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ABSTRACT 

 

 

 

Mahoney, Lori A. Ph.D.  Interdisciplinary Applied Science and Mathematics Program, 

Wright State University, 2021. Applying Cognitive Measures in Counterfactual 

Prediction. 

 

 

 

Counterfactual reasoning can be used in task-switching scenarios, such as design 

and planning tasks, to learn from past behavior, predict future performance, and customize 

interventions leading to enhanced performance. Previous research has focused on external 

factors and personality traits; there is a lack of research exploring how the decision-making 

process relates to both task-switching and counterfactual predictions. The purpose of this 

dissertation is to describe and explain individual differences in task-switching strategy and 

cognitive processes using machine learning techniques and linear ballistic accumulator 

(LBA) models, respectively, and apply those results in counterfactual models to predict 

behavior. Applying machine learning techniques to real-world task-switching data 

identifies a pattern of individual strategies that predicts out-of-sample clustering better than 

random assignment and identifies the most important factors contributing to the strategies. 

Comparing parameter estimates from several different LBA models, on both simulated and 

real data, indicates that a model based on information foraging theory that assumes all tasks 

are evaluated simultaneously and holistically best explains task-switching behavior. The 

resulting parameter values provide evidence that people have a switch-avoidance tendency, 

as reported in previous research, but also show how this tendency varies by participant. 
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Including parameters that describe individual strategies and cognitive mechanisms in 

counterfactual prediction models provides little benefit over a baseline intercept-only 

model to predict a holdout dataset about real-world task switching behavior and 

performance, which may be due to the complexity and noise in the data. The methods 

developed in this research provide new opportunities to model and understand cognitive 

processes for decision-making strategies based on information foraging theory, which has 

not been considered previously.  The results from this research can be applied to future 

task-switching scenarios as well as other decision-making tasks, both in a laboratory setting 

as well as the real-world, and have implications for understanding how these decisions are 

made.
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1. INTRODUCTION AND PURPOSE 

This manuscript is structured as follows. Chapter 1 discusses the motivation and 

background for this research. Chapter 2 describes the existing dataset that provided 

additional motivation for the specific modeling approaches used in this research. Chapter 

3 summarizes the overall methodological approach used for this research and then provides 

details of each of the modeling approaches. Chapters 4, 5 and 6 discuss the results from 

each of the modeling approaches while chapter 7 discusses the meaning of these results 

and potential changes to the approaches used, in the context of the research questions and 

hypotheses. Chapter 8 describes general limitations of the research and proposed future 

work. Finally, chapter 9 summarizes the conclusions drawn from this research. 

1.1. Motivation 

Forecasting decisions predict the probability of a future event occurring, where the 

future state is evolving as the answer is being formulated, and are commonly applied in 

medical, meteorological, business, and geopolitical domains. Within intelligence and 

security analysis, there is a need to anticipate an adversary’s doctrine, principles, and/or 

intent in order to predict political, economic, military, and security implications and to 

ensure certain objects, technologies, and capabilities remain uncompromised (Trump, 

2017). Much of this analysis requires understanding and predicting patterns of human 

behavior using the often-incomplete available information. Unlike other decision-making
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problems, like probabilistic inference problems, where the answer exists somewhere, but 

may take time and (cognitive) resources to find, the true answer does not yet exist for 

forecasting problems (Juvina et al., 2020a). Analysts need to answer both probabilistic 

inference and forecasting questions, especially because the answer to a forecasting question 

can depend on using responses from an inference problem. Individual forecasts, even by 

professionals in the field, are frequently not better than simple models or even chance 

(Tetlock, 2005). While the accuracy of individual forecast scores is improved by placing 

the best forecasters together on a team, a practice known as ‘superforecasting’ (Mellers et 

al., 2014; Mellers, Stone, Murray et al., 2015), as well as by aggregating results (Turner et 

al., 2014) and using the ‘wisdom of crowds’ (Yi et al., 2012) to reduce systemic biases in 

individual forecasts, it is not always practical to use aggregation or teams of forecasters. 

There are multiple different techniques an individual can use to form forecasting 

decisions, such as anticipatory thinking and sensemaking (Klein et al., 2007; Pirolli & 

Card, 2005), heuristics (Harvey, 2007; Hogarth & Makridakis, 1981), building rules- or 

formula-based models and extrapolation (Armstrong, 2001; Harvey, 2007), and assessing 

counterfactuals (Hendrickson, 2009). The method used by an analyst is partially 

determined by the forecasting domain, with mathematical algorithms and models used 

more for meteorological and business forecasts, heuristics more popular in sales 

forecasting (Harvey, 2007), and sensemaking used in intelligence and security forecasts. 

Counterfactual predictions are not widely used as a forecasting tool, but are being applied 

as part of third wave artificial intelligence (AI) in the geopolitical and intelligence domains 

(Defense Advanced Research Projects Agency, 2019; Hendrickson, 2009). 
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Defense Advanced Research Projects Agency’s (DARPA’s) Teaching AI to 

Leverage Overlooked Residuals (TAILOR) program focused on using counterfactual 

predictions to customize interventions to optimize human performance for multiple types 

of law enforcement and national security applications (Defense Advanced Research 

Projects Agency, 2019). Counterfactual predictions use ‘what if’ questions to consider 

alternate scenarios and how changes to previously observed factors would impact the 

outcome of interest. One question in particular concerned predicting counterfactuals for 

task-switching and overall task performance within a multi-team system (MTS) known as 

Project RED. As the participants attempted to complete the overall task (i.e., build a well 

on the Martian surface) they performed multiple different tasks and used multiple different 

tools to assist them. Several different models of the data predicted counterfactuals where 

the environment was the same, but the people were different (between-subjects); 

counterfactuals where the people were the same, but the environment was different (within-

subject); and counterfactuals where both the environment and people were different. 

Within the TAILOR program, the between-subjects question asked “Based on the data 

from the mixed gender crews, what is the performance score and the probability of 

switching tasks for the all-female crew?,” the within-subject question asked “Based on the 

data from zero- and one-minute communications delay, what is the performance score and 

the probability of switching tasks for the three-minute communications delay?,” and the 

other question asked “Can a model constructed from the 30-day missions accurately predict 

the performance score and the probability of switching tasks in the final campaign 4 

sessions, where time-in-habitat is two weeks longer than the analogous final sessions in the 

30-day missions?” 
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The Crew Recommender for Effectively Switching Tasks (CREST) counterfactual 

model of Project RED (Mesmer-Magnus et al., 2020) considered features taken directly 

from the collected data (e.g., task characteristics, social factors, technology affordances, 

situational demands, and personality traits) to predict overall task performance and the 

likelihood of task-switching behavior for alternate scenarios (e.g., different team 

composition, different time frame, etc.). This was similar to Mellers, Stone, Atanasov et 

al’s (2015) study of forecasting performance that investigated the effects of dispositional 

variables (e.g., cognitive ability, open-mindedness), situational variables (e.g., training, 

environment), and behavioral variables (e.g., deliberation time, belief updating) to explain 

variation in forecasting performance. In both studies, the factors used to define ‘individual 

differences,’ like personality traits and cognitive ability, were not dependent on the task 

completed. In Mellers, Stone, Atanasov et al’s (2015) study dispositional variables were 

only weakly correlated to forecasting performance. The existing CREST model included 

social factors and personality traits, but did not include factors that describe the cognitive 

process(es) individuals used, like what strategy(ies) were employed to select a response or 

how information was gathered. There was a need to apply individual level metrics to 

describe differences in human performance for the overall design and planning task as well 

as task-switching, to better understand the mechanisms underlying the behavior and to 

make out-of-sample predictions. The research completed for this dissertation filled that gap 

by leveraging machine learning and cognitive models to extract information about the 

underlying cognitive processes used by participants during the task, to better describe and 

explain how participants approach solving the problem, both individually and as a member 

of a multiple teams. The research focused on comparing multiple models to identify which 
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process mechanisms are favored to explain the observed behaviors. The addition of team 

factors impacting decision-making strategies and cognitive processes, such as interpersonal 

ties between participants and shared mental models, for both task-switching and overall 

task performance, was a novel contribution of this research. In addition, this research 

incorporated the latent variables into counterfactual prediction models by using the 

measures from the machine learning and cognitive models as factors in these models.  

This research addressed four specific questions related to individual differences in 

task switching and task performance when switching between multiple tasks. The research 

questions and their associated hypotheses were: 

• Q1: What decision-making strategy does a participant use to solve the overall task 

and what are the most important factors contributing to this strategy? 

H1: Using machine learning to identify and categorize factors, unknown and 

undefined a priori, that contribute to pattern(s) of individual and team decision-

making strategies better predicts out-of-sample category data than a random 

assignment model. 

• Q2: Is the preference to select a task based on individual task attributes or on the 

overall gain provided by the task? 

H2: An information foraging (IF) theory based cognitive model containing 

alternative-level preferences better predicts the Project RED out-of-sample data 

than a cumulative prospect theory (CPT) based model containing attribute-level 

preferences.  

• Q3: Are all tasks evaluated simultaneously or is a serial process used to create a 

subset of tasks to consider when selecting the next task? 
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H3: A two-stage cognitive model better predicts the Project RED out-of-sample 

data than a single-stage model. 

• Q4: What effect does including the decision-making strategies and cognitive 

process an individual uses to select which task to perform have on predicting overall 

task performance and task-switching behavior?  

H4a: Including individual and team decision-making strategy as a contextual factor 

in a counterfactual prediction model improves prediction accuracy for out-of-

sample participants over the baseline model for within-subject counterfactuals, 

after accounting for model complexity. 

H4b: Including cognitive process model parameters as a contextual factor in a 

counterfactual prediction model improves prediction accuracy for out-of-sample 

participants over the baseline model for between-subject and within-subject 

counterfactuals, after accounting for additional model complexity. 

H4c: Including both the decision-making strategies and cognitive process model 

parameters as contextual factors in a counterfactual prediction model improves 

prediction accuracy for out-of-sample participants over the baseline model for all 

three types of counterfactual questions, after accounting for additional model 

complexity. 

1.2. Theory 

This section provides an overview of the theories that shape the research questions, 

the associated hypotheses, and the methodological approach used in the analysis, to 

investigate potential improvements to counterfactual forecasts of task-switching behavior 

and performance on a design and planning task, by extracting and using residual 
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information about participants’ underlying strategies and cognitive processes used to 

complete the overall task. In particular, background knowledge of forecasting and task-

switching, as well as information foraging theory, another theory that can be used to 

describe task-switching behavior, provided a foundation to shape the research problem and 

guided this research. Knowledge of different types of decision strategies and cognitive 

process models informed the analysis methods used in this research. 

1.2.1. Forecasting Techniques 

Forecasting can be described as an ‘open world’ decision-making process that 

includes all possible factors, whether they occurred previously or not. Pirolli and Card 

(2005) describe intelligence analysis and forecasting as a sensemaking process where the 

analyst gathers information, represents the information in a formalized schema (structured 

to aid analysis), develops insight by manipulating the representation, and creates 

knowledge or an action based on the insight. The schemas vary by analyst and by question, 

but are central to the sensemaking process. A notional model of sensemaking (Pirolli & 

Card, 2005) consists of a foraging loop for seeking, filtering, and extracting information 

(possibly into a schema) and a sensemaking loop to develop iteratively a mental model 

from the schema that best fits the evidence. The processes are used iteratively both bottom-

up and top-down to solve a problem. Klein, Snowden, and Pin (2007) distinguish a separate 

internally-focused anticipatory thinking process that combines externally available 

information with internal representations (semantic and episodic memories) and 

capabilities to generate possible future states. Klein et al. (2007) describe three forms of 

anticipatory thinking: finding similar events and clusters of cues from the past in the 

current situation (pattern matching), using the trajectory of events and extrapolating trends 
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to prepare for future events (trajectory tracking), and noticing inconsistencies and 

interdependencies between events (conditional). With pattern matching and trajectory 

tracking, we respond to a cue (an event or the trend of a series of events), while with 

conditional anticipatory thinking we need to see the connections between events. Geden et 

al. (2019) also identify three distinct, but slightly different, forms of anticipatory thinking: 

anticipating future states and identifying their indicators (prospective branching), 

examining a particular future state and working backwards to identify its indicators and 

warnings (backcasting), and identifying paths from past states to the current one 

(retrospective branching). Because of the large number of possible future states (in theory, 

an infinite number), an analyst uses the anticipatory thinking process to only consider 

future states that are plausible and relevant (Geden et al., 2019). Information is reorganized 

for sensemaking by analysts to amplify their ability to find patterns for the conceptual 

schemas they use in understanding the relevant information needed for analysis (Pirolli & 

Card, 2005). 

Adaptive toolbox theory (Gigerenzer, 2008) specifies that heuristics are used for 

situations where probabilities are unknown, goals or problems are ill-defined, part of the 

information is ignored (frugal), and solutions are needed quickly (fast). Logic and 

probability provide optimal solutions whereas heuristics provide satisficing solutions. 

Heuristics provide a robust, tractable method to make decisions by ignoring ‘unnecessary’ 

information using ecologically rational criteria (decision making in real-world domains). 

Heuristics are constructed and selected from the adaptive toolbox using primarily 

reinforcement learning, but also social learning and evolutionary learning. Adaptive 

toolbox theory says that heuristics consist of adjustable, adaptive building blocks for new 
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situations. A less predictable situation requires the exclusion of more information 

(Gigerenzer, 2008). For example, Wübben and Wangenheim (2008) showed that a one-

reason heuristic can forecast future customer purchasing activity as well as complex 

stochastic models. 

Counterfactual models can be described as a ‘closed world’ that considers alternate 

scenarios about a limited number of factors, those that occurred in the previously observed 

data or the actual situation, and how changes to those factors would impact the outcome of 

interest (Juvina, et al., 2020b). Humans intuitively and consistently use counterfactual 

reasoning to make judgments about many everyday occurrences by considering possible 

alternate worlds in which our counterfactual statement is true to reach our conclusion 

(Pearl, 2018). For example, if we know that Jane did not take any aspirin and her headache 

did not go away, we can also consider an alternate world where Jane took an aspirin and 

her headache went away. The same factors are considered – headache and aspirin – but the 

alternate, counterfactual world reaches a different outcome. David Lewis argued in 

Counterfactuals (Lewis, 1973) that we compare the actual world (where Jane did not take 

an aspirin) to the “most similar” alternate world where she did take an aspirin and conclude 

that the counterfactual statement “Jane’s headache would have gone away if she had taken 

aspirin” is true (Pearl, 2018). People typically apply counterfactual reasoning to their own 

choices, rather than another person’s choices or behaviors, as these alternatives are easier 

to imagine (Kahneman & Miller, 1986), so an individual will likely conclude that “my 

headache would have gone away if I had taken an aspirin” and take an aspirin the next time 

he or she has a headache, than to consider Jane’s headache and apply the counterfactual 

conclusion to their own headache. Counterfactual reasoning is also commonly applied to 
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the results of games, especially for a loss that was the result of an error in one’s own 

performance (Kahneman & Miller, 1986), such as missing a strike in bowling. While this 

thought process is completed with minimal effort for the question of Jane’s or one’s own 

headache, or for other everyday occurrences, the same counterfactual reasoning process 

can be deliberately applied to more complex, cognitively demanding problems, like within 

intelligence analysis (Hendrickson, 2009), human performance optimization (Defense 

Advanced Research Projects Agency, 2019), lessons learned (Intelligence Advanced 

Research Projects Activity, 2018), and strong AI (Pearl, 2018). 

Counterfactual reasoning occurs in many domains, including philosophy, artificial 

intelligence (AI), and psychology, as a framework for causal inference. Psychologists 

attempt to explain how and why humans use counterfactual models in their mind, while AI 

researchers are focused on building counterfactual structural models that implement causal 

reasoning in robots and other AI systems. Counterfactual predictions of health and human 

performance outcomes in alternate scenarios can inform experimental designs; for 

example, if there is an intervention that is predicted to provide a significant treatment effect 

for subjects with certain characteristics then the experimental group needs to include 

people with those characteristics. Additionally, counterfactual reasoning aids analysts’ 

forecasting by improving causal inference, substantiating post-event reporting, guiding 

future scenario analysis, and encouraging innovative “what-if” thinking (Hendrickson, 

2009). Counterfactual statements about what actions would have led to a different outcome 

provide a basis for developing lessons learned about events, policy, or analysis tradecraft 

(Intelligence Advanced Research Projects Activity, 2018). To produce a functional 

outcome, such as developing lessons learned that lead to implementing new approaches 
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that generate successful future results, requires that the counterfactual accurately identifies 

an antecedent cause that can be acted upon, that it facilitates the means to alter future 

behavior, and that a future relevant opportunity for application is recognized (Smallman & 

Summerville, 2018). The criteria for functional versus dysfunctional outcomes have been 

studied for counterfactuals applied to events within an individual’s life (Kahneman & 

Miller, 1986, Smallman & Summerville, 2018), but not in the context of predicting future 

events related to groups or larger events determined by another person’s choices or 

behaviors.  

Counterfactual models are more restricted in their use than pre-factual models as 

counterfactuals only consider factors that occurred in previously observed data or the 

“actual situation,” while pre-factual forecasting models can consider any factor in making 

the prediction and can make predictions about outcomes that have never been observed, as 

long as the relationship between the predictor(s) and the outcome can be modeled, using 

either previous observations or conjecture. For example, a person may use a pre-factual 

model, but not a counterfactual model, to predict that they will lose their bowling game to 

a new opponent because they haven’t bowled in 3 years while their opponent has bowled 

twice a week for the last 6 months. The person has no previous observations to use in 

making this prediction, but can use general knowledge that practice improves performance. 

To make a counterfactual prediction requires having observed data. Once the person has 

finished the bowling game against their opponent, they can use the observations from that 

first game to generate counterfactuals for predicting the outcome of a second game. 

Counterfactual models are useful for repeating events where there is an opportunity to 

apply changes in the future. 
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1.2.2. Task Switching Theory   

The research questions for this dissertation focused on counterfactual predictions 

of task switching behavior within a multi-team system (MTS). In this research, as well as 

other real-life scenarios, the larger task was completed by switching between a series of 

smaller subtasks, sometimes individually and sometimes as a member of a team or multiple 

teams. The theory of task-switching provided direction to develop cognitive and 

counterfactual models by supplying factors thought to be relevant to task switching 

behavior. Better understanding of individual differences in task switching, to be able to 

predict an individual’s switching behavior, could help optimize performance of an all-

human team as well as improve human-machine interactions, by improving the 

coordination of switching between tasks and overall task performance. 

Wickens et al. (2013) describe two forms of multi-tasking – concurrent task 

performance and sequential task performance. During concurrent task performance, two 

tasks are performed in parallel sharing cognitive resources, such as talking on the phone 

while driving or reading a paper while listening to music. Sequential task performance 

occurs when it’s not possible to perform both tasks simultaneously, such as trouble-

shooting a problem and monitoring other areas or writing an email and addressing a knock 

at the door. There are not enough resources available to perform both tasks in parallel so 

the individual must focus on one task and then switch to the other. The sequential task 

performance process is described as one where the analyst is performing some ongoing 

task (OT) where an alternative task(s) (AT) is available. The analyst decides either to 

continue with the OT or switch to an AT. The switch decision can be voluntary (i.e., task 

switching) or involuntary (i.e., interruption management). Many studies of sequential task 
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performance (e.g., Monsell, 2003; Wylie & Allport, 2000; Meiran, 1996) use simple 

homogenous tasks such as classifying digits and focus on the fluency and costs of switching 

tasks, not on the choice to make the switch (for voluntary) or to address the interruption 

(for involuntary) (Wickens et al., 2013). Many complex, real-world scenarios and 

environments require switching between different types of tasks, some independent and 

some coupled. There is an interest in knowing how/why and when a person switches from 

one task to another.  

Wickens et al. (2013) completed a meta-analysis of the task-switching and 

interruption management literature to identify variables that influence the choice to switch 

tasks and the strength of that influence. They derived six influence variables from the data: 

switch avoidance, task inertia difficulty effect and the effects of AT difficulty, priority, 

salience and interest. Five of these factors are built into the Strategic Task Overload 

Management (STOM) model that addresses longer duration multi-tasking situations (on 

the order of minutes to hours) and focuses on the decision of what task to perform (Wickens 

et al., 2015).  

The model, shown in Figure 1, defines that each task-switch is based on multiple 

attributes, making the problem a multi-attribute decision. Each attribute has a polarity and 

some have a numerical weight. The model assumes that overloaded operators (i.e., more 

tasks than resources available) must decide whether to continue performing the OT or 

switch or one of several possible ATs, making the problem a multi-alternative decision. 

The attractiveness of ATs varies based on their attributes and the stickiness of the OT varies 

based on its attributes. The STOM model uses the attribute values to determine whether to 

continue with the OT or to switch to another task, and if to switch, which AT to switch to. 
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A meta-analysis found the switch-avoidance tendency, calculated to be 60%, as an 

important factor in the decision to continue with the OT or switch. Four other task attributes 

also moderate this tendency: task interest, priority, difficulty, and the salience of the AT 

(as compared to the OT). In addition to the switch-avoidance tendency, an operator is more 

likely to stay with an engaging, high-priority task. If the operator does choose to switch, 

they are more likely to choose the easier, more interesting, higher-priority, and higher 

salience task. It is interesting to note that the STOM model assumes an overloaded operator 

(Wickens et al., 2015), but many task-switching scenarios (e.g., the Project RED study) are 

not true overload scenarios because even though the tasks require a high workload and 

demand multiple resources, the scenarios do not provide an opportunity to perform tasks 

concurrently.  

 
Figure 1. Strategic Task Overload Management model 

1.2.3. Information Foraging Theory 

Within Project RED, individuals had to combine existing knowledge with 

information provided by the environment to complete the overall task. Completing a larger 

task, composed of multiple smaller tasks, requires deciding which task to work on and 



15 

 

when to switch to a different task. Information foraging theory explains how people gather 

and exploit information and provides an explanation of how people decide which task to 

work as well as why and when to switch.  

Information foraging theory, based on optimal foraging theory from the animal 

foraging literature, proposes that people complete tasks either to explore and gather 

additional information or exploit the existing information (Pirolli & Card, 1999). The 

theory assumes that information foraging is embedded in the context of some other task 

(e.g., completing smaller tasks to find the best well design). People adapt their strategy or 

the structure of their environment, if possible, to maximize the amount of information 

gained per unit cost (e.g., time). They spend some amount of between-patch time getting 

to the next task (e.g., opening a file drawer or typing in a website) and some amount of 

within-patch time completing a task, until they decide to leave for a new one.  Information 

patch models address how people allocate time, filter information, and complete 

enrichment activities in environments where information is encountered in clusters. Unlike 

animal foragers, information foragers can set up their environment (i.e., make frequently 

used sources quickly accessible) to improve the rate of information gain. Information scent 

models describe how people perceive the value, cost, or access path from proximal cues to 

navigate through a (physical or virtual) space to find a new (high-yield) patch or task. 

Information diet models determine how people decide how to select and pursue tasks to 

maximize the rate of gain of information relevant to their objective (Pirolli & Card, 1999). 

With all these models there is a tradeoff between exploiting the current task and exploring 

a new task.  
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Behavioral patterns (e.g., task-switching) are most commonly used to define 

exploitation and exploration (Mehlhorn et al., 2015); behavior that is stable over time, like 

remaining at a task, is interpreted as exploitative and behavior that is variable over time, 

like alternating between tasks, is interpreted as exploratory. Environmental, individual, and 

social factors all influence exploitation and exploration. Mehlhorn et al. (2015) propose 

that the decision to stay at a current patch or task or to leave for a new patch is not a tradeoff 

between exploitative and exploratory behavior, but instead a point on a continuum where 

the interpretation of the behavior as either exploitative or exploratory depends on the 

context in which it is considered. Figure 2 shows how exploration vs. exploitation can be 

thought of as a continuum along three dimensions: behavioral patterns, values and 

uncertainty related to the choice options, and outcome obtained from a choice (Mehlhorn, 

et al., 2015). When considered as a continuum, behavior is not seen as strictly stable or 

variable, but as a point somewhere between constantly switching and never switching. 

Instead of the behavior defining the strategy, consider exploitation as a strategy that is 

displayed behaviorally by remaining at a task over time and exploration as a strategy that 

is displayed by switching between tasks. The underlying degree of exploitation versus 

exploration as a strategy can also be represented in the choice outcomes and values and 

uncertainty in the choice options. Understanding what drives the strategy to exploit or 

explore the task also leads to understanding if a forager will remain at a task or switch to a 

new one.   
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Figure 2. Continuum of exploration to exploitation along three dimensions (Mehlhorn et 

al., 2015) 

 

Not all foragers work as individuals; many work in teams. Project RED was set up 

to encourage participants to work in teams towards both individual and team goals. 

Foraging dynamics, such as exploration and exploitation, can be analyzed at the team level 

as well as the individual level. Looking again at the animal foraging literature, studies of 

social insects provide insight into the team dynamics of foraging, showing that task-

switching is common in social insects. Empirical studies of social insects show that as 

conditions change, individuals decide whether or not to be active and which task to 

perform. These individual decisions generate the dynamics of group behavior, the number 

of individuals actively engaged in each task at any moment. Much of the theoretical work 

on social insects examines how individuals are allocated to components of a (larger) task. 

All share the basic idea that an individual's behavior depends partly on its assessment of 

its environment and partly on its interactions with other individuals (Pacala et al., 1996).  

1.2.4. Decision-making Strategies 

There are different possible approaches to solving a problem like the one presented 

as part Project RED (e.g., well design and placement) where there are multiple sources of 



18 

 

information to use in solving the problem. A forager can exhaustively search those sources 

to gather all the available information or can perform a limited search to look for what are 

considered to be the key pieces of information needed to solve the problem. The 

information search strategy is tied to how the performer makes their decision. 

Compensatory decision-making strategies are those that seek to optimize the solution by 

processing all relevant information and trading off the good and bad aspects of each 

alternative. A compensatory strategy, by assuming unlimited time and mental resources, 

leads to more information seeking behavior to complete an exhaustive search. Some 

examples include normative theories based on mathematical models, such as Bayes’ 

theorem and expected utility, and mental models.  

Alternatively, non-compensatory strategies typically reduce information 

processing demands by ignoring potentially relevant problem information. They seek to 

find a solution that is good-enough or one that satisfices (Simon, 1956). This could be due 

to a trade-off between the cost of search and the benefit provided by the additional 

information (J. Payne et al., 1988) or because the limited information is all that is needed 

to solve the problem. Fast and frugal heuristics (Gigerenzer, 2008) ignore unnecessary 

information in an ecologically valid environment leading to limited search and less 

information seeking behavior. This is consistent with information foraging theory (Pirolli 

& Card, 1999), where people select certain types of information.  

Research to evaluate decision-making strategies typically tries to determine under 

what scenarios (i.e., type of environment and task) a particular strategy is used (for 

example, take the best (TTB) vs. tally vs. weighted additive (WADD) vs. guess, Lee et al., 

2019; TTB, Newell & Shanks, 2003; recognition heuristic, Oppenheimer, 2003; WADD 
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vs. TTB, Rieskamp & Otto, 2006). In these studies, the type of task presented is selected 

to test the use of one or more particular pre-identified strategies. The many individual 

differences in strategy selection led to the development and use of models to identify and 

classify strategy use (Lee et al., 2019). Most studies, and associated models, only use 

choice data and assume that a person’s strategy is fixed over the duration of the task, 

although Lee et al. (2019) found evidence of strategy switching using choice, search, and 

reporting information. As the overall task and accompanying smaller tasks in Project RED 

were not selected to test pre-defined strategies, the analysis methods traditionally used to 

determine decision-making strategy could not be applied to this dataset. Instead, this 

research used a machine learning approach to identify clusters of similar participants, 

assuming that these participants were using similar strategies in their decision-making 

while completing the overall task. 

1.2.5. Decision-making Cognitive Process Models 

Cognitive models are used for many types of decision making, such as perceptual 

decisions (Ben-David et al., 2014), preferential choices (Busemeyer & Townsend, 1993), 

and risky choices (Johnson & Busemeyer, 2010), to explain empirical results with a 

common set of psychological principles. These models provide the capability to apply 

cognitive mechanisms to better understand observed behavior, especially differences in 

behavior under different conditions or by different groups. Task-switching between smaller 

tasks to achieve a larger goal, like in the Project RED dataset, is a type of multi-alternative, 

multi-attribute decision. It is reasonable to use evidence accumulation models of decision 

making for the decision of task-switching. 
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Evidence accumulation models, also known as sequential sampling models, are a 

class of computational models that describe the decision-making process as the 

accumulation of evidence over time for each response option, where the response option 

that reaches the response boundary (i.e., threshold) first is selected. Most are implemented 

as noisy diffusion processes. Examples include the diffusion decision model (DDM; 

Ratcliff, 1978), the leaky competing accumulator model (LCA; Usher & McClelland, 

2001), decision field theory (DFT; Busemeyer & Townsend, 1993), and the linear ballistic 

accumulator (LBA; Brown & Heathcote, 2008). Several evidence accumulation models 

have a multi-alternative, multi-attribute version that have been applied to preferential, 

risky, and perceptual choice problems, including decision field theory (MDFT; Roe et al., 

2001), the linear ballistic accumulator (MLBA; Trueblood et al., 2014) and the leaky 

competing accumulator (MLCA; Usher & McClelland, 2004).  

The parameters of the evidence accumulation models describe inhibition (or 

caution) and efficiency of the process as well as any bias towards an alternative, with the 

different models assuming different mechanisms to account for observed behaviors. 

MDFT, MLCA, and MLBA can each be separated into three stages describing how 

objective attribute values (i.e., process input) for each alternative are mapped to subjective 

representations, how attention is allocated across attributes, and how alternatives compete 

until some threshold amount of evidence accumulates to form the decision (i.e., process 

output) (Turner et al., 2018). 
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2. DATA 

This research used previously collected data from a semi-controlled real-world 

design and planning task, known as Project RED, where participants worked individually 

and in teams to solve a problem. There were multiple smaller tasks they could switch 

between, as they wanted, to complete the overall task. COVID-19 restrictions severely 

limited the options for new data collection in 2020 so one advantage of using the Project 

RED data was that it was already available to test the hypotheses for this research. The 

Project RED data is described in the first section of this chapter – its composition and 

associated measurements as well as how it was collected. The decision strategies for 

completing the overall task were not controlled or measured, which was a limitation of the 

data. Another limitation was the small number of switches between tasks during the overall 

task. These limitations are mentioned here, but discussed in more detail while describing 

the methodological approach, in chapter 3. The remainder of this chapter describes an 

exploratory analysis that was completed as part of this research to identify additional 

residual, derived predictors to include in the analysis. 

2.1. Project RED 

The Project RED dataset contained performance and task-switching data for 192 

participants working in teams to solve the problem of finding the best location and design, 

as determined by different criteria for different roles, for a new well on the Martian surface. 

This was a simulated task that was originally part of a study that examined team task 

transitions while working in space. Some of the participants were in an isolated simulated 

space-vehicle environment on a hypothetical mission to Mars (i.e., the Martian crew) while 

the others were part of the Earth-bound Mission Control Center (MCC) ground team. The 
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participants performed multiple different tasks and used multiple different tools to assist 

them in completing the overall task (i.e., build a well on the Martian surface). For this 

research, task refers to these multiple different tasks available to participants to complete 

the overall task of solving the well design and placement problem. There were 15 tasks (6 

individual, 6 team, and 3 multi-team) mapped to 6 tools (e.g., completing task 0 requires 

using tool 1) for the participants to use as they wanted for completing the overall task. 

Project RED did not measure, manipulate, or control what strategies participants used to 

solve the overall task or their associated task-switching behavior. For each task there were 

values specified for the four task attributes that contribute to task-switching: task difficulty, 

priority, interest, and the salience of the alternative task compared to the original task 

(Wickens et al., 2015). Task-switching data was available for each second of the overall 

task while task performance data was only reported at the completion of the overall task. 

Table 1 provides a description for each task, identifies if it is an individual, team, or multi-

team task, and lists the tool(s) used to complete the task. The experimental setup required 

that tasks be completed sequentially.  

12 people participated in each session to complete the overall task, with each person 

assigned to a specific role. The participants were split into four 3-member teams, where 

one team member was part of the Martian crew and the other two were part of the Mission 

Control Center (MCC) located at a university. The Martian crew inhabited NASA’s Human 

Exploration Research Analog (HERA), a three-story habitat that served as an analog for 

isolation, confinement, and remote conditions in exploration scenarios. Four of the 12 

participants were part of the Martian crew and the other eight participants were part of the 
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MCC for each session. The Martian crew members remained the same for all the sessions 

within a mission, but the MCC members changed each session.  

