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ABSTRACT

Spangenberg, Jacob R. M.S.M.E., Department of Mechanical and Materials Engineering, Wright
State University, 2021. Development of a Robust and Tunable Aircraft Guidance Algorithm.

A set of guidance control laws is developed for application to a reduced order dynamic

aircraft model. A feedback control formulation utilizing a linear quadratic regulator (LQR)

is developed, together with methods for easing the design burden associated with gain

tuning. Metrics are developed to assess the stability margin of the controller over the full

flight envelope of a notional unmanned aerial vehicle (UAV) model. A feedforward control

path is then added to the architecture. The performance of the guidance control laws is

assessed through time domain step response metrics as well as through execution of a

design mission. The thesis closes with a discussion of possible improvements regarding

gain optimality and run-time performance of the model.
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1. Introduction

The introductory section of the 1965 report Apollo Guidance and Navigation [1] opens

with the following guidance definition:

Guidance is the process of collecting and applying information for the purpose
of generating maneuver commands to control vehicle movements. In effect,
this process represents closure of the essential control feedback branch that has
to be associated with structure and propulsion in order for any vehicle system
to operate successfully.

Although Draper’s report [1] was focused on guidance and navigation of the Apollo space-

craft, his definition is also perfectly suited for this thesis, which concerns development of

guidance control algorithms for fixed-wing aircraft. Most often associated with problems

governing the gross motion of the aircraft, guidance control is fundamentally concerned

with tracking problems. Outer-loop autopilot functions are usually operating at the guid-

ance and navigation level, with inner loops then responsible for the aircraft attitude control.

The most basic such guidance functions are probably those associated with maintaining

cruise conditions for speed, altitude and heading. Such controllers are regulators princi-

pally written to provide disturbance rejection, but can be considered tracking algorithms

designed to track constant reference inputs. More generally, guidance controllers are de-

signed to provide vehicle control commands to track a dynamically changing set of input

reference signals. Examples include trackers that intercept other aircraft, maintain rela-

tive position in formation flight, monitor and track surface vehicles and ships, or provide

services for trajectory following, path following and waypoint following.
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In this thesis, the focus is on development of guidance algorithms that provide track-

ing control for the aircraft. The input reference signals are assumed to be in the form of

prescribed trajectory data for aircraft speed, altitude and heading. The problems associated

with generating such inputs are usually termed path planning problems, even though refer-

ence trajectories are often the sought-after inputs.1 Although path planning is an extremely

interesting and important discipline – especially with the emergence of machine learning

and artificial intelligence capabilities – it is not a focus area for this thesis. We can think of

the trajectory data feeding our guidance algorithms as telling us where we want the aircraft

to go; the guidance algorithms then determine how the aircraft is to achieve the desired

state.

In the following section, the basic loop structure for the guidance control laws is pre-

sented, with an emphasis on distinguishing the feedforward and feedback portions of the

control signal. The chapter concludes with an overview of the objectives, structure and

scope of this thesis.

1We adopt here the usual technical distinction between paths and trajectories: paths are (three dimen-
sional) curves connecting two points in space; trajectories are paths that associate with each of its interior
points a time at which the aircraft is to be at that point. Velocity specification is therefore implicit with
trajectory tracking.
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1.1 Guidance Control

Figure 1.1: Elementary feedback control architecture [2]

Figure 1.1, which has been reproduced from [2], is a top-level representation of a

classical closed-loop negative feedback system. The diagram’s components, consisting

of the input filter, controller, plant model and sensor package, are the four key elements

that are to be modeled, characterized or developed for closed-loop control of any dynamic

system. With respect to application to aircraft control, the process disturbance could, for

example, represent winds aloft or atmospheric gusts and turbulence. Sensor noise will be

present in the measurements of critical signals such as the airspeed, angle of attack, sideslip

angle, as well as attitude state data along all three body axes. For real-world applications,

the controller designs must exhibit sufficient robustness and stability margins to perform in

the presence of process disturbances and sensor noise.

The negative feedback system shown in Figure 1.1 is the foundational architecture for

closed-loop control. By feeding back the process output and comparing it to the desired

reference state, an error signal is created. The controller is designed to drive this error signal

to zero, which tends to move the system output towards the desired reference state. One

drawback to the negative feedback architecture is that it is a reactive controller, meaning

that no anticipatory control action is present unless such dynamics are built into the input

3



filter. The controller only acts to drive the error signal to zero and therefore must “wait”

for non-zero errors to occur before control commands are issued to the plant actuators.2

Many systems achieve better response dynamics when the negative feedback control

action is complemented by a feedfoward control component. For example, the top-level

aircraft control architecture shown in Figure 1.2 [3] exhibits the blending of a feedforward

control signal with each of the primary feedback loops. While the feedback controllers

operate on error signals, the feedforward controllers operate directly on the incoming ref-

erence commands. The feedforward signal therefore provides an open-loop control, which,

when properly designed, can carry a significant majority of the overall control action to the

system. In such designs, the feedback controller may be contributing relatively minor cor-

rections; nevertheless, they are critically important to maintaining high precision tracking

fidelity.

Figure 1.2: Typical aircraft flight control system top-level diagram [3]

In addition to featuring the feedforward control signals typical of most aircraft flight
2Derivative control, such as one encounters with classical PID controllers, can improve the system’s

responsiveness to sudden changes in the reference inputs. However, too much derivative control action can
be de-stabilizing, especially when operating in the presence of signal noise.
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control systems, Figure 1.2 also illustrates the nested loop topology employed for control

of systems with time scale separation. The inner loop, indicated here as the loop controlling

the aircraft’s attitude dynamics, often executes at a higher frame rate – typically an order of

magnitude faster than the outer loop. This is consistent with the higher frequency dynamics

of the aircraft’s rotational response compared to its linear (translational) response. The

inner feedback circuit is conventionally referred to as the aircraft’s control loop and the

outer feedback circuit is the guidance loop.

The reference input signal r in Figure 1.2, is aircraft state data in the form of the

aircraft’s desired position and linear velocity. For a conventional six degree-of-freedom

aircraft system, the outputs of the guidance loop consist of commanded attitude angles and

angular rates. The aircraft control laws are then designed to produce a set of commands

for the engine(s) and control surfaces to achieve the desired attitude state. Development

of the inner-loop control laws is a non-trivial task. Traditional linear control approaches

require knowledge of the aircraft’s stability and control derivatives, which characterize it’s

dynamic response to control inputs. The derivatives are dependent on the aerodynamic

and inertial properties of the aircraft, which in turn are dependent on the flight condition

and gross weight. Due to the (nonlinear) dependence of the stability and control deriva-

tives on the operating condition, it is usually the case that gain scheduling is required to

achieve the desired flight dynamics throughout the aircraft flight envelope. Gain schedul-

ing refers to the process of tuning the control gains at a collection of operating points in

the flight envelope and then interpolating the gains as a function of, say, gross weight and

dynamic pressure at all off-design flight conditions. The design point gain tuning process

can itself be a complex, labor-intensive task. Guaranteeing robust and stable closed-loop

performance over the full flight envelope is an additional challenge.

There are many applications where the fidelity of a full 6DOF aircraft model is not

required. Indeed there are many applications where 6DOF aircraft modeling is not desired.

Putting aside the heavy burden associated with assembling and verifying the plant and con-

5



troller models, a 6DOF model executes much more slowly than a point mass model. This

is not just due to the higher number of integrators, but to the higher frequency dynamics as-

sociated with its moment equations of motion. Resolving the (closed-loop) aircraft attitude

dynamics imposes an upper bound on the integrator time-step – generally it is the short

period pitch dynamics that can become numerically unstable if the integration time-step is

too large. Point-mass aircraft models, by contrast, are far easier to create in terms of plant

modeling and can execute far more rapidly for constructive simulation studies.

Constructive simulation generally refers to modeling and simulation for faster than

real-time execution. Such simulation efforts include a very large number of applications.

In the context of aircraft simulation, three important examples include:

Campaign modeling: Focuses on quantifying the effectiveness of an Air Force in accom-

plishing a strategic objective. Campaign models often include a large number of

interacting, dynamic components, such as an ownship, other friendly aircraft, enemy

aircraft, communication and support systems, weapons systems, etc. Since the num-

ber of model elements is high, and the number of dynamic simulation scenarios can

reach well into the thousands, it is important to balance the run-time performance of

the models against the required fidelity. Often it is the case that an aircraft model

whose performance is limited by purely kinematic constraints is not adequate, but

that a full 6DOF fidelity is not needed.

