National Marine Sanctuary located on the

inner shelf of the South Atlantic Bight off the coast of Savannah, GA. The red area repre-

sents the research area and is restricted for public access. In this research-only region, our

team regularly deploys AUVs such as custom robotic fish and Slocum gliders to evaluate

and test new platforms to perform missions of detecting areas of fish hot spots. During

these missions, AUVs typically surface to communicate regularly or respond to forced

interruptions. In this area, marine scientists have previously tagged the fish with acoustic

transmitters that constantly ping at a pre-determined frequency. These acoustic signals help

the AUVs detect fish using their acoustic detection sensors. These AUVs can also classify

unique pings, ignoring multiple pings from the same fish.

Before actual deployment, we simulated the marine life survey domain [39] using the

Moos-IvP [3] framework. This simulator replicates the underwater environment close to

the real world. In addition, simulated environments enable us to empirically evaluate our

mechanisms before testing them out in the real world. For simulation, we have divided a

portion of the research area (see lower right of Figure 3.1) into twenty-five cells. The red

dots represent the thousand fish that pings at every seventeen time steps. The highlighted

region around the agent is the acoustic fish tag detection sensor. At Gray’s Reef, the detec-
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Figure 3.1: Gray’s Reef National Marine Sanctuary is located off the coast of Georgia and
contains a research area shown in the insert shaded in pink. Within this, we represent a
5x5 subsection in simulation. This grid contains fish hot-spots that are of interest to marine
scientists. The highlighted square around the agent indicates the sensor range for detecting
acoustic fish tags (the small red dots).
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tion radius varies with environmental conditions, but currently, the simulator assumes it to

be ten meters. As mentioned, an agent can identify hot spots based on the number of pings.

3.2.1 Experimental Design: Three agent scenario

We have introduced two naturally occurring discrepancies in the marine life survey domain:

Remora attacks and flow events. Remora attacks are attachments to the AUV made by

sea creatures that hinder movement. They act randomly with a specific rate (0.007) of

occurrence. These Remora attacks negatively affect an agent’s speed, and enough attacks

could disable an individual platform from moving. An agent can successfully respond to

a Remora attack by formulating a goal to be free from the organism by gliding backward.

Flow events occur at a specific location in the marine life survey domain. These events

disable the agent and push them out of the region. In such a case, an agent can only

delegate its goals and ask the operator for help to initiate a rescue operation. Note that the

agents can only communicate when they surface, and they surface at regular intervals of 10

units in simulation time.

Figure 3.2 shows the 5x5 region of the marine life survey domain. Three agents exist

in this multi-agent system, namely Grace, Franklin, and Remus. All agents are provided

with initial goals to survey a specific part of the 5x5 region. For example, Grace is respon-

sible for achieving nine survey goals represented as the blue region in the figure. Similarly,

Franklin and Remus have eight goals to survey the green and red areas. Furthermore, as

shown in the figure, two specific flow-affected cells are at (2,0) and (0,2). When agents

survey these flow-affected cells, they are pushed far from the area and are disabled. How-

ever, they can delegate goals and call for help. Similarly, there are randomly occurring

Remora attacks, as mentioned above. In addition, nine fish hot spots exist in this scenario,

represented as the cells with yellow borders in the figure.

Each trial in the above-mentioned experimental setting has different initial starting
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Figure 3.2: Experimental design to evaluate eight different multi-agent conditions in the
marine life survey domain [24]. There are three underwater gliders (Franklin, Grace, and
Remus) and nine hot spots in the scenario. The hot spot location are evenly distributed
between the 3 agents to survey.

positions for the agents. Therefore, we have performed two experiments with varying

randomness for each multi-agent condition, and an experiment contains a hundred separate

trials. This randomness affects the occurrence of Remora attacks, thereby changing the

performance of the multi-agent system as a whole. This experiment aims to measure the

performance of a multi-agent system in terms of the percentage of goals achieved and the

indentification of fish hot spots. Section 3.2.1.2 presents the statistical significance of the

results, followed by the empirical results in section 3.2.1.1.