Table 1. Task descriptions and tool mapping 

Task Description Type Tools used 

0 Building an understanding of drivers of 

personal performance; Developing role 

expertise 

Individual Info database 

1 Advocating for outcomes important to role Individual Chat window 

2 Investigate personal performance in new 

locations 

Individual Map interface,  

Decision calculator 

3 Revisit/update personal outcomes in old 

locations 

Individual Map interface,  

Decision calculator 

4 Sharing expertise Individual Chat window 

5 Providing feedback on team Individual Popup survey 

6 Understand team variable associations with 

different land characteristics/locations 

Team Decision calculator 

7 Investigate team outcomes in new locations Team Map interface,  

Decision calculator 

8 Revisit/update team outcomes in old 

locations 

Team Map interface,  

Decision calculator 

9 Exchange information with teammates Team Chat window 

10 Advocate importance of team outcomes to 

other teams 

Team Chat window 

11 Negotiate with each other about training 

decisions (Only HF team) 

Team Chat window 

12 Reach a final decision Multi-team MTS signoff 

13 Exchange information about team constraints 

to other teams (request, provide, elaborate) 

Multi-team Chat window 

14 Decide on a well location Multi-team Chat window 

 

An overview of Project RED is shown in Figure 3. The study ran over two different 

campaigns, with campaign 3 consisting of four 30-day missions, each with three sessions, 

and campaign 4 consisting of five 45-day missions, each with four sessions. The Martian 

crew changed for each mission. In campaign 3 participants had 1800 seconds to complete 

the overall task whereas they had 2700 seconds in campaign 4. Session 1 was towards the 

beginning of the mission (i.e., mission-day 9) when the Martian crew was hypothetically 

still close to Earth so participants did not experience any communication delay (i.e., normal 

conditions). In session 2 the Martian crew was further from Earth (i.e., mission-day 16) so 
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participants experienced a 60-second communication delay. The delay was only for 

communications between HERA and the MCC; Martian crew members within HERA 

never experienced a delay when communicating within the crew and members within the 

MCC never experienced a delay when communicating within mission control. For session 

3 within campaign 3, the Martian crew were again close to Earth so there was no 

communication delay, but it was towards the end of their mission (i.e., mission-day 28) 

where they had experienced extended social isolation. For campaign 4, participants 

experienced a longer 180-second communication delay in session 3 and no communication 

delay in session 4. Session 4 occurred towards the end of the campaign 4 missions so, 

again, the Martian crew members had experienced an extended period of social isolation. 

Data were provided from 12 HERA crew members and 48 participants acting as mission 

control in campaign 3, and from 20 HERA crew members and 112 participants acting as 

mission control in campaign 4. Since HERA crew participants remained the same over 

multiple sessions the overall task was completed a total of 240 times by these 192 

participants. This was referred to as the ‘not withheld’ data for this research. An additional 

84 observations related to the counterfactual questions completed over 7 sessions by 20 

HERA crew and 56 MCC participants were withheld (referred to in this research as the 

‘withheld’ data). The ‘withheld’ data were used to predict residual parameters with the 

machine learning and cognitive process models, built using the ‘not withheld’ data. The 

results from these models were then used in the Bayesian generalized linear models to 

generate responses to the counterfactual questions.  
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Figure 3. Overview of Project RED. Each campaign is dark grey, each mission with a 

campaign is dark blue, each session within a mission is light blue, and each team within a 

session is light grey. Participants in light orange are different for each session while 

participants in dark orange remain the same across all sessions within a mission. 
 

Each of the four teams had a different primary objective for designing and placing 

the well, listed in Table 2. Each participant’s and each team’s performance were measured 

against their primary objective. The four teams also worked together to determine a plan 

for the location and design of a well to support as large a colony on Mars as possible. The 

set-up of the overall task gave each individual unique information so participants needed 

to coordinate both within and across teams in order to find a suitable location and design 

for the well. Task performance was evaluated differently for each team and for each of the 

roles. The original researchers determined the calculation of the performance scores; they 

were calculated using an unidentified function of the parameters that the participants chose. 

The participant had access to a decision calculator to preview their scores based on different 

parameter values, but only received their final individual, team, and multi-team system 

scores once at the end of the overall task based on the decisions that everyone made. Since 

the scales of the scores were different for different roles, as shown in Table 2, the scores 

were normalized to range from 0 to 1 for use in this research. This research focused on 
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task-switching behavior as the outcome of interest because there was a larger amount of 

better-defined data available. It was not possible to simulate or replicate the task 

performance scores using the information provided with the dataset. The performance 

scores were only included as an outcome for the counterfactual prediction models. 

Table 2. Individual role and team descriptions 

Role Location Team 

Performance 

Objective Performance Score 

Drilling Specialist  HERA 

Robotics 

Develop well 

construction plan that 

minimizes the total 

direct cost 

0 - infinity, lower is 

better 
Materials Specialist  MCC 

Operations Specialist  MCC 

Biochemical Engineer  HERA 

Engineer 

Design well to 

maximize total clean 

water output 

0 - 1, higher is better 

Fluid Engineer MCC 0 - 1, higher is better 

Mechanical Engineer  MCC 0 - infinity, higher is 

better 

Hydrogeologist  MCC 

Geology 

Find location to 

maximize water 

available 

0 – 397677, higher is 

better 

Sedimentologist  HERA 0.035 - 1, higher is 

better 

Structural Geologist  MCC 485.331 – 166399, 

higher is better 

Martian Terrain 

Specialist  

MCC 

Human 

Factors 
Minimize terrain cost 

0 - infinity, lower is 

better 

Maintenance 

Specialist  

MCC 

Martian Meteorology 

Specialist  

HERA 

 

The study was structured by Mesmer-Magnus et al. (2020) to include factors that 

the experimenters believed affect completing a variety of tasks in space while interacting 

with multiple individuals, teams, and types of tools. Data was collected for parameters that 

encompassed 5 different types of factors: task characteristics, social factors, technology 

affordances, situational constraints, and individual (personality) differences. The task 

characteristics were quantitative measures of Wickens’ task attributes – difficulty, interest, 

priority, and salience – as well as the interdependence of the task. The interdependence 

measure captured if a task was performed solo (i.e., individual task), within a team (i.e., 



27 

 

team task), or across teams (i.e., multi-team tasks). Social factors were included because 

individuals in space are members of multiple teams, where the members of the teams can 

change. For example, the MCC members within Project RED changed each session, but 

the Martian crew did not. Behavioral ties and interpersonal ties were measured for each 

session. Participants were asked several times during Project RED to answer the question 

“Who is a valuable source of information?” to measure behavioral ties and to answer the 

question “Who do you enjoy working with?” to measure interpersonal ties, where each pair 

of participants either are (1) or are not (0) related. Team mental models were also measured 

using pairwise comparisons of how participants motivated one another, coordinated work, 

managed conflict, monitored team progress, and shared information. Participants rated the 

extent to each pair of items were related to achieving the goals of Project RED on a scale 

of 1 (totally unrelated) to 7 (very strongly related). These ratings were used to calculate the 

Euclidean distance between each pair of participants’ responses to determine the 

sharedness of each pair’s team mental models. Two measures of technology affordance 

were thought to be relevant to working in space and were included in the data: editability 

and association. Editability is how much control the content creator has over their 

information over time, determined by the extent to which a tool allows users to modify or 

revise their content. Association refers to the extent to which a tool establishes connections 

among individuals or between individuals and content. Situational constraints were 

determined using the HERA crews’ mission scenario. Communication delays occurred 

during the missions when the HERA was farther from Earth. The Martian crew was socially 

isolated on the HERA for an extended period of time for the later missions. The Big Five 

dimensions of personality – conscientiousness, extraversion, agreeableness, openness, and 
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neuroticism – were measured for each session to account for characteristic differences for 

each participant.   

2.2. Exploratory Analysis  

This research included an exploratory data analysis to identify observed and derived 

factors that affected task-switching behavior and overall task performance, primarily 

focusing on task-switching behavior. Plotting the data using several different data 

visualization techniques helped identify patterns and provided insight into team dynamics 

and relationships between different factors. The exploratory analysis included line plots to 

capture time-series data, scatter plots to show correlations between two variables, and 

chord diagrams to visualize flow between entities.  

The analysis and visualization of the connection of task A to task B, defined as a 

task pair, using a chord diagram showed that the top 10% of task pairs account for 50% of 

all the tasks completed. It also showed dependencies between some of the tasks, meaning 

that some tasks are more likely to be followed by another task, and these dependencies 

were consistent between campaigns 3 and 4. The chord diagram in Figure 4 shows the flow 

from task A to task B for the top 10% of task pairs from all the sessions in campaign 3 and 

campaign 4. The task dependencies quantified the number of times that one task was 

followed by another task. The color of the chord matches the color of task A and the 

thickness of the chord shows the strength of the dependency (i.e., number of times A-B 

occurred). There is a sector for each task, where the size of the sector was determined by 

the number of times that task was completed.  
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Campaign 3 Campaign 4 

  
Figure 4. Chord diagram of flow from task A to task B for top 10% of task pairs using all 

‘not withheld’ data. Each sector shows how many times task A was completed. Each task 

A, and its matching chord, is colored differently. The thickness of the chord shows the 

number of times that a switch from task A to task B occurred.  

 

The connections of when participant A and participant B were concurrently 

completing the same team or multi-team task was defined as a functional tie. The functional 

ties quantified dependencies between participants as the number of seconds that each 

participant completed any team or multi-team task concurrently with another participant. 

A similar analysis and visualization of the functional ties (Figure 5) showed that the top 

25% of concurrent task completion account for 50% of all the time spent by participants 

on concurrent tasks, meaning that the top 25% of concurrent tasks occurred for longer 

periods of time than the other 75% of concurrent tasks. Additionally, the plots showed that 

some participants spend a greater amount of time completing tasks concurrently with other 

participants while some participants spend very little time working on team and MTS tasks 

concurrently with other participants. The plots were limited to the top 25% of concurrent 

task completion for plot readability and to a single session as MCC participants changed 
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each session. The color of the chord matches the color of participant A and the thickness 

of the chord shows the strength of the dependency (i.e., number of seconds that A and B 

completed the same task concurrently). The size of the sector was the number of seconds 

that an individual participant worked the same task concurrently as any other participant. 

Plots for the other sessions are available in Appendix A.  

Because multiple participants were able to work on the same task concurrently the 

total number of seconds for each participant could be larger than the total number of 

seconds available to complete the overall task. One limitation of this visualization was that 

it matched the team tasks between all 12 participants in a session rather than limiting those 

matches to the smaller 3-person teams so the diagrams include participants from different 

teams that were concurrently working on a team task, even though they were not 

necessarily working in coordination with one another.  

 

Campaign 3, Mission 2, Session 1 Campaign 4, Mission 5, Session 1 

  

Figure 5. Chord diagram of connections between participant A and participant B for top 

25% of concurrent task completion using all ‘not withheld’ data. Each sector shows how 

many seconds participant A worked on the same task as any other participant in their 

session. Each participant A, and their matching chord, is colored differently. The thickness 

of the chord shows the amount of time (in seconds) that participant A and participant B 

completed the same team or multi-team task.  
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Sequence plots visualize data to show patterns between different participants for 

tasks completed over time. The plots in Figure 6 show examples where only a single 

participant within a team completed a team task, while the other 2 team members 

performed individual tasks, which led to uncertainty in whether the type of task (i.e., 

individual, team or MTS) and the participant dependencies accurately described how 

participants worked together to actually perform the overall task. For example, in Figure 

6a at t=672 sec, subject 5 performed “investigate team outcomes in new locations,” a team 

task, while the other two people on the team, subjects 4 and 6, performed the survey task, 

an individual task, illustrating that team tasks could be performed independently. There 

were also many times when a participant was the only member of a team completing a 

team task, but the other members were completing multi-team tasks. It was hard to 

determine in these cases if the participants were working together or not. The method of 

quantifying participant dependencies described above included these times as concurrent 

task completion, but there may be less interaction between participants and less 

dependency on other participants’ behavior for task-switching than quantified by the 

participant dependency values. Sequence diagrams for the other sessions are available in 

Appendix A.  
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Campaign 3, Mission 2, Session 1 Campaign 4, Mission 5, Session 1  

 

 

 

Figure 6. Sequence diagram of task type performed by each participant. The blue oval 

shows where subject 5 performed at team task at t=672 s while the other two people on the 

team, subjects 4 and 6, performed an individual task. The black ovals highlight other 

examples of a team task being performed by only one person on the team. The examples do 

not include all incidents of this occurring. 

 

The Project RED dataset contained many recorded variables including personality 

traits, tool used at each second, task completed at each second, participant role, task 

attributes, tool characteristics, and team dynamics information like interpersonal ties and 

behavioral ties. Additional predictors, including time on task, task dependencies, 

participant dependencies, and typical and atypical task switches were derived from these, 

to use in the machine learning algorithms for identifying patterns of switching and decision 

strategies. Time on task was calculated as the total amount of time (in seconds) that a 

participant spent on each task. The scatter plot in Figure 7 shows that there was a strong 

non-linear relationship between the average amount of time spent on all tasks and the rate 

of task-switching (i.e., 
𝑛𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠

𝑡𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑡𝑎𝑠𝑘
). These factors were also correlated (r = -0.73, n=240). 

Time on task could be thought of as another way to represent task-switching (e.g., a 
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measure of task-staying behavior) and was excluded from the machine learning analysis 

and subsequent counterfactual predictions. 

  

Figure 7. Relationship between a participant’s average time on task and their rate of task-

switching. 
 

This research developed a measure of the typicality of switching from task A to 

task B for all participants as the proportion of switches from task A to task B out of the 

total number of switches. This weighted how typical each switch was across all 

participants, with a higher value indicating that a switch occurred more frequently. The 

proportions for every switch pair were then summed for the switches completed by each 

participant providing a measure of how much that participant completed the most popular 

switches. A higher value indicated that a participant completed more of the popular 

switches.  

This research also calculated another measure of the atypicality of switching from 

task A to task B as the inverse of the number of switches from task A to task B (i.e., 

1
𝑠𝑤𝑖𝑡𝑐ℎ𝐴−𝐵

⁄ ), with a higher value indicating that the switch occurred less frequently. 
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These values were then summed for the switches completed by each participant providing 

a measure of how much that participant completed the least popular switches. This measure 

was correlated to the measure of typical switches with a Pearson’s r of 0.21 (n=240).  

Several derived predictors used information foraging theory to inform the predictor 

names and appropriate values to assign to these predictors. Someone who explores will try 

out more different tasks leading to a derived predictor that assigned each participant as an 

explorer or not depending on how much they completed atypical switches. The top 25% of 

atypical switchers were labeled as an explorer (1) while the bottom 75% were labeled as 

not-explorers (0). Also, each of the 15 tasks were categorized into 1 of 8 categories: 

develop expertise, advocate for an outcome, investigate performance, update information, 

share information, complete the survey, negotiate, or make a decision, as shown in Table 

3. These categories informed the characterization of each task as a gathering task, an 

exploitation task, or neither. Tasks that developed expertise, investigated performance, or 

updated information were characterized as gather tasks while tasks that advocated for an 

outcome, shared information, negotiated, or made a decision were characterized as 

exploitation tasks. The task to complete the survey was characterized as neither since it 

was not necessary for solving the overall task. The outcome provided by each task was also 

characterized as either information, a reward, or both. Tasks that developed expertise, 

investigated performance, or updated information provided information while advocating 

for an outcome, making a decision, or completing the survey provided a reward and sharing 

information or negotiating provided both information and a reward. The task structure was 

characterized using the combination of the gather/exploit category and the type (or 

interdependence) of the tasks. Individual gather tasks were labeled as structure 1, 
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individual exploit tasks as structure 2, individual neither tasks as structure 3, team gather 

tasks as structure 4, team exploit tasks as structure 5, and MTS exploit tasks as structure 6. 

Finally, the value of each task was determined as the sum of the individual attribute values 

for each task. This factor was included in both the machine learning algorithms and the 

information theory based cognitive process models.  

Table 3. Summary of derived predictors 

  
 

 A correlation matrix of all measured and derived predictors (Table 36, in Appendix 

A) showed which variables have the strongest measure of linear association (i.e., highest 

Pearson r values) when compared to the ID of the participant completing the overall task 

and their switch rate. A relatively small number of parameters, shown in bold, have values 

greater than 0.20 or less than -0.20, which are generally considered to indicate a moderate 

or strong correlation between the variables. The four task attributes (i.e., salience, interest, 

priority, and difficulty), time on task, measure of typical switches, whether a participant is 

an explorer, neuroticism, and the interpersonal ties to participants assigned to role 7 were 

the most correlated to participant switch rate. The full set of predictors used in the decision 

strategies analysis contained 94 variables – all the variables in Table 36 except the 

personality factors, time on task, and the variables estimated using the cognitive process 

models. 
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3. METHODOLOGICAL APPROACH 

This research used multiple modeling approaches to address the proposed research 

questions. A machine learning approach was used to identify the decision strategy used to 

complete the overall task and the most important factors contributing to that strategy to 

address the first research question, a cognitive modeling approach was used describe and 

explain the cognitive mechanisms used in completing the overall task and the associated 

task-switching behavior to address the second and third research questions, and a Bayesian 

generalized linear modeling (GLM) approach was used to generate counterfactual 

predictions of task-switching rates and overall task performance scores to address the final 

research question. These approaches fit together to form an overall analysis pipeline shown 

in Figure 8. There were multiple options for how each of the modeling approaches could 

be completed; the decisions leading to the methodologies included in this research were 

based on theories or evidence from previous research along with the constraints and 

objectives of this research. A primary focus of the research was to identify models that best 

describe and explain decision strategy and cognitive mechanisms for task switching 

through model comparison, and to generate models that provide the best out-of-sample 

predictions of decision strategy and counterfactual predictions of task-switching rates and 

overall performance scores. This chapter discusses, separately for each modeling approach, 

the methodology used to test the hypotheses, including the reasons and justification for 

using these methods. 
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Figure 8. Overall Data Analysis Pipeline. Results from the best decision strategies model 

and the best cognitive process model feed into the counterfactual prediction models. 

 

3.1. Decision strategies 

Machine learning techniques are commonly used to reduce the dimensionality of 

large data, to predict out-of-sample responses when labeled data is available, and to identify 

similarities between unlabeled data observations. This research used multiple machine 

learning techniques, leveraging the strengths of each method, to determine the factors 

important to participants’ decision-making strategies and to group participants that use 

similar strategies. The clusters determined with the machine learning algorithm were 

compared to randomly assigning participants to a group to test the hypothesis that the 

machine learning results better predict out-of-sample data than a random assignment 

model.  
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This research assumed that the decision-making strategy used by the individual 

to solve the overall task related to their task-switching behavior. Task-switching behavior, 

which can be displayed in varying degrees, was a result of an individual’s decision-making 

strategy for information foraging. From an information foraging perspective switching 

tasks was associated with exploration whereas remaining at one option or task was 

associated with exploitation. This research assumed that people that used a similar strategy 

clustered together and exhibited similar task-switching rates. The data used in this analysis 

did not include any measure of decision strategy, supporting the use of unsupervised 

learning techniques to determine the participants’ strategies. However, the data did contain 

a measure of the switch rate, and based on the assumption that task-switching behavior 

relates to the decision strategy, a supervised approach was used to identify factors 

important to the strategies based on the task-switching behavior.  

The models used the combined ‘not withheld’ data from both campaigns where data 

from 80% of the overall task completions (n=192) was randomly assigned as the training 

dataset and the remaining 20% (n=48) was used to test the models. Three different sets of 

factors were used: one that included all the predictors (as described in section 2.2) without 

any principal components analysis (PCA) reductions, one that reduced the number of 

predictors using PCA, and one that reduced the number of predictors using PCA but also 

included the personality factors. The full set predictors increased the possibility of finding 

similarities between the participants while the reduced set of predictors decreased the 

possibility of overfitting. The results from each set of predictors were compared using in-

sample and out-of-sample predictions to determine the best set of predictors to identify 

clusters of similar participants.  
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All the datasets included both individual and team factors that fit into several 

different categories: demographic information, task characteristics, social factors, 

technology affordances, situational constraints, personality measures, and derived 

predictors (as described in section 2.2).  The only demographic information available was 

the participant’s gender. The task characteristics were Wickens’ task-switching attributes, 

described in section 1.2, with values assigned for each task by the original researchers. 

Task interdependence was not included in the machine learning modeling since it was 

directly related to the task structure. The social factors were the behavioral and 

interpersonal ties and shared mental models of the teams and the tasks, described in section 

2.1, which were measured during the task and provided with the dataset. Each participant 

had 12 values for each of these measures, one for every other participant in their session 

and a null value for themselves. The technology affordances included editability, 

association, persistence, and visibility, as described in section 1.2. Situational constraints 

were the length of communication delay experienced in different sessions by all 

participants; the social isolation experienced by the HERA participants over the course of 

multiple sessions within a mission, which was captured using the session number; the 

participant’s role; the mission number; and the campaign number. The personality factors 

included agreeableness, conscientiousness, extraversion, and neuroticism. Byrne et al. 

(2015) show that neuroticism and agreeableness negatively affected decision-making 

under pressure and multi-tasking research suggests that conscientiousness (Messmer-

Magnus et al., 2020) and extraversion (Sanderson, 2012) predict an individual’s level of 

comfort with multi-tasking and their motivation to switch among tasks. However, these 

measures were collected differently in an unknown manner (i.e., the values were on 



40 

 

different scales) where the campaign 3 values ranged from 0 to 1, but the campaign 4 values 

ranged from 2.5 to 4. Additionally, the data were missing measurements for all the MCC 

participants in campaign 4. This research attempted to standardize and normalize the values 

between the two campaigns, and to impute the missing campaign 4 values, in order to 

include personality measures in the machine learning algorithms, but the results in section 

3.1.1 show the attempt was unsuccessful. The derived factors were described in section 

2.2; they included the explorer categorical variable, mean value of gather or exploit tasks, 

mean outcome value, mean task category, mean task structure, typical switches, and 

vertical switches (measured as a percentage of all switches). 

3.1.1. Data Reduction 

Principal components analysis (PCA) uses a linear transformation to create a new 

representation of the data, which yields a set of linearly uncorrelated orthogonal axes (i.e., 

the principal components). The first principal component is the direction that captures the 

largest variance in the data. The second principal component also finds the maximum 

variance in the data; it is completely uncorrelated to the first principal component, yielding 

a direction that is orthogonal to the first component. This process repeats based on the 

number of dimensions, where each next principal component is the direction orthogonal to 

the prior components with the most variance (Shlens, 2014).  

This research ran PCA on six different subsets of the data to reduce the number of 

parameters describing relationships between each of the 12 participants – behavioral ties, 

participant task matches (i.e., participant dependencies), interpersonal ties, task mental 

models, team mental models and participant tool matches. Every participant had 12 values 

for each subset, to describe their relationship with the other 11 participants in the session 
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and a value for themselves (mostly this is zero). The results from the model built using the 

PCA reduced dataset were compared to results using the full dataset to determine the best 

dataset to identify clusters of similar participants.  

The behavioral ties, interpersonal ties, task mental models, and team mental 

models, described in section 2.1, were determined by the researchers that collected the 

Project RED data and provided with the dataset. Participant task matches were described 

in section 2.2 and visualized in Figure 5. Participant tool matches were calculated the same 

way, but using the number of seconds that each participant within a session used the same 

tool as another participant. The matches were limited to when participants were performing 

team or multi-team tasks and were using the chat box, map interface, decision calculator, 

or multi-team signoff box. A separate PCA (centered and scaled) was run for each set of 

12 parameters (e.g., PCA on behavioral ties was run separately from PCA on interpersonal 

ties) with the resulting first principal component including enough variance for each set of 

parameters, as shown in section 4.1, that only the PC was used in the machine learning 

techniques. The PCA reduced the number of predictors describing relationships between 

the participants from 72 to 6. 

Classical multi-dimensional scaling (cMDS), also known as principal coordinates 

analysis, is another useful technique to reduce the dimensionality of data and visualize 

patterns. This research used the cmdscale function in the stats package (R Core Team, 

2021) to reduce the multi-dimensional set of dissimilarities between participants to a 2-

dimensional set of points where the distances between the points were approximately equal 

to the dissimilarities. The cMDS reduced dissimilarities were input into Partitioning 
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Around Medoids clustering algorithm (see section 3.1.4) to visualize the clusters on a 

scatter plot and to compare to the other clustering outputs.  

3.1.2. Determine Important Factors 

As mentioned above, a supervised approach that uses the labeled switch rate for 

each time a participant completes the overall task was used to identify factors that were 

important to the strategies based on the task-switching behavior. While there are many 

possible supervised techniques available, this research used a random forest (RF). Some 

advantages of a random forest were that it can take both categorical and numerical inputs, 

it was robust to missing data, and it can handle outliers. Another advantage of a random 

forest was that the RF predictors create a dissimilarity measure between labeled 

observations (e.g., subjects with known switch rates) as part of their construction. One 

drawback of the method was that the decision tree output was difficult to interpret, 

especially with a large number of independent variables, since the method was primarily a 

prediction algorithm. While it was possible to identify which independent variables 

contributed most to a subject’s switch rate, the results could not be used to identify which 

independent variables were common to subjects with similar switch rates. 

Random forest can be used for classification or regression, where the RF predictor 

is an ensemble of individual decision trees. There is little or no correlation between the 

individual trees, which allows the forest to perform better than any individual tree. Each 

tree is constructed using a random subset of all the inputs, or independent variables, where 

the size of the subset is defined by the modeler (Breiman, 2001). Because the outcomes for 

the Project RED data were continuous, this research used random forest regression models, 

where each tree predicted an output (i.e., a switch rate for each subject) based on its 
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randomly selected independent variables and the forest picked the average of the outputs 

of all trees.  

This research used the randomForest R package (Liaw & Wiener, 2002) to run the 

regression random forest on the PCA reduced dataset (i.e., no personality measures) to 

generate predicted switch rates for in-sample and out-of-sample data, identify the most 

important predictors of switching, and measure the dissimilarity between observations (i.e., 

each completion of the overall task). The PCA reduced dataset was used to decrease the 

runtime as well as reduce noise and the chance of overfitting the data. Data reduction was 

completed on subsets of the data so the PCA reduced set data still contained a parameter 

for each subset (e.g., one parameter for behavioral ties instead of 12) and the difference in 

identifying the most important predictors should be negligible. During the construction of 

the RF, the training data were run down each individual tree and if two observations ended 

in the same terminal node, the similarity between the two observations increased by one. 

At the end of construction, the similarity between an observation and itself was set to one 

and the similarities between all observations were made symmetric and divided by the total 

number of trees, resulting in a symmetric, positive definite matrix with values between [0, 

1]. The RF dissimilarity is √1 − 𝑆𝐼𝑀𝑖,𝑗 and was input into classical multidimensional 

scaling and clustering algorithms (Shi & Horvath, 2006) to measure the accuracy of out-

of-sample predictions against the random assignment model. The clustering algorithms are 

described in section 3.1.4.  

3.1.3. Dissimilarity Measure 

Many clustering algorithms require a distance measure to cluster on, which the RF 

dissimilarity matrix provided a measure of how far apart two observations were from one 
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another and was used to identify clusters of subjects with similar patterns of task-switching 

behavior. The RF dissimilarity is a distance measure created as part of the regression 

algorithm, described above, that can also be generated from an unsupervised version of the 

RF algorithm using unlabeled data. For this research, the unsupervised random forest (uRF) 

dissimilarity matrix was constructed using the UnsupRF R package (Ngufor, 2019) which 

allowed the number of forests and trees used to be defined by the modeler. This research 

used either 50 or 100 forests in the models and between 2000 and 4000 trees for each 

model. Using more trees and forests improved the uRF outputs, but led to longer runtimes. 

Each tree was grown using a randomly selected subset that contained about one third of 

the variables.   

The unsupervised random forest, as implemented in UnsupRF, used the unlabeled 

observed data along with additional synthetic data that were generated by taking a random 

sample from each variable of the observed data, either with (i.e., empirical) or without (i.e., 

permute) replacement. Both data were labeled with an artificial class as either class 1 

(observed) or class 2 (synthetic). The uRF predictor was constructed as a classifier to 

differentiate the observed from the synthetic data and created a dissimilarity matrix for the 

unlabeled observations (Shi & Horvath, 2006). This research generated the synthetic data 

using empirical sampling, which created synthetic data by randomly sampling from the 

empirical marginal distributions of the variables.  

Unsupervised RF dissimilarity has been applied successfully in genetics research 

as a distance measure for clustering in several applications (Shi & Horvath, 2006) where 

the resulting clusters are interpretable, providing support to using the method in this 

research. In this research, the unsupervised RF method generated a dissimilarity measure 
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between participants to use in classical multi-dimensional scaling and several different 

clustering algorithms, as described in section 3.1.4. The clustering algorithms identify 

patterns that are undefined by the output variable.  

3.1.4. Clustering algorithms 

Because the Project RED data did not include any measure of decision strategy, an 

unsupervised learning method was needed to determine the participants’ strategies. Cluster 

analysis aims to divide a set of objects into two or more clusters such that similar objects 

are in the same cluster and dissimilar objects are in different clusters. The uRF or RF 

dissimilarity matrix provided a distance measure between each of the participants to input 

into two different clustering algorithms: Partitioning Around Medoids (PAM), also 

referred to as k-medoids (Kaufman and Rousseeuw, 2005), and hierarchical. The results 

from these algorithms were assessed using metrics described in section 3.1.5 and compared 

to identify the algorithm that produced the best in-sample predictions. The clusters were 

also used to predict out-of-sample outputs for the test dataset by using the medoid of the 

cluster for all the clustering methods. The medoid was calculated using the mediod function 

in the UnsupRF R package (Ngufor, 2019). 

The k-medoids clustering method is similar to k-means; k-medoids clusters to the 

nearest medoid while k-means clusters to the nearest centroid, or mean. Both k-means and 

k-medoids partition the dataset into groups and assign points to a cluster by minimizing the 

distance between that point and the center of that cluster. Unlike k-means clustering, k-

medoids chooses actual data points (medoids) and not a representation of the data (means) 

as centers. This allowed for greater interpretability of the cluster centers than using k-

means. An additional benefit was that k-medoids can be used with arbitrary dissimilarity 
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measures, while k-means generally requires Euclidean distance, which allowed the use of 

the RF or uRF dissimilarity measures as an input. K-medoids is also more robust to noise 

and outliers than k-means. 

The medoid of a cluster is the object whose average dissimilarity to all other objects 

in the cluster is minimal; it is the most centrally located point in the cluster. Partitioning 

Around Medoids (PAM) attempts to minimize the total distance (D) between objects within 

each cluster. The number (k) of medoids found is equal to the number of clusters desired. 

Once the medoids are found, the data are classified into the cluster of the nearest medoid. 

The algorithm has a build and a swap phase. The build phase finds a representative set of 

k objects. The first object selected has the shortest distance to all other objects; it is in the 

center. An additional k-1 objects are selected one at a time to decrease D as much as 

possible at each iteration. The swap phase considers possible alternatives to the build-phase 

k objects in an iterative manner. The algorithm searches the unselected objects for the one 

that will lower the objective function the most if is exchanged with one of the previously 

selected k objects. The swap is made and the algorithm continues to iterate until there are 

no exchanges found that will lower the objective function. This research used the pam 

function in the cluster R package (Maechler et al., 2021) for the PAM clustering results. 

PAM clustering was run on the cMDS reduced uRF dissimilarities as well as the raw uRF 

or RF dissimilarity measures.  

Hierarchical clustering creates clusters in a hierarchical tree-like structure and can 

be implemented as an agglomerative or divisive algorithm (Kaufman and Rousseeuw, 

2005). Agglomerative is a ‘bottom up’ approach where all datapoints are isolated as 

separate groupings initially and then iteratively merge together on the basis of similarity 
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until there is one cluster. There are multiple ways to determine the similarity between 

groupings. Divisive clustering is a ‘top down’ approach where a single initial cluster is 

divided based on differences between the datapoints, and is not commonly used. This 

research used the hclust function in the stats R package (R Core Team, 2021) which 

implements the agglomerative approach. At each stage, the function recomputed the 

distances between clusters by the Lance-Williams dissimilarity update formula according 

to the particular clustering method being used. The hclust function included multiple 

clustering methods (i.e., ways to determine the similarity between the groups): two 

methods of Ward clustering, single linkage, complete linkage, average, median, centroid, 

and mcquitty. This research tried each method and used the one that gave the lowest error 

rates and highest Adjusted Rand Index.  

3.1.5. Model Comparison 

Because the participants’ decision strategies for completing the overall task were 

unknown, the ‘true’ clustering was based on the assumption that the decision-making 

strategy used by the individual to solve the overall task related to their task-switching 

behavior, as observed by their task-switching rate. The ‘true’ clustering was determined by 

breaking the data into k+1 quantiles and assigning them to k clusters of monotonically 

increasing switch rates. This was a simplification of the strategies used and likely biased 

the algorithm to favor models containing factors that were predictors of switch rate over 

other models. Another possible option was to not compare the predicted clusters to any true 

value since the true value was unknown and instead compare the predicted cluster to a 

randomly generated cluster value. This would eliminate bias from using another factor 

(e.g., switch rate) to generate an artificial true value. Based on the assumption that decision-
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making strategy was related to task-switching behavior, this research used the artificially 

generated true value to evaluate out-of-sample prediction accuracy to test the first 

hypothesis of this research.     

Three different metrics were used to compare the results from the clustering of 

participants using multiple different machine learning algorithms. A visual assessment was 

used, where the assigned cluster for each participant using each of the clustering methods 

was plotted, using a box plot, against the switch rate and visually compared to a plot of the 

‘true’ clustering. The other two metrics, Adjusted Rand Index (ARI) and classification 

error, are common quantitative measures of the difference between two clusters. The ARI 

compares two vectors of class labels (i.e., the predicted and true clusters) and has a range 

of values from 0 to 1, where zero is the expected value for random clustering and 1 is the 

expected value for perfect agreement between the two vectors. It is a widely used metric 

for validating cluster performance. This research used the adjustedRandIndex function in 

the mclust R package (Scrucca et al., 2016) to calculate the ARI. The classification error is 

the error rate between the cluster labels predicted by the algorithm and the true clustering. 

This research used the classError function in the mclust R package (Scrucca et al., 2016) 

to calculate classification errors. 