Optimization and design studies: Multi-disciplinary aircraft design optimization often

requires assembly of the gradient of an objective function with respect to its con-

stituent design variables. Assembly of the gradient may require time domain simu-

lation to evaluate the functional. Again, the trade-off between run-time performance

and model fidelity is a key element, as the optimization process will not scale well if

the cycle time per iteration gets too large.

Aircraft subsystem studies: Time domain modeling of aircraft subsystems, such as for

6



electrical power and thermal management, is strongly dependent on accurately mod-

eling the engine states as a function of flight condition. A point mass model can

reasonably approximate the required net thrust (or power) without the overhead as-

sociated with 6DOF aircraft modeling.

Development of an air vehicle model that enables constructive simulation activities

such as these is the focus of this thesis. In 2017, Shimmin [4] formulated equations of

motion for a point mass air vehicle model, together with an outer-loop guidance control

based on dynamic inversion (feedback linearization). In 2019, Brendlinger [5] expanded

the applicability of the model by developing additional guidance modes; they included a

trajectory tracking mode, a waypoint following mode and a mode that allowed for arbitrary

step input commands in speed, altitude and heading. For the trajectory tracking mode, a PI

feedback control was implemented to assure tight tracking performance. While straightfor-

ward in design and implementation, introduction of the feedback controller raised the issue

of gain tuning, as well as potential gain scheduling as discussed earlier.

The ideal guidance controller for the reduced order (point mass) air vehicle model is

one that requires no user tuning for suitable closed-loop performance over the full flight

envelope, but also one that allows user tuning if specific closed-loop performance metrics

are to be met. In this context, the possibility of employing a linear quadratic regulator

(LQR) formulation for the closed-loop feedback suggests itself. LQR control provides a

number of very desirable features for this application, including:

• The gain matrix resulting from an LQR formulation is static; no additional control

states are created, thus the order of the closed-loop system is not increased.

• Loop closures for multi-input multi-output (MIMO) systems such as this one are

managed simultaneously.

• The theoretical foundation for LQR control is very well established and solution

algorithms are widely available.
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• LQR control guarantees a 60◦ phase margin; this is a very attractive feature from a

stability and robustness perspective.

The typical downsides to implementing LQR control are twofold. First, LQR requires

full state feedback. In many real-world applications, full state knowledge is not possi-

ble, generally leading to state estimation through Kalman filtering. When dynamic state

estimators are implemented, one loses the advantage of LQR control not increasing the

system order. Second, the designer of an LQR control implementation must specify matrix

elements in its quadratic cost functional. Selecting these elements is tantamount to gain

tuning traditional PID controllers. As the order of the system increases, the number of

design parameters in the cost functional increases geometrically. Thus, while preferable to

gain tuning nested sets of PID controllers, LQR design can still be a complex and iterative

process.

As the primary application of this model is to support simulation activities, the concern

regarding full state knowledge becomes moot. Within the simulation environment we have

full knowledge of all states, including both the plant states as well as any compensator states

built in the guidance controller. Thus, the primary challenge is to develop a methodology

for selecting matrix elements in the LQR cost functional. This is essentially the LQR

gain tuning problem. Ideally, an automated tuning process could be developed. If such an

algorithm were implemented, the user could simply input the plant data needed to define

the performance characteristics of the aircraft being modeled. The tuning algorithm would

then automatically derive the LQR gain matrix and implement it in the guidance feedback

controller. Short of realizing a fully automatic tuning methodology, the goal would be to

1) reduce the number elements needed to generate the LQR gain matrix, and 2) to provide

the designer with physical insight into the meaning and effect of each design parameter.
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1.2 Goals and Objectives

The top-level goal is to provide a point mass air vehicle model that is well suited for the

types of constructive simulation studies described earlier. Developing and implementing

a robust and tunable guidance controller is the primary technical need in realizing this

objective, and is therefore the focus of this thesis.

By comparison to Figure 1.2, the simplified architecture depicted below more accu-

rately represents the model framework for the system of interest. External disturbances

and sensor noise are not a priority and have therefore been dropped from the diagram. The

guidance controller will consist of both feedforward (open loop) and feedback components,

with the feedback portion consisting of an LQR tracking formulation.

Figure 1.3: Top-level guidance control architecture

The framework for developing the formulation and presenting the results of this thesis

is as follows:

Chapter 2 provides a brief review of the fundamentals of LQR tracking control and

presents an example application in the form of a simplified aircraft roll dynamics problem.

A traditional PID formulation is also presented. This example case is intended to demon-

strate the superior performance of the LQR controller at off-design points. A methodology

for measuring gain and phase margins for MIMO systems is also demonstrated; it is later
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used to quantify the closed-loop system performance of the point mass air vehicle model.

Chapter 3 provides the equations of motion for the point mass aircraft model, together

with the approximate plant equations from which expressions for the feedforward guid-

ance terms are derived. A sample air vehicle model is also introduced as a case study for

presenting simulation results.

Chapter 4 then provides the results of the thesis. The full LQR state space model is

developed; this includes linearization of the vehicle equations of motion as well as inclu-

sion of compensator states. A methodology for dramatically reducing the number of LQR

design parameters appearing in the cost functional is then presented. Controller tuning on

the reduced set of design gains is demonstrated, and the system stability over the full flight

envelope is investigated. A methodology for including the feedforward control action is

then developed and demonstrated. The combined feedforward/feedback control architec-

ture is suggested as a means by which to reduce the control effort required in the feedback

loop. This is an important consideration in determining whether gain scheduling is required

to achieve acceptable closed-loop performance throughout the flight envelope. Finally, the

analytic expressions developed for the state space model enable automatic re-evaluation of

the LQR gain matrix without the need to manually adjust the design parameters. While

not a fully automated process, the design burden is significantly reduced as compared to

traditional guidance control algorithms.

Chapter 5 concludes the thesis with a summary of important results and ideas for

future improvements.
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2. Linear Quadratic Regulator

Optimal control theory includes two separate but complementary methodologies. The first

is a dynamic programming approach; in practice this often leads to formulation of the

Hamilton-Jacobi-Bellman equation, for which a general solution does not exist. The sec-

ond is a direct functional minimization approach through application of the calculus of

variations. Classic textbooks on the subject such as Athans and Falb [6] and Bryson and

Ho [7] develop and explain both approaches, along with example problems illustrating

their relative advantages. There is an important class of problems, however, where either

approach is adequate; namely, for linear systems subject to optimization of a quadratic cost

functional. These problems are classified as linear quadratic regulator (LQR) problems.

Kirk [8] provides solutions to the LQR problem using both the dynamic programming ap-

proach and the variational calculus approach and notes that “...in linear regulator problems

all routes lead to the same destination.” For LQR problems, that destination is the algebraic

Riccati equation.

As there are many exhaustive treatments of the LQR optimal control problem, includ-

ing both the development and solution of the Riccati equation, this chapter does not reca-

pitulate those results. Instead, the basic framework of the LQR formulation is summarized

and a review of existing work in the area of LQR for guidance control is provided. The

chapter then introduces an algorithm for quantifying the controller robustness for MIMO

systems. The LQR design methodology, including problem formulation, gain tuning and

closed-loop performance assessment is then presented in the context of an example problem
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– roll control for a fixed wing aircraft. The example provides an opportunity to compare

and contrast the LQR and PID design methodologies, as well as illustrating the variation

in plant dynamics that one should expect for air vehicle models operating at different flight

points.

2.1 LQR Control Policy

The linear quadratic regulator control methodology requires that the plant dynamics and its

output variables can be expressed as a linear, time invariant system of the form

ẋ = Ax+Bu (2.1)

y = Cx+Du (2.2)

These equations are known, respectively, as the state and output equations. State space

form satisfies the LTI requirement because the equations consist of the state x and control

u vectors multiplied by constants. LQR uses the state space model as a constraint on its

goal of minimizing its cost functional J , which is written

J =

∫ ∞
0

(xTQx+ uTRu+ xTNu)dt (2.3)

where Q ≥ 0 and R > 0 are symmetric matrices. The symmetric matrix Q must be posi-

tive semi-definite, meaning the number xTQx must be non-negative for every real column

vector x. The symmetric matrix R must be positive-definite, meaning the number uTRu

must be positive for every real column vector u. The LQR control problem also requires

that the state space model is controllable and the controlled outputs are observable. The
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system is controllable if the controllability matrix

CM =
[
B AB A2B . . . An−1B

]
(2.4)

has full row rank, where n is the number of states modeled. The observability condition is

satisfied if the observability matrix

OM =



C

CA

CA2

...