3.2.1.1 Empirical Results

Figure 3.3 depicts the results of the eight different multi-agent conditions. The X-axis

represents the time taken by the agents in these multi-agent conditions to achieve their

goals, while the Y-axis represents the percentage of goals achieved. As mentioned in the

previous section, an experiment is run twice with different seed values for every condition
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and there are hundred initial positions for each experiment. Therefore, every point in the

graph averages two hundred trails. Furthermore, every trial has a simulation time limit of

six hundred seconds. Note that forty times one simulation time gives the actual time in the

real world. If an agent following our approach (goal delegation using theory of mind) is

affected by the flow, it decides to delegates its goals to an agent with the minimum planning

cost, shares the affected region’s knowledge, and explains the motivations behind the goals.

Figure 3.3: Percentage of goals achieved by agents in different multi-agent conditions in
the marine life survey domain. On the X-axis is the time to achieve the goals, and on the
Y-axis is the percentage of goals achieved.

Overall, the results show that the agents in the multi-agent explanation condition per-

forms better and achieves goals quicker than all the others in the environment except for the

agents in an ideal multi-agent condition, which operates in perfect conditions. The crucial

function that gave the edge to the explanation condition is the receiving agents ability to
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provide motivations behind the delegated goals. In this experiment, the basis is to find the

hot spots. When a receiving agent understands this motivation, it prioritizes the given goals

in search of the highest fish densities.

Next to explanation is the performance of agents in the multi-agent knowledge sharing

condition. Agents in this multi-agent condition can perform as many goals as in explanation

given enough time. However, this is not the case with the real world where the missions are

often time-limited. Nevertheless, the significant performance of the agents in these multi-

agent conditions compared to other multi-agent conditions shows that our approach towards

goal delegation using theory of mind has proven effective. Note that our experimental setup

does not allow agents in a practical multi-agent conditions to achieve one hundred percent

of the goals. Because trials exist where all agents start at the flow-affected regions, no agent

will achieve any goals.

Next comes the performance of agents in the multi-agent accept reject condition,

which gives the receiving agent the decision-making ability to accept or reject delegated

goals. In this experiment, if the requested agent is also at a flow-effected region, it re-

fuses the goal, thereby helping the requesting agent give its goals to the subsequent agents.

However, not sharing the requesting agent’s knowledge of flow-affected areas keeps it sig-

nificantly lower than Knowledge sharing.

Agents in the multi-agent auction mechanism performs close to the agents in the ac-

cept reject condition given enough time. Minimum cost bids help the requesting agent(s)

determine the most capable agents and avoid agents affected by the flow. However, it takes

at least twenty units of time for successful bidding. The communication overhead thus

keeps its performance significantly lower in the interval 160 to 260 time units.

Finally, the observation that the agents in the delegation multi-agent system (with

agent selection capability) performing better than the agents in the random and traditional

goal reasoning conditions is self-explanatory. Note that at time 140, agents in the multi-

agent traditional goal reasoning condition performs better than random and auction mech-
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anism because of the communication overhead in delegating goals (agents communicate

only when they surface). However, it soon fades out as time increases.

Figure 3.4: Percentage of hot spots identified by agents in different multi-agent conditions
in the marine life survey domain. On the X-axis is the time to identify the hot spots, and on
the Y-axis is the percentage of hot spots identified.

Figure 3.4 depicts the performance of agents in eight different multi-agent conditions

in identifying the percentage of fish hot spots. The X-axis represents the time taken by the

agents in the multi-agent conditions to identify the hot spots, while the Y-axis represents

the percentage of hot spots identified. As mentioned in the previous section, there are nine

hot spot locations.

Similar to the previous graph, the general pattern remains the same. Agents in the

multi-agent explanation and the knowledge sharing conditions achieve 93% of the goals

thus proving the effectiveness of goal delegation using theory of mind. At the same time,
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agents in the agent select condition reaches 55% of hot spots followed by the agents in the

auction mechanism at around 52%. Agents in the delegation condition achieves 50% of hot

spots proving that delegation alone is not sufficient. At the lower tier, we have random at

45%, and agents in the traditional goal reasoning condition identifies 41% of the hot spots

for 600 units in simulation time.