3.2. Cognitive mechanisms  

Cognitive process models, specifically multi-attribute linear ballistic accumulator 

(MLBA) models, a type of evidence accumulation model, were used to address the research 

questions about how a participant decides to select a new task or remain at their current 

task. Four versions of the model were compared to test whether participants considered 

each attribute of the tasks or the tasks as a whole as well as whether they considered all 
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options simultaneously, in a single-stage, or used a down-select process by considering 

first the task type (i.e., individual, team, or MTS) and then the individual task from within 

that type as a two-stage process. One benefit of evidence accumulation models was that 

they contain psychologically relevant parameters and provided insight into explaining 

observed behaviors. A challenge of using evidence accumulation models with the Project 

RED data was the small number of trials (i.e., switches) for each participant. This was 

mitigated by creating a separate simulated task-switching dataset, with a large number of 

trials for each participant, to use for comparing the fit metrics for each of the models. Only 

parameter estimates from the real data were used in the counterfactual prediction models. 

While several types of multi-alternative, multi-attribute choice models (e.g., 

MDFT, MLBA, and MLCA) produce acceptably good fits of preferential choice and 

perceptual stimuli, especially when using a hierarchical version to account for individual 

variability, with some variation in the results depending on model assumptions and data 

structure (Turner, et al., 2018), this research leveraged and expanded the MLBA model, 

which is more computationally tractable than other multi-alternative, multi-attribute 

models, to develop a cognitive model to describe, explain, and predict individual 

differences in task-switching performance. The large number of response options (i.e., 15 

possible tasks to select) in the Project RED data led to computational runtimes of several 

hours to over a day for each time parameters were estimated, even using the less complex 

MLBA model with high performance computing resources (Ohio Supercomputing Center, 

1987). Unlike existing versions of the MLBA model that focus on deliberate decisions 

(e.g., risky choice, perceptual tasks), task-switching for Project RED was not presented as 

a deliberate decision, but instead was part of the process to complete a larger task of trying 
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to determine the best design and location on the Martian surface to drill a new well. From 

an information foraging perspective, participants may deliberately switch to a new task to 

explore for additional information, but they were not cued to do so.  

In the linear ballistic accumulator (LBA) model (Brown & Heathcote, 2008), 

evidence accumulates at a constant drift for all possible responses until one accumulator 

reaches the response threshold, as shown in Figure 9. An accumulator for each possible 

response is stochastically created with a starting point in the range of uniform distribution 

U[0,A] and a mean drift rate, di, with normally distributed noise, sd. The race to the 

threshold, b, which must be greater than A, is linear and deterministic. The model also 

includes non-decision time, t0, to account for time to encode the stimulus and time to 

produce a response. Once an accumulator reaches the threshold evidence for the alternative 

response(s) is discarded.  

Conceptually, the starting point range, A, is interpreted as variability in the initial 

evidence across the trials, representing bias in the response; the response threshold, b, 

denotes the evidence required to make a decision, representing inhibition in responding; 

and mean drift rate, di, is the speed of information processing and represents efficiency of 

the response. For task-switching data, the threshold parameter measured inhibition of 

leaving the current ongoing task (i.e., task stickiness), the starting point parameter 

measured bias towards selecting any alternative task (i.e., the switch-avoidance tendency), 

the drift rates measured the attractiveness of each alternative task, and the non-decision 

time measured time spent not considering an alternative task (e.g., engaging in the current 

task, encoding, and processing the next task choice). The drift rate measured the efficiency 
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of information processing and the parameters within the drift rate equation specified how 

much the attention weight and the task value contribute to that efficiency.  

  

 

Figure 9. Linear Ballistic Accumulator model. The x-axis is time and the y-axis is the 

amount of evidence. Each arrow is a different possible response option. 
 

The MLBA model (Trueblood et al., 2014) consists of a front-end pre-processing 

stage that determines individual pre-decision preferences (i.e., drift rates) and a back-end 

selection process to account for random variation of responses. Once the drift rate is 

determined the selection process proceeds using the LBA model (Brown & Heathcote, 

2008). The MLBA model defines the drift rate for each option in terms of valuation, Vij, 

that represent a comparison between alternatives i and j of the subjective valuation of 

attributes across alternatives; valuation is determined by the pairwise difference of 

subjective values, uik - ujk, for the kth attribute is multiplied by the weight of attention, ak, 

given to a comparison. The weight, or amount, of attention given to a particular comparison 

depends on the similarity of the attribute values for each option. Cohen et al’s (2017) 

adaption of the MLBA model, for risky choices and perceptual stimuli with more than two 
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attributes, defines the subjective value and weighting function using cumulative prospect 

theory (Tversky & Kahneman, 1992).  

Four versions of the MLBA model were used to address how a person decides to 

remain at a task or switch to a new task and test the associated hypotheses, and Table 4 

shows a breakdown of which cognitive process mechanism each of the 4 models support 

related to the research questions. The four versions of the model used a drift rate equation 

based either on cumulative prospect theory (CPT) or information foraging (IF) theory and 

assumed that participants either considered all options simultaneously, in a single-stage, or 

down-selected by considering first the task type (i.e., individual, team, or MTS) and then 

the individual task from within that type as a two-stage process. Cohen’s (2017) CPT 

version of MLBA was applied to task-switching data by assuming that less task switching 

corresponds to being risk averse and more task switching corresponds to being risk seeking. 

This research also developed an alternate MLBA version adapted to use information 

foraging theory to determine the drift rates. 

Table 4. Summary of cognitive process mechanism that each model version supports 

 Attribute-level (Q2) Alternative-level (Q2) 

All options simultaneously (Q3) Single-stage CPT Single-stage IF 

Down-select options (Q3) Two-stage CPT Two-stage IF 

 

The second research question examined whether the preference to select a particular 

task was based on considering each individual attribute of that task separately or if the 

attributes were considered as a whole, as a sum of the individual attributes. The associated 

hypothesis favored the model where tasks were considered as a whole and was tested by 

comparing two different multi-attribute LBA models; both assumed that all the response 

options were considered simultaneously (i.e., single-stage). The first was taken from a 
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previous study of risky choice and perceptual stimuli (Cohen et al., 2017) and the second 

was developed as part of this dissertation research. The first model defined the attention 

weight and the subjective value for each attribute within the drift rate (i.e., the rate of 

accumulation of evidence) in terms of the principles from cumulative prospect theory 

(Tversky & Kahneman, 1992). The second model defined the attention weight and 

subjective value within the drift rate at the task level, while still considering the value of 

each attribute as a contribution to the value of the whole task, in terms of the principles 

from information foraging theory (Pirolli & Card, 1999) 

The third research question examined whether all tasks were evaluated 

simultaneously or if a serial process was used to create a subset of tasks to consider when 

selecting the next task. The associated hypothesis favored the two-stage serial model and 

was tested by comparing models with either a single-stage (i.e., all tasks evaluated 

simultaneously) or two-stages (i.e., serial down-select process used). Two additional 

MLBA models, both structured so that the decision-making process occurred in two stages, 

were developed to address this question, where one used the drift rate equation based on 

cumulative prospect theory and the other used the drift rate equation based on information 

foraging theory. These models assumed that the first stage decision was based on a heuristic 

to reduce the number of response options for the second stage. The heuristic modeled in 

this research was whether the final decision should be an individual, team, or multi-team 

decision, which limits the number of possible second stage responses. Other possible 

heuristics were considered, such as task typicality or popularity, but were not included in 

this research due to logistical constraints. In the second stage the subject then decided the 

specific task to complete from the reduced list of possibilities. In addition to the threshold, 
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starting point parameter and non-decision time, the two-stage model included two drift 

rates, one for each stage, and a stage delay to account for the time spent in stage one. The 

stage delay was the inferred stage one response time. 

3.2.1. Attribute-level MLBA Model 

The cumulative prospect theory (CPT) version of the MLBA model (Cohen et al., 

2017), given by equations 1, 2, and 3, defined the drift rate in terms of the attention weight 

given to each attribute for each task and the subjective value of each attribute for each task. 

The attention weight was defined as ak=π(wk). The weighting function, , was taken from 

cumulative prospect theory (Tversky & Kahneman, 1992) and wk was the importance 

weight given to the kth attribute. The subjective value (uik) was defined as a power function 

of Vik, where Vik was the objective value of the kth attribute of the ith alternative. The drift 

rate for each option ith response option (equation 1) was the sum of the initial drift rate (I0), 

the relative comparison between option i and every other j option, and the absolute value 

of the attributes of the ith option. The initial drift rate was set to zero for the task-switching 

data. The second term in equation 1 multiplied the pairwise difference in subjective value, 

uik - ujk, by the attention weight for each kth attribute. The sum of the differences was 

multiplied by a scaling factor, cd, and divided by a normalization term. The scaling factor, 

cd, scaled the extent that differences in subjective valuation affect the drift rate (Cohen et 

al., 2017; Trueblood & Dasari, 2017). The final term in equation 1 found the absolute value 

of option i as the maximum product of attribute weight and subjective value, multiplied by 

a scaling factor, cm, and divided by a normalization term. The term increased the drift rate 

of an option with a high weight or subjective value, making it more likely to be selected, 

and was included because it was shown in Cohen et al. (2017) to improve model fits that 
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include response time data. The scaling factor, cm, scaled the extent that absolute value of 

the option affects the drift rate (Cohen et al., 2017; Trueblood & Dasari, 2017). There was 

a relationship between cm and response time where response times decrease as cm scaling 

factor increases, shown in Figure 10. 
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(𝐶𝑃𝑇)

= 𝐼0 +
𝑐𝑑 ∑ ∑ 𝑎𝑘(𝑢𝑖𝑘−𝑢𝑗𝑘)𝑗𝑘

∑ 𝑎𝑘 ∑ 𝑢𝑚𝑚𝑘
+

𝑐𝑚 max
𝑘

(𝑎𝑘𝑢𝑖𝑘)

∑ 𝑎𝑘𝑘
      (1) 

            𝑎𝑘 = 𝜋(𝑤𝑘) =
𝑤𝑘

𝛾

𝑤𝑘
𝛾

+(1−𝑤𝑘)𝛾         (2) 

      𝑢𝑖𝑘 = 𝑉𝑖𝑘
𝛼              (3) 

The CPT equation was applied to task-switching data by assuming that less task 

switching corresponded to being risk averse and more task switching corresponded to being 

risk seeking. Based on results in Cohen et al. (2017), a participant that switched tasks less 

should have a lower  value while a participant that switched tasks more should have a 

higher value. The CPT version considered both the value and attention weight of each 

attribute for every response option as part of the drift rate equation. The attention weight 

described the importance of the attributes and the subjective value of an attribute was a 

power function of its objective value (Cohen et al., 2017). For this research, all 4 task 

attributes were weighted equally (i.e., wk=0.25 for each attribute) as there was no evidence 

available to determine that any attribute was or should be weighted higher than the others 

by the participants. This research used the objective attribute values provided with original 

data to determine the subjective value of each attribute; these objective values were 

determined by the original researchers (Mesmer-Magnus, 2020).  
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Figure 10. Relationship between the absolute scaling factor, cm, and response time 
 

3.2.2. Alternative-level MLBA Model 

The IF version of the MLBA model (Mahoney et al., 2021) defined the drift rate in 

terms of the subjective value of each task as a whole, using the sum of the individual 

attribute values, and the attention weight given to each task. Initial IF model drift rate 

equations are given in equations 4, 5, and 6. 
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    𝑢𝑖 = 𝑉𝑖
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Equation 5, defining the attention weight, was replaced by equation 8 for this 

research. This modification of the attention weight equation added the  parameter to 

reduce the number of model parameters and defined the contribution of attention weight to 

the drift rate as a power function of Luce’s choice rule (Luce, 1977), eliminating the 

constraint that  must be between zero and one. The attention weight was the weight of the 
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current option, i, divided by the sum of the weights of all the other, j, options. The 

weighting parameter, , was taken from information foraging theory (Pirolli & Card, 1999) 

and was defined as the profitability of the response option. The profitability is the gain 

divided by the processing time for each option. The attention weight of option i depended 

not only on its profitability but also on the profitabilities of all the other j options. An initial 

attempt was made to include i as free parameters in the model, thus allowing the data to 

determine the value of each  parameter, but this produced a non-identifiable model, as 

shown in section 5.1.2. Instead, each  was calculated from the data being fit by the model 

(either real or simulated) by setting the gain of a response option to the number of times 

that option was selected for all participants and setting the processing time of a response 

option to the mean time on task across all participants for that task. The subjective value 

(ui) was defined as a power function of Vi, where Vi was the sum of the individual attribute 

values of the ith alternative. The attribute objective values provided with original data were 

used to determine the subjective value of each response option. 

The IF model considered both the value and attention weight of the task as a whole 

for every response option as part of the drift rate equation. The drift rate equation, equation 

7, took the same form as the CPT version of the model where the ith response option was 

the sum of the initial drift rate (I0), the relative comparison between option i and every 

other j option, and the absolute value of the ith option. Again, the initial drift rate was set 

to zero for the task-switching data. The second term in equation 7 multiplied the sum of 

the pairwise differences in subjective value, ui - uj, by the attention weight for each ith 

option and a scaling factor, cd, and divided this quantity by a normalization term. The final 

term in equation 7 found the absolute value of option i as the product of attribute weight 
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and subjective value, multiplied by a scaling factor, cm, and divided by a normalization 

term. The term increased the drift rate of an option with a high weight or subjective value, 

making it more likely to be selected, and was included because it was shown in Cohen et 

al. (2017) to improve model fits that include response time data.  
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3.2.3. Single-Stage MLBA Model 

The single-stage model used the structure of the traditional MLBA model, 

described in section 3.2. Five parameters from each version (i.e., CPT and IF) of the single-

stage MLBA model were assumed to be related to task-switching behavior and were 

allowed to vary when fitting the models to both simulated and real data. For both versions, 

the threshold (b) and starting point parameter (A) measured a participant’s aversion to 

switching; a higher sum of the starting point parameter and threshold indicated that the 

person required more evidence to leave the current task and may lead to a lower switch 

rate. A higher starting point parameter, regardless of the threshold value, also indicated a 

bias or a preference to remain at the ongoing task. Also, for both versions, the non-decision 

time (t0) measured the time that the participant was engaged in non-decision behavior. The 

data showed that mean time on task had an inverse relationship to task switch rate (Figure 

7) so as non-decision time increased the switch rate should decrease. For the CPT version 

of the single-stage model, the  and  parameters in the drift rate equation related to 
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different aspects of information processing efficiency. The  parameter related to the 

weight of attention given to each task attribute and the  parameter defined the contribution 

of the value of each task attribute to the drift rate. In combination, both parameters affect 

the drift rate for each task. A higher drift rate indicated more efficient information 

processing for a particular task and may lead to higher switch rates, especially if many of 

the frequently selected tasks have high drift rates. Analogously, for the IF version, the  

parameter defined the contribution of the profitability of a task to the drift rate while the  

parameter did the same for the value of each task. Again, together both parameters affected 

the drift rate, which may impact the switch rates.  

As shown in section 3.2.1, the absolute scaling factor, cm, in the drift rate equation 

was inversely related to response time. The cm was assumed to be a small value since 

response times are relatively long. It was set as a constant value for estimating the 

parameters of the simulated data, but was initially allowed to vary for both versions of the 

single-stage model, along with the relative scaling factor, cd, and the other five parameters, 

when estimating parameters for the real data. Doing this caused problems with the 

parameter estimation, creating non-varying log likelihood values, so a subsequent iteration 

of the models assumed a constant cd and cm using the group level parameter estimate for 

each from the initial run. This issue could be caused by an error in the likelihood function, 

but an investigation of the code did not determine the issue. The cause of the problem is 

currently unknown. However, using constant values for cd and cm, as performed in the 

model investigation and parameter recovery, produced reliable parameter estimates.   
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3.2.4. Two-Stage MLBA Model 

Two-stage versions of the MLBA models were developed to test whether 

participants used a serial process to create a subset of tasks to consider when selecting the 

next task. These versions of the model were compared to the single-stage versions to 

provide evidence for or against the hypothesis that a two-stage model was used. This 

research explored two different structures of the two-stage MLBA model since a two-stage 

structure of the MLBA did not exist already: an initial structure with nine parameters and 

a revised structure with eight parameters.  

The initial structure for the two-stage model included a single non-decision time, a 

single starting point maximum value, two threshold values, two drift rates, and a stage 

delay parameter, for a total of nine parameters. The weight of attention ( or ) and power 

of the objective value () parameters within each of the drift rate equations was allowed to 

vary; the scaling factors, cd and cm, are not. The stage delay parameter was assumed to be 

the same as the response time for stage one, as there was no measured value of the time 

spent in stage one. The initial two-stage model intended to use the threshold for the first 

stage as the exact starting point of the second stage, as shown in Figure 11a, but the initial 

implementation resulted in setting the threshold from the first stage as the maximum value 

of the starting point of the second stage, as shown in Figure 11b. This led to unintended 

additional variation in the model; the model recovered the choice distribution, but the 

posteriors predicted longer response times and the model was nonidentifiable (i.e., did not 

recover parameter values used to generate data). When generating the posterior predictive 

data, the starting point for stage two was a random point between zero and the threshold of 

the first stage, but the drift rates for each stage did not account for this since they were 
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based on the observed data and actual response times, so the amount of time to reach the 

stage two threshold was longer than it should be. The model, as coded, uses the analytic 

solution of the LBA probability distribution function, as implemented in the dLBA function 

in the rtdists package (Singmann et al., 2020) to generate samples and likelihood values 

for each stage separately. 

To implement the intended structure, where the stage one threshold is the exact 

starting point of the second stage, requires using approximation methods (e.g., Probability 

Density Approximation (PDA; Holmes, 2015)) to estimate the likelihood values. This 

research attempted to implement the PDA to estimate the likelihood values for use by the 

Particle Metropolis within Gibbs (PMwG) sampling methods to generate posterior 

parameter estimates, but the attempts did not result in a usable likelihood function. PDA 

simulates a model thousands of times and uses kernel density estimation to produce a 

synthetic likelihood function to use for Bayesian parameter estimation. Holmes (2015) 

used PDA combined with Differential Evolution Markov Chain Monte Carlo (DE-MCMC; 

Turner et al., 2013) to estimate parameters for a piecewise LBA; however, the PMwG 

method also uses thousands of samples for each iteration and attempting to combine PDA 

and PMwG resulted in a level of complexity in the parameter estimation that did not 

efficiently compute the parameter estimates. Additional work is needed to refactor the code 

to implement the structure in Figure 11b and is proposed as future work.  
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(a) 

 

(b) 

 

Figure 11. (a) Intended structure of the initial implementation of the two-stage model 

structure (b) Actual structure of the initial implementation of the two-stage model 
 

The revised implementation of the two-stage model, shown in Figure 12, instead 

used a single threshold value for both stages. All other parameters were the same as the 

initial implementation, resulting in a total of eight model parameters. The drift rate function 

included the first and second stage drift rate as well as the stage delay parameter so the 

only response time needed was the measured value, T. This allowed the model to generate 

a single likelihood value for both stages together, using the dLBA function. The drift rate 

equation was obtained by using the relationships between LBA parameters. The general 
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slope of the drift rate equation was 
∆𝑥

∆𝑦
 , where x was T-t0 and y was the b-A, or 𝑑 =

𝑏−𝐴

𝑇−𝑡0
. 

This can be written out for each stage as 

𝑑1 =
𝑏1−𝐴

𝑡𝑠−𝑡0
      (9) 

𝑑2 =
𝑏−𝑏1

𝑇−𝑡𝑠
⇔ 𝑇 =

𝑏−𝑏1

𝑑2
+ 𝑡𝑠    (10) 

where b1 is the first stage threshold value. 

Solving Equation 9 for b1 gave b1 = d1(ts – t0) + A. This was substituted into 

Equation 10 resulting and Equation 10 was solved for b. 

𝑏 = 𝑑2(𝑇 − 𝑡𝑠) +  𝑏1 = 𝑑2(𝑇 − 𝑡𝑠) +  𝑑1(𝑡𝑠 − 𝑡0)  (11) 

Equation 11 was substituted into the drift rate equation for b, Equation 10 was 

substituted for T, and A and t0 were set to zero to simplify the calculations. The drift rate 

across both stages is then given by Equation 12. 

𝑑 =
𝑑2∗𝑏

𝑏−𝑡𝑠(𝑑2−𝑑1)
    (12) 

This implementation recovered both the choice and response time distributions, but 

only recovered some of the parameter values when all eight parameters are allowed to vary. 

The model became identifiable by reducing the number of parameters that vary to only the 

threshold (b), maximum value of the range of starting points (A), and non-decision time 

(t0). Allowing more parameters to vary resulted in model parameter estimates that do not 

match the original values, but that still recovered the original choice and response time 

distributions.  
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Figure 12. Structure of the revised implementation of the two-stage model 
 

3.2.5. Model fitting and parameter estimation 

The MLBA models are typically applied to structured data collected in a laboratory 

with hundreds or thousands of trials per subjects whereas the Project RED data used in this 

research was more complex, noisy, and sparse. A separate simulated dataset was generated 

with a larger number of trials per subject to produce parameter estimates with lower error 

to only use in model comparison and testing the hypotheses associated with explaining how 

a participant decide to switch tasks. This research implemented two different methods to 

estimate parameter values: maximum likelihood estimation (MLE; Farrell & 

Lewandowsky, 2018) and particle Metropolis within Gibbs (PMwG) sampling (Gunawan 

et al., 2020), a hierarchical Bayesian parameter estimation method. MLE found a single 

parameter value for each participant for which the observed data was most likely. This 

research adapted Steve Fleming’s Matlab code for fitting the LBA model (available at 

https://github.com/smfleming/LBA), implemented to minimize the negative log 

likelihood, to iterate over many possible parameter values, and selected the best fit values 

using the fmincon function in Matlab. The PMwG method included random effects for 

https://github.com/smfleming/LBA
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subjects and gave a distribution of values for each parameter at the participant and group 

levels. The Project RED data had small sample sizes so only the hierarchical Bayesian 

method was applied to this data. Additionally, only PMwG sampling was used to estimate 

parameters for the two-stage models, using any of the datasets, while both methods were 

used for the single-stage models. 

The PMwG method was selected for this research because it more efficiently 

generates posterior samples for models with highly correlated parameters, like the LBA 

model, and the samples have lower autocorrelation, than other MCMC samplers (e.g., DE-

MCMC). The method also accounts for non-independence of random effects, allowing 

individual level parameters to be correlated in the prior, by reparameterizing them and 

estimating the covariance structure between parameters in a principled manner (Gunawan 

et al., 2020).  

PMwG uses Gibbs sampling assuming a multivariate normal distribution for group-

level parameters and a particle MCMC approach (Gunawan et al., 2017) to sample random 

effects for the subject-level parameters. The sampler starts with an initial set of parameters 

() and random effects (), provided by the modeler. For each iteration, the PMwG 

algorithm samples the group-level parameters of the MLBA model using Gibbs steps 

conditional on the particle (i.e., vector of random effects) from the previous iteration. A 

large number of new particles are generated from the current particle using the conditional 

MC algorithm (Gunawan et al., 2020). The particle from the previous iteration is compared 

to the new particles (i.e., the proposals) and PMwG selects whichever (i.e., previous or 

newly generated particle) best matches the data and prior as the new particle for the next 

iteration, by maximizing the likelihood (i.e., minimizing the negative log likelihood) that 
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the estimated parameter values generate the data given the prior values. This continues for 

the required number of iterations. The conditional MC algorithm is easily parallelized, 

which increases computational speed, an additional benefit of the PMwG approach. While 

there wasn’t a need for near-real-time analysis, the large number of response options in the 

Project RED data led to runtimes of several hours to over a day for each parameter 

estimation run, using supercomputing resources. 

The sampler was applied in three stages: burn-in, adaptation, and sampling. The 

burn-in stage allowed the Markov chain to move from its initial randomly drawn value to 

a stable range of posterior values; burn-in samples were discarded prior to determining the 

estimated parameter values. Only samples from the sampling stage were used to determine 

estimated parameter values. The burn-in particles for each subject were sampled from a 

mixture of the group-level distribution and a multivariate normal distribution centered on 

the current particle, with a variance that is smaller than the group-level distribution. The 

group-level distribution provided a safety net for situations where the particles generated 

from the subject’s random effects vector were unusual or unlikely. This led to the group-

level proposal being chosen instead of the sampler taking a long time to generate a sensible 

vector of random effects, leading to a faster sampling time. The adaptation stage continued 

using the sampling algorithm from the burn-in stage until obtaining a minimum of 20 

unique samples from each subject’s posterior distribution. These samples provided a 

reasonable idea of the posterior distribution for each subject’s random effects vector and 

were used to build an adaptive proposal distribution that makes very efficient proposals in 

the sampling stage. The adaptive proposal distribution was a multivariate normal 

distribution summarizes the unique samples in the adaptation stage and was used to 
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generate sampling stage proposals. This distribution, for each subject, summarized both 

the posterior distribution of their random effects as well as the way these random effects 

related to the group-level parameter. This was important because it allowed the sampler to 

draw conditional proposals. Conditional proposals were consistent with both that subject’s 

random effects and with the current proposal for the group-level distribution leading to 

generated proposals being frequently accepted, so fewer new particles were needed in the 

sampling stage. The adaptive proposal distribution was updated throughout the sampling 

stage leading to a more accurate proposal distribution. The sampling stage also included a 

few proposal particles from the burn-in algorithm to protect against very poor conditional 

proposal distributions (Newcastle Cognition Lab, 2021).  

The PMwG sampling method was implemented in this research using the pmwg R 

package (Cooper et al., 2021) with a customized likelihood function for each version of the 

MLBA model. The likelihood function relied on rtdists package (Singmann et al., 2020) to 

analytically solve the LBA model’s PDF. The functions in the pmwg R package allowed 

the modeler to set for each stage the number of iterations, the number of particles, and the 

width of the proposal distribution (). More particles were needed for more complex 

models to give the sampler a greater chance of accepting a new particle for each iteration. 

Narrower proposal distributions (i.e., smaller ) led to higher acceptance of new particles 

because more new particles were closer to the current particles, but this also led to slower 

convergence of the posterior. The number of iterations was tied to the number of particles 

and value of . If the number of particles was lower and  was small, more iterations helped 

ensure the sampler reached the posterior space, but increasing the number of particles also 

led to the same result. Increasing particles and iterations increased the computational run 
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time, with increased particles increasing the run time more because they were evaluated 

for each subject. For this research, the number of iterations for the burn-in stage varied 

between 500 and 2500 and for the sampling stage ranged from 1000 to 4000.  ranged from 

0.3 to 0.7. The number of particles was mostly 1000 for the burn-in stage and 100 for the 

adaptation and sampling stages. The values were adjusted as needed after evaluating of the 

outputs of each stage, to select parameters that led to stable posterior estimates. 

The sampler provided three types of samples from the posterior distribution of the 

model: the means for the group level parameters (); the vectors of random effects for each 

subject (individual level parameter values, ); and the group-level variance covariance 

matrix (). This research used the resulting individual level parameter estimates for all 

model parameters except the drift rate scaling factors, which used the group-level 

parameter estimates as described in section 3.2.3.  

3.2.6. Simulated Data 

As mentioned previously, the provided Project RED task-switching data had a 

small number of trials for many of the participants. The number of trials ranged from a 

minimum of 5 to a maximum of 85. Even the maximum number of trials in this data was 

near or below the minimum of trials that is generally used to estimate model parameters 

for the MLBA models. For this reason, a separate simulated task-switching dataset was 

created to compare the fit metrics for each of the models.  

Initially, a dataset was created to simulate data from 20 independent subjects with 

5 available response options. Responses were not allowed to repeat the previous response. 

The threshold (b), starting point parameter (A), and non-decision time (t0) were constant 

for all participants and the drift rates for each subject were randomly selected from a 
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uniform distribution with a minimum value of zero and a maximum value defined in Table 

5. The number of trials for each subject were randomly selected from a uniform distribution 

between 975 and 1025. Some limitations of this dataset were that only 5 response options 

were included and that only the drift rates varied for each subject; the threshold, starting 

point parameter, and non-decision time did not. Also, the number of trials did not vary 

much across subjects so there was little variation in switch rates between subjects. Figure 

75 in Appendix B shows an example of the choice and response time (RT) distributions 

from this simulated dataset. MLE fitting of the single-stage models was used to find the 

best-fit parameters of this data, but the results were not used to test the hypotheses due to 

the limitations in the data. 

Table 5. Parameter values used to create simple simulated dataset 

Parameter Value 

Threshold, b 5 

Starting point parameter, A 15 

Option 1 drift rate mean, v1 0.2 

Option 2 drift rate mean, v2 1.2 

Option 3 drift rate mean, v3 0.05 

Option 4 drift rate mean, v4 0.6 

Option 5 drift rate mean, v5 0.05 

Non-decision time, t0 10 

 

The simulated dataset used to test the hypotheses, in addition to the Project RED 

data, included 15 task choices for 48 subjects and was generated using the simplest LBA 

model, where each subject was independent of the others, and the threshold, starting point, 

drift rates and non-decision time varied for each subject. The number of subjects was set 

to 48 because of computational runtime considerations of the subsequent parameter 

estimations. The responses were not allowed to repeat the previous response; the response 

time of any repeat responses was added to the previous trial and the repeat trial was 

removed from the dataset to model task stickiness. The parameter values for each subject 



70 

 

were randomly selected from a uniform distribution between a minimum and maximum 

value for that parameter, shown in Table 6. The threshold, starting point, and non-decision 

time values were selected based on the parameter estimates from the Project RED data. 

The drift rate values were selected to produce a distribution of responses with variation in 

responses (in terms of counts not specific to a choice option) similar to the Project RED 

data. Figure 76 in Appendix B contains the histogram of actual values for each parameter. 

The model generated 6000 trials for each subject, with response times for each trial ranging 

from 1 or 2 seconds to over 600 seconds. The total time each subject spent over all the 

trials (i.e., switching between tasks on the simulated overall task) was found by summing 

the response times over all the trials; the minimum total time (t=51755 sec. or 14.4 hrs.) 

was used as a cutoff for all other participants to complete the overall task. As a result, the 

number of trials for the other participants was adjusted, with a minimum of 836 trials, a 

maximum of 5429 trials, and a median of 1522 trials, creating a different number of task 

switches and a different switch rate for each participant, since all participants had the same 

total time. Neither the resulting response time distribution nor the choice distribution, in 

terms of the median and maximum response times (median RTreal=52 sec. vs. median 

RTsim=17 sec.; maximum RTreal=1167 sec. vs. maximum RTsim=608 sec.) and the particular 

responses selected, were sufficiently similar to the Project RED data to use the simulated 

data in place of the Project RED data to explain the task-switching behavior. However, a 

visual assessment determined there was sufficient similarity in the shape of the response 

time distribution and the variation in the responses that enabled the simulated data to be 

used to compare differences in switching behaviors using the different models and address 

the research questions. Figure 13 shows an example of the choice and response time (RT) 
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distributions for 3 subjects from the simulated data. This 48-subject simulated dataset was 

evaluated with the PMwG parameter estimation method for the single- and two-stage 

models. 

Table 6. Parameter values used to create 48-subject simulated dataset 

Parameter Minimum value Maximum value 

Threshold, b 0.1 10 

Starting point parameter, A 100 1000 

Option 1 drift rate mean, v1 0 0.6 

Option 2 drift rate mean, v2 -1.55 -0.55 

Option 3 drift rate mean, v3 0.85 2.45 

Option 4 drift rate mean, v4 0.5 2.8 

Option 5 drift rate mean, v5 0.03 0.07 

Option 6 drift rate mean, v6 0.6 1.1 

Option 7 drift rate mean, v7 0.01 0.25 

Option 8 drift rate mean, v8 0.15 2.75 

Option 9 drift rate mean, v9 0.5 0.9 

Option 10 drift rate mean, v10 -0.2 1.4 

Option 11 drift rate mean, v11 -2 2 

Option 12 drift rate mean, v12 -3 -2 

Option 13 drift rate mean, v13 0.25 3.45 

Option 14 drift rate mean, v14 0.8 1.6 

Option 15 drift rate mean, v15 -0.1 0.1 

Non-decision time, t0 0.5 3 
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Figure 13. Example choice and response time distributions from simulated data 
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3.2.7. Parameter recovery and model investigation 

Prior to estimating parameters on the real or simulated datasets, all versions of the 

model were run using known values for all the parameters to determine if the models could 

recover the original parameter values. This was completed using both the MLE and PMwG 

methods. Some model parameters were also adjusted over multiple model runs to 

determine the effect of changing different values on the ability of the model to recover the 

original parameters. Section 5.1 provides an explanation and details for this. 

3.2.8. Comparing posterior distributions to original distributions 

Different metrics were used to evaluate the similarity of the choice distributions 

and response time distributions. The first section discusses the Kullback-Leibler 

divergence, which was used to compare the original and posterior predicted choice 

distributions. Then, the second section discusses the two-sample Kolmogorov-Smirnov (K-

S) test, which was used to compare the response time distributions. 

3.2.8.1. Comparing choice distributions 

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑥) log (
𝑃(𝑥)

𝑄(𝑥)
)𝑥∈𝑋    (13) 

The Kullback-Leibler (K-L) divergence (equation 13) measures the difference of 

one probability distribution from another reference probability distribution (e.g., 

McElreath, 2020). The formula is usually applied with known distributions (e.g., uniform, 

Gaussian, binomial) as the reference distribution where zero values indicate the values are 

outside of the true distribution. For this research, the reference distribution was the 

distribution of choices in the original dataset and the K-L divergence quantified how 

closely the posterior distribution of choices generated using the estimated model 
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parameters matched the choice distribution of the original data, where the posterior 

distribution had more samples than the original data. The data used in this research had 

zero values within the true distribution as well as within the posterior distribution. The 

Project RED data had many subjects that selected some of choice options zero times and 

the posterior distributions also had some subjects with zero responses for some of the 

choice options, so the formula was modified to add 1 to each option and the total number 

of choices (e.g., 15) to the denominator when calculating p and q. For subjects with a large 

number of trials, such as the simulated data or some of the Project RED subjects, this 

modification had little effect on the K-L divergence value. When all other choice options 

have counts in the tens or hundreds, changing a zero to a one is negligible. However, for 

subjects with a very small number of trials (e.g., 5) this adaptation smoothed the reference 

distribution and led to higher K-L divergence values for those subjects. This was true for 

results from all the models, though, and since the range of K-L divergence over all subjects 

was used when comparing the models, the effect of this modification should not change 

the results of the comparisons.  