CAn−1


(2.5)

has full row rank. Again, n is the number of states included in the state space model. With

these conditions satisfied, the LQR controller will be able to control the desired states while

minimizing the cost function J . The cost function contains three terms to penalize different

parts of the system. The first term xTQx penalizes a non-zero state vector. The second

term penalizes a non-zero control vector. The last term penalizes the interaction between

the state and control vectors. This means the control system design must determine the

balance between penalizing states and controls using the Q, N , and R weighting matrices.

Once a selection has been made, the algebraic Riccati equation is used to determine the

optimal control policy K that is used to minimize the cost function.

Solution of the algebraic Riccati equation satisfies the necessary and sufficient con-

ditions for minimization of the cost functional, equation 2.3. The Riccati equation can be

written in the following form

ATP + PA− (PB +N)R−1
(
BTP +NT

)
+Q = 0 (2.6)
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where one notes that in addition to the state and control matrices A and B as well as the

weighting matrices Q, N , and R, the Riccati equation includes an unknown matrix P . If

a P can be computed such that it solves the Riccati equation, then we have minimized the

quadratic cost functional via the optimal control policy:

u = −R−1
(
BTP +NT

)
x = −Kx (2.7)

Carrying out the solution of the Riccati equation and computing the LQR optimal gain

matrix K is accomplished by utilizing MATLAB’s numerical LQR algorithm [9].

Looking at dimensionality, the gain matrix will have columns equal to the number of

states and rows equal to the number of controls. The optimal control law u = −Kx is used

to close the feedback loop on the provided LTI state space model.

2.2 Frequency Domain Robustness

The control system designer is often interested in the gain and phase margin, also known

as stability margins, of a closed-loop system to understand its stability properties. One

of the principal results of linear systems theory is that the output of a SISO LTI system

is a combination of gain and phase imparted on the input signal. Gain is the change in

amplitude of the signal and phase is the change in phase shift of the signal. The gain

and phase of the system’s outputs generally change with the frequency of the input signal.

Bode diagrams are a standard way to present the gain and phase of a system over the entire

frequency range of interest.

The gain and phase margins represent the amount of gain and phase available before

the system reaches the instability point. To illustrate the point, consider the unity gain

negative feedback system depicted in Figure 2.1.

14



Figure 2.1: Closed-loop negative feedback architecture

The closed-loop transfer function can be written

Y (s)

R(s)
=

U(s)G(s)

U(s) + U(s)G(s)
=

G(s)

1 +G(s)
(2.8)

A characteristic of unstable systems is infinite gain, which is produced in the closed-loop

system when the denominator of the transfer function goes to zero. For the simple negative

feedback system shown in Figure 2.1, the open-loop transfer function must be G(s) = −1

to create an unstable system. The gain of this open-loop system is one (0 decibels) since

the input is not scaled. The phase of the open-loop system is -180 degrees since the sign of

the input signal is flipped. Therefore, the point 0 dB gain and -180 degrees phase causes

the entire system to be unstable, even if the point exists at only one frequency.

Figure 2.2 [9] is an example Bode diagram provided by the Matlab Bode documenta-

tion that also shows measurement of gain and phase margin.
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Figure 2.2: Example Bode diagram noting gain and phase margin [9]

The crossover frequencies ωcp and ωcg denote the frequencies at which the open-loop sys-

tem reaches 0 dB gain and -180 degrees phase, respectively. This means the gain margin

is the margin from 0 dB when the system phase is -180 degrees. The phase margin is the

margin from -180 degrees when the system gain is 0 dB. Systems with lower stability mar-

gins are considered less stable because small changes in the open-loop system can cause

instability. From a modeling and controls perspective, higher phase margin means greater

robustness in the face of inevitable discrepancies between the plant model and a real-world

system.

2.2.1 MIMO Systems

The stability margins for SISO systems are easily obtained by analyzing Bode diagrams.

But, the process gets more complicated for multi-input multi-output (MIMO) systems be-

cause the single transfer function becomes a matrix of transfer functions. This is one of the

many reasons that a state space formulation is preferred for MIMO systems: the state ma-
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trix eigendata can provide insight into the stability of the system regardless of the system

dimensions.

The state space model of a closed-loop negative feedback can be converted to a trans-

fer function using the Laplace Transform [10]. The following equation is the resulting loop

transfer matrix, which is the loop transfer function expressed in matrix form for a MIMO

system.

L(s) = K(sI − A)−1B (2.9)

The term (sI − A)−1 is the state transition matrix. This term is used to describe the state

vector once the Laplace Transform is applied to the model, ẋ = Ax + Bu. With this

term defined, the loop transfer matrix looks very similar to the state feedback control law,

u = Kx.

The loop transfer matrix is an important indicator of the relationship between the

closed-loop system and the open-loop system. Using matrix determinant identities, La-

trevsky shows the following relationship between the open-loop and closed-loop character-

istic polynomials [11].

det [I + L(s)] =
φcl
φol

(2.10)

The quantity within the brackets is known as the return difference matrix. This is also

used to relate the plant input to the controller output to show the effects of the closed-loop

controller on the input signal. Previous sections showed that instability is directly associ-

ated with an undefined denominator of the closed-loop transfer function for a SISO system.

Latrevsky uses the return difference matrix and the stability robustness matrix (I + L−1)

to evaluate the stability of MIMO systems through characterization of modeling errors as

additive and multiplicative uncertainties. The system is said to be unstable when these

matrices approach singularity. Singular value decomposition is used to determine the near

singularity of the matrices of interest. Ridgley and Banda have also investigated MIMO

stability robustness and have provided an instructive guide to singular value decomposition

17



[12]. They state that a square, complex matrix can be put in the form

M = UΣV H (2.11)

where U and V are unitary matrices and V H refers to the complex conjugate transpose.

A unitary matrix is a square complex matrix where its inverse is equal to its conjugate

transpose. The conjugate transpose is comprised of the transpose of a matrix, followed

by the complex conjugate (flipping the sign of the imaginary component). The matrix Σ

is a diagonal matrix that arranges the singular values of M in descending order along the

diagonal. The minimum singular value indicates the near singularity of the matrix. A value

closer to zero means M is closer to being a singular matrix. Singular value decomposition

is very useful for the stability robustness problem. Latrevsky uses this operation to find two

important indicators of the stability margins of MIMO systems [11].

ασ = min
ω ¯
σ (I + L) (2.12)

βσ = min
ω ¯
σ
(
I + L−1

)
(2.13)

The two above equations represent the minimum singular value of the return difference and

stability robustness matrices across the frequency spectrum. These values are then used to

compute gain margin and phase margin for each characterization of modeling uncertainty.

GMI+L =

[
1

1 + ασ
,

1

1− ασ

]
(2.14)

GMI+L−1 = [1− βσ, 1 + βσ] (2.15)

PMI+L = ±2 sin−1
ασ
2

(2.16)

PMI+L−1 = ±2 sin−1
βσ
2

(2.17)
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The gain margin extracted for the SISO system from the Bode plot represents the amount

that the system gain may be increased without destabilizing the system. The MIMO gain

margin that is output from this method contains two values: upper and lower gain margin.

These values represent the limit on system gain without destabilizing the system, where the

negative number represents the limit on system gain reduction.

The independent gain and phase margin for MIMO systems is represented by the union

of the two modeling uncertainty characterizations.

GM = GMI+L ∪GMI+L−1 , PM = PMI+L ∪ PMI+L−1 (2.18)

The independent gain margin for MIMO systems can be understood as the amount of gain

that each feedback loop can independently vary without causing the system to become

unstable, while the phase is held constant. Independent phase margins are the amount

of phase that each feedback loop can vary without destabilizing the system, holding gain

constant. The best achievable gain and phase margins occur when ασ = βσ = 1, stating that

the matrices of interest are strictly non-singular. For this scenario, the highest achievable

gain and phase margin are +∞ and ±60 degrees, respectively. This method is widely used

in the multivariable control field to capture stability margins [12], [13]. It also utilized

throughout this thesis to make claims about the stability robustness of LQR closed-loop

systems.