Figure 3.5: Percentage of goals achieved by the agents in different multi-agent conditions
in the marine life survey domain. On the X-axis is the number of anomalies and on the
Y-axis is the Percentage of goals achieved.

Figure 3.5 depicts the performance of eight different multi-agent conditions in iden-

tifying the percentage of goals over anomalies. The X-axis represents the number of

anomaly occurrences in the environment, while the Y-axis represents the percentage of

goals achieved. Anomalies in this domain include remora attacks and flow events. An
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agent formulates the goals to be free from the remora in response to the anomaly and dele-

gates goals in the case of the flow event.

Similar to the graph from 3.3, the general pattern remains the same. Agents in the

multi-agent explanation and the knowledge sharing multi-agent conditions achieve 88%

of the goals proving the effectiveness of goal delegation using theory of mind. At the

same time, agents in the agent select condition reaches 53% of goals followed by the auc-

tion mechanism agents’ performance at around 51%. Agents in the delegation condition

achieves 50% of hot spots proving that goal delegation alone is not sufficient. At the lower

tier, we have the performances of agents in multi-agent random condition at 47%, and

traditional goal reasoning at 43% respectively.

3.2.1.2 Statistical Significance

We have performed a two sample t-test to compare our complete approach (multi-agent

explanation condition) with all the other multi-agent conditions at two different time points

(three hundred and six hundred) in the experiments for statistical significance. Table 3.1

shows the statistical performance of different multi-agent conditions (introduced in section

3.1) over two hundred trials.

Table 3.1: The table shows the statistical distribution of agents’ performance in different
multi-agent conditions for the three agent scenario of the marine life survey domain for 200
trials.
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We have chosen a 95% confidence interval (i.e., we can reject the null hypothesis if

the p − value < 0.05). The null hypothesis and alternate hypothesis for the independent

samples t-test are as follows,

H0 : There is no significant performance change between the agents in the multi-agent

explanation condition and the agents of the other multi-agent condition in comparison.

Ha : Significant statistical difference does exist between our approach and the agents

operating in the other multi-agent condition.

Table 3.2: Results from the two-sample independent t-test, shows that the performance of
the agents in the multi-agent explanation condition significantly differs from the agents’
performances in other multi-agent conditions for the three agent scenario.

Table 3.2 shows the list of p-values between agents in the multi-agent explanation

condition and other multi-agent conditions. We can see that the p − value < 0.0001 for

all other multi-agent conditions except in the knowledge sharing multi-agent condition.

Thus, we can reject the null hypothesis. Now, in the case of multi-agent knowledge shar-

ing condition, at time six hundred, agents in both conditions have similar performance in

achieving the goals. However, in the multi-agent explanation condition, agents achieve

goals much quicker than in knowledge sharing condition, which we can see from the p-
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value of 0.0134 at time three hundred. Thus, our data suggest a statistical significance in

performance between our approach and the performance of the agents in the rest of the

multi-agent conditions.

3.2.2 Experimental Design: Four agent scenario

This experimental design is similar to the setup from the three agent scenario in section

3.2.1.1, but here there are four agents. Figure 3.6 shows the 5x5 region of the marine life

survey domain, shared by the agents Grace, Franklin, Remus and Neo to survey their given

goals. For example, Neo is responsible for achieving seven survey goals represented as the

yellow region in the figure. Similarly, Franklin, Remus and Grace share six goals each to

survey the red, green and, blue areas.

Figure 3.6: Experimental design to evaluate eight different multi-agent systems in the ma-
rine life survey domain. There are four underwater gliders (Franklin, Grace, Remus, and
Neo) and nine hot spots in the scenario.
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Furthermore, as shown in the figure, two specific flow-affected cells are at (2,0) and

(0,2). When agents survey these flow-affected cells, they are pushed far from the area

and are disabled. However, they can delegate goals and call for help. Similarly, there are

randomly occurring Remora attacks, as mentioned above. In addition, similar to the three

agent scenerio there are nine fish hot spots.