Since the K-L divergence is a relative measure, a baseline needed to be established 

to compare to each model’s K-L divergence (i.e., where the measured K-L divergence falls 

within the baseline distribution). The baseline was created using a simulated 2-subject, 

1000-trial dataset for the reference distribution, which was generated by the single-stage 

CPT model using input parameters of b=5, A=20, =1, =1.5, and t0=10. These values 

generated a distribution with variation in response selection (in terms of counts not specific 

to a choice option) that was similar to the real data, and were also used to investigate 

parameter recovery, in section 5.1. The choice distribution for the baseline dataset is shown 
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in Figure 14a. The same single-stage CPT model then simulated another 10,000 datasets 

using parameters randomly selected from a distribution of values, shown in Figure 15, to 

generate distributions of choices to compare to the original. The threshold, starting point 

parameter, and non-decision time were selected from lognormal distributions and the  and 

 values are selected from normal distributions. The K-L divergence was calculated for 

each distribution of responses. The baseline was run using a K-L divergence calculation 

that did not account for zero responses; after removing NA values the baseline contained 

8938 K-L divergence measures with a minimum value of 8.6e-5 (i.e., the best value), a 

maximum value of 1.26 (i.e., the worst value) and a median of 0.133. The choice 

distribution for the maximum K-L divergence in the baseline (Figure 14b) was very 

obviously different than the reference distribution, while the distribution for the minimum 

K-L divergence in the baseline (Figure 14c) appeared to be identical to the reference 

distribution. The baseline K-L divergence (Figure 16) provided a distribution of values to 

use for quantifying how well the posterior distributions matched the original distributions 

of the simulated and real data.  

   

Figure 14. Choice distributions from the K-L divergence baseline for (a) the reference 

distribution (b) the maximum K-L divergence value in the baseline, and (c) the minimum 

K-L divergence value in the baseline 
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Figure 15. Distribution of values for parameters used to generate datasets for determining 

the K-L divergence baseline 
 

 

Figure 16. Distribution of baseline K-L divergence values 

3.2.8.2. Comparing response time distributions 

This research used two-sample Kolmogorov-Smirnov (K-S) test (equation 14) to 

determine if the posterior distribution of response times generated using the estimated 

model parameters matched the response time distribution of the original data. The two-

sample K-S test tested the null hypothesis that two continuous samples come from the same 

distribution (Massey, 1951). For the two-sample version of the test, the test statistic (d) 

was the largest absolute deviation between the two observed cumulative step functions, 

irrespective of the direction of the difference. The closer d was to zero, the more likely that 
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the two samples came from the same distribution. The ks.test function in the stats R 

package also outputs a p-value for the test statistic that has the same interpretation as other 

p-values. If the p-value was less than the pre-designated significance level of =0.05, then 

the null hypothesis that the two samples were drawn from the same distribution was 

rejected. 

𝑑 = max|𝑆1(𝑌) − 𝑆2(𝑌)|              (14) 

where 

d is the maximum deviation Kolmogorov statistic, S1(Y) is the observed cumulative 

distribution of sample 1, and S2(Y) is the observed cumulative distribution of sample 2. 

3.2.9. Model Comparison 

Both mean absolute error (MAE) and root mean square error (RMSE) were 

calculated to measure the accuracy of the best-fit or estimated parameter values. Both are 

standard metrics for determining the accuracy of an estimated value where a lower value 

is better. MAE was calculated using equation 15 and RMSE was calculated using equation 

16.  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑝𝑟𝑒𝑑,𝑖|

𝑛
𝑖=1    (15) 

𝑅𝑀𝑆𝐸 = √∑ (𝑋𝑜𝑏𝑠,𝑖−𝑋𝑝𝑟𝑒𝑑,𝑖)
2𝑛

𝑖=1

𝑛
    (16) 

Additionally, the resulting best-fit parameters from the different versions of the 

model found by MLE were compared using the Bayesian information criterion (BIC) and 

Bayes factors. BIC (Equation 17) is a type of information criteria, to construct a theoretical 

estimate of the relative out-of-sample K-L divergence, and is a commonly used metric for 
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comparing models. It is an approximate method of comparison and generally gives a larger 

punishment to models with more parameters. 

𝐵𝐼𝐶 = −2 ln 𝐿(𝜃|𝑦, 𝑀) + 𝑘 ln 𝑛          (17) 

The first term is the deviance; it is -2 times the maximized value of the log-

likelihood of the model, M. The second term accounts for model complexity using k, the 

number of free model parameters, and n, the number of data points on which the likelihood 

is based. When comparing several models, the one that produces the lowest BIC was 

preferred. The strength of evidence against a model with the higher BIC was defined (Kass 

& Raftery, 1995) using the BIC, where 2-6 is positive evidence, 6-10 provides strong 

evidence, and greater than 10 is very strong evidence against the model with the higher 

BIC value. 

Bayes factor (BF) is a measure the amount of evidence in favor of one model over 

another by calculating the ratio marginal likelihoods. The Bayes factor can also be 

approximated from the BIC values (Equation 18; Wagenmakers, 2007), expressed in terms 

of evidence in favor of Model 1 over Model 2. This research used commonly accepted 

guideline for the strength of evidence of favor of Model 1 (Raftery, 1995) which defined 

BF upper thresholds of 3, 20, and 150 for weak, moderate, and strong evidence, 

respectively.  

𝐵𝐹 = exp (
𝐵𝐼𝐶2−𝐵𝐼𝐶1

2
)    (18) 

Watanabe-Akaike Information Criterion, also known as Widely Applicable 

Information Criterion, (WAIC; Equation 19) is another estimate of out-of-sample deviance 

that, for a large sample, converges to the cross-validation approximation (McElreath, 2020; 
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Watanabe, 2010). Unlike the BIC, it makes no assumptions about the shape of the posterior 

distribution. The increased generality of the WAIC comes from a more complicated 

formula.  The first term is the log-pointwise-predictive-density; this is the Bayesian version 

for measuring the distance from the target. The second term adds a penalty proportional to 

the variance of the posterior predictions; it provides an overfitting penalty. It is also referred 

to the as the effective number of parameters, pWAIC. The pWAIC is the same as computing 

the variance in log-probabilities for each observation i, and then summing these variances.  

𝑊𝐴𝐼𝐶 = −2(𝑙𝑝𝑝𝑑 − ∑ 𝑣𝑎𝑟𝜃 log 𝑝(𝑦𝑖|𝜃)𝑖 )   (19) 

As the label of the first term in the WAIC indicates, WAIC is a pointwise measure. 

Prediction is considered point-by-point in the data, leading to WAIC having an 

approximate standard error. This means also that the data can be split into independent 

observations, which creates difficulty in understanding the resulting WAIC value for data 

where a prediction depends on the previous prediction (e.g., time series data). For this 

research, while there were some response options that followed others more frequently 

(Figure 4), there was no strong evidence that any response depended on the previous 

response, making WAIC a reasonable metric to use for comparing the MLBA models. The 

WAIC was used to compare single-stage and two-stage MLBA models utilizing the PMwG 

method of parameter estimation. Like BIC, a smaller WAIC value provided evidence in 

favor of that model. WAIC tells how different each model was from the best model. There 

is not a list of standard values to define the strength of evidence for WAIC; instead, the 

standard error of the difference in the WAIC estimates was compared to the difference in 

the estimates. If the WAIC was reasonably larger than the standard error of the 
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differences, then the model with the lower WAIC had improved out-of-sample accuracy 

over the other model. 

3.3. Counterfactual predictions  

This research used Bayesian generalized linear models (GLMs) to make predictions 

about participant switch rate and task performance to address the fourth research question. 

The associated hypotheses were tested by comparing out-of-sample predictions from 

models that used the residual parameters from the decision strategy and cognitive 

processing modeling, which are referred to as the revised models, to a baseline intercept-

only model.  The baseline and revised models addressed the three counterfactual questions 

using different data to build each model. The between-subjects question used all of the 

combined campaign 3 and campaign 4 ‘not withheld’ data to build the model. The 

counterfactual predictions were made for the HERA ‘all-female crew’ participants in 

campaign 3, mission 1 for all 3 sessions. The within-subjects question used data from only 

the HERA participants in sessions 1 and 2 of each mission within campaign 4 to build the 

model. Only the HERA participants repeated the task multiple times. The counterfactual 

predictions were made using HERA participants’ data from session 3 of each mission 

within campaign 4. The other question used the campaign 3 data to build the model and 

the session 4 data from each mission within campaign 4 to make the counterfactual 

predictions. 

This research established baseline intercept-only models of task-switching, 

individual performance, team performance, and multi-team performance for each 

counterfactual question using the data as described above. The performance values were 

normalized, as described in section 2.1. A binomial distribution was used for task-
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switching and a Gaussian distribution was used for performance. The baseline model had 

no predictors.  

  

Revised models for both task-switching and performance were built for each 

question, using different predictors for each question to test the proposed hypotheses. The 

revised models used the participant’s cluster assignment as a predictor to test the first 

hypothesis associated with within-subject counterfactual predictions. The first hypothesis 

focused on including decision-making strategy as a contextual factor. Including the most 

important factors as well as structuring the model as a multi-level model with participant 

ID as a hyperparameter were also explored, but were not part of the original hypothesis. 

For the second hypothesis, the revised models used a linear combination of the best LBA 

model’s parameters as predictors to test including cognitive process model parameters as 

contextual factors for both within-subject and between-subjects counterfactual prediction. 

For the third hypothesis, the models used a linear combination of participant cluster and 

the best LBA model parameters as predictors to test including both the decision-making 

strategy and cognitive process model parameters as contextual factors for all three types of 

counterfactual questions.  

The models were compared using Pareto-smoothed information sampling (PSIS) 

leave one out information criterion (LOO-IC) to compare the models (McElreath, 2020; 

Vehtari et al., 2020). For each question, the revised models were compared to the baseline 

models. The resulting predicted outcomes from each model were compared using RMSE 

and a visual assessment.   

𝑠𝑐𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖 , 𝑝𝑖) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛼 

𝛼~𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝑝𝑒𝑟𝑓𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎 ) 

𝜇~𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝜎~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 
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4. DECISION STRATEGIES RESULTS  

The strategy used by a participant to complete the overall task was not identified or 

controlled as part of data collection so this research used machine learning techniques to 

identify clusters of similar participants that use a similar strategy. The clusters were 

compared to a baseline random assignment model, to test the hypothesis for the first 

research question, and the results showed that the learned clusters better predicted out-of-

sample categories than the baseline, confirming the first hypothesis. The results included a 

combination of several machine learning methods, as shown in Figure 28. This chapter first 

discusses the results from data reduction, then describes the supervised and unsupervised 

machine learning outcomes using several different sets of parameters to group participants, 

and concludes with a summary of the best algorithm.     

4.1. Data Reduction  

Principal components analysis was run on six sets of 12 parameters that describe 

the relationships between each of the 12 participants (see section 3.1.1) using all the ‘not 

withheld’ data. The first PC (PC1) accounted for only 18% of the variance within the 

interpersonal ties parameter set, but for each other set of the parameters PC1 accounted for 

at least 25% of the variance and up to almost 50% for the tool dependencies, as shown in 

Figure 17. The first PC was used to reduce each of the parameter sets by a factor of 12 

(from 12 values to 1). Both the full set and the reduced set of parameters were used to 

generate clustering results and the results were compared to select set of parameters that 

produces the best clustering results. 
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Figure 17. Proportion of variance accounted for by each PC for the six parameter sets 

Personality measures, as described in section 2.1, were not included in any models 

used to evaluate the first hypothesis due to unknown differences in scale of the measured 

values as well as a large number of missing values in the campaign 4 data. A model was 

run that included personality variables along with the PCA reduced set of predictors to 

generate clusters of participants, for the training dataset (i.e., 80% of the ‘not withheld’ 

data), using the unsupervised random forest (uRF), as described in section 3.1.3. The uRF 

model identified the personality measures, in the order of agreeableness, 

conscientiousness, extraversion, and neuroticism, as the most important. After performing 

PAM clustering with the cMDS reduced uRF dissimilarity matrix, plotting the results 

showed two clear groupings (Figure 18). Labeling the points using the campaign grouping 

showed that the grouping was due to the differences in the personality measures between 

the two campaigns. These results supported the decision to not include personality 

measures in any models to identify clusters of decision-making strategies. 
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(a) (b) (c) 

   

Figure 18. PAM clusters of cMDS scaling coordinates for (a) unlabeled cMDS clusters, 

(b) using numbers to label the switch rate ‘true’ clusters, and (c) using numbers to label 

campaign. Colors show cMDS clusters for all three plots. 

 

4.2. Decision-making Strategies  

The models in this section focused on identifying patterns of individual behavior 

related to the participant’s task-switching rates. This research proposed that the patterns 

indicate differences in the strategies used by clusters of participants in completing the 

overall task. While the outcome of interest is an individual’s task-switching, the models 

included predictors that measure both individual attributes and team interactions. Team 

task-switching information was unreliable, as shown in section 2.2. Because of this, plus 

because variables measuring team interactions were already included in the individual 

strategy modeling, team decision-making strategy was not explicitly modeled.  

4.2.1. Most Important Predictors 

The most important predictors of task-switching behavior were found with a 

regression random forest model, using 500 trees, on the training dataset using the PCA 

reduced set of input variables and an outcome of switch rate. This model explained 69% of 

the variance in the task-switching data with a mean squared error of 9.5e-06. The model 
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provided a good fit to the data, but with 64 terminal nodes the results were hard to interpret. 

The importance metrics identified which parameters contributed most to the trees, but did 

not identify any similarities between the participants. For the supervised RF model, the 

most important variables were: typical task switches, explorer indicator variable, mean task 

priority, and mean task salience. Each variable contributed more than a 10% increase in 

MSE (Figure 19), and modeling each variable alone showed that typical task switches 

explained 40% of the variance, explorer status explained 25%, mean task priority explained 

15%, and mean task salience explained 5%. 

 
Figure 19. Most important predictors of switch rate – regression RF, PCA reduced 

dataset 

Applying the model to the test dataset (n=48) gave a Pearson’s r correlation of 0.82 

between the predicted and true switch rates (Figure 20). A permutation test cross-validation 

using 99 models, performed using the rf.crossValidation function in the rfUtilities package, 

(Evans & Murphy, 2018) gave a MAE cross-validation error variance of 8.2e-08. The 

regression RF provided good out-of-sample switch rate predictions, but the predictions did 

not explain the patterns of behavior.  
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Figure 20. Comparison of true switch rate to predicted switch rate for the test dataset using 

regression RF model 
 

4.2.2. Strategy Clusters 

This section discusses the results of the clustering analysis run on three different 

sets of predictors, to identify the model that best described the similarities in participants 

and that predicted the best cluster assignment of out-of-sample data. 

4.2.2.1. All predictors 

Unsupervised random forest models using all 94 predictors on the training dataset 

identified mean task interest, mean structure, mean task difficulty, and tool ties to role 9 as 

the most important variables related to similarity between the participants (i.e., the 

dissimilarity matrix). The unsupervised random forest did not include switch rate; both the 

importance measures and the dissimilarity matrix were independent of switch rate. Using 

the uRF dissimilarity matrix in the clustering analysis to generate 10 clusters, which was 

the optimal number of clusters determined from the total within clusters sum of squares, 
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gave results that performed almost the same as random chance (Table 7), whether using 

PAM clustering on the raw uRF dissimilarity matrix, PAM clustering on the cMDS of the 

uRF dissimilarity matrix, or Ward hierarchical clustering on the raw uRF dissimilarity 

matrix. The model was rerun using 2, 4, or 6 clusters with no improvement in the results. 

Figure 21 visualizes the lack of distinction in the clusters and Figure 27a confirms the poor 

clustering fits for these models. Due to the poor results with the in-sample data no out-of-

sample predictions were generated.   

  

  
Figure 21. PAM clusters of cMDS scaling coordinates based on uRF dissimiliarity matrix 

for 2, 4, 6, and 10 clusters using full dataset.  

 

Table 7. Unsupervised RF clustering metrics (in-sample) – 10 clusters using all 

predictors 

Cluster Type ARI Error Rate 

cMDS (PAM) 0.00 0.78 

uRF distance (PAM) 

dd(((PAM(PAM) 

0.03 0.75 

uRF distance (HC) 0.01 0.77 

Random 0.00 0.80 
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4.2.2.2. PCA Reduced Predictors  

An unsupervised random forest was also run using the PCA reduced set of 27 

predictors on the training dataset. The optimal number of clusters using this dataset, based 

on the total within clusters sum of squares, was also 10, but models were also generated 

using 2, 4 and 6 clusters. The uRF identified mean task interest, mean task structure, PC1 

of tool ties, mean task difficulty, and PC1 of functional ties as the most important variables, 

which mostly matched the most important variables from the all-predictor uRF; both the 

importance measures and the dissimilarity matrix were again independent of switch rate. 

PAM clusters, for 2, 4, 6, and 10 clusters, of cMDS scaling coordinates based on the uRF 

dissimilarity matrix, shown in Figure 22, visualize the lack of distinction in the clusters.  

2 clusters 

 

4 clusters 

 

6 clusters 

 

10 clusters 

 
Figure 22. PAM clusters of cMDS scaling coordinates based on uRF dissimiliarity matrix 

for 2, 4, 6, and 10 clusters using PCA reduced dataset. Colors show cMDS clusters and 

numbers show ‘true’ clusters 
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This dataset performed slightly better than the full set of predictors, but most ARI 

values were still close to zero and the error rates were approximately the same as random 

chance, as shown in Table 8; Figure 27b visually confirms the poor fits. Hierarchical 

clustering algorithms, as well as using 10 clusters with PAM clustering, gave results just 

slightly better than random chance, but still too close to random chance to generate any 

out-of-sample predictions with the models. 

Table 8. Unsupervised RF clustering metrics (in-sample) – PCA reduced predictors 

Cluster Type Number of Clusters ARI Error Rate 

cMDS (PAM) 2 0.00 0.48 

4 0.01 0.66 

6 0.02 0.71 

10 0.01 0.76 

uRF distance 

(PAM) 

2 0.00 0.48 

4 0.02 0.65 

6 0.01 0.73 

10 0.03 0.72 

uRF distance 

(HC) 

2 0.04 0.40 

4 0.03 0.64 

6 0.03 0.70 

10 0.03 0.75 

Random 2 0.00 0.50 

4 0.00 0.69 

6 0.01 0.72 

10 0.00 0.80 

 

The supervised random forest, which was run using the PCA reduced set of 27 

predictors on the training dataset, also generated a dissimilarity matrix to input into the 

different clustering algorithms. The most important variables from the supervised random 

forest were different than the most important variables from the unsupervised random 

forest (Table 9). It identified typical task switches, explorer indicator variable, mean task 

priority, and mean task salience as the most important variables; for this model the 

importance measures and the dissimilarity matrix were not independent of switch rate.  
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Table 9. Most important predictors using unsupervised RF and regression RF 

Rank Unsupervised RF Regression RF 

1 Mean task interest (6)  Typical tasks (14) 

2 Mean task structure (9)  Explorer (27) 

3 PC1 tool ties (12)  Mean task salience (9) 

4 Mean task difficulty (5)  Mean task priority (10) 
Note: Numbers in parentheses are the importance of that factor in the other model, determined by percent included MSE 

 

Like the uRF models, the optimal number of clusters with the supervised RF 

dissimilarity matrix, based on the total within clusters sum of squares (WSS), was 10. 

However, unlike the uRF models, the WSS dropped steeply until it reached 3 clusters 

(Figure 23), which indicated that 3 clusters should give class consistency that is about the 

same as 10 clusters. The cMDS plots (Figure 24), color coded by PAM cluster and number-

coded by ‘true’ grouping, showed overlap in the switch rates assigned to each cluster, but 

there was greater separation in the 2-cluster output. Based on the WSS and cMDS plots, 

plus the fact that dissimilarity matrix was not independent of switch rate and more clusters 

can lead to overfitting, the clustering algorithms were run twice to generate outputs with 2 

and 3 clusters using PAM clustering and average hierarchical clustering. Table 10 lists the 

performance metrics for the in-sample predictions using all the clustering techniques to 

generate 2 or 3 clusters. Hierarchical clustering with 2 clusters performed the best on the 

in-sample data (ARI = 0.25, error = 0.40). Out-of-sample predictions using the model on 

the test dataset (i.e., other 20% of the ‘not withheld’ data) were the same as random chance 

using both PAM clustering (ARI = 0, error = 0.6) and hierarchical clustering (ARI = 0, 

error = 0.6) methods on the RF dissimilarity matrix. While the in-sample results were better 

than both uRF models (i.e., using both the full set of predictors and the PCA reduced set), 

the out-of-sample predictions were not better than a random assignment model.  
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Figure 23. Optimal number of clusters for the regression RF dissimilarity matrix  

     

2 clusters 

 

3 clusters 

 

Figure 24. PAM clusters of cMDS scaling coordinates based on supervised RF 

dissimilarity matrix for 2 and 3 clusters using PCA reduced dataset. Colors show cMDS 

clusters and numbers show ‘true’ clusters. 

 

Table 10. Regression RF clustering metrics (in-sample) – PCA reduced predictors  

Cluster Type Number of Clusters ARI Error Rate 

cMDS (PAM) 2 0.22 0.41 

3 0.19 0.53 

uRF distance 

(PAM) 

2 0.18 0.46 

3 0.17 0.54 

uRF distance (HC) 2 0.25 0.40 

3 0.21 0.53 

Random 2 0.00 0.5 

3 0.00 0.66 
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4.2.2.3. ‘Top 4’ Predictors 

As Table 9 shows, the most important predictors were different when using the 

unsupervised versus the supervised random forests. The results showed that using 

dissimilarity measure from supervised regression random forest in the clustering 

algorithms produce higher ARIs and lower than error rates than using the dissimilarity 

matrix from the uRF, which produces in-samples predictions only slightly better than 

chance. The clusters based on the supervised random forest dissimilarity measure were also 

more tightly clustered. Additionally, generating clusters using the uRF dissimilarity matrix 

from the PCA reduced set of variables performed slightly better than using all the variables. 

Therefore, the set of variables was further reduced to include only the most important 

variables; the values from the regression RF were chosen because that model provided the 

best in-sample predictions. 

An unsupervised random forest was run using the set of ‘top 4’ regression RF 

predictors on the training dataset. The optimal number of clusters using this dataset, based 

on the total within clusters sum of squares, was again 10, but models were also generated 

using 2, 3 and 4 clusters. The cMDS plots (Figure 25) show a different pattern in the 

dissimilarity measures than the other models; using 2 clusters provided the most distinction 

between the clusters where the points in one cluster have a positive slope and the points in 

the other have a negative slope. Running the different clustering algorithms on the 

dissimilarity matrix, average hierarchical clustering using 2 clusters gave the highest ARI 

and lowest error rate for the in-sample predictions while PAM clustering gave the next best 

ARI and error rate, shown in Table 11. These values are better than any generated using 

full set of predictors or the PCA reduced set of predictors.  Figure 27d visually confirms 
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this as well. Out-of-sample predictions on the 20% test data using these two models 

perform better than chance with error rates of 0.31 (error rate of random chance = 0.50) 

and an ARI greater than zero but below the in-sample values (ARIHC = 0.12, ARIPAM = 

0.12). Visual assessment of the boxplots (Figure 26) shows greater separation in center 

values of the clusters than random chance, but also a large amount of overlap in the values. 

Running leave-one-out cross-validation on the entire ‘not withheld’ dataset to generate out-

of-sample predictions slightly increases ARI while error rates are approximately the same 

as the test dataset (ARIHC = 0.17, error = 0.29).  

 
Figure 25. PAM clusters of cMDS scaling coordinates based on uRF dissimiliarity matrix 

for 2, 3, 4, and 10 clusters using ‘top 4’ dataset.  

 

Table 11. Unsupervised RF clustering metrics (in-sample) – ‘top 4’ predictors 

Cluster Type Number of Clusters ARI Error Rate 

cMDS (PAM) 2 0.16 0.30 

3 0.11 0.46 

4 0.10 0.54 

10 0.06  0.71 

uRF distance 

(PAM) 

2 0.29 0.23 

3 0.20 0.42 

4 0.16 0.50 

10 0.09 0.68 

uRF distance (HC) 2 0.31 0.22 

3 0.21 0.43 

4 0.16 0.48 

10 0.11 0.72 
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Figure 26. Clustering of ‘top 4’ uRF out-of-sample predictions 

 

 

 (a) All predictors (b) PCA reduced uRF  (c) PCA reduced RF  (d) ‘Top 4’ uRF  
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Figure 27. Clustering of in-sample predictions for (a) all-predictors uRF, (b) PCA reduced 

uRF, (c) PCA reduced RF, and (d) ‘top 4’ reduced uRF using PAM clustering on cMDS 

scaling coordinates (top row), PAM clustering on uRF/RF dissimilarity distance (second 

row), hierarchical clustering on uRF/RF dissimilarity distance (bottom row) 

  

 By performing better than random assignment to predict out-of-sample categories, 

this model confirmed the first hypothesis and addressed the research question of how 

participants group together in their strategies of completing the overall task. The model 
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built using the ‘not withheld’ data was applied to the ‘withheld’ data to identify the clusters 

to use in the counterfactual prediction models. 

4.3. Summary  

The results from the decision strategies analysis support the hypothesis that patterns 

identified using machine learning predict the out-of-sample decision strategy category 

better than random assignment. The machine learning analysis identified patterns that 

indicated differences in clusters of participants completing the overall task. Assuming 

participants used different strategies to complete the task, the clusters represented the 

different strategies used by the participants. The model that used the top 4 most important 

predictors from the regression random forest in the unsupervised random forest (uRF) 

model combined with hierarchical clustering of 2 clusters on the uRF dissimilarity matrix 

gave the best in-sample ARI and classification error rate results for the training data (i.e., 

80% of ‘not withheld’ data). The results showed that decreasing the number of variables 

(i.e., IVs for the uRF) increased clustering performance. When there were more variables, 

increasing the number of clusters slightly increased ARI, but also increased error rate, 

while using less variables with a smaller number of clusters gave higher ARIs as well as 

smaller error rates. Using this best model to predict out-of-sample results on the test data 

(i.e., 20% of ‘not withheld’ data) produced predictions better than random assignment. 

When this best model was run using a leave one out method to produce out-of-sample 

predictions the results were about as accurate as the out-of-sample predictions on the test 

data and better than random assignment. The results from this modeling identified 

commonalities between the participants that were included in the counterfactual modeling 

to try to improve the predictions of switch rate, individual performance, team performance, 
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and MTS performance for the within-subject and other counterfactual question. The best 

model was run on the ‘withheld’ dataset, as shown in the far-right panel of Figure 28, to 

generate the cluster assignments that were used as inputs in the counterfactual prediction 

models.  

Variables that were measured during task completion were needed in order to 

assign a participant to a cluster, but counterfactual predictions are intended to only use data 

that is available before the task is performed. Instead of a true counterfactual prediction, 

the results from the machine learning modeling were used to make predictions assuming 

that the cluster assignments were determined prior to task performance.  

 
Figure 28. Decision Strategy Model pipeline 
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5. COGNITIVE PROCESS MODEL RESULTS  

The research questions identified several possible cognitive mechanisms that 

participants could use to decide when to switch to a new task as part of a larger overall 

task. This research adapted and applied the multi alternative, multi-attribute linear ballistic 

accumulator models to describe and explain the cognitive mechanisms related to task-

switching behaviors, to address the research questions. The models were compared to 

determine the mechanism most favored given the Project RED and simulated task-

switching data. The results from the Project RED data were contradictory across the two 

campaigns, but the simulated data provided clearer results to determine the cognitive 

process that best described the task-switching behavior. The estimated parameters from 

this model explained that individual variations in task-switching behavior for Project RED 

were related to a bias to avoid switching as well as the attractiveness of the alternative 

tasks. This chapter first discusses the results from a parameter recovery and model 

investigation study, then compares the results of the models on the simulated data and the 

Project RED data, and concludes with a summary of the results. 

5.1. Parameter recovery and model investigation 

This research investigated the effect that various changes, including varying the 

number of trials, varying the number of response options, constraining the drift rate 

parameters to be positive, and changing the number of free parameters in the model, had 

on the results from each of the models. In addition, a parameter recovery study was run to 

ensure that the models were able to estimate a unique set of known parameters before 

running the models on the Project RED data with unknown parameters. Three of the four 

models used in this analysis were developed as part of this research and the model 
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investigation and parameter recovery helped to understand the strengths and limitations of 

the models before applying them to real data. This section first describes the results using 

MLE and then using Particle Metropolis within Gibbs sampling.  

5.1.1. Maximum Likelihood Estimation  

Maximum likelihood estimation (MLE) was only run for the single-stage versions 

of the model using equations 1, 2, and 3 for the cumulative prospect theory (CPT) version 

and equations 6, 7, and 8 for the information foraging theory (IF) version. The CPT version 

and the IF version of the model each included 5 parameters of interest: threshold (b), 

starting point parameter (A), and non-decision time (t0) for both versions plus the 

parameters related to value and attention,  and  in the drift rate equation for the CPT 

version and  and  in the drift rate equation for the IF version, respectively. Threshold 

and one or both of the drift rate parameters (i.e.,  and/or  for the CPT version and  

and/or  for the IF version) were left free for the MLE fitting. A, t0, the initial drift rate (I0) 

and the drift rate scaling factors (cd and cm) were fixed for all versions of the model. The 

MLE fitting considered three configurations of free parameters to fit for each model. For 

the CPT model the configurations were identified as CAG, where b,  and  were allowed 

to vary; CA, where b and  were allowed to vary; and CG, where b and  were allowed to 

vary. For the IF model the configurations were identified as IAB, where b,  and  were 

allowed to vary; IA, where b and  were allowed to vary; and IB, where b and  were 

allowed to vary.  

To examine the ability of the single-stage CPT and IF models to recover the 

generating values of the model parameters (i.e., the values used to generate simulated data), 

two 20-subject simulated datasets were created for the CPT and the IF version of the model, 
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as described in section 3.2.6, where the generating values for both drift rate parameters 

(i.e.,  and  for CPT;  and  for IF) varied for each subject. All other parameters (b, A, 

t0, I0, cd, and cm) were set constant across all subjects to the values used to generate the 

simulated data. These datasets did not allow for comparison between the CPT and IF 

models because different values were used to generate the datasets and the data differed in 

each dataset. The MLE method was used to find the best fit drift rate and threshold 

parameters for the three configurations of each model (i.e., CAG, CA, CG, IAB, IA and 

IB) to data simulated for 3- and 5-choice tasks. A, t0, I0, cd, and cm were fixed to the 

generating value for the model fitting.  

For the 3-choice and 5-choice data, using the MLE best-fit parameters, a visual 

assessment determined that all configurations of the CPT model (i.e., CAG, CA, and CG) 

and IF model (i.e., IAB, IA, and IB) recovered the choice and RT distributions for most of 

the subjects (Figure 77 & Figure 78 in Appendix B), with the CPT models deviating less 

from the original distributions than the IF models. Using quantitative metrics, the 

Kullback-Leibler (K-L) divergence values (Figure 29) were less than the median of the 

baseline (DKL=0.133) for all configurations of both the CPT and IF models. The K-L 

divergence values were lower using the results from the IF models than the CPT models 

for the 3-choice datasets and most of for the 5-choice datasets. The majority of the 

Kolmogorov-Smirnov (K-S) test statistic p-values were above 0.05 for the CPT models, as 

shown in Figure 30, indicating that the null hypothesis (i.e., the two samples are from the 

same distribution) should not be rejected. The RT distribution using the best-fit parameters 

was the sufficiently similar than the original simulated data. However, the IF models had 

many or all subjects with K-S test statistic p-values below 0.05 (Figure 30), indicating that 
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the null hypothesis should be rejected. The CPT models, in general, had low K-L 

divergence and higher p-values for the K-S test statistic, indicating that responses generated 

with the best-fit MLE parameters from the CPT models more closely matched the 

responses and response times of the simple simulated dataset than using the IF models.  

3 response options 5 response options 

    
Figure 29. K-L divergence values for 3-choice and 5-choice simple simulated datasets  

 

3 response options 5 response options 

    
Figure 30. K-S test statistic p-values for 3-choice and 5-choice simple simulated datasets  
 

None of the configurations of the CPT models or the IF models recovered all the 

generating values for the parameters. Table 37 and Table 38 in Appendix B include the 

best-fit values for each parameter for each subject for each model configuration. Table 12 

provides a summary of the RMSE for best-fit values. For the CPT models (Figure 31), the 

best fit value for b and  were close to the generating value, but  was not for any of the 

configurations. For the IF models (Figure 32), b was close to the generating value, but  

and  were not. This seems to be a limitation of the MLE fitting method. The PMwG 

method was able to estimate values for the threshold and drift rate parameters, as well as 



100 

 

the starting point and non-decision time parameters, that were close to the generating 

values. Detailed results are described in the next section. 