2.3 Time Domain Performance Metrics

The performance of a closed-loop system responsible for tracking a reference command is

measured by examining the response of the system to a non-zero error signal. A natural

example of this performance characterization is to measure the system response to a step

input. Common design goals are to create a controller that exhibits sufficient rise time,
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reduces unnecessary overshoot, and eliminates steady-state error. These metrics are time

domain step response performance metrics used to design closed-loop systems. There ex-

ists a function in Matlab, stepinfo, that extracts time domain step response metrics from

time history data of the commanded and actual values. The data extracted by Matlab is

shown graphically in Figure 2.3 [9].

Figure 2.3: Time domain step response metrics from Matlab [9]

Rise time, peak time, settling time, and overshoot percentage give the user sufficient

data to analyze the system response. Rise time is the time required for the response to

move from 10% to 90% of the steady-state value. Peak time is the time associated with

the maximum value of the response. Settling time is the time for e = |y − yss| to fall be-

low 2% of the steady-state value. Overshoot percentage is the percent difference that the

response surpasses the steady-state value. The two settling extrema represent the bounds

within which the system settles from the peak value to the steady-state value. The time do-

main performance metrics provided by Matlab’s stepinfo function give the control system

designer different ways to quantify the performance of the system.
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2.4 Roll Dynamics: A Single DOF Model

Aircraft are often represented by a six degree of freedom (6DOF) model comprised of three

translational and three rotational degrees of freedom. Attitude control is governed by aero-

dynamic moments, which are resolved about the aircraft body axis system. A simplified

example of this model can be used to demonstrate the process required to design an LQR

closed-loop negative feedback control law. For this example, pure rolling motion will be

examined which has only a single degree of freedom. Kinematic equations from a 6DOF

model express the aircraft roll rate as a function of Euler rates as

p = φ̇− ψ̇ sin γ (2.19)

The second term in the equation represents effects from a climbing turn, which is not

possible in the simplified roll model. Thus, for a model of pure rolling motion, the aircraft

roll rate is

p = φ̇ (2.20)

This equation can be integrated with respect to time to determine the aircraft bank angle.

With the kinematics of the model established, the dynamics are now modeled, as shown in

Figure 2.4 [11]. Ailerons are typically deflected in coordination with the rudder to change

the aircraft heading. For a pure roll, the ailerons are deflected in a differential manner to

affect the aircraft lift distribution and induce a non-zero roll moment L.
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Figure 2.4: Roll dynamics diagram [11]

A summation of roll moments is used to create an equation of motion for the problem

shown in Figure 2.4. The equation of motion for pure rolling motion is

Ixxṗ = Lpp+ Lδaδa (2.21)

where Ixx is the resistance to rotation about the x axis due to aircraft roll inertia, Lp is the

dimensional roll moment derivative with respect to roll rate, and Lδa is the dimensional

roll moment derivative with respect to differential aileron deflection. Although Lp has the

potential to be positive on a stalled wing, it is always assumed negative in this model,

meaning it is the roll rate damping term. An important indicator of the rolling response is

the time constant of the system given by

τr = −Ixx
Lp

(2.22)

As Lp is always taken to be a negative number, taur is a positive time constant measured

in seconds. The time constant indicates the speed at which the system will settle to its

steady-state roll rate after being disturbed. This can be thought of as the amount of damp-
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ing present in the system. A small time constant results from a heavily damped system,

conversely, a large value indicates a lightly damped system.

Data obtained from Nelson for the roll dynamic problem is displayed in Table 2.1 for a

collection of aircraft at multiple flight conditions [14]. The collection consists of a general

aviation aircraft (NAVION), two fighters (F104-A and A4-D), one business jet (Jetstar),

and two transport jets (Convair 880 and Boeing 747).

W Ixx S b Altitude Mach CLp CLδa
τr

(lb) (slug-ft2) (ft2) (ft) (ft) (rad)−1 (rad)−1 (sec)
NAVION 2,750 1,048 184 33.4 0 0.158 -0.410 -0.134 0.119
F104-A 16,300 3,549 196 21.9 0 0.257 -0.285 0.039 0.774

16,300 3,549 196 21.9 55,000 1.80 -0.270 0.017 1.123
A4-D 17,578 8,090 260 27.5 0 0.40 -0.260 0.08 0.597

17,578 8,090 260 27.5 35,000 0.80 -0.240 0.072 1.196
Jetstar 38,200 118,773 542.5 53.75 0 0.20 -0.370 0.054 1.544

38,200 118,773 542.5 53.75 40,000 0.80 -0.420 0.06 1.593
Convair 880 155,000 1,510,000 2,000 120.0 0 0.25 -0.381 -0.038 0.830

155,000 1,510,000 2,000 120.0 35,000 0.80 -0.312 -0.050 1.172
Boeing 747 636,600 18,200,000 5,500 195.7 0 0.25 -0.450 0.0461 1.158

636,600 18,200,000 5,500 195.7 40,000 0.90 -0.300 0.014 2.260

Table 2.1: Important roll dynamics parameters for a collection of aircraft flight conditions

The data presented shows the change in non-dimensional derivatives and roll time constant

as a function of flight condition. Mass properties of the aircraft are held constant, so the

changes in time constant are affected by airspeed and the non-zero density gradient. Roll

time constant, shown in the rightmost column, nearly doubles for some of the aircraft at the

cruise condition. The change would be even greater if the mass were variable due to fuel

burn. This demonstrates the need for a controller that provides good performance at a wide

variety of flight conditions.

The non-dimensional data from the table must be converted to dimensional form to be

used in the roll dynamics equation of motion. The dimensional roll moment with respect

to roll rate is

Lp =
q̄Sb2CLp

2V
(2.23)

where q̄ refers to the dynamic pressure, b is the span of the wings, and S is the wing
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reference area. Likewise, the dimensional roll moment with respect to differential aileron

deflection is

Lδa = CLδa q̄Sb (2.24)

The aircraft selected for analysis is the A4-D fighter. It exhibits large changes in roll time

constant between flight conditions and has a much smaller moment of inertia meaning that

it will require smaller controller gains to track a reference signal. The top and side views

of the A-4D are shown in Figure 2.5.

Figure 2.5: Top and side view of A-4D fighter [14]

The A4-D fighter is a single engine, subsonic fighter jet with a similar weight to the

General Dynamics F-16. The pure rolling motion model uses aircraft data for the A4-D

and the equation of motion presented previously. Typical trajectory data does not include

roll rate as an option for the closed-loop controller. Therefore, a single equation of motion

describing roll rate is not sufficient. Equation 2.20 can be included in the model to kine-

matically relate aircraft bank angle to roll rate, a parameter which is sometimes included in

trajectory data to direct the shape of a turn. This set of equations can be put into state space

form,

ẋ = Ax+Bu (2.25)

using linearization about an equilibrium point. Luckily, the equations of motion for the

single degree of freedom model are both linear first order ODEs, making the conversion

to state space form trivial. The equilibrium point is also zero roll rate, so the state space
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model includes the total states, not a perturbation from the equilibrium. The state space

form of the roll dynamics problem is

φ̇ṗ
 =

0 1

0 Lp


φp
+

 0

LδA

{δA} (2.26)

As discussed previously, trajectory data sometimes includes bank angle to direct the aircraft

to fly a turn in a specific way. It makes sense to design the model to track a reference com-

mand in bank angle using a closed-loop controller. The following sections will demonstrate

traditional PID control design and LQR control design.

2.4.1 PID Design

PID control is a common choice for a closed-loop negative feedback controller. Propor-

tional, integral, and derivative terms are easily understood by engineers and do not require

expertise in control theory. The classical PID architecture in parallel form is

Figure 2.6: PID control architecture

All three gains work on the tracking error signal, which is bank angle error for this

model. The proportional term KP typically makes the controller respond faster to a non-

zero error signal, but will not eliminate steady-state error for a type zero system. The
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integral term KI eliminates the steady-state error, but can make the system oscillatory, or

even unstable if set too high. The derivative termKD serves to reduce overshoot. A general

understanding of the closed-loop response as the PID gains are increased can be obtained

from the following table.

Rise Time Overshoot Settling Time Steady-State Error

KP Decrease Increase Small Change Decrease

KI Decrease Increase Increase Decrease

KD Small Change Decrease Decrease No Change

Table 2.2: Change in time domain step response metrics for increased PID gains

The rules presented in Table 2.2 [15] are not true for every system, but they serve as

a general guide to aid the control system designer. PID controllers are typically designed

with time domain step response metrics in mind. A set of gains is selected as the baseline,

and then a trial-and-error approach is used to capture the desired step response.