The main advantage of having the four agent scenario is to see if any disparities exist

between the performances of agents in the eight different multi-agent conditions. Experi-

ments, trials, and anomalies remain unchanged from the three agent scenario experiments

in the previous section. The following sections discuss the statistical significance and their

empirical results in detail.

3.2.2.1 Empirical Results

Figure 3.7 depicts the results of the eight different multi-agent systems. The X-axis rep-

resents the time taken by the agents in the various multi-agent conditions to achieve their

goals, while the Y-axis represents the percentage of goals achieved. As in the previous

section, an experiment is run twice with different seed values for each condition. There are

one 100 different initial positions for the agents. Therefore, every point in the graph aver-

ages two hundred trails. Furthermore, every trial has a simulation time limit of six hundred

seconds.

Overall results show a similar pattern of results as the three agent scenarios. However,

because there are four agents, they can achieve the goals much quicker and with a little

higher percentage of goals achieved than the three-agent scenario.

Agents in the multi-agent explanation and the knowledge sharing conditions achieve

greater than 90% of the goals thus proving goal delegation’s effectiveness using theory of

mind. At the same time, agents in the accept reject reaches 70% of goals followed by the

performance of agents in auction mechanism that achieves around 63%. Finally, agents

48



Figure 3.7: Percentage of goals achieved by agents in different multi-agent conditions for
the four agent scenario of the marine life survey domain. On the X-axis is the time to
achieve the goals and on the Y-axis is the percentage of goals achieved.
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in the delegation condition achieves 62% of goals proving that goal delegation alone is

insufficient. As the number of agents increases, the disparity between the performances

of the agents in the multi-agent delegation and Auction mechanism conditions decreases.

At the lower tier, we have the agents in the random condition achieving 61% of goals and

traditional goal reasoning condition performing around 50% respectively.

Figure 3.8: Percentage of hot spots identified by the agents in the different multi-agent
conditions for the four agent scenario of the marine life survey domain. On the X-axis is
the time to identify the hot spots, and on the Y-axis is the percentage of hot spots identified.

Figure 3.8 depicts the performance of agents in different multi-agent conditions in

identifying the percentage of fish hot spots. The X-axis represents the time taken by the

agents in the multi-agent conditions to identify the hot spots, while the Y-axis represents

the percentage of hot spots identified. As with the previous section, nine hot spot locations
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exist.

Similar to the previous graph, the pattern remains the same. Agents in the multi-agent

explanation and the knowledge sharing conditions identify 98% of the hot spots, once again

proving goal delegation’s effectiveness using theory of mind. At the same time, agents in

the accept reject condition discovers 72% of hot spots followed by performance of agents

in the auction mechanism reaching 70% mark. Agents in the delegation condition identifies

68% of hot spots thus proving that goal delegation alone is not sufficient. At the lower tier,

we have agents in the random condition identifying hot spots at 62% and the performance

of agents in the traditional goal reasoning condition at 50% respectively for the given time.
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Figure 3.9: Percentage of goals achieved by agents in the different multi-agent conditions
for the four agent scenario of the marine life survey domain. On the X-axis is the number
of anomalies and on the Y-axis is the percentage of goals achieved.

Figure 3.9 depicts the performance of agents in different multi-agent conditions

in identifying the percentage of fish hot spots. The X-axis represents the number of

anomaly occurrences in the environment, while the Y-axis represents the percentage of

goals achieved. Anomalies in this domain include remora attacks and flow events. An

agent formulates goals in response to the remora anomaly and delegates goals in the case

of the flow event.

Similar to the graph from 3.7, the pattern remains the same. Agents in the explanation

and the knowledge sharing multi-agent condition achieve greater than 90% of the goals

proving the effectiveness of goal delegation using theory of mind. At the same time, agents
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in Accept reject condition reaches 70% of goals followed by the performance of agents in

the auction mechanism condition at 63%. Furthermore, agents in the delegation condition

achieves 62% of goals proving that goal delegation alone is not sufficient. At the lower

tier, we have random at 60% goal achievement and agents in the traditional goal reasoning

achieving less than 50% of goals.