Table 12. MLE best-fit parameter values (RMSE)  
 CAG CA CG IAB IA IB 

3-choice dataset 

b 0.37 0.63 0.51 0.95 0.95 0.95 

 0.07 0.11 NA 177 1.49 NA 

 1.66 NA 1.66 NA NA NA 

** NA NA NA 218 NA 115 

5-choice dataset 

b 0.15 0.37 0.40 0.94 0.94 0.94 

 0.12 0.04 NA 197 85 NA 

 1.63 NA 1.61 NA NA NA 

** NA NA NA 321 NA 2.09 
** excludes values > 1e6 

 
 
(a) (b) (c) 

   

   
Figure 31. Original and best-fit values from the CPT models configurations with the 3-

choice dataset (top row) and the 5-choice dataset (bottom row). (a) Original, CAG, and 

CA alpha values for all subjects. (b) Original, CAG, and CG gamma values for all subjects. 

(c) CAG, CA, and CG threshold values for all subjects. The generating value of threshold 

was 2 for all subjects for all the models. 
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(a) (b) (c) 

   

   
Figure 32. Original and best-fit values from the IF models configurations with the 3-choice 

dataset (top row) and the 5-choice dataset (bottom row). (a) Original, IAB, and IA alpha 

values for all subjects. (b) Original, IAB, and IB gamma values for all subjects, excluding 

value greater than 1e6. (c) IAB, IA, and IB threshold values for all subjects. The generating 

value of threshold was 2 for all subjects for all the models.  
 

5.1.2. Particle Metropolis within Gibbs  

The model investigation and parameter recovery study were run using Particle 

Metropolis within Gibbs sampling to estimate parameters for both the single-stage and two-

stage versions of the MLBA model. The single-stage versions used equations 1, 2, and 3 

for the cumulative prospect theory (CPT) version and equations 6, 7, and 8 for the 

information foraging theory (IF) version. The two-stage versions used equation 12 in 

addition to the other equations from the single-stage model. 

5.1.2.1. Single-stage models 

PMwG parameter estimation was run multiple times using the same initial (i.e., 

generating) values for all 5 parameters of the single-stage CPT model to investigate several 

different assumptions about the parameters. Two subjects were used to keep the 
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computational run-times reasonable. Table 13 summarizes the RMSE to quantify how the 

estimated parameter values compared to the generating values for each of the model 

configurations, the Kullback-Leibler (K-L) divergence to measure the similarity of the 

choice distributions, and the Kolmogorov-Smirnov (K-S) test to measure the similarity of 

the response time distributions. First, the model was run to determine if there was an effect 

on the estimated parameters of allowing  and  to be negative (M1) or restricting  and  

to be positive (M2). Both models recovered the choice and RT distributions, while both a 

visual assessment and the quantitative metrics (Table 13) determined that the first model, 

which allows  and  to be negative, recovered the distributions better. Additionally, the 

shape of the  distribution appeared to vary based on whether or not  was allowed to be 

negative, as shown in Figure 79 in Appendix B. M1 produced posterior samples of  with 

a normal distribution while M2 did not. Next, the model was run to compare the effect of 

number of response options on the estimated parameters by running one model with 5 

response options (M1) and another with 15 response options (M3);  and  were allowed 

to be negative for both. Both models recovered the choice and RT distributions and both 

recovered the generating parameters equally well. As expected, the 15-choice dataset took 

much longer to run. Finally, the model was run to compare the effect on the estimated 

parameters of varying the number of trials within the simulated dataset. This comparison 

showed that the estimated parameters for the dataset with 1000 trials (M1) were closer to 

the generating values than estimated parameters for the dataset with 100 trials (M4) and 

quantified the difference using the distribution of parameter values. As expected, the 

dataset with 100 trials had a larger difference between the estimated values and the 

generating values as shown using the RMSE in Table 13. The 100-trial dataset also had 
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more error in the choice and response time distributions, as shown with the K-L divergence 

values and the K-S test statistic and its associated p-value. Of the 4 CPT models run, models 

1 and 3 have the smallest RMSE values across all the parameters providing evidence that 

allowing  and  to be negative values resulted in better estimated parameters. The rest of 

the models were run allowing  &  to be negative values. 

Table 13. PMwG estimated parameter metrics for CPT single-stage models 
 Initial Values 

K-L divergence 

(mean  se) 

K-S test statistic 

and p-value 

(mean  se) 

b = 5 A = 15  = 1  = 1.5 t0 = 10 

Estimated parameters (RMSE) 

M1  0.30 1.09 0.04 0.19 0.11 0.001  0.0008 0.03  0.0005 

p = 0.66  0.04  

M2  0.17 0.48 1.04 1.16 0.07 0.0006  0.0003 0.03  0.003 

p = 0.30  0.09 

M3  0.31 0.21 0.07 0.55 0.02 0.002  0.002 0.02  0.0002 

p = 0.82  0.01 

M4  3.38 9.34 0.30 0.15 0.93 0.04  0.03 0.06  0.001 

p = 0.87  0.04 

M1:  &  can be <0, 5 choices, 1000 trials 

M2:  &  cannot be <0, 5 choices, 1000 trials 

M3:  &  can be <0, 15 choices, 1000 trials 

M4:  &  can be <0, 15 choices, 100 trials 

 

A parameter recovery simulation was run using the version of the CPT model that 

allows  and  to be negative. Multiple 5-choice datasets were created by varying the values 

of b,  and  within this model, and then the same model was used to estimate the b, A, , 

 and t0 parameters. Generating values of  varied from -2 to 2,  varied from -2 to 2, and 

b varied from 4 to 15 with 8 different combinations of b,  and  run. Every value of  and 

most values of  were recovered, as shown in Figure 33. The threshold value was recovered 

for values that were farther from the starting point value. As the threshold value approached 

the starting point value the estimated parameters were further from the generating value. 

However, when b and A were added together, the sum of the estimated parameter values 
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was again close to the sum of the original threshold and starting point. This provided 

confidence that the single-stage CPT model was identifiable and could be used to test the 

hypotheses relating to what cognitive mechanism best described the decision-making 

process.  

 

 

  

 

 

 
Figure 33. Original and estimated parameters values from the CPT model for threshold, 

starting point, , and . 
 

This research also investigated assumptions about the parameters of the single-

stage IF model. Table 14 summarizes the comparisons, again using RMSE to quantify how 

the estimated parameter values compared to the generating values for each of the model 

configurations, the K-L divergence to measure the similarity of the choice distributions, 

and the K-S test to measure the similarity of the response time distributions. First, the 

model was run with a version of the model that let the profitabilities vary for each of the 

response options. This was run twice, once where the profitabilities (i) and  were allowed 

to be negative (M5) and a second time where they were forced to be positive (M6).  All of 
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the generating values were positive and both simulated datasets had five response options. 

Both versions recovered the threshold, starting point and non-decision time values. The 

version where i and  were forced to be positive (M5) output estimated parameters with 

smaller RMSE values, that were closer to recovering the generating values. A third version 

was then run where the profitabilities were again estimated, this time for each of 15 

response options, where both  and i were allowed to be negative. This model (M7) only 

recovered the original t0 value and the posterior samples were not normally distributed 

(Figure 80 in Appendix B), which was likely due to the tuning of the PMwG sampler. Two 

more versions of the model were run where the profitabilities are determined from the data, 

as described in section 3.2.2, and the  parameter was allowed to vary; one with five 

response options (M8) and the other with 15 response options (M9). Both these models 

were able to recover the generating parameters. The three versions of the model that 

estimated the profitability values had lower K-L divergence, lower K-S test statistics, and 

higher K-S test p-values, indicating that the posterior predictive distributions of choice and 

response time using the estimated parameters from these models best matched the original 

data. The two versions of the model the used the  parameter had lower RMSE, K-L 

divergence values that were below the baseline median value of 0.133, and K-S test statistic 

p-values that were mostly above 0.05. The version with 15 choices that used the  

parameter (M9) actually had a lower K-L divergence than the model that estimated 15  

values (M7). To reduce the number of fit parameters and use a model that is identifiable, 

the version of the model that includes  was used for a parameter recovery simulation and 

for estimating parameters from the simulated and real data. 
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Table 14. PMmG estimated parameter metrics for IF single-stage models 
Generating values M5 M6 M7 M8 M9 

b = 5 0.50 0.99 0.79 0.69 0.90 

A = 15 1.76 0.58 1.56 0.29 2.08 

 = 1/1/1.1/0.5/1  0.003 0.11 0.27 0.06 0.02 

1 = 0.2 0.47 0.15 3.81 - - 

2 = 0.1 0.23 0.07 7.50 - - 

3 = 0.25 0.51 0.18 0.70 - - 

4 = 0.4 0.86 0.29 7.86 - - 

5 = 0.05 0.13 0.03 0.77 - - 

6 = 0.11 - - 10.09 - - 

7 = 0.17 - - 4.81 - - 

8 = 0.45 - - 10.98 - - 

9 = 0.6 - - 15.78 - - 

10 = 0.02 - - 2.88 - - 

11 = 0.22  - - 7.74 - - 

12 = 0.3 - - 4.18 - - 

13 = 0.35 - - 10.26 - - 

14 = 0.7 - - 17.53 - - 

15 = 0.03 - - 0.63 - - 

 = 0.2 - - - 0.11 0.03 

t0 = 10 0.07 0.16 0.07 0.20 0.28 

K-L divergence 

(mean  se) 

0.001  0.001 0.0004  0.0002 0.011  0.006 0.05  0.03 0.006  0.003 

K-S test statistic 

(mean  se) 

0.022  0.002 0.028  0.004 0.020  0.003 0.05  0.009 0.028  0.002 

K-S test statistic 

p-values 

(mean  se) 

0.78  0.08 0.52  0.20 0.78  0.14 0.05  0.04 0.47  0.11 

M5:  & i can be <0, 5 choices, 1000 trials 

M6:  & i cannot be <0, 5 choices, 1000 trials 

M7:  & i can be <0, 15 choices, 1000 trials 

M8:  &  can be <0, 5 choices, 100 trials 

M9:  &  can be <0, 15 choices, 100 trials 

 

Another parameter recovery simulation was run using the version of the IF model 

that includes  and  parameters, which are allowed to be negative, to create multiple 5-

choice datasets by varying the values of b, A, ,  and t0.  The same model was then used 

to estimate the b, A, ,  and t0 parameters. The generating values of  varied from -1.5 to 

1.5,  varied from -1.5 to 1.5, b varied from 2 to 6, A varied from 15 to 30, and t0 varied 

from 5 to 15 with 10 different combinations of b, A, ,  and t0 run. All values of t0, most 

values of  and , and most threshold and starting point values were recovered for values, 

as shown in Figure 34. Like the CPT version of the model, as the threshold value 

approached the starting point the estimated parameters are further from the generating 
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value. However, when b and A were added, the sum of the estimated parameter values was 

approximately equal to the sum of the generating threshold and starting point. These results 

provided confidence that the single-stage IF model was identifiable and could be used to 

test the hypotheses.  

   

   
Figure 34. Original and estimated parameters values from the IF model for threshold, 

starting point, , , and non-decision time. 

 

5.1.2.2. Two-stage models 

Two different structures of the two-stage MLBA models, as described in section 

3.2.4, were investigated for this research. The two-stage models, one using the CPT based 

equations and the other using the IF based equations, described the decision to switch tasks, 

and which task to switch to, as a serial process that used task type as a criterion to reduce 

the number of response options before making the final decision. The model investigation 

used 5 response choices and 1000 trials for all versions of the two-stage models, and let all 
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drift rate parameter estimates be either negative or positive. The initial structure has 9 total 

parameters: b1, b2, A, 1, 2, 1, 2, t0, and ts for the CPT version and b1, b2, A, 1, 2, 1, 

2, t0, and ts for the IF version. Table 15 summarizes the comparisons of the initial two-

stage structure, using RMSE to quantify how the estimated parameter values compared to 

the generating values for each of the model configurations, the K-L divergence to measure 

the similarity of the choice distributions, and the K-S test to measure the similarity of the 

response time distributions. Figure 81 in Appendix B plots the trace plots of the samples 

from each initial structure two-stage model, along with the generating value, for each 

parameter. 

Letting all the parameters vary within the CPT version of the model resulted in 

estimated parameters that did not equal the generating values for all the parameters, as 

shown in Table 15. For the IF version of the model the estimated values of the starting 

point and  from the first stage were close to the values used to generate the data (i.e., the 

generating values), but the other parameters were not. The first stage threshold, non-

decision time, and stage delay parameter approached zero while the second stage threshold 

was much larger than the generating value. Additionally, the models produced correlated  

values for the CPT version (𝑟𝐶𝑃𝑇 = -0.20, n=2) and correlated  values for the IF version 

(𝑟𝐼𝐹 = -0.5, n=2); these parameters were fixed to the generating values and the models are 

run again.  

Letting the other 7 parameters vary (MT3) resulted in many estimated parameters 

that were not equal (or even close to equal) to the generating values for the CPT version; 

only A was close to the generating value. The first stage threshold was much smaller than 

the generating value while the second stage threshold was much higher. The non-decision 
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time and the stage delay parameter were also much smaller than the generating values. 

Posterior predictions using the estimated parameters gave a choice distribution that visually 

was the same as the original distribution (Figure 35a), but response time distributions that 

predicted longer response times (median RTMT3 = 23.0 sec) than the original data (median 

RT = 13.9 sec). The K-L divergence is smaller than the baseline median value and the K-

S test statistic p-values are 0. These metrics indicate that the estimated parameters produce 

the same choice distribution as the generating parameters, but a different response time 

distribution. 

Fixing 1 and 2 as constant values and letting the other 7 parameters vary, the IF 

two-stage model (MT4) estimated parameters that also were far from equal to the 

generating values for any of the parameters. Again, the first stage threshold, non-decision 

time, and stage delay parameter approached zero while the second stage threshold was 

much larger. Posterior predictions using the estimated parameters from this model gave a 

choice distribution that was visually different from the original distribution (Figure 35b) as 

well as response time distributions that predicted longer response times (median RTMT4 = 

50.4 sec) than the original data (median RT = 30.4 sec). The K-L divergence was larger 

than the baseline median value and the K-S test statistic p-values were 0. These metrics 

indicated that the estimated parameters produced both different choice and response time 

distributions than the generating parameters. 

 

 

 

 



110 

 

(a) (b) (c) 

   
Figure 35. Choice distributions using original values vs. posterior predictions for (a) MT3, 

(b) MT4, and (c) MT5. Original data in black, posterior predictions in grey. 
 

The model was further reduced to only let b1, b2, A and t0 vary (MT5). This was 

only run once, using the CPT equations for drift rate to generate data, since none of the 

drift rate parameters varied in the model. The second stage threshold was large, like the 

previous versions, but the first stage threshold was only a little below the generating value. 

The starting point was smaller than the generating value and non-decision time was larger. 

Like the previous CPT model, posterior predictions using the estimated parameters gave a 

choice distribution that visually was the same as the original distribution (Figure 35c), but 

response time distributions that predicted longer response times (median RTMT5 = 58.5 sec) 

than the original data (median RT = 44.0 sec). The K-L divergence was smaller than the 

baseline median value and the K-S test statistic p-values are 0. These metrics indicated that 

the estimated parameters produced the same choice distribution as the generating 

parameters, but a different response time distribution. The results from all attempts to 

estimate parameters that recover the generating values indicated that while the models fit 

the response data reasonably well, the modeled response times were longer than the 

original data. Rather than continue to reduce the number of parameters with this structure, 

MT4 original vs. posterior prediction MT5 original vs. posterior prediction MT3 original vs. posterior prediction 
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the two-stage model structure was revised to include only a single threshold and to use an 

overall drift rate equation in the log likelihood function, as described in section 3.2.4.  

 

Table 15. PMmG estimated parameter metrics for two-stage model initial structure 
Generating values MT1 MT2 MT3 MT4 MT5 

b1 = 2 1.7 2.0 2.0 2.0 0.8 

b2 = 3 2.3 18.5 17.8 19.9 47.7 

A =  40.3 1.0 0.9 26.2 45.4 

1 =   1.3 0.2 0.2 1.1 - 

2 =  0.7 0.4 0.5 0.8 - 

1 =  3.5 - - - - 

2 =  2.3 - - - - 

1 =  - 2.4 - - - 

2 =  - 1.9 - - - 

t0 = 5 4.9 5.0 5.0 5.0 4.4 

ts = 10 5.9 10.0 5.0 10.0 - 

K-L divergence 

(mean  se) 

- 0.204  0.12 0.019  0.01 0.166  0.01 0.004  0.0003 

K-S test statistic 

(mean  se) 

- 0.50  0.002 0.51  0.005 0.39  0.03 0.29  0.01 

K-S test statistic 

p-values 

(mean  se) 

- 0 0 0 0 

MT1: CPT equations, b1, b2, A, 1, 2, 1, 2, t0, and ts vary  MT4: IF equations: b1, b2, A, 1, 2, t0, and ts vary 

MT2: IF equations, b1, b2, A, 1, 2, 1, 2, t0, and ts vary  MT5: CPT equations, b1, b2, A and t0 vary 

MT3: CPT equations, b1, b2, A, 1, 2, t0, and ts vary      

 

The revised two-stage model structure had 8 total parameters: b, A, 1, 2, 1, 2, t0, 

and ts for the CPT version and b, A, 1, 2, 1, 2, t0, and ts for the IF version. Table 16 

summarizes the comparisons of the revised two-stage structure, using RMSE to quantify 

how the estimated parameter values compared to the generating values for each of the 

model configurations, the K-L divergence to measure the similarity of the choice 

distributions, and the K-S test to measure the similarity of the response time distributions. 

Figure 83 in Appendix B plots the posterior distribution of the samples from each revised 

structure two-stage model, along with the generating value, for each parameter. By 

allowing anywhere from 1 to 8 of the variables to be free, considering the different possible 
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combinations for each number of free variables, gave a total of 255 combinations of free 

variables that could be investigated. Instead of investigating all the combinations, this 

research first let all 8 parameters vary, allowing the drift rate to be less than zero and 

restricting the other parameters to be positive values. When running the PMwG sampler on 

the CPT model where all the parameters vary (MT6) the sampling phase continued to select 

new values for the estimated parameters for approximately the first 2000 samples in the 

sampling phase (Figure 82 in Appendix B). Starting at about sample 4000 the estimated 

values were consistent for each parameter. The portion of the sampling phase where the 

samples continued to vary was not used in determining the estimated parameters for the 

CPT version of the model; the last 1500 samples were used. The IF version of the model 

(MT7) also had some bad samples at the start of the sampling phase so the estimated 

parameter values were determined using the last 2000 samples. The resulting parameter 

estimates had large RMSE compared to the generating values. Both the CPT version of the 

model (MT6) and the IF version (MT7) had small K-L divergence and a small K-S test 

statistic with an associated p-value greater than 0.05. The metrics and a visual assessment 

(Figure 36 and Figure 37) confirmed that the posterior estimates produce choice and 

response time distributions that are the sufficiently similar to the original distribution. 
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Figure 36. Choice distributions using original values vs. posterior predictions for MT6, 

MT7, MT8, MT9, MT10, MT11, and MT12. Original data in black, posterior predictions 

in grey. 
 

    

   

 

Figure 37. Response time distributions using original values vs. posterior predictions for 

MT6, MT7, MT8, MT9, MT10, MT11, and MT12. Original data in black, posterior 

predictions in grey. 
 

 Next, the model was restricted to only allow the threshold, starting point maximum 

value, and non-decision time (MT8 and MT9). These parameters were all recovered in the 

first revised models (MT6 and MT7) so they were chosen as a reasonable set of free 
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parameters that are recoverable. A visual assessment of the posterior samples (Figure 83 

in Appendix B) along with the RMSE values in Table 16 indicated that the estimated 

parameters were equal to the generating values. However, this configuration eliminated 

any parameters related to task attributes, in the drift rate equations, and to the number of 

stages. There was no difference in the structure of the model between the CPT and IF 

versions of the model, and the results provided the same estimated parameters regardless 

of whether the CPT equations or the IF equations were used to generate the data. Both 

versions were run and the results confirmed that both produce the same output. This 

configuration did not provide any information to address any of the research questions. 

Both the CPT version of the model (MT8) and the IF version (MT9) have small RMSE, 

small K-L divergence and small K-S test statistic with a p-value greater than 0.05 for that 

statistic. The metrics and a visual assessment (Figure 36 and Figure 37) confirmed that the 

posterior estimates produced choice and response time distributions that were sufficiently 

similar to the original distribution, and that the estimated parameters were also sufficiently 

similar to the generating values. It was of some concern that such a constrained model was 

needed to recover the generating values from the data, but the research questions focus on 

model comparisons that do not rely on the values of the estimated parameters, so less 

constrained models that contain more parameters of interest were still able to provide 

metrics to compare the models and test the hypotheses.   

 Several other combinations of more than 3 but less than all 8 parameters were run; 

all recovered both the choice and response distributions, but only some of the generating 

parameters were recovered for any configuration. Three configurations were looked at in 

more detail: b, A, t0 and ts as free parameters (MT10); 1, 2, 1, and 2 as free parameters 
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using the CPT drift rate equations (MT11); and 1, 2, 1, and 2 as free parameters using 

the IF drift rate equations (MT12). Like MT8 and M9, the first configuration (MT10) also 

did not allow any of the drift rate parameters to vary, again eliminating any difference 

between the CPT and IF versions of the model. However, this configuration did include 

the stage delay parameter which was related to the two-stage process. This configuration 

recovered some of the generating values, but has RMSEs larger than MT8 or MT9. One 

limitation of varying only b, A, and t0 or even b, A, t0 and ts was that none of the drift rate 

parameters were estimated so the other two configurations included only 1, 2, 1, and 2 

for the CPT version (MT11) and 1, 2, 1, and 2 for the IF version (MT12). This again 

resulted in the distributions being recovered but not the parameters. The parameter RMSEs 

for MT10, MT11 and MT12 were approximately the same as the parameter RMSEs for 

MT6 and MT7. Including any parameters related to the drift rate or the two-stage structure 

resulted in approximately the same amount of error in the parameter estimates.  

 It did not make sense to run a parameter recovery simulation for the two-stage 

model. The only version that recovered all the parameters was the version that let only 

threshold, starting point and non-decision time vary, which were all part of the traditional 

LBA model and have been shown previously (Visser & Poessé, 2017) to recover their 

generating values given sufficient data. All other configurations of free parameters 

investigated created too much flexibility in the model to estimate a single true value for 

each of the parameters. All versions that include any parameters other than b, A, and t0 

resulted in approximately the same amount of error in the parameter estimates, which 

supported running models that included all 8 parameters on the simulated and real data. 

The parameter estimates could not be used in the counterfactual models, but the models 
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were used to test the hypotheses relating to what cognitive mechanism best described the 

decision-making process. 

Table 16. PMmG estimated parameter metrics for two-stage model revised structure  
Generating 

values 

MT6 MT7 MT8 MT9 MT10  

(CPT / IF) 

MT11 MT12 

b = 1 0.3 0.1 0.07 0.2 0.3 / 0.3 - - 

A = 20 0.9 1.6 0.7 0.3 1.5 / 1.7 - - 

1 = 2 3.1 0.7 - - - 0.3 0.2 

2 = 1 0.3 2.8 - - - 1.5 0.6 

1 = 0.8 0.5 - - - - 0.9 - 

2 = 0.2 0.1 - - - - 0.6 - 

1 = 0.2 - 1.0 - - - - 0.1 

2 = 0.8 - 1.4 - - - - 0.7 

t0 = 5 0.1 0.07 0.05 0.07 0.1 / 0.1 - - 

ts = 10 2.9 28 - - 2.7 / 2.3 - - 

K-L 

divergence 

(mean  se) 

0.002  

0.0008 

0.003  

0.0009 

0.002  

0.001 

0.002  

0.0008 

0.002  8e-6 

0.002  0.0007 

0.002  

0.0002 

0.002  

0.0002 

K-S test 

statistic 

(mean  se) 

0.03  

0.001 

0.02  

0.002 

0.02  

0.0003 

0.03  

0.003 

0.03  0.006 

0.02  1e-6 

0.03  

0.005 

0.02  

0.002 

K-S test 

statistic 

p-values 

(mean  se) 

0.59  

0.06 

0.85  

0.06 

0.98  

0.004 

0.45  

0.11 

0.58  0.28 

0.88  0.01 

0.40  

0.20 

0.77  

0.10 

MT6: CPT equations, b, A, 1, 2, 1, 2, t0, and ts  MT10: CPT equations, b1, b2, A and t0 vary 

MT7: IF equations, b, A, 1, 2, 1, 2, t0, and ts vary MT11: CPT equations, 1, 2, 1, and 2 vary 

MT8: CPT equations, b, A, and t0 vary   MT12: IF equations, 1, 2, 1, and 2 vary 

MT9: IF equations: b, A, and t0 vary 

 

5.2. Simulated Data Model Comparison  

Simulated data, with a larger number of trials for each participant, was generated 

to provide a second dataset for model comparison. The resulting estimated parameters from 

the cognitive process models were not used to explain behavior nor in the counterfactual 

models. This analysis was intended to mitigate the limitations of using only the Project 

RED data. 
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5.2.1. Maximum Likelihood Estimation 

Even though the MLE method did not recover the original parameter values for 

many of the parameters, using both the CPT and IF versions of the model, the method was 

used to find the best fit parameters for a simple set of simulated data, as described in section 

3.2.6, and the log likelihood values from each configuration (i.e., CAG, CA, CG, IAB, IA, 

and IB) were used to determine the BICs and Bayes Factors. A baseline model was also 

run that did not use either drift rate equation, and instead included the drift rate mean as a 

parameter. While the parameter values themselves cannot be evaluated, the BICs and 

Bayes Factors were compared to determine which model configuration best represents the 

observed simulated data.  

Figure 38a shows the BICs for each model, where the model using the CPT 

equation that lets both alpha and gamma vary best fit the data, when not including the 

baseline model. Bayes Factors, shown in Table 39 in Appendix B, comparing the CAG 

model pairwise to each of the other models, except the baseline model, strongly favored 

the CAG model over all models except the CA model for all subjects. When compared to 

the CA model, there was strong evidence in favor of the CAG model for a little over half 

the subjects, but only moderate or weak evidence for the rest. The CAG model assumed 

that subjects use the individual attribute values in deciding which task to perform and that 

both the value of the attributes and the weight of attention given to the attributes are 

considered. Figure 39 shows the choice distribution for the original data and data simulated 

using the best fit parameters from each model. Only response option 4 was slightly 

underestimated for the CAG model. Figure 38b shows the K-L divergence values for all 

the models; all values were below the baseline median of 0.133. 
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(a) (b) 

  
Figure 38. (a) BIC values and (b) K-L divergence values of each single-stage model fit to 

simple simulated data 

 

 

Figure 39. Choice distribution for simple simulated data for CAG (best-fit) model 
 

5.2.2. Particle Metropolis within Gibbs 

Particle Metropolis within Gibbs sampling was used to estimate parameters for both 

the single-stage and two-stage versions of the MLBA model using the simulated data. The 

results from the single-stage models are presented first, followed by the results from the 

two-stage models. 

5.2.2.1. Single-stage Models 

Single-stage model parameters were estimated for the second set of simulated data, 

described in section 3.2.6, using Particle Metropolis within Gibbs (PMwG) sampling, a 
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Bayesian hierarchical method of parameter estimation, for both the CPT and IF versions of 

the model. Both versions of the model estimated values for threshold, starting point, the 

drift rate parameters (i.e.,  and  for the CPT version,  and  for the IF version) and non-

decision time. The drift rate scaling factors, cd and cm, were set constant to 0.1 and the 

initial drift rate, I0, was set to zero, for both versions of the model. 

(a) (b) (c) 

   
Figure 40. Drift rate using (a) original parameter values, (b) CPT model estimated 

parameters, and (c) IF model estimated parameters 
 

Using the estimated values for attention weight (i.e.,  for CPT and  for IF) and 

subjective value (i.e., ), the resulting drift rate for each response option from each model 

was calculated as shown in Figure 40b and Figure 40c. Visually comparing these to the 

generating values for drift rate in Figure 40a, the IF version of the model had drift rates 

that better matched the pattern of original drift rates. In particular, the IF model captures 

the larger drift rate value for response 13 and more of the variation in drift rates across 

responses. However, drift rate only provided information about the rate of information 

processing to reach the threshold. It was not the only parameter of interest for task-

switching and there were trade-offs between the LBA parameters. Additionally, 

participants had large variation in their individual responses, but Figure 40 includes the 

summed counts across all participants that does not show that variation.  
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Posterior predictive samples were generated for each version of the model to use 

for comparing the models. Figure 41 shows choice distributions of the original and (100 

samples from the) posterior data for 3 participants from each version of the model. Figure 

42 shows the response time distributions for the same participants. The estimated 

parameters for both versions of the model produced choice and response time distributions 

that were visually almost identical to the original distributions. The K-L divergence values 

(Figure 43a) favored the IF version of the model as producing posterior predictions that 

more closely matched the original data; a t-test of the values also shows that there is a 

difference in the mean K-L divergence values (t=10.0, p<0.001, n=48). The K-S test 

statistic is the same for both versions of the model (dK-S,CPT = 0.021  0.001, dK-S,IF = 0.022 

 0.001, t = -0.8, p = 0.40, n=48). The associated p-values (Figure 43b) were above 0.05; 

the estimated parameter values from both versions of the model produced a response time 

distribution that was sufficiently similar to the distribution of the original simulated data. 

Overall, visually and quantitatively, while both models produced posterior predictions of 

response time that matched the original data, the IF models predicted responses that better 

matched the original data. 

 

Single-stage CPT model Single-stage IF model 

      
Figure 41. Choice distributions for simulated subjects 4, 26, and 39 using estimated 

parameters from the single-stage models 
 

 



121 

 

 

Single-stage CPT model Single-stage IF model 

      
Figure 42. Response time distributions for simulated subjects 4, 26, and 39 using estimated 

parameters from the single-stage models 

 

(a) (b) 

  
Figure 43. Metrics for single-stage models with simulated data (a) K-L divergence values. 

Red line is median value of baseline distribution (0.133). (b) K-S test statistic p-values. 

Red line is 0.05. 
 

The trace plots from each of the models, and the associated boxplot of sampling 

phase parameter values, across all participants are available in Figure 84 and Figure 85 in 

Appendix B. The sampling phase was stable for each of the models. Figure 44 and Figure 

45 provide plots of the posterior distribution from the sampling phase, for each parameter, 

using the CPT and IF versions of the model, respectively. All of the parameters had 

distributions where the mean value and the range of values varied by participant. None of 

the parameters had values that were consistent for all the participants. The individual 

differences in participants were included in all of the parameters indicating that individual 

variation is explained by a combination of the model parameters for the simulated data. 
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This result was consistent with how the data was generated, by varying all of the model 

parameters, and cannot be generalized to the Project RED data.  

   

Figure 44. Posterior distributions of estimated parameters value from the CPT single-stage 

model 

    

Figure 45. Posterior distributions of estimated parameters value from the IF single-stage 

model 
 

The model using the information foraging theory drift rate equations better 

predicted the simulated data. This was determined using both the K-L divergence values 

and the WAIC values. K-L divergence values for the IF version of the model were less than 

the baseline (t=18.3, p<0.001, n=48) and the CPT version of the model (t=10.0, p<0.001, 

n=48). Table 17 showed that the difference in WAIC between the models was 17185 with 

a standard error of 2848, which was about one-fifth of the difference, so the models were 

easy to distinguish by expected out-of-sample accuracy. The WAIC values favored the 

single-stage IF model over the single-stage CPT model for the simulated dataset. 

Table 17. WAIC – Simulated data, single-stage CPT vs. IF models 

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

SS IF 1.22e6 79784 - - 120.8 

SS CPT 1.23e6 81830 17185 2848 99.5 
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Looking at each of the parameters estimated by the single-stage IF model, only the 

starting point parameter was related to the switch rate (Figure 46). The results of a Bayesian 

linear regression, in Table 18, shows that there was strong evidence for a number of 

different models that use a linear combination of starting point parameter, , , threshold, 

the interaction of threshold and starting point, and the interaction of  and/or starting point 

to describe the switch rate values. The model with the highest Bayes Factor, compared to 

the intercept only model, included a linear combination of all these parameters (SB1). 

However, there was only weak evidence (BF = 1.1) that favored including  and the two 

interactions in addition to starting point, , and threshold (SB1) over a model that only 

included starting point, , and threshold (SB2). There was also weak evidence (BF = 1.2) 

against including  and the interaction of  and starting point in addition to starting point, 

, and threshold (SB4) over a model that only included starting point, , and threshold 

(SB2). Additionally, there was weak evidence (BF = 1.4) against including the interaction 

of threshold and starting point in addition to starting point, , and threshold (SB3) over a 

model that only included starting point, , and threshold (SB2). Finally, there was only 

weak evidence (BF = 1.4) for a model that included all these parameters (SB1) over a 

simple model with only starting point and . From this, plus using the plots in Figure 46 

that show switch rate as a function of each parameter individually, it appeared that both the 

starting point parameter and  are important factors for predicting switch rate in the 

simulated data. The other factors provided only a small improvement above this. 
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Table 18. Bayesian Linear Regression – SS IF model estimated parameters, simulated data 

Model BF 

SB1 A + alpha + threshold + A:threshold + beta + A:beta  3.2e12 

SB2 A + alpha + threshold 2.9e12 

SB3 A + alpha + threshold + A:threshold 2.7e12 

SB4 A + alpha + threshold + beta + A:beta  2.4e12 

SB5 A + alpha 2.3e12 
 

(a) (b) (c) 

   
(d) (e)  

  

 

Figure 46. Parameter vs. switch rate plots using single-stage IF model estimated 

parameters for simulated data 
 

5.2.2.2. Two-Stage Models  

Parameters for the two-stage versions of the model were also estimated using 

PMwG methods, but these parameters cannot be compared directly and their values cannot 

be compared to the switch rates. The trace plots from each of the models, and the associated 

boxplot of sampling phase parameter values, across all participants are available in Figure 

84 and Figure 87 in Appendix B. The sampling phase was stable for each of the models. 
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The log likelihood values were used to determine the WAICs and compare the models to 

determine which set of estimated parameter values best represented the observed simulated 

data. 