2.4.2 LQR Design

LQR controllers in their most basic form are used to regulate all the state variables in the

model to zero. The design goal for this roll dynamics model is to track a reference com-

mand in bank angle. The bank angle state should be driven to the reference value instead

of zero. From knowledge of PID controllers, it is known that integrators are required in the

controller to eliminate steady state error. The number of integrators required in the con-

troller is a function of the type of signal to be tracked. Figure 2.7 shows an LQR controller

that requires three integrators to eliminate steady-state tracking error from the system.
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Figure 2.7: LQR control architecture

The block diagram shows the integral control component that exists to eliminate

steady-state tracking error. It also shows a state feedback component that is derived from

the basic form of the LQR controller. The state feedback component works to drive the

states to the equilibrium point (zero in this model). This distributed effort works to change

the state of interest to track the reference command while regulating the other states to

zero. Applying this to the roll dynamics model results in bank angle tracking a reference

command while roll rate is driven to zero.

For type zero systems, the number of integrators required to track the reference signal

with zero steady-state error is directly tied to the nature of the reference signal. A constant

command such as a step command requires one integrator. A ramp input requires two

integrators. The system shown in Figure 2.7 must have a signal with a non-zero second

derivative since three integrators are required. The reference signal that drives the roll

dynamics model is designed to track only step command for simplicity. Therefore, the

LQR controller only requires one integrator and one error equation.

The error equation that must be added to the state space model to form a signal to be

integrated to drive the closed-loop LQR controller is

ε̇φ = φ− rφ (2.27)
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where εφ is the integrator state used by the LQR gain matrix. A closed-loop state space

model is of the form

ẋ = Ax+Bu+Gr (2.28)

to include the reference signal in the model. Including the new error equation in the previ-

ously derived state space model gives


ε̇φ

φ̇

ṗ

 =


0 1 0

0 0 1

0 0 Lp



εφ

φ

p

+


0

0

LδA


{
δA

}
+


−1

0

0


{
rφ

}
(2.29)

Matlab’s LQR function uses the A and B state space matrices to solve the continuous time

algebraic Riccati equation, with a set of user selected weighting matricesQ, N , andR. The

selection of these matrices is made simple for this roll dynamics model. TheN matrix is set

to zero and R is set to one. The Q matrix, representing state weighting, is only non-zero in

the first element. This element is used to tune the weight on the bank angle error integrator

state to meet the design goals of the closed-loop system. The output gain matrix of Matlab’s

LQR function K is a [1x3] matrix. The first element is used to weight the integral action of

the tracking loop. The last two elements are the state feedback component used to keep the

closed-loop system stable. The step response performance of the two closed-loop systems

is discussed in the following section.

2.4.3 Step Response Performance

The controllers developed in the two preceding sections are tuned and evaluated using step

inputs in the reference command. Design goals for this system are limited to achieving a

rise time of one second at the design flight condition. Data for the A4-D fighter aircraft

is given at two flight conditions in Table 2.1. The takeoff flight condition at sea-level and

Mach 0.4 is used as the design flight condition. The off-design flight condition, Mach
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0.8 and 35000 feet, is used to investigate controller performance across the flight envelope

of the aircraft. Each closed-loop system is subjected to a five degree step input in the

reference bank angle command. The simulation results shown in this section are achieved

using Matlab/Simulink. A Simulink model of the 1DOF roll dynamics model has been

created. The step response data provided utilizes a 0.01 second time step using a fixed step

integration scheme. The first controller investigated is the PID controller.

PID

The PID design methodology that was discussed in this chapter was used to tune the con-

troller responsible for tracking a step input in bank angle. The controller takes the input

error signal in bank angle and outputs a control input to the plant in the form of differen-

tial aileron deflection. Figure 2.8 shows the tracking history and control effort required to

eliminate the steady-state error introduced with the step command.

Figure 2.8: Step response and control effort of the PID controller at the design flight con-
dition: M = 0.4, h = 0 feet

The closed-loop response satisfies the time domain design goal. The rise time of the

signal equals one second and the response overshoots the steady-state values by 5%. To

determine the effects of flight condition on the closed-loop response, the flight condition
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is moved from the takeoff values to the cruise values. The control effort plot shows an

instantaneous differential aileron deflection at the onset of the step input. This could be

potentially destabilize the system if large enough step commands are input to the controller.

Figure 2.9 shows the effects of flight condition on the roll dynamics model using a PID

control strategy.

Figure 2.9: Step response of the PID controller at the off-design flight condition: M =
0.8, h = 35000 feet

The closed-loop response at the off-design flight condition is significantly different

than Figure 2.8. The rise time is reduced by nearly 20% meaning the system is more

sensitive to the change in reference command. With the faster response comes a greater

overshoot, which is shown to more than triple. It is probably not acceptable for a trajectory

tracking controller to overshoot the reference command to this degree. This change in

performance can be traced back to the non-dimensional roll moment parameters since the

aircraft weight and geometry data is constant. The roll time constant nearly doubles at

the off-design condition, which means less damping in the system and a more oscillatory

response. The LQR controller is subjected to the same step input test as the PID system.
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LQR

The LQR controller was designed with the same rise time goal in mind. Figure 2.10 shows

the tracking history and control effort required to eliminate the steady-state error introduced

with the step command.

Figure 2.10: Step response and control effort of the LQR controller at the design flight
condition: M = 0.4, h = 0 feet

The step response using the LQR controller satisfies the rise time design goal. The

other time domain performance metrics are similar to the PID system, with overshoot per-

centage having the largest difference. Another difference in the step response is the shape

of the control effort plot. The LQR controller naturally drives the state and control vec-

tors to zero. Integrated bank angle error is the only component used to track the reference

command. This architecture matches the response as the control effort is shown to ramp up

from zero instead of instantaneously deflecting the ailerons. Figure 2.11 shows the change

in step response with the off-design flight condition.

31



Figure 2.11: Step response of the LQR controller at the off-design flight condition: M =
0.8, h = 35000 feet

Like the PID controller, the closed-loop LQR system shows a higher sensitivity to the

reference command and a more oscillatory response which is dictated by the physics that

make up the roll time constant. The main difference from PID control is the magnitude

of the changes between flight conditions. The PID controller shows an overshoot increase

from 5% to 18%. The LQR controller shows a significantly smaller change of 7% to 8%.

The large increase in oscillatory nature for the PID controller has a potential to destabilize

the system. This problem is typically addressed using gain scheduling, where the control

system designer chooses multiple design points to tune the system. The system then inter-

polates a table of gains depending on flight condition. This can become a laborious process

for an aircraft with a large flight envelope or a multi degree of freedom model with coupled

dynamic equations. This process has the potential to be avoided using LQR control, which

is shown to have greater performance robustness.

2.4.4 Stability Analysis

Stability robustness data can be extracted from the LQR closed-loop model using the

MIMO singular value methods discussed in Section 2.2. Table 2.3 shows the gain and
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phase margin for the closed-loop system at the design point that the gain matrix was con-

structed and at the off-design point.

Gain Margin (dB) Phase Margin (deg)

Design Point [−19.0,+∞] 60.0

Off-design Point [−20.6, 29.6] 57.8

Table 2.3: LQR closed-loop stability margins

The stability margins at the design point show infinite positive gain margin and 60

degrees phase margin. These are identical to the theoretical guaranteed stability margins

for LQR controllers. Highlighting upper gain margin, the system gain can be multiplied

by any value greater than one and remain stable. The closed-loop system is very stable at

the design point. While lower than the theoretical guaranteed values, the stability margins

are still large at the off-design point with gain margin [−20.6, 29.6]. The system gain can

be increased significantly before the system destabilizes. This analysis shown here for a

simple MIMO system can also be applied to a more complex system such as a reduced

order aircraft model.
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3. Reduced Order Air Vehicle Modeling

Aircraft performance assessments based on point mass modeling of the air vehicle have a

history that dates back to the very earliest days of aviation [16]. Questions concerning

the aircraft’s maximum rate of climb, speed and altitude for best range and endurance,

minimum turning radius, distances required for take-off and landing, and minimum time

to climb are all examples of performance metrics that can be estimated with point mass

analyses. To do so, the concept of the aircraft drag polar is of central importance. It is

through the drag polar that we estimate the power required to sustain a particular flight

condition or maneuver. Then with an estimate of the power available – through a model of

the (installed) propulsion system – we can quantify the instantaneous excess power. At a

very fundamental level, it is an aircraft’s maximum aerodynamic lift capacity and its excess

power margin that determine its flight performance.