3.2.2.2 Statistical Significance

Similar to the previous section, we have performed a two sample t-test to compare our

complete approach (Explanation) with all the other multi-agent conditions at two different

time points (three hundred and six hundred) for statistical significance. Table 3.3 shows the

statistical performance of agents in different multi-agent conditions (see section 3.1) over

two hundred trials.

Table 3.3: The table shows the statistical distribution of the performance of agents in dif-
ferent multi-agent conditions for the four agent scenario of the marine life survey domain
for 200 trials.

We have chosen a 95% confidence interval (i.e., we can reject the null hypothesis if

the p − value < 0.05). The null hypothesis and alternate hypothesis for the independent

samples t-test are as follows,
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H0 : There is no significant performance change between the agents in the multi-agent

explanation condition and the others in comparison.

Ha : Significant statistical difference does exist between our approach and the perfor-

mance of agents in other multi-agent conditions.

Table 3.4: Results from the two-sample independent t-test, showing that the agents in the
multi-agent explanation condition significantly differs from all the other multi-agent con-
ditions for the four agent scenario.

Table 3.4 shows the list of p-values between the performance of agents in the multi-

agent explanation condition and agents operating in the other multi-agent conditions. We

can see that the p − valueis < 0.0001 for all the multi-agent conditions except for the

multi-agent knowledge sharing condition. Thus, we can reject the null hypothesis. Now,

in the case of knowledge sharing condition, at time six hundred, they both have similar

performance in achieving the goals. However, in the explanation condition, agents achieve

goals much quicker than the agents in the knowledge sharing condition, which we can

see from the p-value of 0.0009 at time three hundred. Thus, our data suggest a statistical
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significance in performance between the agents in our approach and the rest of the agents

in the multi-agent conditions.

3.3 The Rovers Domain

The rovers domain is a simplified problem representation of the NASA Mars Exploration

Rover missions launched in 2003. As the name suggests, agents in this mission are a

collection of rovers equipped with different sensors. They must travel between various

waypoints collecting data and transmitting it back to a lander. Typical goals of the agent

involve traversing the planet’s surface to perform science gathering experiments such as

soil sample analysis, rock sample analysis, capturing photographs of different objectives.

Figure 3.10 shows the conceptual diagram of the Opportunity rover equipped with various

tools. These tools include cameras with different resolutions, soil sample equipment, and

rock sample equipment.

Figure 3.10: Artistic concept of a Mars Exploration Rover (MER) from December 2002,
designed to perform geological experiments on planet Mars.

These rovers have different capabilities to perform the mission, sometimes overlap-
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ping with each other. Several challenges make their goals difficult to achieve. For example,

some rovers cannot traverse specific waypoints. Similarly, not all rovers possess the tools

to achieve their mission, thus making it a good problem domain for multi-agent coordina-

tion. In addition, exogenous events exist that damage the rovers’ sensors. Furthermore,

data transmission is also constrained by the visibility of the lander from the waypoints.

Because of the complexity in the domain, it is one of the benchmark problem domains

in the planning competitions held at International Conference on Automated Planning and

Scheduling (ICAPS)1 every two years [6].

3.3.1 Experimental Design

For the Rover domain, we have obtained hundred problem sets from the Competition of

Distributed and Multi-agent Planners (CoDMAP)2 track held at the international planning

competition. From the hundred, forty problem sets have been actually in the competition

to evaluate different planners, while the remaining sixty are from the problem generator

used by the competition. Each problem contains a different number of goals and agents. At

the start of each trial, we have uniformly and randomly allocated these goals to the agents.

However, since every agent does not possess the required tools to achieve their assigned

goals, they can delegate them to other agents. In addition, we have introduced events that

randomly damage the equipment of these agents. Equipment in this domain includes high

and low-resolution cameras and tools to perform soil/rock sample analysis.