Posterior predictive samples were generated for each version of the two-stage 

model. Figure 47 shows choice distributions of the original and posterior data for 3 

participants from each version of the two-stage model; these are the same 3 participants as 

from the single-stage models. Figure 48 shows the response time distributions for the same 

participants. The estimated parameters for both versions of the model produced choice and 

response time distributions that were visually almost identical to the original distributions. 

The K-L divergence values (Figure 49a) favored the IF version of the model as producing 

posterior predictions that more closely matched the original data, which was also supported 

by a t-test of the values which shows there was a difference in the mean K-L divergence 

values (t=2.7, p=0.007, n=48). The K-S test statistic also favored the IF version of the 

model (dk-S,CPT = 0.026  0.001, dK-S,IF = 0.021  0.001, t = -2.7, p = 0.008, n=48) and the 

associated p-values (Figure 49b) were above 0.05. The estimated parameter values from 

the IF version of the model produced a response time distribution that was the same as the 

distribution of the original simulated data. Quantitatively, the IF models predicted 

responses and response times that better matched the original simulated data. 

 

Two-stage CPT model Two-stage IF model 

      
Figure 47. Choice distributions for simulated subjects 4, 26, and 39 using estimated 

parameters from the two-stage IF models 
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Two-stage CPT model Two-stage IF model 

      
Figure 48. Response time distributions for simulated subjects 4, 26, and 39 using estimated 

parameters from the two-stage models 

 

(a) (b) 

  
Figure 49. Metrics for two-stage models with simulated data (a) K-L divergence values. 

Red line is median value of baseline distribution (0.133). (b) K-S test statistic p-values. 

Red line is 0.05. 
 

Table 19. WAIC – Simulated data, two-stage CPT vs. IF models 

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

TS IF 1.23e6 8.14e4 - - 1284 

TS CPT 1.25e6 8.25e4 16378 4251 7676 
 

The two-stage model using the information foraging theory drift rate equations 

predicted the simulated data better than the cumulative prospect theory version. This was 

determined using both the K-L divergence values and the WAIC values. K-L divergence 

values for the IF version of the model were less than the CPT version of the model (t=2.7, 

p=0.007, n=48). The WAIC values favored the two-stage IF model over the two-stage CPT 

model for the simulated dataset. The difference in WAIC between the models was 16378 

with a standard error of 4251, as shown in Table 19, which was about one-quarter of the 
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difference, giving a 95% confidence interval of the difference between the models of [8046, 

24710], so models were easy to distinguish by expected out-of-sample accuracy. The 

relatively small amount of error (i.e., uncertainty) in the WAIC provided confidence that 

the two models are different.  

5.2.2.3. Comparing All Four Models 

When considering only the information foraging theory versions, the WAIC values 

favored the single-stage version, as shown in Table 20. The same was true when only 

considering the cumulative prospect theory models; the single-stage version was favored 

over the two-stage model, as shown in Table 21. When considering all four MLBA models 

together, as shown in Table 22, both single-stage models were favored over the two-stage 

models, and both information foraging theory models were favored over the cumulative 

prospect theory models. For the simulated data, which had a large number of trials for each 

participant, the results supported the hypothesis for research question 2; the model that uses 

the value and attention weight of the task as a whole was preferred over the model that 

considers the value and weight of attention given to each attribute. The results did not 

support the hypothesis for research question 3; the model that assumed the decision process 

was a single stage where all tasks are considered simultaneously was preferred over the 

model that assumed a down-select process. The two-stage model used to estimate 

parameters for the simulated data was more complicated, with more parameters and more 

flexibility, than the single-stage model, which may not accurately represent a serial 

decision process. Chapter 8 discusses opportunities to better model and test a serial 

decision process.   
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Table 20. WAIC – Simulated data, single-stage vs. two-stage IF models  

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

SS IF 1.22e6 7.98e4 - - 120.8 

TS IF 1.23e6 8.14e4 12317 2269 1284 

 

Table 21. WAIC – Simulated data, single-stage vs. two-stage CPT models  

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

SS CPT 1.23e6 8.18e4 - - 99.5 

TS CPT 1.25e6 8.25e4 11050 4237 7676 
 

Table 22. WAIC – Simulated data, all four MLBA models 

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

SS IF 1.22e6 7.98e4 - - 120.8 

TS IF 1.23e6 8.14e4 12317 2269 1284 

SS CPT 1.23e6 8.18e4 17185 2848 99.5 

TS CPT 1.25e6 8.25e4 28236 4735 7676 

 

5.3. Project RED Data Model Comparison 

The campaign 3 (C3) and campaign 4 (C4) Project RED data were fit to each model 

separately. There were two reasons for doing this. Primarily to reduce the run time for the 

computations, but also because each campaign had different conditions, such as number of 

sessions completed, so the parameters for each were estimated separately to give more 

insight into the specific campaign and if there were differences in the estimated parameters 

for the two campaigns. 

5.3.1. Single-Stage Models 

The single-stage versions of the CPT and IF models were initially run estimating 

seven parameters: b, A, , /, t0, cd and cm.  The models were then rerun using the group 

level estimates for cd and cm from the initial model as fixed values and estimating the 

remaining five parameters (b, A, , /, and t0). The scaling factor values were consistent 

between the two datasets. The CPT model used the same cd value for both sets of data (cd 
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= 0.6 for campaign 3 and campaign 4 data), but different cm values for each campaign (cm 

= 4.0 for campaign 3 and cm = 3.8 for campaign 4). The IF model used different cd values 

for each campaign (cd = 1.9 for campaign 3 and cd = 0.9 for campaign 4) and the same cm 

value for both sets of data (cm = 0.9 for campaign 3 and campaign 4 data). Only the models 

with five parameters were compared to determine the model that best described each 

dataset since including the scaling factors caused problems with the log likelihood values, 

as described in section 3.2.3. 

Using the estimated drift rate parameters for attention weight and subjective value, 

the drift rate for each response option was calculated as shown in Figure 50. Visually 

comparing this to the aggregated responses across all participants for each campaign, 

neither version of the model had drift rates that matched the pattern of responses. The drift 

rates from the IF model included larger values for task options 3, 14 and 15, which all had 

higher response count, especially in campaign 4, but had smaller values for options 6, 7, 

10 and 13, which also had higher response counts. The CPT models had higher drift rate 

values for most response options, but less differentiation in values between the responses. 

However, drift rate only provided information about the rate of information processing to 

reach the threshold. It was not the only parameter of interest for task-switching and there 

are trade-offs between the LBA parameters, so this was not used to evaluate model 

performance. Additionally, participants had large variation in their individual responses, 

but Figure 50 included the summed counts across all participants which did not show that 

variation.  
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(a) (b) (c) 

   

   
Figure 50. Drift rates for C3 data (top row) and C4 data (bottom row) calculated using 

the estimated parameters from (a) the single-stage CPT model (b) and the single-stage IF 

model. (c) Distribution of responses for each campaign. 
 

The trace plots from each of the models, and the associated boxplot of sampling 

phase parameter values, across all participants are included in Appendix B, Figure 88 - 

Figure 91 and Figure 93 - Figure 95. The sampling phase was stable for each of the models. 

Figure 51 provides plots of the posterior distribution from the sampling phase, for each 

parameter, using each version of the model, for each campaign.  

Looking at the estimated parameters found using the campaign 3 data, for the CPT 

model, most participants had similar threshold,  and non-decision time values, while the 

starting point parameter and  varied between participants, suggesting that the individual 

variation in responses was mostly included in those two parameters for that model. For the 

IF model, again most participants have similar threshold and non-decision time values, but 

the  and  values as well as the starting point parameter varied between participants 

(Figure 51). The parameter for attention weight ( in the CPT model and  in the IF model) 

changed behavior between the two models; that is, for the CPT model it was consistent 



131 

 

between participants while for the IF model it was not. There are several differences 

between the models, including the equation for attention weight within the drift rate 

equation and the scale of the wk and i parameters, so while it was possible to identify 

differences between the resulting parameter estimates the reason for the differences could 

not be determined. 

There were a larger number of participants and resulting posterior samples drawn 

for the campaign 4 data. Overall, the campaign 4 values were within the same range as the 

campaign 3 parameter estimates. The estimated values for the non-decision time and 

threshold parameters found using the campaign 4 data were fairly constant across 

participants while individual variation in responses for campaign 4 was primarily included 

in starting point, subjective value, and attention weight for both the CPT and IF versions 

of the model. The starting point and subjective value parameter estimates varied to a degree 

that was consistant with the results from the campaign 3 data. However, the differences in 

the amount of individual variation in the attention weight parameter between the CPT and 

IF versions of the model found using the campaign 3 data was not repeated using the 

campaign 4 data. Along with the differences in the models mentioned above there were 

also intentional differences in the set-up of campaign 3 and campaign 4 so while the 

differences in the attention weight parameter were identified, the reasons for the differences 

could not be determined using the Project RED data. Further research is needed to explain 

the differences.  
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Figure 51. Posterior distributions of estimated parameters show the consistency of 

threshold and non-decision time values in both the CPT (first and third rows) and IF 

(second and fourth rows) versions of the single-stage model, the variation of starting point 

parameter and  by participant for both models, and that the parameter for attention 

weight ( in the CPT model and  in the IF model) changes behavior between the two 

models. 
 

Posterior predictive samples were generated for each version of the model, for each 

campaign. Figure 52 shows examples of the choice distributions of the original and (100 

samples from the) posterior data, for 3 participants in campaign 3, from each version of the 

model. Figure 54 shows the response time distributions for the same participants. Appendix 

B, Figure 96 and Figure 97, contains additional plots for participants from campaign 4 that 

demonstrated the same patterns. The models generated posterior predictions that 
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participants selected all the response options, including those with zero actual responses. 

The posterior predictions also seemed to more closely match the original data for 

participants with a larger number of trials, which was expected since parameter estimates 

generally improve when more data is included. The K-L divergence values (Figure 53) 

appeared to favor the IF version of the model as producing posterior predictions that more 

closely matched the original data, which was also supported by a t-test of the values which 

shows that there was a difference in the mean K-L divergence values between the two 

models (t=-4.7, p<0.001, n=72 for C3; t=-4.8, p<0.001, n=168 for C4). Additionally, 

comparing these K-L values to the baseline (Figure 53c) placed the IF version of the model 

in the 60th percentile of the baseline while the CPT version was in the 74th (for C3) and the 

51st vs the 64th (for C4). Visually and quantitatively, the IF models produced posterior 

predictions of responses that better matched the original data. 

Single-stage CPT model Single-stage IF model 

      
Figure 52. Choice distributions for subjects 1, 23, and 56 from campaign 3 showing the 

difference between the original (black) and posterior (grey) data single-stage models. 
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(a) (b) (c) 

   
Figure 53. Comparison of K-L divergence values for single-stage CPT and IF models of 

(a) campaign 3 and (b) campaign 4 data. (c) Comparison to baseline. Red lines are median 

value for IF model and blue are median value for CPT model, solid line is C3 data and 

dashed line is C4 data. 

 

Parameter estimates from both versions of the model capture the longer response 

times in both the campaign 3 and campaign 4 data (Figure 54). For campaign 3, the 

Kolmogorov-Smirnov (K-S) test statistic was slightly lower for the CPT version of the 

model (dCPT = 0.20, dIF = 0.21), but the difference was very small (t=-0.42, p=0.68, n=72) 

and the p-values of the K-S statistic (Figure 55a) for both models rejected the alternative 

hypothesis that the posterior predictions were drawn from a different distribution than the 

original data (and vice versa). For campaign 4, the K-S statistic for the IF model also was 

not statistically different than the CPT model (dCPT = 0.17, dIF = 0.18, t=-0.8, p=0.42, 

n=168) and the p-values of the K-S statistic for both versions of the model were mostly 

above 0.05 (Figure 55b). The posterior predictions were from a distribution that was 

sufficiently similar to the original data. 

 

Single-stage CPT model Single-stage IF model 

      
Figure 54. Response distributions for subjects 1, 23, and 56 from campaign 3 showing the 

difference between the original (black) and posterior (grey) data single-stage models. 
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(a) (b) 

  
Figure 55. Comparison of associated p-values for single-stage CPT and IF models of (a) 

campaign 3 and (b) campaign 4 data. The red line is p=0.05. 
 

The single-stage model using the information foraging theory drift rate equations 

better predicted the campaign 3 data. This was determined using both the K-L divergence 

values and the WAIC values. The K-L divergence values for the IF version of the model 

were less than the CPT version of the model (t=-4.7, p<0.001, n=72). The WAIC values 

favored the single-stage IF model over the single-stage CPT model for the campaign 3 

dataset. The difference in WAIC between the models was 544 with a standard error of 97, 

shown in Table 23, which was about one-fifth of the difference, giving a 95% confidence 

interval of the difference between the models of [354,734], so the models were easy to 

distinguish by expected out-of-sample accuracy. The relatively small error (i.e., 

uncertainty) in the WAIC increased the confidence that the two models were different.  

Table 23. WAIC – Campaign 3 data, single-stage CPT vs. IF models 

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

SS IF 25277 1201 - - 96.1 

SS CPT 25821 1267 544 96.7 58.2 
 

The model using the information foraging theory drift rate equations also better 

predicted the campaign 4 data. This was again determined using both the K-L divergence 

values and the WAIC values. The K-L divergence values for the IF version of the model 
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were less than the CPT version of the model (t=-4.8, p<0.001, n=168 for C4). The WAIC 

values favored the single-stage IF model over the single-stage CPT model for the campaign 

4 dataset. The difference in WAIC between the models was 1810 with a standard error of 

172, as shown in Table 24, which was about one-tenth of the difference, giving a 95% 

confidence interval of the difference between the models of [1473, 2147], so the models 

were easy to distinguish by expected out-of-sample accuracy. The relatively small error 

(i.e., uncertainty) in the WAIC increased the confidence that the two models are different.  

Table 24. WAIC – Campaign 4 data, single-stage CPT vs. IF models 

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

SS IF  74778 2318 - - 205.6 

SS CPT 76588 2410 1810 172 151.8 
 

There was not a strong relationship between any individual parameter from the IF 

model and switch rate (Figure 92 and Figure 98 in Appendix B). Using a Bayes factor 

analysis of each possible linear combination of parameters and the interactions between 

parameters to predict the switch rate resulted in the linear combination of starting point, 

threshold, the interaction of starting point and threshold, , the interaction of starting point 

and , and the interaction of threshold and  having the higher Bayes factor for the 

campaign 3 data. A model that used a linear combination of starting point, , non-decision 

time and the interaction of  and non-decision time had the highest Bayes factor for the 

campaign 4 data. The campaign 3 data led to much larger Bayes factors than campaign 4 

and these models included more interactions. However, for both campaigns, models that 

included starting point had the highest Bayes factors with strong evidence in favor of each 

model, respectively, over the intercept-only model. When interactions were not included, 

the linear combination of starting point, , and non-decision time had the highest Bayes 
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factor for both campaigns with moderate evidence for this model over the intercept-only 

model.  However, there was moderate evidence (BF = 0.08) against this model compared 

to the best campaign 4 model (RB2) and strong evidence (BF < 0.001) against this model 

compared to the best campaign 3 model (RB7).  

The best model for campaign 3 included all of the same parameters as the second-

best model plus non-decision time. Comparing these two models (RB7 vs. RB8), there was 

weak evidence against including non-decision time (BF = 0.5). There was also weak 

evidence in favor of including the interaction of threshold and  (BF = 1.2) and no evidence 

(BF = 1) for or against including the interaction of threshold and non-decision time.   

Four of the five models with the highest Bayes factors for the campaign 4 data 

include the linear combination of , non-decision time, and the interaction of and non-

decision time along with one or two other parameters, as shown in Table 25. There was 

weak evidence in favor of the model that included starting point as the other parameter 

(RB2) over the models that include threshold (RB3) or  (RB4) as the other parameter. 

However, there was weak evidence against a model that included threshold (RB6) or  

(RB5) in addition to starting point, , non-decision time, and the interaction of  and non-

decision time. 
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Table 25. Bayesian Linear Regression – SS IF model estimated parameters, real data 
Model Campaign 3 (BF) Campaign 4 (BF) 

RB1 A + alpha + t0 94.0 13.5 

RB2 A + alpha + t0 + alpha:t0 50.1 168.7 

RB3 alpha + threshold + t0 + alpha:t0  151.1 

RB4 beta + alpha + t0 + alpha:t0  133.7 

RB5 A + beta + alpha + t0 + alpha:t0 19.4 76.2 

RB6 A + threshold + alpha + t0 + alpha:t0 15.8 67.5 

RB7 A + threshold + A:threshold + beta + 

A:beta + threshold:beta 

1760674 3.7 

RB8 A + threshold + A:threshold + beta + 

A:beta + threshold:beta + t0  

998271  

RB9 A + threshold + A:threshold + beta + 

A:beta + t0 

836585  

RB10 A + threshold + A:threshold + beta + 

A:beta + t0 + threshold:t0 

798396 2.0 

 

The Bayesian generalized linear models to predict task-switching behavior for the 

counterfactual questions were built using the combined campaign 3 and campaign 4 data, 

but the model with the best linear combination of parameters from campaign 3 (RB7), in 

Table 25, had strong evidence against it comparing it to the best campaign 4 model (RB2), 

using the campaign 4 Bayes factors. Similarly, the model with the best linear combination 

of parameters from campaign 4 (RB2) had strong evidence against it comparing it to the 

best campaign 3 model (RB7), using the campaign 3 Bayes factors. There are two possible 

explanations for these differences. The first is that they are due to random variation in the 

data. The datasets were small leading to more noise in the data. The other possible 

explanation is that there is a systematic difference between campaign 3 and campaign 4 

leading to different parameters being part of the best model. Because of these differences 

between the campaigns, only the individual parameter values were included in the 

counterfactual model. The individual parameters of starting point (A), threshold (b), 

attention weight (), and non-decision time (t0) were in most of the best models from both 

campaigns, and value () was in all the best campaign 3 models. 
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5.3.2  Two-Stage Models 

Parameters for the two-stage versions of the model were also estimated using 

PMwG methods, but these parameters cannot be compared directly and their values cannot 

be compared to the switch rates. The log likelihood values were used to determine the 

WAICs and compare the models to determine which set of estimated parameter values best 

represented the observed simulated data. Both the CPT and IF versions of the model used 

the revised two-stage structure with all 8 parameters free. The drift rate scaling factors, cd 

and cm, were set constant to the same values that were used in the respective single-stage 

models (e.g., campaign 3 two-stage CPT model cd = 0.6 and cm = 4.0). The trace plots from 

each of the models, and the associated boxplot of sampling phase parameter values, across 

all participants are included in Appendix B, Figure 99 - Figure 102. The sampling phase 

was stable for each of the models.  

 Posterior predictive samples were generated for each version of the model, for each 

campaign. Figure 56 shows examples of the choice distributions of the original and (100 

samples from the) posterior data, for 3 participants in campaign 3, from each version of the 

model. Figure 58 shows the response time distributions for the same participants. Appendix 

B, Figure 103 and Figure 104, contains additional plots for participants from campaign 4 

that demonstrated the same patterns. The two-stage models also generated posterior 

predictions that participants selected all the response options, including those with zero 

actual responses. The K-L divergence values (Figure 57) appeared to favor the CPT version 

of the model as producing posterior predictions that more closely matched the original data, 

which was also supported by a t-test of the values shows that there is a difference in the 

mean K-L divergence values between the two models (t=-7.3, p<0.001, n=72 for C3; t=-
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2.7, p=0.006, n=168 for C4). Visually and quantitatively, the CPT models produced 

posterior predictions (of responses) that better matched the original data. This contradicted 

the results found when comparing the single-stage versions of the models. 

 

Two-stage CPT model Two-stage IF model 

      
Figure 56. Choice distributions for subjects 1, 23, and 56 from campaign 3 showing the 

difference between the original (black) and posterior (grey) data for two-stage models. 
 

(a) (b) 

  
Figure 57. Comparison of K-L divergence values for two-stage CPT and IF models of (a) 

campaign 3 and (b) campaign 4 data. Red line is baseline median value (DKL=0.133).  
 

Parameter estimates from both versions of the model captured the longer response 

times in both the campaign 3 and campaign 4 data (Figure 58). For campaign 3, the 

Kolmogorov-Smirnov (K-S) test statistic was slightly lower for the IF version of the model 

(dCPT = 0.203, dIF = 0.200), but the difference was very small (t=-0.15, p=0.88, n=72) and 

the p-values of the K-S statistic (Figure 59) for both models did not reject the null 

hypothesis that the posterior predictions were drawn from the same distribution as the 

original data (and vice versa). For campaign 4, the K-S statistic for the IF model was also 
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not statistically different than the CPT model (dCPT = 0.181, dIF = 0.176, t=-0.56, p=0.58, 

n=168) and both versions of the model had p-values of the K-S statistic (Figure 59) that 

supported the conclusion that the posteriors were from the same distribution as the original 

data. 

 

Two-stage CPT model Two-stage IF model 

      
Figure 58. Response distributions for subjects 1, 23, and 56 from campaign 3 showing the 

difference between the original (black) and posterior (grey) data for two-stage models 
 

(a) (b) 

  
Figure 59. Comparison of associated p-values for two-stage CPT and IF models of (a) 

campaign 3 and (b) campaign 4 data. The red line is p=0.05. 

 

The two-stage model using the cumulative prospect theory drift rate equations 

predicted the campaign 3 data slightly better than the information foraging theory version. 

This was determined using both the K-L divergence values and the WAIC values. The K-

L divergence values for the CPT version of the model were less than the IF version of the 

model (t=-7.3, p<0.001, n=72). The WAIC values favored the two-stage CPT model over 

the two-stage IF model for the campaign 3 dataset. The difference in WAIC between the 
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models was 471 with a standard error of 238, as shown in Table 26, which was about one-

half of the difference, giving a 95% confidence interval of the difference between the 

models of [4.5,937], so models were somewhat easy to distinguish by expected out-of-

sample accuracy. However, the larger error (i.e., uncertainty) in the WAIC reduced the 

confidence that the two models were different.  

 

Table 26. WAIC – Campaign 3 data, two-stage CPT vs. IF models 

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

TS CPT 25374 1209 - - 260.7 

TS IF 25845 1338 471 238 207.3 
 

The model using the cumulative prospect theory drift rate equations also better 

predicted the campaign 4 data. This was again determined using both the K-L divergence 

values and the WAIC values. The K-L divergence values for the CPT version of the model 

were less than the IF version of the model (t=-2.7, p=0.006, n=168 for C4). The WAIC 

values favored the two-stage CPT model over the two-stage IF model for the campaign 4 

dataset. The difference in WAIC between the models was 1786 with a standard error of 

173, as shown in Table 27, which was about one-tenth of the difference, giving a 95% 

confidence interval of the difference between the models of [1447,2125], so models were 

easy to distinguish by expected out-of-sample accuracy. The relatively small error (i.e., 

uncertainty) in the WAIC increased the confidence that the two models were different. 

Table 27. WAIC – Campaign 4 data, two-stage CPT vs. IF models 

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

TS CPT 73875 2262 - - 463 

TS IF  75661 2365 1786 173 789 
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5.3.3. Comparing All Four Models 

When considering only the information foraging theory versions, the WAIC values 

favored the single-stage version, as shown in Table 28 and Table 30. The opposite was true 

when only considering the cumulative prospect theory models; the two-stage version was 

favored over the single-stage model, as shown in Table 29 and Table 31. All four MLBA 

models were compared using the WAIC to see which model was favored for each dataset, 

in Table 32 and Table 33. For campaign 3, the single-stage information foraging theory 

model had the best WAIC values, but the difference between it and the two-stage 

cumulative prospect theory model was small and the standard error of the difference 

between the models was about sixth-tenths as large as the difference between the models, 

which reduced confidence that there was a difference between the two models. The 

difference between models was clearer for the campaign 4 dataset. The two-stage 

cumulative prospect theory model had the best WAIC values. This model assumed that 

participants consider each attribute of each task when making the decision of which task 

to perform next and when to switch to a new task. It also assumed that participants make 

this decision in two stages using the task type (i.e., individual, team or multi-team) as a 

filter in the first stage before making the final decision in the second stage.    

 

Table 28. WAIC – Campaign 3 data, single-stage vs. two-stage IF models  

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

SS IF 25277 1201 - - 96.1 

TS IF 25845 1338 568 236 207.3 

 

Table 29. WAIC – Campaign 3 data, single-stage vs. two-stage CPT models 

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

TS CPT 25374 1209 - - 260.7 

SS CPT 25821 1267 447 84 58.2 
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Table 30. WAIC – Campaign 4 data, single-stage vs. two-stage IF models 

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

SS IF  74778 2318 - - 205.6 

TS IF 75661 2365 883 119 789 
 

Table 31. WAIC – Campaign 4 data, single-stage vs. two-stage CPT models  

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

TS CPT 73875 2262 - - 463 

SS CPT 76588 2410 2713 107 151.8 

 

Table 32. WAIC – Campaign 3 data, all four MLBA models 

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

SS IF 25277 1201 - - 96.1 

TS CPT 25374 1209 97  59 260.7 

SS CPT 25821 1267 544 97 58.2 

TS IF 25845 1338 568 236 207.3 
 

Table 33. WAIC – Campaign 4 data, all four MLBA models 

Model WAIC SEWAIC dWAIC SEdWAIC pWAIC 

TS CPT 73875 2262 - - 463 

SS IF  74778 2318 903 135 205.6 

TS IF 75661 2365 1786 173 789 

SS CPT 76588 2410 2713 107 151.8 
 

For the Project RED data, which had a small number of trials for each participant, 

the results did not clearly support the hypotheses for the second or third research questions. 

Addressing only whether a participant considered alternative or attribute level preferences, 

the results contradicted each other depending on whether a parallel process (i.e., single-

stage model) or serial process (i.e., two-stage model) was used. Assuming a single-stage 

model led to favoring the model that assumed the task was considered as a whole, while 

assuming a two-stage model led to favoring the model that assumed each attribute of a task 

was considered. Addressing only the question of whether all tasks were considered 

simultaneously or not also produced results that contradicted each other depending on 
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whether an attribute-level (i.e., CPT) or alternative-level (i.e., IF) version of the model was 

used. For the CPT version, the results favored a model that assumed two-stages, while for 

the IF version the results favored a model that assumed a single-stage. The small amount 

of data (along with possible errors in the structure of the two-stage model) increased the 

uncertainty in the parameter estimates and the ability of the model to accurately represent 

the data, which could contribute to the contradictory results. 

5.4. Summary  

The results from the cognitive process analysis supported the second hypothesis 

that a model based on alternative-level preferences was favored over a model based on 

attribute-level preferences. The results did not support the third hypothesis related to the 

processing architecture used. The results favored a single-stage model, which assumed that 

all tasks were considered simultaneously, over a two-stage model, which assumed a serial 

process where only a subset of tasks were considered for the final decision.   

This research used four different versions of the MLBA to estimate parameters for 

three different datasets. The models were structured based on the features of interest in the 

research questions. Table 4, in section 3.2, summarized how the models align to the 

different parts of the research questions. The single-stage models assumed that all the 

response options were considered simultaneously while the two-stage models assumed that 

there was a down-select decision of which type of task to perform made prior to the final 

decision of which specific task to perform. The models were also structured to assume two 

different functions for the drift rate equation(s). The version using equations based on 

cumulative prospect theory assumed that participants considered each attribute for each 

response option while the version using equations based on information foraging theory 
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assumed that participants considered each task as a whole. The single-stage models were 

shown to be identifiable while the two-stage models were non-identifiable.  

Only the parameters from the single-stage models were used to explain individual 

differences in behavior. The results suggested that the individual variation in responses was 

mostly accounted for by the starting point parameter and the parameters related to the drift 

rate (i.e., the subjective value and the weight of attention). The drift rate parameters 

measured the attractiveness of each response option and the starting point parameter 

represented the bias towards switching or not switching for each participant. The starting 

point parameter was also non-linearly and inversely proportional to the switch rate. 

Participants with a higher starting point parameter had smaller switch rate.  

WAIC was used to compare the two versions of the single-stage models for a 

simulated dataset, the campaign 3 data, and the campaign 4 data, separately. The two 

versions of the two-stage model were also compared using WAIC for the simulated dataset, 

the campaign 3 data, and the campaign 4 data, separately. Comparing only the single-stage 

models, the information foraging theory model was favored for the simulated, campaign 3, 

and campaign 4 data. Comparing only the two-stage models, the cumulative prospect 

theory model was favored for the campaign 3 and campaign 4 data, while the information 

foraging theory model was favored for the simulated data. This was determined using the 

WAIC values as well as the K-L divergence values. Comparing only the IF models, the 

WAIC values favored the single-stage model for the simulated, the campaign 3, and that 

campaign 4 data. Comparing only the CPT models, the two-stage model was favored for 

the campaign 3 and campaign 4 data, while the single-stage model was favored for the 

simulated data. The results from the simulated data, which had a large number of trials for 
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each participant, were clearer in supporting a single-stage information foraging theory 

version of the MLBA model. Overall, the results supported the second hypothesis, but not 

the third hypothesis. 

Only parameter estimates from single-stage models were used in the counterfactual 

prediction models as predictors of switch rate. When comparing only single-stage models, 

the IF version was favored so the individual-level estimated parameters from the single-

stage IF version of the model were used in the counterfactual models. These results are 

discussed in the next section.  
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6. COUNTERFACTUAL MODEL RESULTS  

To address the final research question, Bayesian generalized linear models (GLM) 

were used to make counterfactual predictions about expected task switching as well as 

individual, team, and multi-team task performance for the Project RED data. A different 

model was built and predicted responses were generated to address each counterfactual 

question (i.e., between-subject, within-subject, and other), as described in section 3.3. All 

models were built and validated using only ‘not withheld’ data, and these models were then 

used to make predictions for the ‘withheld’ data. Section 2.1 describes the differences 

between the ‘not withheld’ and ‘withheld’ data.  

The models that included task switching as the dependent variable used a binomial 

distribution for the likelihood function to describe the relationship between the outcome 

and the predictors. This distribution was the most conservative distribution when each trial, 

which for this data is each second of the overall task, must result in a constant chance of 

either staying with the current task or switching to a new task. The distribution used two 

parameters to describe its shape: n, the number of trials (i.e., total number of seconds) and 

p, the probability of the event (i.e., switching tasks) occuring. The total switch count of a 

participant was the number of times the participant chose to switch out of the total number 

of seconds, which was at most 1800 for campaign 3 and 2700 for campaign 4. One 

limitation of using the binomial distribution was that the total number of seconds needed 

to be known; it was assumed to be the maximum value for the ‘withheld’ data. Other 

potential distributions, such as Gaussian or Poisson, have different limitations that resulted 

in them not being used. Using a Gaussian distribution for switch rate (i.e., switch count 

divided by total time) allows negative switch rates to be predicted, which were not possible 
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for task switching. A Poisson distribution, like the binomial, is a count distribution, and 

when the number of trials, n, is very large or unknown and the probability of an event, p, 

is small the binomial converges to the Poisson distribution with a single parameter to 

describe its shape,  = 𝑛𝑝. The Poisson distribution was expected to be the better option 

for this data given a relatively large number of trials compared to the number of switches 

for each participant. However, comparing two models where each distribution was used in 

a simple intercept-only model for the entire ‘not withheld’ dataset favors the binomial 

distribution, as shown in Figure 60 and using the LOO-IC values (LOO-ICbinomial = 2537, 

LOO-ICPoisson = 2602).  

The models that included task performance as the outcome used a Gaussian 

distribution for the likelihood function.  Task performance values were normalized to range 

between zero and one so using a Gaussian distribution in the GLM was less than ideal, but 

since the calculation of the performance values was not well documented a Gaussian 

distribution was probably as good as any other option and was simple to implement. 

 

        

Figure 60. Posterior density plot for in-sample predictions using binomial (left) and 

Poisson (right) intercept-only model. Thick line indicates true value. Thin lines are 

posterior predictions using the model. 
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A baseline intercept-only model was first run for each counterfactual question. 

Revised models then tested the hypotheses related to the out-of-sample accuracy of the 

predicted task switching and performance values. The first revised model included only the 

cluster assignment for each participant, generated using machine learning techniques, as 

described in section 3.1 and section 4. Since predictions were made using the ‘withheld’ 

data, cluster assignments were needed for those participants also. The ‘withheld’ 

participants were not included in the machine learning analysis, to address the first research 

question, or to build the counterfactual GLM. The cluster assignment for the ‘withheld’ 

dataset, which also included all the ‘not withheld’ participants, was generated using the 

same ‘top 4’ predictors in the uRF model from section 4.2.2.3. That uRF dissimilarity 

matrix is fed into the LOO hierarchical clustering algorithm to generate cluster values for 

all the participants, as shown in Figure 28. The clustering values generated using only the 

‘not withheld’ data were used to build the counterfactual models and the clustering values 

generated for the ‘withheld’ participants were used to make the counterfactual predictions. 