The reduced order air vehicle model described in this chapter has been developed

to require the same level of model input data as are required for traditional point mass

performance models. The capabilities and limitations of the model are discussed, and the

formulation of the feedforward guidance commands is presented. In the final sections of

the chapter an example aircraft model is presented, along with an example design mission.

These are leveraged through the remainder of the thesis to demonstrate the guidance control

laws that are developed.
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3.1 Model Requirements

Any aircraft performance model requires inputs to characterize three fundamental entities:

its mass properties, its propulsion, and its lift and drag. Regarding the mass properties, mo-

ments and products of inertia are not required as there are no moment equations associated

with a point mass model. Gross weight is the only relevant mass property.

Propulsion models spanning a wide range of complexity and capability can be inte-

grated with the air vehicle model. Of paramount importance, however, is to constrain the

maximum and minimum net thrust as a function of speed and altitude. These are the lim-

its that define the max or min power available, and hence limit the excess power margins.

Most often, the propulsion system is characterized by providing static tabular engine data.

Commonly, a so-called five-column engine table is utilized, consisting of three independent

input variables and two dependent outputs. The inputs are the Mach number, altitude and

engine throttle setting, and the outputs are the net thrust and the fuel burn rate.1 If latencies

associated with the engine dynamics are of engineering interest, the engine tables can be

accompanied by filters. Often a first-order lag is adequate. In principle, higher order filters

can be used, or even high fidelity dynamic engine models can be directly integrated. How-

ever, the computational overhead of including higher fidelity propulsion models is often at

odds with the intended use of the point mass air vehicle model.

The aerodynamic characteristics of the aircraft are represented through just two equa-

tions: a parabolic drag polar and a linear lift curve. By way of illustration, data for the

Ilyushin IL-14, a cold war era Russian cargo aircraft, is presented. Figure 3.1 is a repro-

duction of the drag polar image from a 1957 article in Aviation Week [17].

1For prop-driven aircraft, power, not thrust, is desired output.
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Figure 3.1: IL-14 drag polar data [17]

The IL-14 drag polar depicted in Figure 3.1 is a standard representation, with the

dependent variable CD plotted along the horizontal axis. Data for two configurations is

shown: gear-up and gear-down. For each configuration, data points along the curves are

annotated with the angle of attack at which the (CL, CD) pair has been measured. Many

standard aircraft performance formulations assume that the parabolic lift-drag relationship

can be written

CD = CD0 + k C2
L (3.1)

In such a case, the two coefficients CD0 and k define the curve for a particular aircraft

configuration. This implies that CD0 is the zero-lift drag on the aircraft. However, as

evident from Figure 3.1, it is not necessarily the case that the minimum drag occurs at a

zero-lift configuration. Therefore, a slight modification of equation 3.1 is often made so

that the vertex of the parabola can be moved off the zero-lift axis. With this modification,
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we write

CD = CDV + k (CL − CLV )2 (3.2)

so that now there are three parameters needed to define the drag polar: CDV , CLV and k.

The point (CLV , CDV ) represents the minimum drag flight condition for the aircraft. The

subscript “V” is used to indicate that this is the vertex of the parabola. This notation is

adopted to avoid confusing the lift at zero angle of attack, CL0 , with the lift for minimum

drag.

Determination of the drag polar coefficients is best accomplished through a simple

curve-fitting exercise. This requires that a set of (CL, CD) data points is available – there

are a number of ways that such data can be acquired. Best, of course, is flight test data if

one is modeling an existing aircraft. Short of this, CFD methods can be employed. A series

of CFD runs can be executed to estimate the lift and drag coefficients at various angles of

attack, and the drag polar coefficients are then easily identified. Short of this, empirical and

semi-empirical methods can be employed. Many aircraft design books [18],[19],[20],[21],

provide methodologies for build-up of drag polar coefficients. For a fully empirical ap-

proach, digital DATCOM [22] is probably the industry standard. MATLAB/Simulink, for

example, includes tools for directly importing data files output from digital DATCOM. As

with any of these methods for assembling the lift-drag data or for building up estimates of

the coefficients directly, the key point is that it must represent the net lift and drag for the

entire aircraft.

It must be noted that compressibility effects require that a family of drag polar coeffi-

cients are needed for aircraft that can fly faster than Mach 0.3. Anderson [20], for example,

provides case studies illustrating the variation of the drag polar coefficients as as function

of Mach number. If the aircraft is capable of supersonic flight, wave drag dominates and

the shape of the curve is significantly “flattened” relative to subsonic flight. Nevertheless,

parabolic representations of the lift-drag relationship remain valid, and in practice it is a

simple matter to implement 1-D vectors of drag polar coefficients that are dependent on
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Mach number.

A linear lift curve expressing the lift coefficient as a function of angle of attack is

also required. Extracting points from the IL-14 data shown on Figure 3.1, we can produce

Figure 3.2, where the linear curve-fit excludes the two data points for which α > 14◦. The

Figure 3.2: IL-14 lift curve data

standard linear lift curve is specified in terms of its lift at zero angle of attack and the lift

curve slope, CLα:

CL = CL0 + CLαα (3.3)

Here again, the coefficients CL0 and CLα must be representative of the whole aircraft and

must generally be scheduled as a function of Mach number. For the lift curve slope the

Prandtl-Glauert compressibility correction is often employed, though higher order correc-

tions or CFD data can be used if operation in the transonic regime is an important flight

condition for the air vehicle of interest. Post-stall aerodynamics is not intended to be a part

of the air vehicle modeling.
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3.2 Equations of Motion

Derivation of the point mass equations of motion proceeds along the lines traditionally used

to develop rigid-body 6 degree-of-freedom equations of motion [21], [23]. This includes

defining coordinate rotations to orient a set of aircraft body-axis coordinates in inertial

space, expressing the local angular velocity vector in terms of Euler rates, and supplement-

ing the force equations with kinematic expressions that resolve aircraft motion back onto

the inertial reference frame. However, there are two notable departures and simplifications:

1) the climb angle γ takes the place of the pitch angle θ in the Euler sequence, and 2) there

are no moment equations!

The derivation follows very closely the work by Weitz with the MITRE corpora-

tion [24]. That model, however, does not include resolution of the angle of attack. For

applications of the model that require low flight speeds – such as for terminal area opera-

tions, during take-off and final approach – the inclusion of angle of attack is important for

constraining the max lift capability.

3.2.1 Reference Frames

A traditional “North-East-Down” (NED) reference frame is introduced as the inertial co-

ordinate frame for the purpose of applying Newton’s 2nd law. The NED coordinates are a

right-handed Cartesian system whose origin is located on the earth’s surface, directly be-

low the aircraft. Thus the north-east plane is tangent to the earth’s surface, with the “down”

axis pointing to the center of the earth. Adopting an NED reference frame as our inertial

coordinate system means that accelerations due to the earth’s rotation are not considered in

this model. This is a standard assumption for a large number of aircraft 6DOF models.

Denoting unit vectors along the NED axes as n̂, ê, d̂, and employing the traditional

aerospace euler sequence (yaw rotation, then pitch rotation, then roll rotation), we arrive at

equation 3.4. Note, however, that the climb angle γ is used in place of the pitch angle. This
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choice is motivated by the fact that for guidance level control it is more natural to directly

model the climb angle than an attitude angle.


î3

ĵ3

k̂3

 =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ




cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ




cosψ sinψ 0

− sinψ cosψ 0

0 0 1



n̂

ê

d̂


=


cγ cψ cγ sψ −sγ

−cφ sψ + sφ sγ cψ cφ cψ + sφ sγ sψ sφ cγ

sφ sψ + cφ sγ cψ −sφ cψ + cφ sγ sψ cφ cγ



n̂

ê

d̂



(3.4)

Consistent with the use of γ instead of θ, the unit vectors î3, ĵ3, k̂3 in equation 3.4 rep-

resent a traditional aircraft stability axis system. This is because the î3 unit vector is positive

in the direction of the aircraft velocity. By contrast, for 6DOF models, the aerospace con-

vention is to define a set of body axes with unit vectors îb, ĵb, k̂b such that the origin is at

the aircraft cg, with îb pointing forward toward the nose, ĵb pointing to the pilot’s right,

and k̂b pointing downward to complete the right-handed triad. The key difference between

body axes and stability axes is that the nose of the aircraft is not generally aligned with its

instantaneous velocity. For this model, sideslip is always taken to be zero; therefore, the

angle separating the vectors îb and î3 is the angle of attack. 2 Of course for a point mass

model, there is no “nose” of the aircraft. However, by resolving the angle of attack in this

way we can align the net thrust vector along the nominal longitudinal axis of the aircraft

instead of simply making it co-linear to the drag vector.