Figure 3.11 shows the distribution of agents from the problem set. On the X-axis are

the number of agents and on the Y-axis are the number of problems/trials containing these

agents. Our trials include a maximum of ten distributed agents and a minimum of one agent

operating in the domain.

For every multi-agent condition described in section 3.1, we have performed three

1https://www.icaps-conference.org/competitions/
2http://agents.fel.cvut.cz/codmap/
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Figure 3.11: Distribution of agents across the 100 benchmark problems sets in the rovers
domain.

experiments with the same hundred trials mentioned above. However, the experiments vary

in the randomness of the initial goals allocated and the occurrence of exogenous events that

damage tools. In the next section, we will see how the results obtained are similar to the

results from the marine survey domain.

3.3.2 Empirical Results

Figure 3.12 depicts the results of the agents in the eight different multi-agent conditions.

The X-axis represents the time taken by agents in the the multi-agent conditions to achieve

their goals, while the Y-axis represents the percentage of goals achieved. As mentioned

in the previous section, a trail is run three times with different seed values for agents in

every condition. There are a hundred trials for each experiment, and each trial contains n

different number of goals and agents. Therefore, every point in the graph averages three

hundred trials. Note that the units for time here are MIDCA cycles. As mentioned pre-

viously, MIDCA is a cognitive architecture providing the goal reasoning framework for
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implementing goal delegation. If an agent following our approach (goal delegation using

theory of mind) cannot pursue its assigned goals due to the reasons mentioned above, it

decides to delegates its goals to an agent with the minimum planning cost. It shares the

knowledge that it lost its sensor traversing a waypoint, and explains the motivations behind

the goals.

Figure 3.12: Percentage of goals achieved by agents in different multi-agent conditions in
the rovers domain. On the X-axis is the time to achieve the goals, and on the Y-axis is the
percentage of goals achieved.

All agents are provided with initial goals at ten simulation time units (See figure 3.12)

and will remain in operation until the deadline of hundred time units. Although the results

show a similar pattern compared to the results from the marine life survey domain, a few

key observations are to be made.

Agents in the multi-agent ideal condition do not achieve all their goals. Since these
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benchmark problems evaluate planners, some goals are too hard to solve. In our work, we

use the fast-downward planner [29] to plan for the goals. Note that some problems are

too easy to solve for the agents, which is why we see agents in the traditional goal rea-

soning condition achieving almost 63% of goals in the given time. Furthermore, agents in

the delegation condition perform slightly higher than the agents in the auction mechanism

condition because of the communication overhead during agent coordination.

Irrespective of the disparities between complex and straightforward problems, agents

in the multi-agent explanation and the knowledge sharing conditions achieve close to 90%

of the goals proving again the effectiveness of goal delegation using theory of mind. At

the same time, agents in the accept reject condition reaches 79% of goals followed by the

performance of agents in the delegation at around 73% of goals proving that goal delegation

alone is not sufficient. Finally, agents in the multi-agent auction mechanism achieve around

72% of the goals, and at the lower tier, we have the performances of agents in the random

conditions at 67% goal achievement and traditional goal reasoning condition at 63%.

In summary, the results here and those from 3.2 support the main hypothesis (page

3) that theory of mind and explanations are essential for effective goal management in

multi-agent systems.
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Related Research

In this chapter, we offer a literature review of related concepts and algorithms that either

stand pivotal in shaping this research or stand similar in solving problems that resemble

our own. We review the following topics: multi-agent systems, which covers concepts

and implementation of different types of multi agent systems in addition to the different

coordination mechanisms involved; theory of mind, which discusses several existing the-

ories to develop reasoning about other agents from both psychological and computational

perspectives; goal reasoning, which covers the idea of where goals come from and meth-

ods of goal management; and explanation, which discusses the concept of explanations in

understanding unknown events.