The counterfactual predictions were not true counterfactuals since the task had to be 

completed by the ‘withheld’ participants to know their cluster value. A true counterfactual 

prediction requires a way to generate a clustering or strategy value (or type) without the 

participant needing to complete the task, perhaps by experimental manipulation or another 

testing method. 

The second revised model includes the parameter values from the single-stage 

information foraging theory model. As discussed in the previous section, no interactions 

between parameters were included in the models. The parameter values from ‘not withheld’ 

data were used to build the Bayesian GLM and the parameters from the ‘withheld’ data 
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were used to make counterfactual predictions. The results in section 5 are all from ‘not 

withheld’ participants, run separately on campaigns 3 and 4, to investigate and explain how 

a participant decides to select a new task or remain at their current task. A repetition of the 

best model, the single-stage information foraging theory model, estimated parameters 

using the ‘withheld’ dataset, separately on campaigns 3 and 4, to determine parameter 

values to use for the ‘withheld’ participants in the counterfactual prediction models. The 

revised counterfactual models, to address the between-subjects and the within-subject 

questions, were built using parameters estimated from only the ‘not withheld’ data. The 

predictions rely on parameter estimates for the ‘withheld’ participants generated using all 

of the data.  

The final revised model used both the cluster values and the cognitive process 

model parameters. The model was built using values generated with only the ‘not withheld’ 

data and the predictions are made for the ‘withheld’ participants using values generated 

using all the data.  

 Two additional types of predictors are used in the improved models; the ‘top 4’ 

most important decision strategy factors were used in models to predict task switching for 

the within-subject, between-subjects and other counterfactual questions, and HERA 

participant ID was used as a hyperparameter in multilevel models to predict task switching 

for the within-subject counterfactual question. The ‘top 4’ most important predictors were 

a result of the machine learning analysis to determine decision strategy and were included 

as an alternative to cluster value as the counterfactual predictor. Multilevel level modeling, 

which includes different intercept and slope values for each participant, was appropriate 
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for modeling the within-subject counterfactual question where the same individual 

performs the task multiple times.  

6.1. Baseline models  

A total of 12 baseline models were generated: one for each outcome of task 

switching, individual performance, team performance, & multi-team performance using 

three different sets of data to address each counterfactual question. The baseline served as 

the worst-case prediction to compare to the revised models. Figure 61 shows the 

distribution of predictions for the in-sample ‘not withheld’ participants for each outcome 

(column of plots) and each counterfactual question (rows of plots). While the baseline 

models performed fairly well at in-sample predictions for task-switching, the models did 

not capture the multiple peaks in the performance data. Figure 62 shows the out-of-sample 

predictions of the ‘withheld’ participants, as light grey circles, for each counterfactual 

question. Almost all of the predicted values deviated from the dark-grey true values. The 

LOO-IC values and MAE and RMSE of the out-of-sample data are included in Table 34 to 

compare to the revised models. 
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Figure 61. Posterior density plots for between-subjects, within-subject, and other 

counterfactual questions. Thick line indicates true values. Thin lines are posterior 

predictions using model. Model and posteriors generated using ‘not withheld’ data. 
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Figure 62. Posterior predictive interval plots, split by role, for between-subjects, within-

subject, and other counterfactual questions using baseline (no predictor) models. Models 

fit using ‘not withheld’ data and posterior predictions for ‘withheld’ data. 
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6.2. Strategy revised models 

The first set of revised counterfactual prediction models used the decision strategy, 

represented either by the cluster assignment or the most important factors, as the predictor 

of outcome. The models were used to address the within-subject counterfactual question.  

The assigned clusters taken from the best machine learning results, as described in section 

4, for the ‘not withheld’ HERA subjects from campaign 4, sessions 1 & 2 were used as a 

predictor to build the Bayesian GLM. The resulting alpha and beta parameters from this 

model were used with the assigned clusters for the campaign 4 session 4 HERA 

participants, which were identified as the subjects of interest for the within-subject 

question, to determine their predicted switch rates and performance values.  

There was no difference between the baseline model and the model that included 

the assigned clusters for switch rate (dLOO-IC=3, SE=12.4), while the cluster model had 

slightly lower RMSE and MAE values for the counterfactual predictions of switch rate than 

the baseline model. There was little consistency in the cluster values across the sessions 

for the HERA participants and almost no relationship between the cluster value and the 

switch rate, as shown in Figure 63, which likely led to there being little to no difference in 

the predictions between the two models. Comparing the predicted responses between the 

two models in Figure 64, there were no visual differences in the predicted responses. The 

decision strategy analysis also identified the most important factors related to switch rate 

so an additional Bayesian GLM used the three continuous variables – typical task switches, 

mean priority, and mean salience – as predictors. The indicator variable of explorer status 

was not included. This model was no different than either the baseline or the cluster model 

(dLOO-IC=1, SE=22.0; dLOO-IC=2, SE=18.9), but did generate better predicted 
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responses for the within-subject counterfactual question, as shown by the error values in 

Table 34 and visually in Figure 64.  

(a) (b) 

  
Figure 63. (a) Cluster values by HERA participant for each session (b) cluster values vs. 

switch rate 
 

 

   

Figure 64. Within-subject counterfactual predictions of switch rate using decision strategy 

models compared to baseline model 
 

A multilevel model is useful to model results that have a group of measures, in this 

case the different HERA participants, that naturally differ from one another and it provided 

an additional method to capture individual variation in output. The decision strategy 
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clusters were included in a multilevel model that used the HERA participant ID as the 

hyperparameter. This model was favored over the baseline model (dLOO-IC=107, 

SE=29.6), but the predicted counterfactual responses were no better than those from the 

baseline model. To determine if the improved model fit was only due to structuring the 

model as a multilevel model, a multilevel version of the intercept-only baseline was run. 

That model also produced counterfactual predictions that were no better than the baseline 

model predictions and the multilevel cluster model was favored over this model (dLOO-

IC=25, SE=10.9). Including HERA ID as a hyperparameter in a multilevel model improved 

the cluster model, but not the baseline model. 

There was no difference between the baseline model and the cluster model for 

individual (dLOO-IC=0), team (dLOO-IC=0), and multi-team (dLOO-IC=0) performance; 

comparing the density distributions from the baseline model (grey) and the cluster model 

(blue) in Figure 65 provided a visualization of the similarity between the two models. Both 

models also generated counterfactual predictions of performance with a large amount of 

error, with larger error values for the predictions generated using the cluster model (Table 

34); this is also visualized in Figure 62b and Figure 66 using the posterior predictive 

intervals for each model. This similarity between the baseline and decision strategy clusters 

models could be because the clusters were learned using the more important predictors of 

switch rate from the regression RF; there may be different factors that are important 

predictors of performance that produce different decision strategy clusters. Running the 

algorithm sequence again (i.e., regression RF, top predictors into uRF, uRF dissimilarity 

matrix into clustering algorithm) using the performance values as the outcome in the 

regression RF may produce clusters that improve the performance predictions. 
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Alternatively, the Gaussian distribution wasn’t the best choice to model the bimodal 

distributions of the normalized performance outcomes. One alternative option is to use a 

different distribution in the Bayesian GLM. Another option is to fit the Bayesian GLM 

using the non-normalized performance outcomes. However, the non-normalized responses 

have a very large range of values that could be difficult to fit, as shown in Figure 67, which 

was what originally led to using the normalized values. Also, the scoring criteria was not 

repeatable and the scores were difficult to interpret.   

 

 

Figure 65. Comparison of within-subject posterior predictions of 'not withheld' campaign 

4, sessions 1 & 2 data using baseline (grey) and clusters (blue) model 

 

 

Figure 66. Within-subject posterior predictions of 'withheld' campaign 4, session 3 data 

using clusters model 
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Figure 67. Histogram of performance values 
 

6.3. Cognitive process revised models  

The next set of revised models used a linear combination of the parameters from 

the single-stage information foraging theory based MLBA (i.e., threshold, starting point 

parameter, attention weight, value, and non-decision time) as the predictor of outcome. The 

values for the starting point parameter were an order of magnitude larger than any other 

parameter models so it was scaled to improve the estimation of the GLM alpha and beta 

parameters. The values from the cognitive process models addressed both the within-

subject and between-subjects counterfactual question. Again, for the within-subject 

question, the values for ‘not withheld’ HERA subjects from campaign 4, sessions 1 & 2 

were used to build the Bayesian GLM and the resulting alpha and beta parameters were 

used with parameter values for the campaign 4 session 4 HERA participants, which were 

identified as the subjects of interest for the within-subject question, to determine their 

predicted switch rates and performance values. For the between-subjects question, the 

model was built using the parameter values from all the ‘not withheld’ participants and the 

resulting GLM parameters were used with MLBA parameter values for the campaign 3 
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mission 1 HERA participants, which was the all-female crew identified in the between-

subjects question. 

For the within-subject question, there was no difference between the baseline model 

and the model using the MLBA parameters (dLOO-IC=4, SE=19.4), or in the resulting 

counterfactual predictions of switch rate from the models. A multilevel version of the 

MLBA parameters model was favored over the baseline model (dLOO-IC=91, SE=31.8), 

but was no different than the multilevel baseline model (dLOO-IC=13, SE=13.0), and this 

model generated counterfactual predictions of switch rate with more error than the baseline 

model. The improvements for the multilevel MLBA model were due to the multilevel 

structure, not from including the MLBA parameters as predictors. For the between-subject 

question, the MLBA parameters model was favored over the baseline model (dLOO-

IC=118, SE=70.5) and generated counterfactual predictions of switch rate with lower error 

than the baseline model, as shown in Figure 68.  

 

Figure 68. Between-subjects counterfactual predictions of switch rate using cognitive 

process model parameters compared to baseline model 
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For the within-subject counterfactual question, the baseline model was favored over 

the model that used a linear combination of MLBA parameters for the individual 

performance (dLOO-IC=3.7, SE=2.2) and team performance (dLOO-IC=22.6, SE=5.4) 

outcomes. For multi-team performance, there was no difference between the baseline and 

the model using the MLBA parameters (dLOO-IC=4.3, SE=5.1); however, the MLBA 

parameters model was better able to capture the range of multi-team performance values, 

as shown in Figure 69, and generated counterfactual predictions of multi-team performance 

with lower error values than the other models (Table 34). Both models also generated 

counterfactual predictions of performance with a large amount of error for the other two 

performance measures (i.e., individual and team performance).  

 

Figure 69. Comparison of within-subject posterior predictions of 'not withheld' campaign 

4, sessions 1 & 2 data using baseline (grey), clusters (blue), MLBA (light red) models 
 

For the between-subject counterfactual questions, there was no difference between 

the baseline and the model that used a linear combination of MLBA parameters for team 

(dLOO-IC=3.5, SE=4.3) and multi-team (dLOO-IC=0.4, SE=4.8) performance. The 

baseline model was favored for individual (dLOO-IC=7.3, SE=1.0) performance. The 

models also generated counterfactual predictions with larger error values than the baseline 

model for individual, team, and multi-team performance. Including cognitive process 
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model parameters did not improve the predictions of performance over the baseline 

intercept-only model for the between-subjects counterfactual.  

6.4. Strategy & cognitive process revised models  

The final set of revised models used a linear combination of the assigned clusters 

from the decision strategies machine learning model and the parameters from the single-

stage information foraging theory based MLBA as predictor of outcome. These models, 

also referred to as the all-parameters models, were used to address the within-subject, the 

between-subjects, and the other counterfactual question. The models for the within-subject 

and between-subjects questions were built using the combination of the values from the 

previous sections. For the other counterfactual question, the model was built using the 

parameter values from all the campaign 3 ‘not withheld’ participants and the resulting 

GLM parameters were used with the assigned cluster and MLBA parameter values for the 

campaign 4 session 4 participants. 

For the within-subject question, there is no difference between the baseline model, 

a model using a linear combination of assigned cluster plus the MLBA parameters, or a 

model using a linear combination of the most important factors plus the MLBA parameters 

(dLOO-IC=4, SE=23.2; dLOO-IC=5, SE=24.2). However, including the most important 

factors with the MLBA parameters produced counterfactual predictions of switch rate with 

less error than the baseline model, as shown in Table 34 and Figure 70. For the between-

subjects question, model using a linear combination of the most important factors plus the 

MLBA parameters was favored over both the baseline model and the model using a linear 

combination of cluster value plus the MLBA parameters (dLOO-IC=871, SE=113.2; 

dLOO-IC=504, SE=82.7) and generated predictions of switch rate with less error than any 
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other between-subjects model, as shown in Table 34 and Figure 71. The model using a 

linear combination of cluster value plus the MLBA parameters was also favored when 

compared only to the baseline model (dLOO-IC=367, SE=86.4). For the other 

counterfactual question, the model using a linear combination of the most important factors 

plus the MLBA parameters was favored over both the baseline model and the model using 

a linear combination of cluster value plus the MLBA parameters (dLOO-IC=232, SE=54.0; 

dLOO-IC=126, SE=40.6). Both the model using a linear combination of the most important 

factors plus the MLBA parameters and the baseline model generated out-of-sample 

counterfactual predictions of switch rate with approximately the same error, as shown in 

Table 34 and Figure 72.  

 

    

Figure 70. Within-subject counterfactual predictions of switch rate using decision strategy 

and cognitive process model parameters compared to baseline model 
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Figure 71. Between-subjects counterfactual predictions of switch rate using decision 

strategy and cognitive process model parameters compared to baseline model 

 

     

Figure 72. Other counterfactual predictions of switch rate using decision strategy and 

cognitive process model parameters compared to baseline model 
 

For the within-subject counterfactual question, there was no difference between the 

baseline model and the model that used a linear combination of decision strategy clusters 

and MLBA parameters for the individual performance (dLOO-IC=3.1, SE=3.7), team 

performance (dLOO-IC=3.4, SE=4.3), or multi-team performance (dLOO-IC=1.6, 

SE=5.3) outcomes. This model also generated counterfactual predictions with higher error 

than the baseline, and all the other models, for all three performance outcomes.  

There also was no difference between the baseline model and the model that used 

a linear combination of decision strategy clusters and MLBA parameters for team 
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performance (dLOO-IC=5.7, SE=4.3) and MTS performance (dLOO-IC=1.8, SE=4.9) for 

the between-subjects counterfactual question, but for individual performance the baseline 

model was favored (dLOO-IC=8.7, SE=2.0). There also was no difference in the error of 

any of the between-subjects counterfactual predictions of performance.  

Finally, for the other counterfactual question, there was no difference between the 

baseline model and the model that use the cluster and MLBA parameters for individual 

(dLOO-IC=5.1, SE=4.7), team (dLOO-IC=3.5, SE=3.1), or multi-team (dLOO-IC=1.7, 

SE=5.9) performance. The model that includes the assigned cluster and MLBA parameters 

generate counterfactual predictions with larger error values than the baseline model. 

Table 34. Summary of Counterfactual Model Results 
  LOO-IC SELOO-C dLOO-IC SEdLOO-IC pLOO CF 

MAE 

CF 

RMSE 

Within-Subject 

 Switch Rate 

 Multilevel Clusters 294 12.2 - - 31.2 0.0033 0.0039 

 Multilevel MLBA 306 15.9 12 15.0 36.9 0.0034 0.0043 

 Multilevel Baseline 319 20.0 25 10.9 33.4 0.0032 0.0041 

 MLBA params 397 33.5 103 32.7 15.9 0.0032 0.0037 

 Clusters + MLBA 397 24.7 103 32.9 19.4 0.0029 0.0034 

 Clusters 398 30.8 104 29.0 9.6 0.0025 0.0029 

 Most important 400 28.6 106 29.3 15.2 0.0021 0.0027 

 Baseline 401 31.8 107 29.6 4.8 0.0028 0.0032 

 Most imp + MLBA 401 31.0 107 30.6 24.3 0.0025 0.0031 

 Individual Perf 

 Clusters 47.9 4.4 - - 2.1 0.32 0.42 

 Baseline 48.4 3.2 0.5 3.4 1.1 0.31 0.36 

 Clusters + MLBA 51.5 4.6 3.6 2.0 4.1 0.40 0.47 

 MLBA params 52.1 3.5 4.2 3.7 3.3 0.29 0.35 

 Team Perf 

 Baseline 29.1 5.6 - - 1.4 0.16 0.19 

 Clusters 29.1 5.6 - - 2.3 0.17 0.22 

 Clusters + MLBA 32.9 6.5 3.8 4.3 4.7 0.26 0.28 

 MLBA params 51.7 3.5 22.6 5.4 3.1 0.17 0.19 

 MTS Perf 

 MLBA params 35.7 5.9 - - 3.5 0.22 0.25 

 Clusters + MLBA 38.4 6.0 2.7 0.6 4.7 0.63 0.63 

 Baseline 40.0 3.9 4.3 5.1 1.2 0.56 0.56 

 Clusters 40.5 4.5 4.8 5.1 2.1 0.50 0.50 

Between-Subjects 

 Switch Rate 

 Most imp + MLBA 1666 42.2 - - 18.2 0.0030 0.0040 

 Clusters + MLBA 2170 96.1 504 82.7 30.9 0.0042 0.0052 

 MLBA params 2419 115.6 753 108.7 32.6 0.0043 0.0055 

 Baseline 2537 125.6 871 113.2 6.1 0.0049 0.0063 
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 Individual Perf 

 Baseline 259.3 9.3 - - 1.2 0.29 0.30 

 MLBA params 266.6 9.4 7.3 1.0 4.9 0.32 0.34 

 Clusters + MLBA 268.0 9.5 8.7 2.0 5.9 0.32 0.35 

 Team Perf 

 Baseline 184.3 12.4 - - 1.3 0.12 0.15 

 MLBA params 187.8 13.2 3.5 4.3 5.1 0.21 0.25 

 Clusters + MLBA 190.0 13.1 5.7 4.3 6.2 0.22 0.25 

 MTS Perf 

 MLBA params 234.3 9.7 - - 5.2 0.43 0.43 

 Baseline 234.7 9.0 0.4 4.8 1.2 0.42 0.42 

 Clusters + MLBA 236.5 9.8 2.2 0.7 6.2 0.43 0.43 

Other 

 Switch Rate        

 Most imp + MLBA 474 18.6 - - 14.3 0.0043 0.0056 

 Cluster + MLBA 600 50.8 126 40.6 22.1 0.0056 0.0071 

 Baseline 706 63.6 232 54.0 5.4 0.0044 0.0051 

 Individual Perf 

 Baseline 87.0 4.2 - - 1.1 0.38 0.41 

 Cluster + MLBA 92.1 4.7 5.1 4.7 4.4 0.45 0.61 

 Team Perf 

 Baseline 68.7 5.8 - - 1.2 0.32 0.35 

 Cluster + MLBA 72.2 6.0 3.5 3.1 4.6 0.48 0.59 

 MTS Perf 

 Cluster + MLBA 90.7 6.6 - - 4.4 0.61 0.68 

 Baseline 92.4 2.2 1.7 5.9 1.0 0.28 0.32 

 

6.5. Summary 

The results from the decision strategies and cognitive process models were used to 

identify residual information about individual differences in performing the overall well 

placement task; this information was used within Bayesian generalized linear models as 

predictors of switch rate, individual task performance scores, team task performance 

scores, and multi-team task performance scores. The three different counterfactual 

questions – within-subject, between-subjects, and other – required different subsets of the 

data to be used to build the model and also to generate the different counterfactual 

predictions. Table 35 gives a summary of the conclusions compared to the hypotheses, for 

the models that were listed in the original hypotheses (e.g., the most important factors 

models are not included since that was not specified in the original hypothesis). 
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 This research identified several conclusions from the counterfactual models that 

included switch rate as the outcome parameter. Models that included only the parameters 

related to the decision strategy – either assigned cluster or most important factors – were 

used to evaluate the first hypothesis within research question 4 (i.e., H4a), which only 

considered the within-subject counterfactual question. First, model comparison favored the 

baseline model over the decision strategy clusters model for within-subject question, which 

does not support the hypothesis. Including the most important decision strategy factors in 

the model resulted in a model that is no better or worse than the baseline model, using 

information criteria to compare the models, but generated predictions for the within-subject 

counterfactual question that have less error than the baseline model, and all other models, 

which supports the hypothesis. The models that included the parameters from the single-

stage information foraging theory based MLBA (i.e., threshold, starting point parameter, 

attention weight, value, and non-decision time) were used to evaluate the second 

hypothesis within research question 4 (i.e., H4b), which considered both the within-subject 

and between-subjects counterfactual question. The model was no different than the 

baseline model for the within-subject counterfactual question, using both information 

criteria and the errors of the counterfactual predictions. The model was favored over the 

baseline for the between-subjects counterfactual question, using information criteria to 

compare the models, and it generated counterfactual predictions with less error than the 

baseline. These results support the hypothesis. Finally, the models that included both the 

assigned clusters as well as the MLBA parameters, referred to as the all-parameters model, 

were used to evaluate the third hypothesis within research question 4 (i.e., H4c), which 

considered all three counterfactual questions. The analysis found no difference between 
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the baseline and all-parameters models for the within-subject counterfactual question, but 

the all-parameters models were favored over the baseline for both the between-subjects and 

the other counterfactual question. Using the most important decision strategy factors plus 

the MLBA parameters in the GLM improved out-of-sample predictions for within-subject 

and between-subjects questions while the baseline model best predicted out-of-sample 

responses for the other question. Finally, multilevel versions of several models were built 

using the data for the within-subject question; all were favored over the single-level 

models, but none improved out-of-sample predictions.  

Table 35. Summary of Counterfactual Model Conclusions 
 Hypothesis Conclusions 

 

Predictor(s) 

Counterfactual  

Question(s) Task-switching Performance 

4a 

Decision-

making 

strategy 

cluster 

Within-subject 

Partially supported 
* lower LOO-IC, if 

using a multi-level 

model 

No difference compared 

to baseline 

4b 

Cognitive 

process model 

parameters 

Within-subject 
No difference 

compared to baseline 

Partially supported 
* lower RMSE for multi-

team performance 

Between-

subjects 

Supported 
* lower LOO-IC and 

RMSE 
Not supported 

4c 

Decision-

making 

strategy 

cluster & 

cognitive 

process model 

parameters 

Within-subject 
No difference 

compared to baseline 
Not supported 

Between-

subjects 

Supported 
* lower LOO-IC and 

RMSE 

No difference compared 

to baseline 

Other 
Partially supported 
* lower LOO-IC, but 

higher RMSE 
Not supported 

NOTE: Not supported indicates that the baseline model was favored. No difference indicates that both the baseline and tested model 

perform equally. 
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7. DISCUSSION  

This research investigated four different research questions using three distinct 

modeling paradigms where the approaches fit together to form an overall analysis pipeline. 

First, a machine learning approach was used to identify the decision strategy used to 

complete the overall task and the most important factors contributing to that strategy to 

address the first research question. Next, multiple cognitive process models were compared 

to find the best model to describe and explain the cognitive mechanisms used in completing 

the overall task and the associated task-switching behavior to address the second and third 

research questions. Finally, a Bayesian generalized linear modeling (GLM) approach was 

used to generate counterfactual predictions of task-switching rates and overall task 

performance scores to address the final research question. There were various choices and 

assumptions made to test the hypotheses associated with each research question, that in 

some cases affected the generalizability of the results. These are discussed in more detail 

for each modeling approach in the sections below.  

7.1 Decision strategies 

The machine learning analysis identified patterns that indicate differences in 

clusters of participants completing the overall task where the clusters represented the 

different strategies used by the participants, assuming that participants use different 

strategies to complete the task. Using the best machine learning model to predict out-of-

sample results on the test data sample produced predictions better than random assignment. 

The results confirm the first hypothesis.  

This research expected to see the clusters fall between two extremes of behavior. 

Highly exploratory behavior is one extreme, where the individual or team members 
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switch(es) tasks often and complete(s) a larger number of tasks, which indicates that an 

individual was using a compensatory strategy to complete the overall tasks by processing 

all relevant information and trading off the good and bad aspects of each alternative. Highly 

exploitive behavior is the other extreme, where the individual or team members switch(es) 

tasks infrequently and complete(s) only a small number of distinct tasks, which indicates 

that an individual was using a non-compensatory strategy to reduce information processing 

demands by ignoring potentially relevant problem information. However, the best model 

to fit the observed data had only two relatively loosely group clusters without large 

separation between the clusters. The results are not able to delineate groups with 

intermediate behavior and do not confirm that there are two extremes in behavior. The 

assumption that observed task-switching behavior is related to unobserved decision 

strategy may still be valid, but should be tested using data where the true decision strategy 

is known. 

While the results of this research are specific to the Project RED data, the 

methodology used to analyze participants’ decision strategy in the Project RED task could 

be generalized to other tasks. The method found patterns of similar participants displaying 

similar strategies by using the important predictors relating to the observed behavior. For 

the Project RED task-switching data a key assumption was that the unobserved decision 

strategies related to the observed task-switching outcome. This assumption could apply to 

other task-switching tasks, such as an overall monitoring task (e.g., maintaining normal 

plant operations) or an investigation task (e.g., medical diagnostics), if completed in an 

environment without unrelated interruptions, but not to other types of tasks such as 

preferential choice, since multiple strategies could lead to the same observed response (Lee 
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et al, 2019). For other types of tasks, the methodology could be applied using only the 

unsupervised methods, without any assumption of relation between the underlying strategy 

and the observed response. However, the results using only the unsupervised method for 

the Project RED data were approximately the same as random assignment, so applying this 

method to data from other types of tasks may not provide useful results.  

For other types of task-switching data both the supervised and unsupervised 

methods could be used to analyze the data. While results from this research show that the 

supervised random forest gives the best predictions of both in-sample and out-of-sample 

switch rates, the supervised method does not identify any similarities between the 

participants and using the regression RF dissimilarity matrix with various clustering 

algorithms produces results that are no better than random assignment. The unsupervised 

method allows the variables alone to drive the clustering between participants to provide 

insights into commonalities in participants with both similar and different switching 

behavior. Because we don’t know what strategy (or strategies) a participant used when 

completing the task, there is no ground truth to compare to. Switch rate is one observed 

behavior that describes how a person completed a task, but as mentioned above the 

assumption that the observed switch rate relates to the unobserved strategy should be tested 

using data where the true decision strategy is known.  

7.2 Cognitive mechanisms 

The results from the cognitive process analysis favored a model based on 

alternative-level preferences over a model based on attribute-level preferences as well as a 

single-stage model, which assumed that all tasks were considered simultaneously, over a 

two-stage model, which assumed a serial process where only a subset of tasks were 
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considered for the final decision.  This confirms the second hypothesis, but not the third 

hypothesis. 

This research used both real and simulated datasets to determine which version of 

the MLBA model provided the most evidence for the observed data. Because the Project 

RED data had a small number of trials for many of the participants, leading to increased 

uncertainty in the modeling results, a simulated dataset was generated to compare the fit 

metrics between the MLBA models. A generic LBA model was used to generate the data, 

using parameter values from a range of values that was representative of the real data. 

Although the response times and the particular responses selected in the simulated data did 

not allow the dataset to be used in place of the Project RED data to explain the behavior, a 

visual assessment determined there was sufficient similarity in the response time 

distribution and the variation in the responses that enabled the simulated data to be used to 

compare differences in switching behaviors using the different models and address the 

research questions. 

 The single-stage models used in this research are generalizable to other tasks, both 

other types of task-switching tasks as well as other types of tasks. The cumulative prospect 

theory version of the single-stage model has already been applied to preferential choice 

and risky choice tasks (Cohen et al., 2017), where there are multiple attributes identified 

for each response option and the value and weight of each attribute was known.  Similarly, 

the information foraging theory version of the single-stage model could also be generalized 

to other tasks. The methodology related to determining the profitability would need to be 

changed to apply it to other types of tasks. Ideally, the profitability of each choice would 

be identified prior to data collection rather than empirically afterwards. This requires 
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knowing or measuring the gain that an option provides in relation to the cost or processing 

time of that option. For a task-switching task, the gain was the popularity of the response 

option and the processing time was the amount of time spent completing it. To repeat this 

analysis on another task-switching scenario, the task could be set up to quantify the gain 

as the amount of benefit each response option provides towards completing the overall task 

and the processing time as a relative measure of the time spent on each task. This would 

allow the values to be quantified a priori rather than needing to be calculated after the 

overall task is completed. For a preferential choice task, such as selecting which item to 

purchase, the gain could be the sum of features or benefits that the option provides while 

the cost could be the actual monetary cost or, more consistent with information foraging 

theory, it would be a relative measure of the time required to process the information 

provided by that option. An option with more features or features that contradict each other 

(e.g., a phone with more memory, but lower camera quality) should require a longer time 

to evaluate than one with simple or consistent features. For the information foraging theory 

based model the attributes still contribute to the decision, but at a higher level. They are 

not each evaluated separately, but are part of the overall profitability and value that the 

option provides.   

The two-stage model structure is generalizable to other tasks with improvements, 

discussed in chapter 8, and modifications to the model details. The two-stage models in 

this research assume that the first stage is reducing the number of response options using 

the type of task, which is specific to task-switching involving teams. The model structure 

could still be applied using another heuristic, such as task typicality, to a task-switching 

scenario, by modifying the models to use this as the criterion for reducing the number of 
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response options for the final decision. The factor used to reduce the number of response 

options for a task-switching task is not considered to be a task attribute. The structure may 

also be generalizable to other types of tasks, like preferential choice, if a heuristic is applied 

to reduce the number of choice options and not to make the final selection. For example, a 

participant using a take-the-best strategy could use cost to select the final response, where 

the two-stage model structure cannot be used. Alternatively, a participant could use cost as 

a factor to reduce the number of response options (e.g., anything less than $X), where the 

two-stage model could be used to represent the decision-making process. Although, the 

process may require more than two stages if other factors are used to iteratively reduce the 

number of options considered until final choice is made (e.g., elimination by aspects), 

which would require modifications to the model structure. This leads back to the question 

of how the attributes are used in the decision-making process – if the attributes are used 

simultaneously to trade-off between all the options or if they are used to systematically 

reduce the number of options considered until a single option remains. 

An additional consideration in applying the cognitive models is that the single-stage 

models were shown to be identifiable while the two-stage models were non-identifiable. In 

the two-stage model the drift rate was a function of the threshold, stage one drift rate, stage 

two drift rate, and stage delay parameter. As the stage delay parameter varies (i.e., 

decreases or increases), the stage one and stage two drift rates must also vary to maintain 

the same overall drift rate across both stages, plus the overall drift rate varies with the 

threshold that was also varying to best explain the data, which was likely the cause of there 

being too much flexibility in the model. Even holding the drift rate parameters constant, 

allowing only threshold, starting point, non-decision time, and stage delay to vary, still 
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results in the model not recovering the generating values of the free parameters. If the 

number of free parameters for the two-stage models are reduced to only include threshold, 

starting point, and non-decision time, then the models are identifiable, but doing so also 

removes all the parameters of interest to address the research questions.  

This leads to the question of whether the model or the task-switching data were 

sufficient to address whether a participant considered the response options serially or in 

parallel. Only the measures of model fit, not the estimated parameter values, were used to 

test the hypothesis, so the model is still sufficient to use to compare the two-stage models 

to their single-stage counterparts. Still, a model structure with less dependency between 

the stages is needed. If the stage one response time was known or could be assumed, then 

the stage delay parameter could be eliminated and each stage could have a separate 

threshold and drift rate. Even if the stage delay was still a parameter, a model where the 

drift rate(s) are independent of the threshold may reduce the dependency between the stages 

enough to be identifiable. There may also be other manipulations of task-switching, 

different than how the data were collected during Project RED, that allow the estimated 

parameters as well as the model fit measures of the less-constrained two-stage model to be 

used. For example, if some participants were given a manipulation to lead to spending less 

time on each task or if the total time spent on the overall task was not the same for all the 

participants. 

7.3 Counterfactual models 

Generalized linear models, which can be applied to a large variety of datasets to 

predict outcomes using various independent variables, were used to predict the resulting 

task-switching behavior and task performance outcomes using the results from the decision 



176 

 

strategies and cognitive process models. The results from the counterfactual prediction 

models are summarized in Table 35 to show how the conclusions compared to the 

hypotheses, for the models that were listed in the original hypotheses (e.g., the most 

important factors models are not included since that was not specified in the original 

hypothesis). Most of the hypotheses related to predicting task-switching behavior were 

supported or partially supported while most of the hypotheses relating to predicting overall 

task performance were not supported. The contextual factors used in the counterfactual 

prediction models (e.g., the decision strategy clusters) probably have a small effect on the 

resulting task-switching behavior or task performance, and the noise in the Project RED 

data, especially for the task performance outcomes, may make it difficult to perceive the 

effect. Including different contextual factors in each of the counterfactual questions may 

lead to improved predictions. For example, this research did not consider using only the 

decision-making strategy cluster to make predictions for the between-subjects 

counterfactual, but the strategy used by different participants is assumed to lead to different 

task-switching behaviors so it could improve predictions for the between-subjects 

counterfactual question.   
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8. FUTURE WORK 

There are several areas in which to build upon this research. There are opportunities 

to perform additional analyses using the Project RED dataset as well as opportunities to 

further explore the idea of including cognitive process measures as counterfactual 

predictors of future performance. Additional work can also be completed to improve the 

two-stage MLBA model developed here or to identify a different model structure to apply 

to a serial process of deciding to switch tasks. Longer term, further research can be 

completed on the information foraging theory based MLBA and to investigate decision 

strategies used for task switching. 

One additional area to investigate using the Project RED dataset is using the MLBA 

cognitive process models to investigate differences between the multiple sessions for the 

HERA participants. This research assumed that each iteration of the overall task and the 

resulting task-switching data was independent (i.e., each row of data was for a different 

participant) to understand overarching differences in individual performance, but the 

participants in the HERA roles completed the overall task multiple times over the 30- or 

45-day mission. Looking at just the data from those participants gives insight to explain 

how the differences between each session affected their cognitive processes and if there 

are any mechanisms that change for all participants as a result of the experimental 

manipulations (e.g., longer communications delay). 