We note that as the product of three rotation matrices, the final transformation matrix

in equation 3.4 is orthogonal. Therefore, A−1 = AT or

2This assumes that îb is on the aircraft zero-lift line. This is not always true, but correcting the geometry
is simple in principle if zero-lift line data is available.
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n̂

ê

d̂

 =


cγcψ −cφsψ + sφ sγcψ sφsψ + cφsγcψ

cγsψ cφcψ + sφsγsψ −sφcψ + cφsγsψ

−sγ sφcγ cφcγ



î3

ĵ3

k̂3

 (3.5)

3.2.2 Kinematics

The position vector to the aircraft in NED coordinates is written

~r = xn̂+ yê+ zd̂ (3.6)

with associated inertial velocity

~v = ẋn̂+ ẏê+ żd̂ (3.7)

With equation 3.5, resolving the aircraft velocity V î3 in the NED coordinate frame is

straightforward. The first column of the transformation matrix provides our three first-

order kinematic expressions:

ẋ = V cos γ cosψ (3.8a)

ẏ = V cos γ sinψ (3.8b)

ż = −V sin γ (3.8c)

Writing the point mass equations of motion requires knowledge of the inertial acceler-

ation ~̇vin resolved onto the î3, ĵ3, k̂3 coordinate frame. This is accomplished through an
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application of the transport theorem for differentiating rotating vectors. Therefore we write

~̇vin = ~̇V + ~ω × ~V (3.9)

where the angular velocity vector ~ω is built up by resolving the euler rates onto the local

î3, ĵ3, k̂3 axes. Thus,

~ω =


φ̇

0

0

+


1 0 0

0 cosφ sinφ

0 − sinφ cosφ





0

γ̇

0

 +


cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ




0

0

ψ̇


 (3.10)

which can be expanded as

~ω =
(
φ̇− ψ̇ sin γ

)
î3 +

(
γ̇ cosφ+ ψ̇ cos γ sinφ

)
ĵ3

+
(
−γ̇ sinφ+ ψ̇ cos γ cosφ

)
k̂3

(3.11)

Substituting equation 3.11 into equation 3.9 and performing the indicated differentiation

and cross product, we find

~̇vin = V̇ î3 + V
(
−γ̇ sinφ+ ψ̇ cos γ cosφ

)
ĵ3 − V

(
γ̇ cosφ+ ψ̇ cos γ sinφ

)
k̂3 (3.12)

The components of equation 3.12 are the needed kinematic expressions for application of

Newton’s law in the local aircraft stability axes.

3.2.3 Dynamics

Figures 3.3 and 3.4 provide the force diagrams for applying Newton’s law. We observe in

Figure 3.3 that the thrust and drag vectors are not co-linear and that the aircraft pitch angle,
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though not included as an explicit state variable in the model, can be constructed via

θ = γ + α (3.13)

Figure 3.3: Side view free body diagram for air vehicle equations of motion

Figure 3.4: Front view free body diagram for air vehicle equations of motion
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Components of the forces depicted in Figures 3.3 and 3.4 can be collected to show

∑
~F = (T cosα−D −mg sin γ) î3 + (mg cos γ sinφ) ĵ3

+ (mg cos γ cosφ− L− T sinα) k̂3

(3.14)

Together with the acceleration components from equation 3.12, application of Newton’s

2nd law provides equations of motion resolved into the local î3, ĵ3, k̂3 axes. These are

equations 3.15.

mV̇ = T cosα−D −mg sin γ (3.15a)

mV
(
−γ̇ sinφ+ ψ̇ cos γ cosφ

)
= mg cos γ sinφ (3.15b)

mV
(
γ̇ cosφ+ ψ̇ cos γ sinφ

)
= L+ T sinα−mg cos γ cosφ (3.15c)

We observe in equations 3.15b and 3.15c that there is an inertial coupling involving the γ̇

and ψ̇ terms. A decoupling of the inertial terms results in a further coupling on the control

side, i.e., the (L+ T sinα) term that only appears in equation 3.15c appears in both of the

decoupled expressions. Nevertheless, the equations take on a cleaner form when decoupled.

They are also easier to solve and allow for easier physical interpretation in decoupled form.

Application of the Pythagorean trig identity and some algebraic manipulation produces

equations 3.16.

mV̇ = T cosα−D −mg sin γ (3.16a)

mV γ̇ = (T sinα + L) cosφ−mg cos γ (3.16b)

mV ψ̇ cos γ = (T sinα + L) sinφ (3.16c)
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Taken together, the kinematic equations 3.8 and the dynamic equations 3.16 constitute

a set of six first-order differential equations. These equations are the core of the reduced-

order dynamic aircraft model.

3.3 Open Loop Control Laws

In principle, the open loop thrust, lift and bank angle commands can be extracted directly

from the equations of motion through an algebraic inversion of equations 3.16. If success-

ful, the thrust, lift and bank angle consistent with the instantaneous maneuvering state of

the aircraft would result. However, closed form inversion of equations 3.16 is not possi-

ble. This is due to the nonlinear terms in α, together with the implicit dependence on α in

the lift and drag terms. Given that the air vehicle model is only valid for linear (pre-stall)

aerodynamics, it seems reasonable to linearize α terms in equations 3.16. This provides

mV̇ = T −D −mg sin γ (3.17a)

mV γ̇ = (Tα + L) cosφ−mg cos γ (3.17b)

mV ψ̇ cos γ = (Tα + L) sinφ (3.17c)

Unfortunately, closed form inversion of equations 3.17 is also not available. When at-

tempted using MAPLE’s symbolic processing engine, the computer eventually crashed due

to a memory access violation. The next logical simplification is to exclude the α terms

entirely, i.e., let α = 0. The resulting system equations are now equivalent to the point

mass model put forward by MITRE in their 2015 paper [24]. Equations 3.18 represent the

simplified dynamic system used to produce feedforward control signals. Their algebraic

inversions, equations 3.19, provide open loop commands as a function of state data and the

accelerations V̇, V γ̇, V ψ̇.
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Simplified plant model for open loop control

mV̇ = T −D −mg sin γ (3.18a)

mV γ̇ = L cosφ−mg cos γ (3.18b)

mV ψ̇ cos γ = L sinφ (3.18c)

Analytic control inversions

T = mV̇ +D +mg sin γ (3.19a)

L = mg cos γ cosφ+mV γ̇ cosφ+mV ψ̇ cos γ sinφ (3.19b)

φ = tan−1

[
V ψ̇ cos γ

V |γ̇|+ g cos γ

]
(3.19c)

3.4 Reference Platform: UAV 3100

Demonstration of the point mass model and the guidance controllers developed in this the-

sis is carried out using a fictitious UAV with a nominal gross weight of 3,100 lb. The model

is referred to as the UAV 3100. It has no real-world counterpart and has been assembled for

this academic purpose. The aerodynamic data has been collected using digital DATCOM;

the propulsion data is directly from the Mathworks Generic Turbofan model available with

the Aerospace Blockset. Thus the aerodynamic and engine performance parameters are

meant to be realistic, representative data, but with no pedigree to any specific models or

hardware.

The drag polar data is limited to two sub-sonic speeds: M = 0.3 and M = 0.925. Coef-

ficient data is linearly interpolated for intermediate speeds and capped for operation outside

the interval. For flight below 0.3M the compressibility effects are negligible.
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Figure 3.5: Drag polar curve fit

For the coefficient data listed in Figure 3.5, the CLV data is taken to be zero for both flight

points. Thus the drag model is more in the spirit of equation 3.1 than equation 3.2. For

the lift curve, the lift at zero angle of attack is assumed to be zero, with the lift slopes

CLα = 4.154 rad−1 at 0.3M and CLα = 5.184 rad−1 at 0.925M. These data are also

linearly interpolated (a better interpolation model would certainly be employed for a more

realistic implementation).