4.1 Multi-agent Systems

There are three different classifications of systems in which multiple autonomous agents

work together. They are: centralized, decentralized and hybrid [56]. Centralized multi-

agent systems [41] represent a central architecture between agents, which implies that the

agents are assumed to be cooperative and benign during the problem solving process. In

contrast, decentralized multi-agent systems represent [60] autonomous control of agents,

which are assumed to be independent, cooperative or competitive, depending on the situa-

tion they experience. Hybrid multi-agent systems represent agents following a combination

of both decentralized and multi-agent systems. We are more interested in decentralized
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multi-agent systems, as they allow other agents to be added to the system easily. For the

purpose of this discussion, when we refer to multi-agent systems we are exclusively ref-

erencing decentralized systems. Wooldridge and Jennings [60] presents a formalized ap-

proach for multi-agent systems to pursue goals in a Cooperative Problem-Solving process

(CPS). To recognize and achieve a multi-agent problem, this approach follows a four-step

process. Namely: (1) recognition, to recognize if an agent cannot solve a problem indi-

vidually; (2) team formation, to select a group of agents that can be expected to solve the

problem; (3) plan formation, to come up with a plan that is agreed between the agents to

solve the problem (involves negotiation for agreement between agents); and (4) team ac-

tion, to perform the actions by the agents. However, multi-agent coordination remains a

central problem in the steps following recognition.

There are broadly two main coordination mechanisms in multi-agent systems. One

is called direct coordination mechanism and the other is indirect coordination. In the di-

rect coordination mechanism, an agent deliberately interacts with other agents. In indirect

coordination mechanism, an agent does not directly interact with other agents. However,

it either uses environmental cues or specific sign signals to coordinate. Fierro and col-

leagues [21] presented an experiment for indirect coordination mechanism, in which a

group of mobile robots maintain a specified formation to perform search and rescue op-

erations. Whenever an obstacle arose these agents observed their neighboring agents to

reorder and maintain one of the specified formations. Stone and Veloso [55] also presented

the idea of locker room agreements where the agents agree on certain set of rules before

acting on the environment. While acting, the agents follow rules based on the observation

of environmental cues. This idea is implemented in the Robocup domain, where agents

coordinate to play soccer.

Direct coordination mechanisms can be further classified into signal broadcasting,

auction mechanisms, negotiations and argumentation. In signal broadcasting [32, 47],

agents send messages to any agents within a specified range (e.g., announcements in an
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airport). In an auction mechanism [19, 22], a single agent or a group of agents can bid on

either a single goal or multiple goals. In negotiations [20, 53], agents interact with each

other and can go back and forth on bids. Argumentation [49], is similar to negotiations

where agents provide reasons for their negotiations. This thesis has shown the importance

of such justifications and reasons when coordinating, but we have also demonstrated the

limitation of auction mechanisms alone.

4.2 Theory of Mind

Theory of mind is an ability of an agent to infer other agents’ goals, beliefs, emotions and

intentions. There are mainly two broad theories which are widely accepted from a psycho-

logical stand point. Theory Theory [28], states that children hold a naı̈ve psychological

theory to infer goals, beliefs and emotions of others. This knowledge is used to predict be-

haviors of others. Moreover, as children grow up they develop their psychological aware-

ness to better infer mental states of others. The Simulation Theory of Empathy [27], states

that children simulate the actions of others to predict the behavior of others. Furthermore,

there are several hybrid theories that include a part of Theory Theory and the Simulation

Theory of Empathy, some of which are the intentional stance and Structure-Mapping the-

ory of analogy. Intentional stance [4, 17] is a concept of theory of mind that states that an

agent can predict other agent’s beliefs and desires given the other’s purpose and place in

the world. Structure-Mapping theory (SMT) [2] of analogy is a theory of analogy and simi-

larity. SMT focuses on humans’ ability to see structural similarities across dissimilar cases.