There are multiple options to continue analyzing the Project RED data to identify 

and understand participants’ decision-making strategies. One simple analysis is to measure, 

using an ANOVA, the effect of strategy on overall task performance. While outside the 

scope of this research, the results would provide insight into whether participants that 
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cluster together also have similar performance measures. The exploratory analysis 

identified the mean time on task as a factor with a strong non-linear relationship to switch 

rate. This factor in a Bayesian GLM may be the only one needed to predict task switching. 

However, it must be measured when an individual completes the task, which makes it 

difficult to use as a counterfactual predictor. Additional research to understand why that 

relationship is non-linear may provide additional insights into task-switching strategies and 

behavior. Additionally, there may be other machine learning and data analysis techniques 

that can be applied to the data that improve the clustering results (i.e., increase ARI, 

decrease classification error). Specifically, since task-switching is time-series data, 

sequence analysis techniques (Ritschard & Studer, 2018) could be used to identify time-

series patterns that relate to decision strategy. These patterns could be compared to task 

performance to determine if there is a sequence or pattern of tasks that results in improved 

performance. While this analysis would be specific to this dataset, the techniques 

developed to identify decision strategies from real-world data could be generalized to other 

tasks where the strategy a person uses to complete the task is undefined and unidentified.    

The dataset used in this research has limitations that create challenges in estimating 

the cognitive process model parameters, and in making and evaluating counterfactual 

predictions. While the data includes second-by-second results for a 30- or 45-minute 

period, the actual number of trials (i.e., task-switches) is small, which adds error to the 

parameter estimates. The MLBA models are usually applied to structured, clean data with 

hundreds or thousands of trials per subjects whereas the real data used in this research is 

more complex, noisy, and sparse. The Bayesian estimation techniques, which incorporate 

priors into the estimates, provide parameter values with the small amount of data, but they 
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require more computation time and still have higher error in the estimates from the small 

number of trials. Also, the set-up for collecting the data was complex and, since it was 

completed by another laboratory, was not fully understood, which creates challenges in 

evaluating the effect of including cognitive process parameters as predictors of behavior. 

Running the cognitive process model on a less-complex task with a larger number of trials 

for each participant, either on an existing dataset or a new dataset, would allow for further 

analysis into the effectiveness of including cognitive process parameters.   

This research developed a new MLBA model framework based on information 

foraging theory and showed that this model is favored over another existing model to 

describe the task-switching data. This model includes changes both to the model structure 

(i.e., the attention weight equation based on information foraging theory) as well as to the 

underlying assumption that attribute measures are considered holistically. Additional 

research is needed to understand the effect of each of these changes. This could be done by 

running a version of the model based on cumulative prospect theory that assumes 

alternative-level decision-making on the simulated dataset and comparing it to the two 

single-stage models from this research. In addition, more research is needed to apply the 

information foraging theory based MLBA to data from existing literature for information 

foraging tasks as well as other decisions (e.g., perceptual choice) to better understand its 

performance. 

 The two-stage model developed in this research has a different structure (Figure 

12) than originally intended (Figure 11a). The two-stage model needs a structure like the 

originally intended structure, with less dependency between the stages, which allows the 

drift rates to be independent of the threshold. To implement the intended structure, where 
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the stage one threshold is the exact starting point of the second stage, requires using 

approximation methods (e.g., Probability Density Approximation; Holmes, 2015) to 

estimate the likelihood values. This research unsuccessfully attempted to implement this 

structure, but additional work is needed to refactor the code to generate the likelihood 

estimates without using the rtdists R package to correctly implement the structure in Figure 

11a and evaluate that model to use to represent a serial decision-making process. An 

advantage to using an evidence accumulation model to represent a serial decision-making 

process is that it provides psychologically relevant parameters to explain the process. An 

alternative is to use a different model paradigm that evaluates serial versus parallel 

architecture for decision-making, like Systems Factorial Technology (SFT; Townsend & 

Nozawa, 1995), on a task-switching dataset. This could be challenging since SFT requires 

selective influence manipulations of parameters to create separation of high and low 

salience conditions, but research has been done using SFT to evaluate consumer choice 

tasks (Cooper & Hawkins, 2019), another complex decision with many possible strategies.  

 This research shows that people can be loosely grouped together to identify 

similarities in how they complete an overall task relating to their task switching behavior. 

However, additional research is needed to identify the decision strategy(ies) related to task 

switching independently of completing a primary task and to manipulate the strategy used. 

More research is also needed to test and model team strategies explicitly. Strategy 

identification and manipulation is already included in experiments with simpler tasks (e.g., 

Lee et al., 2019; Rieskamp & Otto, 2006) using single participants. An example applied to 

a more complicated task looks at the strategy used for task scheduling to understand how 

people reason about agenda changes (Rosenthal & Hiatt, 2020). Future research related to 
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task-switching can both identify the strategy participants use to switch between multiple 

tasks (e.g., by self-reporting) and provide incentives to encourage behaviors of divergent 

thinking, curiosity, and exploring for more information, and then measure the effect of the 

strategy on task switching and overall task performance. One possibility is to set-up the 

multi-attribute task battery (MAT-B; Comstock & Arnegard, 1992) to require sequential 

task performance, rather than concurrent task performance, with different scenarios to 

encourage or discourage task-switching. Another possibility is to use a simulator of 

unmanned vehicle planning and operations (e.g., Research Environment for Supervisory 

Control of Heterogeneous Unmanned Vehicles (RESCHU; Boussemart & Cummings, 

2008)) to allow single operators or teams of operators to control multiple unmanned 

vehicles on missions with different overall goals to manipulate and measure how people 

switch between the tasks related to unmanned vehicle mission planning and operations. 
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9. CONCLUSIONS 

This research makes several novel contributions to the current knowledge base of 

decision-making – theoretically, methodologically, and practically. Theoretically, it 

identified and applied factors to describe the influence of task structure on individual 

performance. As part of the exploratory analysis, this research developed a measure of 

typical task switching, that was directly influenced by the overall task structure and was 

subsequently identified, using machine learning techniques, as one of the most important 

factors related to task switching. An alternative measure of atypical task switching was 

also provided and applied to define whether an individual preferred to explore new tasks 

(i.e., is an explorer) or repeat known tasks (i.e., is not an explorer). This indicator of 

whether a person was an explorer was also identified as one of the most important factors 

related to task switching. Additional parameters were derived that integrated principles 

from information foraging theory into the machine learning analysis of decision strategy. 

The exploratory analysis also developed a measure of the functional ties, or dependencies 

between participants, and identified less interaction between participants and less 

dependency on other participants’ behavior on task-switching than expected. The 

participant dependencies, along with other provided measures of interpersonal ties, 

behavioral ties, and shared mental models were used to investigate team factors impacting 

individual decision-making strategies; team factors were not considered in previous 

research on task-switching behavior.  

This research identified a pattern of individual strategies that predicts out-of-sample 

data better than random assignment. The actual strategies that participants used to complete 

the overall task were unknown and undefined a priori, making this a difficult problem. By 
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applying machine learning techniques to the data, clusters of similar participants were 

found and assumed be similar to each other. There was large overlap in the clusters since 

the techniques did not provide perfect groupings, but the results performed better than 

randomly assigning participants to a group. The analysis also learned which factors were 

most important to switching tasks.   

Another theoretical contribution is the incorporation of information foraging theory 

principles, explaining how people gather and exploit information, into the multi-

alternative, multi-attribute linear ballistic accumulator (MLBA) model framework of 

decision-making, specifically by including a measure of the profitability of a task to 

account for the weight of attention given to a task, to quantify the underlying processes 

driving exploratory or exploitative behavior. The profitability measure is also directly tied 

to task structure since the values are determined for the specific tasks completed as part of 

the overall task. This measure, along with a measure of value, are incorporated at the task-

level, assuming that the multiple task attributes are processed as a whole, while existing 

MLBA models assume each attribute is processed separately. As mentioned in chapter 8, 

an area of future work is to further investigate this model to understand the effect of the 

model structure (i.e., the attention weight equation based on information foraging theory) 

versus the effect of incorporating attribute measures at the task level in explaining decision-

making response data. The two aspects are combined in the information foraging theory 

based models used in this research.  

The information foraging theory based model, compared to one based on 

cumulative prospect theory, better describes and explains task-switching responses and 

response times. The model describes that people select which task to work on holistically 
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while the resulting parameter values explain the differences in participants. Participants 

vary in their efficiency in responding, as determined using the parameters that mention the 

weight of attention given to a task and the value of the task, as well as by their tendency to 

switch tasks, measured by their range of starting points. Someone with a large range of 

starting points (i.e., larger A) is less likely to switch tasks since they have more 

opportunities to need a larger amount of evidence to select any next task. This supports the 

finding by Wickens et al. (2015) of switch-avoidance tendency as an important factor in 

task switching.  

A final theoretical contribution is including these latent, residual measures of 

individual differences in cognitive strategy and cognitive processing as counterfactual 

predictors of out-of-sample responses. Only a few of the models that included the measures 

performed better than the baseline intercept-only model, but the dataset was also very noisy 

and complex which reduces the ability to detect small effects.  

Methodologically, this research developed a sequence of machine learning 

techniques to process a large number of independent variables to identify clusters of similar 

participants. The data contains multiple types of variables (e.g., continuous, categorical) so 

this research applied the idea of unsupervised random forests, from genetics research, to 

generate a measure of dissimilarity between the participants that could be used to cluster 

participants. The development of the information foraging theory based model also 

provides a methodological contribution. The model can be generalized to apply to other 

tasks where the attributes of a task are less distinct or are conflated, like researching a topic, 

analyzing information, or monitoring conditions within an environment. Some tasks, 

especially laboratory tasks, encourage or require looking at each attribute, e.g., preferential 
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choice tasks, so the model may not generalize to those tasks, but those types of tasks 

provide an opportunity to more rigorously test the results from the model.  This research 

also developed an initial evidence accumulation model structure to explore whether 

alternatives all considered simultaneously or reduced in a serial process. Applying this 

model to the task switching data, and comparing it to a model that uses the traditional 

structure of the MLBA, found that people considered all the alternatives simultaneously. 

The initial version developed in this research uses the rtdists R package, which resulted in 

a non-identifiable model, but with some improvements, as described within the future 

work, it provides an alternative to other existing models to evaluate serial versus parallel 

processing in decision-making.  

Finally, practically, the results from this research suggest that people select the next 

task to work on and switch between tasks by considering the ongoing and alternative tasks 

as a whole, not by using the specific attributes of the tasks. This idea can be applied to real-

world scenarios where multiple tasks are available to switch between, like plant operations 

or piloting an airplane. There are examples from both domains where people will not select 

to switch to a more salient, higher priority task, which could be explained by considering 

that each of the available tasks is considered holistically rather than assuming they are 

evaluated using each attribute.  
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Appendix A 

Table 36. Pearson’s r correlation values (n=240) for each factor with ID and switch rate. 
 ID Switch rate   ID Switch rate 

ID  1 -0.0758  Behavioral tie role 1  0.107 -0.102 

Switch rate -0.076  1  Behavioral tie role 2 -0.085 -0.094 

Role  0.050  0.187  Behavioral tie role 3  0.001 -0.109 

HERA -0.003 -0.163  Behavioral tie role 4  0.113  0.038 

Campaign  0.794 -0.096  Behavioral tie role 5  0.093 -0.051 

Mission  0.986 -0.084  Behavioral tie role 6  0.132  0.038 

Session  0.193 -0.103  Behavioral tie role 7  0.010  0.152 

Gender -0.135  0.004  Behavioral tie role 8  0.083  0.109 

Comm delay -0.106 -0.115  Behavioral tie role 9 -0.042  0.049 

Extraversion  0.777 -0.156  Behavioral tie role 10  0.033  0.014 

Agreeableness  0.769 -0.251  Behavioral tie role 11  0.087 -0.032 

Conscientiousness  0.771 -0.138  Behavioral tie role 12  0.101  0.003 

Neuroticism  0.678 -0.195  Functional tie role 1  0.240 -0.101 

Mean task salience -0.052 -0.295  Functional tie role 2  0.060 -0.116 

Mean task interest  0.157  0.207  Functional tie role 3  0.057 -0.089 

Mean task priority -0.065  0.422  Functional tie role 4  0.122  0.078 

Mean task difficulty  0.102  0.292  Functional tie role 5  0.162  0.034 

Mean task category -0.194 -0.092  Functional tie role 6  0.056 -0.133 

Mean task structure  0.087 -0.064  Functional tie role 7  0.167 -0.083 

Mean task value  0.222  0.091  Functional tie role 8  0.254 -0.017 

Outcome  0.276  0.153  Functional tie role 9  0.113 -0.037 

Mean total time on task -0.180 -0.732  Functional tie role 10  0.095  0.029 

Explorer -0.167  0.465  Functional tie role 11  0.119  0.027 

Typical task switches  0.116  0.743  Functional tie role 12  0.144  0.064 

Percent vertical switches  0.080 -0.119  Interpersonal tie role 1  0.005 -0.168 

Mean tool visibility -0.272  0.011  Interpersonal tie role 2 -0.063 -0.108 

Mean tool persistence  0.602 -0.128  Interpersonal tie role 3 -0.007 -0.097 

Mean tool editability  0.034  0.065  Interpersonal tie role 4  0.042  0.116 

Mean tool association -0.413  0.012  Interpersonal tie role 5  0.017  0.002 

Task mental model role 1 -0.051  0.118  Interpersonal tie role 6 -0.023  0.057 

Task mental model role 2  0.117  0.036  Interpersonal tie role 7 -0.006  0.226 

Task mental model role 3  0.079  0.000  Interpersonal tie role 8 -0.088  0.138 

Task mental model role 4  0.104  0.078  Interpersonal tie role 9 -0.099  0.166 

Task mental model role 5  0.092  0.038  Interpersonal tie role 10  0.065  0.024 

Task mental model role 6  0.101 -0.001  Interpersonal tie role 11  0.084  0.008 

Task mental model role 7  0.153 -0.087  Interpersonal tie role 12  0.036 -0.008 

Task mental model role 8  0.225 -0.038  Tool tie role 1  0.379  0.006 

Task mental model role 9 -0.003 -0.093  Tool tie role 2  0.141 -0.052 

Task mental model role 10 -0.011 -0.061  Tool tie role 3  0.183 -0.019 

Task mental model role 11  0.036 -0.054  Tool tie role 4  0.356  0.032 

Task mental model role 12 -0.114  0.139  Tool tie role 5  0.316  0.002 

Team mental model role 1 -0.088  0.076  Tool tie role 6  0.175 -0.149 

Team mental model role 2 -0.003 -0.062  Tool tie role 7  0.165 -0.122 

Team mental model role 3 -0.008 -0.051  Tool tie role 8  0.272 -0.055 

Team mental model role 4  0.053  0.003  Tool tie role 9  0.162 -0.058 

Team mental model role 5  0.049 -0.048  Tool tie role 10  0.173 -0.001 

Team mental model role 6  0.001 -0.077  Tool tie role 11  0.228  0.008 

Team mental model role 7 -0.072 -0.112  Tool tie role 12  0.128  0.054 

Team mental model role 8  0.300 -0.023     

Team mental model role 9 -0.067 -0.160  MLBA threshold  0.616 -0.127 

Team mental model role 10  0.032 -0.077  MLBA starting point  0.335 -0.266 

Team mental model role 11  0.112 -0.144  MLBA attention weight -0.519  0.178 

Team mental model role 12 -0.252  0.127  MLBA subjective value  0.376  0.034 

    MLBA non-decision time -0.585  0.168 
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Figure 73. Task dependency plots for ‘not withheld’ data. Blank missions and sessions are 

withheld data. 
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Figure 74. Sequence plots of individual (green), team (purple) and MTS (orange) tasks
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Appendix B 
 

 

 
Figure 75. Example choice and response time distributions for simple simulated data 

 

 

   

 

     

     

     
Figure 76. Histograms of actual parameter values in 48-subject simulated data 
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Figure 77. Sample of choice and response time distributions for CAG (top row), CA 

(middle row) and CG (bottom row) models. 
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Figure 78. Sample of choice and response time distributions for IAB (top row), IA (middle 

row) and IB (bottom row) models. 
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Table 37. Parameter recovery – MLE fit of single-stage CPT models 

Parameter Initial Value CAG CA CG 

 3-choice 5-choice 3-choice 5-choice 3-choice 5-choice 3-choice 5-choice 

b 2 1.6624 
1.5875 

1.8699 

1.3929 
1.6998 

1.7893 

1.5347 
1.5783 

1.6620 

1.5384 
1.7937 

1.6977 

1.6460 
1.7193 

1.6624 

1.6290 
1.6372 

1.4099 

1.8243 
1.6847 

1.9427 
1.9035 

2.0085 

1.8440 
1.8133 

1.6572 

1.9162 
1.9301 

1.8922 

1.8231 
1.8986 

1.9700 

1.7422 
1.9228 

1.8957 

1.8745 
1.8449 

1.8749 

1.8949 
1.7887 

1.3905 
1.3244 

1.5726 

1.1411 
1.4163 

1.4888 

1.3123 
1.2894 

1.3624 

1.2914 
1.5220 

1.3994 

1.3546 
1.4469 

1.3916 

1.3538 
1.3696 

1.1983 

1.4993 
1.4258 

1.7034 
1.6660 

1.7637 

1.6325 
1.5961 

1.4679 

1.6893 
1.7215 

1.6274 

1.6012 
1.6631 

1.7411 

1.5239 
1.6759 

1.6748 

1.6431 
1.6047 

1.6220 

1.6568 
1.5545 

1.1806 
1.7300 

1.9332 

1.0423 
1.7580 

1.7411 

1.3969 
1.2616 

1.5498 

1.4268 
2.0138 

1.9553 

1.3613 
1.8668 

1.4002 

1.6855 
1.2339 

1.2647 

1.7859 
1.9325 

1.5273 
1.4668 

1.6366 

1.5538 
1.5797 

1.5486 

1.5645 
1.7698 

1.4563 

1.5844 
1.9230 

1.9597 

1.9534 
1.5874 

2.0096 

1.3240 
1.6619 

1.5879 

1.7695 
1.4545 

 1.2296 

0.8246 
0.8771 

1.2146 

0.8755 
0.9258 

1.0249 

1.1286 
1.0339 

1.0154 

0.8150 
0.7560 

1.1471 

0.8328 
1.0770 

0.9753 

1.2067 
1.0192 

0.9713 

0.7523 

1.0804 

1.1271 
1.0506 

1.0308 

1.0068 
0.9339 

1.0325 

0.9425 
1.1768 

0.9904 

0.8137 
0.8065 

0.7556 

1.0583 
0.7770 

1.1684 

0.9810 
1.0720 

0.9155 

1.1051 

1.2212 

0.9313 
0.9745 

1.1960 

0.9748 
1.0211 

1.0663 

1.1594 
1.0524 

1.0532 

0.9065 
0.8864 

1.1313 

0.9344 
1.1181 

0.9736 

1.1958 
1.0780 

1.0155 

0.8892 

1.1928 

1.2035 
1.1601 

1.1352 

1.1092 
1.0562 

1.1617 

1.0704 
1.2092 

1.1134 

0.9890 
1.0044 

0.8961 

1.1537 
0.9504 

1.2743 

1.0835 
1.1336 

1.0559 

1.1648 

1.0849 

0.7709 
0.8231 

1.0584 

0.8173 
0.8668 

0.9270 

1.0161 
0.8943 

0.8967 

0.7515 
0.7122 

0.9855 

0.7767 
0.9783 

0.8140 

1.0573 
0.9378 

0.8567 

0.7284 

1.0819 

1.0942 
1.0483 

1.0233 

0.9953 
0.9390 

1.0515 

0.9577 
1.0946 

0.9995 

0.8634 
0.8853 

0.7622 

1.0407 
0.8262 

1.1706 

0.9616 
1.0147 

0.9364 

1.0494 

NA NA 

  
1.5944 

1.0150 

2.1286 
1.2000 

1.7321 

2.1617 
2.3344 

2.0075 
0.6517 

2.0583 

1.6376 

1.1742 

1.1224 

1.7040 
1.8784 

0.6676 

0.8048 
2.4923 

0.7133 

2.0498 

 
2.1760 

1.5987 

1.3599 
1.4539 

2.4245 

1.0418 
2.1110 

2.4452 
0.6183 

1.3158 

1.5144 

2.1401 

0.5614 

1.2654 
1.6790 

2.1789 

0.5181 
0.8074 

1.8735 

1.2309 

1.0e-04 * 
0.1000 

0.1000 

0.1001 
0.1000 

0.1000 

0.1001 
0.1000 

0.1000 
0.1000 

0.1000 

0.1000 

0.1000 

0.1000 

0.1001 
0.1001 

0.1000 

0.1000 
0.1000 

0.1000 

0.1001 

1.0e-04 * 
0.1001 

0.1000 

0.1002 
0.1000 

0.1000 

0.1001 
0.1002 

0.1002 
0.1000 

0.1002 

0.1000 

0.1002 

0.1002 

0.1000 
0.1000 

0.1001 

0.1000 
0.1000 

0.1002 

0.1000 

NA NA 1.0e-04 * 
0.1004 

0.1000 

0.1000 
0.1001 

0.1000 

0.1000 
0.1002 

0.1002 
0.1000 

0.1000 

0.1000 

0.1000 

0.1000 

0.1000 
0.1000 

0.1000 

0.1003 
0.1002 

0.1000 

0.1000 

 
0.0000 

0.0000 

0.0000 
0.0000 

0.0000 

0.0000 
0.0000 

0.0000 
0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 
0.0000 

0.2539 

0.0000 
0.0000 

0.0000 

0.0000 
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Table 38. Parameter recovery – MLE fit of single-stage IF model 

Parameter Initial Value IAB IA IB 

 3-choice 5-choice 3-choice 5-choice 3-choice 5-choice 3-choice 5-choice 

b 2 0.9833 
1.1066 

1.1467 

1.0216 
1.1687 

0.9579 

1.0778 
1.0134 

1.0310 

0.9993 
1.0655 

1.2125 

0.9254 
1.0656 

1.1338 

1.1104 
1.0073 

1.1580 

0.9626 
0.9836 

1.1434 
1.1094 

0.9836 

0.9657 
1.0334 

1.0733 

1.0576 
0.9924 

1.0986 

0.9722 
1.1896 

1.0797 

1.1314 
1.1390 

1.0064 

0.9602 
1.1880 

1.0751 

0.9860 
0.9971 

0.9834 
1.1066 

1.1467 

1.0206 
1.1682 

0.9572 

1.0778 
1.0134 

1.0313 

0.9986 
1.0655 

1.2125 

0.9254 
1.0656 

1.1331 

1.1104 
1.0066 

1.1580 

0.9626 
0.9837 

1.1434 
1.1090 

0.9831 

0.9657 
1.0330 

1.0730 

1.0560 
0.9922 

1.0986 

0.9720 
1.1896 

1.0795 

1.1314 
1.1375 

1.0062 

0.9602 
1.1878 

1.0751 

0.9867 
0.9971 

0.9840 
1.1065 

1.1467 

1.0206 
1.1686 

0.9570 

1.0778 
1.0133 

1.0308 

0.9986 
1.0655 

1.2125 

0.9254 
1.0655 

1.1324 

1.1104 
1.0080 

1.1580 

0.9626 
0.9836 

1.1434 
1.1091 

0.9827 

0.9657 
1.0287 

1.0736 

1.0573 
0.9908 

1.0986 

0.9722 
1.1896 

1.0795 

1.1314 
1.1369 

1.0064 

0.9602 
1.1871 

1.0751 

0.9861 
0.9971 

 0.8418 

1.1401 
1.1379 

0.9734 

1.0054 
1.0722 

1.0164 

1.1880 
1.0435 

0.9855 

0.8474 
0.8638 

1.2117 

1.2024 
0.8056 

1.0474 

1.1056 
0.8983 

1.0039 

1.1505 

1.1152 

0.8686 
1.0234 

0.9944 

0.9478 
0.7689 

1.1481 

0.9177 
1.1106 

0.9971 

1.2019 
1.0994 

1.1220 

1.2024 
1.1797 

0.8415 

0.7643 
1.2393 

0.9855 

0.7712 

10.8694 

0.0256 
27.1561 

10.3527 

0.1504 
13.4878 

265.8533 

0.0379 
268.5585 

244.0127 

266.7907 
268.3310 

268.5020 

268.3709 
7.3002 

261.6736 

263.9928 
1.2647 

0.1002 

0.1737 

0.0927 

267.0630 
267.9623 

252.0445 

268.4042 
266.9652 

0.1402 

29.5865 
266.4918 

0.2007 

267.9481 
21.9265 

268.1140 

265.8508 
0.1674 

268.3512 

6.8635 
0.0629 

0.1194 

267.8688 

3.1508 

0.2203 
0.0000 

0.8666 

1.3793 
2.5632 

0.0000 

0.1178 
2.0632 

0.0000 

0.0007 
0.0000 

0.0000 

0.0014 
4.3390 

0.0000 

4.6193 
0.8785 

0.9568 

1.5529 

1.5059 

4.4221 
4.8721 

0.0000 

268.3970 
268.1373 

2.4492 

16.0771 
0.0001 

3.3074 

0.0000 
6.4484 

0.0001 

2.1831 
3.4128 

0.0000 

5.0366 
1.6056 

2.3222 

0.0001 

NA NA 

 1.2370 
0.6623 

1.4736 

1.1127 
2.1353 

1.2572 

1.2015 
1.6003 

0.9155 
0.9610 

0.9518 

1.3714 

1.3604 

2.4595 

1.0161 
1.0244 

0.9435 

1.1376 
0.6710 

0.5584 

1.4772 
1.4177 

1.5423 

1.7481 
1.2349 

2.2703 

0.6974 
1.8595 

0.7135 
2.0581 

2.2818 

0.8956 

1.5000 

1.7197 

2.1110 
0.9799 

1.4798 

1.9254 
0.6192 

0.6429 

1.6096 
0.0146 

7.1952 

2.1372 
0.0004 

1.7228 

463.4253 
0.5662 

1.8321 
2.0688 

138.3185 

422.8069 

666.0909 

278.2250 

1.3910 
138.4273 

1.6087 

1.3763 
0.0012 

0.0003 

0.0007 
1.9020 

1.8534 

863.3434 
1.4716 

1.6266 

0.0003 
1.5769 

630.8570 
0.2259 

220.6821 

1.8362 

270.2281 

1.9541 

0.0004 
638.8824 

1.6376 

0.0012 
0.0006 

628.3058 

NA NA 0.7435 
2.1421 

2.3507e+151 

1.2808 
0.9686 

0.8282 

431.0520 
2.7578 

0.9516 
10.0152 

1.6975e+151 

5.2223e+99 

4.4543e+151 

5473178.6948 

0.6000 
1.0031e+85 

0.7205 

1.2635 
1.1806 

0.8943 

1.0862 
0.8451 

1.4849 

2.9281e+151 
0.6226 

1.0332 

0.8770 
0.5901 

9.3403e+128 
0.9156 

6.5171e+59 

1.0182 

2.6442e+17 

1.3775 

0.7834 
4.1289e+151 

0.8797 

1.2125 
0.9407 

8.2096 
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Figure 79. Model investigation - PMwG fit of single-stage CPT models. Red line indicates 

generating value. 
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Figure 80. Model investigation - PMwG fit of single-stage IF models. Red line indicates 

generating value. 
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Figure 81. Model investigation - PMwG trace plots of initial structure two-stage models. 

Horizontal dotted line indicates generating values. Vertical red lines differentiate burn-in, 

adaptation, and sampling phases. 
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Figure 82. Model investigation - PMwG trace plots of revised structure two-stage model 

T6. Horizontal dotted line indicates generating values. Vertical red lines differentiate 

burn-in, adaptation, and sampling phases. 

 

M
o

d
el

 T
6
 

    

    

M
o

d
el

 T
7
 

    

    



208 

 

M
o

d
el

 T
8
 

   

 
M

o
d

el
 T

9
 

   

 

M
o

d
el

 T
1

0
 

    

M
o

d
el

 T
1

1
 

    

M
o

d
el

 T
1

2
 

    
Figure 83. Model investigation - PMwG fit of revised structure two-stage models. Red line 

indicates generating values.  
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Table 39. Bayes Factors comparing CAG (best fit) model to other MLE fit models 

Subject CA CG IAB IA IB 

1 125.9 2.2e+91 1.9e+50 6.1e+48 6.1e+48 

2 10.0 5.2e+104 1.9e+42 5.9e+40 5.9e+40 

3 26.8 1.5e+103 2.0e+43 3.1e+42 3.1e+42 

4 4.3e+5 1.2e+51 2.6e+51 2.4e+50 6.2e+57 

5 4.1e+7 1.1e+26 1.1e+60 1.3e+60 1.1e+74 

6 3.0e+6 1.5e+37 6.7e+53 2.7e+52 1.4e+63 

7 1.1e+6 9.0e+35 2.4e+60 1.3e+59 3.5e+68 

8 5.8e+5 1.1e+25 2.0e+59 6.9e+59 1.3e+71 

9 9.5e+5 6.9e+45 1.5e+65 1.6e+64 4.3e+67 

10 1.3e+7 3.0e+33 9.6e+57 6.9e+56 2.6e+68 

11 4.2e+7 5.6e+34 5.1e+67 1.6e+66 5.9e+73 

12 0.6 1.0e+122 6.2e+38 2.0e+37 2.0e+37 

13 9.2 1.3e+111 6.3e+44 2.0e+43 2.0e+43 

14 1.0e+4 4.9e+72 1.7e+51 1.6e+51 2.0e+52 

15 138.3 1.5e+92 1.4e+48 9.4e+46 9.4e+46 

16 97.1 4.5e+90 1.8e+47 5.8e+45 5.8e+45 

17 5.8 1.1e+108 3.3e+45 1.0e+44 1.0e+44 

18 310.4 4.4e+88 4.2e+46 6.5e+46 6.5e+46 

19 1.4e+5 1.6e+56 9.5e+59 1.3e+59 5.1e+61 

20 4.7e+5 3.1e+49 6.1e+50 3.4e+49 4.9e+57 
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Figure 84. Simulated data parameter estimates – single-stage CPT model. Vertical red 

lines differentiate burn-in, adaptation, and sampling phases. 
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Figure 85. Simulated data parameter estimates – single-stage IF model. Vertical red lines 

differentiate burn-in, adaptation, and sampling phases. 
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Figure 86. Simulated data parameter estimates – two-stage CPT model. Vertical red lines 

differentiate burn-in, adaptation, and sampling phases. 
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Figure 87. Simulated data parameter estimates – two-stage IF model. Vertical red lines 

differentiate burn-in, adaptation, and sampling phases. 
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Figure 88. Campaign 3 data parameter estimates – single-stage 7-parameter CPT model. 

Vertical red lines differentiate burn-in, adaptation, and sampling phases. 
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Figure 89. Campaign 3 data parameter estimates – single-stage 5-parameter CPT model. 

Vertical red lines differentiate burn-in, adaptation, and sampling phases. 
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Figure 90. Campaign 3 data parameter estimates – single-stage 7-parameter IF model. 

Vertical red lines differentiate burn-in, adaptation, and sampling phases. 
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Figure 91. Campaign 3 data parameter estimates – single-stage 5-parameter IF model. 

Vertical red lines differentiate burn-in, adaptation, and sampling phases. 
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Figure 92. Parameter vs. outcome using single-stage IF model estimated parameters for 

campaign 3 data 
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Figure 93. Campaign 4 data parameter estimates – single-stage 7-parameter CPT model. 

Vertical red lines differentiate burn-in, adaptation, and sampling phases. 
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Figure 94. Campaign 4 data parameter estimates – single-stage 5-parameter CPT model. 

Vertical red lines differentiate burn-in, adaptation, and sampling phases. 
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Figure 95. Campaign 4 data parameter estimates – single-stage 5-parameter IF model. 

Vertical red lines differentiate burn-in, adaptation, and sampling phases. 

 

 

Single-stage CPT model Single-stage IF model 

      
Figure 96. Choice distributions for subjects 75, 132, and 187 from campaign 4 showing 

the difference between the original (black) and posterior (grey) data for single-stage 

models. 
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Figure 97. Response time distributions for subjects 75, 132, and 187 from campaign 4 

showing the difference between the original (black) and posterior (grey) data for single-

stage models. 
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Figure 98. Parameter vs. outcome using single-stage IF model estimated parameters for 

campaign 4 data 
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Figure 99. Campaign 3 data parameter estimates – two-stage CPT model. Vertical red 

lines differentiate burn-in, adaptation, and sampling phases. 
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Figure 100. Campaign 3 data parameter estimates – two-stage IF model. Vertical red 

lines differentiate burn-in, adaptation, and sampling phases. 
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Figure 101. Campaign 4 data parameter estimates – two-stage CPT model. Vertical red 

lines differentiate burn-in, adaptation, and sampling phases. 
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Figure 102. Campaign 4 data parameter estimates – two-stage IF model. Vertical red lines 

differentiate burn-in, adaptation, and sampling phases. 
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Two-stage CPT model Two-stage IF model 

      
Figure 103. Choice distributions for subjects 75, 132, and 187 from campaign 4 showing 

the difference between the original (black) and posterior (grey) data for two-stage models. 
 

 

Two-stage CPT model Two-stage IF model 

      
Figure 104. Response time distributions for subjects 75, 132, and 187 from campaign 4 

showing the difference between the original (black) and posterior (grey) data for two-stage 

models. 
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