From a computational standpoint, Rabkina and colleagues [48] propose that an agent can

better recognize goals of other agents by externally observing their actions using an im-

plementation of the Analogical Theory of Mind. This implementation involves retrieving

mapped structures of internal knowledge about the observable actions, thereby predicting

the goal using the retrieved structures. The internal knowledge is therefore trained.
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4.3 Goal Reasoning

Goal Driven Autonomy (GDA) is introduced in INTRO [7]. This work was motivated to

find the reason behind the origin of goals. This system was implemented using the Wumpus

world domain. The goal of the agent is to reach a destination while avoiding the pits in

the world. Later on, the concept of GDA was incorporated into a cognitive architecture

called MIDCA [46] and subsequently the work was extended into the arsonist domain

[45]. Goal management has been a key focus of goal reasoning research, hence GDA

allows the agent to dynamically perform certain goal operations: selection, monitoring,

transformation, formulation and several others (see [39, 38]). The work of Kondrakunta

[34, 35, 36] presents a goal selection strategy to look at the cost-benefit ratio during goal

selection. This work closely aligns with one of our recent selection strategies [26]. Our

recent work also tries to improve the selection strategy with the help of resource estimation

and priority functions for goals.

Similarly, Dannenhauer and colleagues [16] introduced the idea of goal monitors. An

agent creates rules as preconditions to monitor goals. If the preconditions are satisfied then

the agent switches its goal or drops the goal. This paper did not consider the problem of

selecting goals when there are multiple goals to achieve however. Moreover, the precondi-

tions are mostly rule based rather than any kind of functional estimation, which is often a

problem when the agent has very limited resources at hand. The work in [34] also presents

an initial implementation of goal change using predicate transformations. The authors Cox

and colleagues [12] presented the idea to implement other goal operations like change and

formulation. A formalism of how to implement the two operations was outlined in the

paper. Finally, for the work on agents generating their own goals when problems are en-

countered, see [40, 37], Each of these publications distinguish between an anomaly and a

problem and they come up with a process for the agent to generate its own goals. GDA is

also implemented in a second architecture called ARTUE [33], which presents the perfor-

mance variation of the ARTUE architecture with both benefits and limitations.
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Conclusions and Future Research

In our research, we presented an approach for a distributed multi-agent system. The agents

in the system work together when unexpected events happen. They follow a theory of

mind approach to delegate goals and share the required knowledge. This thesis explicitly

develops algorithms to approach goal delegation, agent selection, knowledge sharing, and

goal acceptance rejection, and a framework for explanation. These algorithms improve the

performance of a multi-agent system when uncertain events are bound to occur, which is

often the case in the real world. Furthermore, to support our claims of robustness and gen-

erality, we introduced our approach in two different research domains. The data supports

our claims that a multi-agent system following our approach outperforms all the real-world

multi-agent systems introduced in chapter 3.

We intend to extend this research to incorporate different kinds of explanations and

the concepts of usurpation and goal sharing. Explanations can not only help the delegating

agent to justify the reasons behind the delegated goals to the selected agent but can also

play a major role in the agent coordination process. For example, in the case of a selected

agent rejecting the delegated goals, explaining the reasons behind the rejection will help

improve the delegating agent’s agent selection process.

In this research, we have only talked about uncertain events that negatively affect

agent’s resources. However, real-world opportunities can also occur, which positively af-

fects the agent’s resources. In such a case, an agent that can quickly achieve its goals can

also volunteer to achieve other agents’ goals, thereby improving the multi-agent system’s
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performance Overall. Such a process is called goal usurpation. This also occurs when after

delegating a goal, an agent decides to take it back.

Moreover, in this research, we assumed that an individual agent is capable enough to

achieve its own goals. However, in the real-world an individual agent often requires the

help of several other agents to perform a given goal. Such a process is called goal sharing.

We want to incorporate goal sharing within our approach by leveraging the concept of

Hierarchical goal networks (HGN). HGNs can split a high-level goal into several sub-goals

to share with capable agents. Such goal sharing could further improve the performance of

a multi-agent system.

In summary, results obtained from both the domains suggest that agents operating in

a distributed multi-agent environment can effectively manage their individual and shared

goals by following our approach. They decide when and what goals to delegate using our

DetectDelegation algorithm, whom to delegate using AgentSelection algorithm, and how to

delegate using both KnowledgeSharing algorithm and Explanation frameworks.
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