The engine data simply caps the maximum net thrust as function of Mach and alti-

tude. The sea-level static thrust rating was selected so as to achieve a flight envelope that

extends into the high subsonic speed regime, but not in excess of 0.925M. Figure 3.6 dis-

plays the maximum installed thrust data within the flight envelope for the UAV 3100. The

flight envelope is generated by running a trim sweep over a set of speed and altitude flight

conditions. The trim routine uses Newton iterations to converge on the required lift and

thrust values for sustaining a steady-level cruise at the operating point. With values for the

required lift and thrust, the trim algorithm then checks against available lift and available

power to determine whether the aircraft can achieve the desired operating cruise condi-
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tion. Most of the boundary points along the flight envelope perimeter are defined by the

power condition; however, the linear portion on the left hand side of the figure is due to

aerodynamics.

Figure 3.6: Maximum installed thrust as a function of flight condition

For all altitudes, we observe in Figure 3.6 a minimum point in max thrust at 0.5M.

This is responsible for the small cleft that is visible at the top of the flight envelope at this

Mach number.

The flight envelope plots provide a convenient means to convey information about the

aircraft performance. Figures 3.7 and 3.8 are included as additional examples. In Chapter

4, plots of this kind are used to display information on robustness of the guidance controller.
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Figure 3.7: Thrust required to trim the aircraft

Figure 3.8: Maximum rate of climb
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3.5 Mission Design

To evaluate the effectiveness of the guidance controllers, a set of five reference flight points

has been created. They are listed out in Table 3.1 and shown graphically on the excess

thrust diagram, Figure 3.9.

Design Point Mach Altitude (ft)

Design cruise condition 0.70 20,000

Low-speed sea-level 0.20 0

High-speed sea-level 0.85 0

Low-speed cruise 0.30 20,000

High-altitude cruise 0.60 30,000

Table 3.1: Reference flight conditions for UAV 3100

Figure 3.9: Aircraft reference points (green) shown over the flight envelope
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The reference points have been selected to represent a nominal design flight condition

for the UAV 3100 and four additional operating points at extreme positions in the flight

envelope. The design point is a 0.7M cruise at 20,000 ft altitude. This is the point at

which all of the baseline LQR analysis is conducted. The four remaining points allow us to

assess the performance of the controller at off-design conditions. Guaranteeing desirable

(and stable) performance at all points in the flight envelope is a subject that is addressed

in chapter 4. However, the continuity of the plant data and of the control formulation tend

to give the designer confidence that if suitable performance can be demonstrated at the

reference points, the design is likely to be acceptable throughout the flight envelope. This

philosophy is commonly adopted by aircraft control designers.

The controller performance is tested further by creating a hypothetical mission that

exercises some of the design points and maneuvers between them. The phases of the de-

sign mission are listed in Table 3.2 and shown graphically in Figure 3.10.

Phase Description

0 Takeoff at sea-level and Mach 0.2

1 Accelerating climb to 20000 ft and Mach 0.3

2 90 degree turn to the right

3 Acceleration to Mach 0.7

4 270 degree turn to the left

5 Constant Mach descent to sea-level

6 Constant altitude deceleration to Mach 0.2

Table 3.2: Phases of the design mission for UAV 3100
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Figure 3.10: Design mission time vectors of Mach, altitude, and heading

The mission described in Table 3.2 is specified to the model as a time stamped com-

mand vector for Mach, altitude, and heading. While not at all comprehensive, the design

mission is a common tool in demonstrating acceptable performance through a significant

portion of the flight envelope using time domain simulation.

It should be noted that the corner points for the command vectors are all “rounded”

using Bezier curves to assure smoothness. This has been implemented through a pre-

processing algorithm because the open loop command signals require derivatives of the

trajectory data.

52



4. LQR Control of the Reduced Order

Aircraft Model

Chapter 2 provided a detailed review of LQR control design with a simple example aircraft

model. In this chapter we design an LQR feedback controller for the reduced order aircraft

model introduced in Chapter 3. First, an LTI state space model of the system is created by

assuming steady-level flight at any prescribed airspeed and altitude. A method is then de-

veloped to design the LQR weighting matrices with a goal of reducing user design burden.

The performance and stability robustness of the closed-loop system are quantified using

time domain step response metrics and MIMO stability analysis, respectively. Then, the

controller’s ability to track the design mission is investigated, noting the impact of incor-

porating feedforward control in the system. Finally, the efficacy of an automated method

used to improve performance at off-design point is analyzed.

4.1 Controller Model Design

This section explores the application of LQR control to the reduced order aircraft model

described in Chapter 3. The main goal of the controller is to track reference command

data while eliminating steady-state error. Other design goals are to provide stable system

performance “out of the box”, without requiring case-specific tuning, while at the same
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time allowing the user to tune the system to meet time domain response metrics should that

be of importance.

Creating a closed-loop system that tracks with zero steady-state error requires devel-

opment of a compensator. This is not surprising, as most systems whose dynamics are

describable through application of Newton’s law are of type zero. Compensation is intro-

duced to add additional integral control action to the closed-loop system [11]. Figure 4.1

shows the block diagram representation of the LQR controller applied to the reduced order

aircraft model with compensation.

Figure 4.1: LQR control architecture with compensation

The signals listed on the diagram correspond to the state vector x, the reference command

r, the control input to the plant u, the tracking error e, and integrator state ε. The product of

compensation is the addition of three closed-loop control equations, one for each tracking

loop (h, V, ψ). Using the altitude tracking loop as an example, the rate of change in the

integral state is dictated by the instantaneous tracking error ε̇h = h − rh. The integral

state εh is used to eliminate steady-state error in the altitude tracking loop. With a general

understanding of the controller model, the development process of the controller can begin.

LQR control requires a model expressed in state space form and a set of weighting

matrices that allow the user to define the preference between command tracking and control

effort. The first step, generating a state space model from a set of nonlinear equations of

motion, is discussed in detail in the following pages.
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4.1.1 State Space Modeling

The state space model is used to represent the equations of motion for the model in lin-

ear form. The simplified dynamic equations of motion for the controller development

are repeated here as equations 4.1. While there are three kinematic equations, shown in

equations 4.2, the design goals of the system are not concerned with tracking the x and y

locations in NED space. Altitude (obtained by integrating equation 4.2c) is the only posi-

tion important to the tracking problem. The last three equations in the model are created

to add integral action in the three tracking loops. This closed-loop system is designed to

track reference commands in altitude, velocity, and heading. The full equation set is the

following:

Dynamic equations

mV̇ = T −D −mg sin γ (4.1a)

mV γ̇ = L cosφ−mg cos γ (4.1b)

mV ψ̇ cos γ = L sinφ (4.1c)

Kinematic equations

ẋ = V cosψ cos γ (4.2a)

ẏ = V sinψ cos γ (4.2b)

ḣ = V sin γ (4.2c)
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Closed loop compensator equations

ε̇h = h− rh (4.3a)

ε̇V = V − rV (4.3b)

ε̇ψ = ψ − rψ (4.3c)

Associated open loop commands

T = mV̇ +D +mg sin γ (4.4a)

L = mg cos γ cosφ+mV γ̇ cosφ+mV ψ̇ cos γ sinφ (4.4b)

φ = tan−1

[
V ψ̇ cos γ

V |γ̇|+ g cos γ

]
(4.4c)

State space linearization

The state equations of this model consist of three dynamic equations, one kinematic

equation, and three reference command tracking equations. Questions immediately arise

regarding the inclusion of altitude as an explicit state given the relationship between alti-

tude and gamma. A design goal of the closed-loop system is to have the ability to track

altitude explicitly. The flight path angle allows for tracking of altitude rate, but not altitude.

Therefore, the kinematic equation for altitude rate is included in the model.

Development of an LQR controller for the reduced order aircraft model requires an

LTI system represented in state space form. The equations presented for the aircraft model

are non-linear for both the state data and the controls, and vary with time due to the de-

pendence on flight condition. Linearization is required to create a state space model of the

non-linear system, which is used to determine the LQR gain matrix.

The first step of linearization is choosing an equilibrium point f(x0, u0) such that
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ẋ0 = 0. This is typically a cruise condition where the aircraft response is most important,

since this is the design point of the system. Next, a first order Taylor series expansion is

created about the equilibrium point

f(x, u) ≈ f(x0, u0) +
∂

∂x
f(x0, u0) (x− x0) +

∂

∂u
f(x0, u0) (u− u0) (4.5)

where δx = x − x0 and δu = u − u0. The developed state space model describes the

behavior of the system with respect to the chosen equilibrium point. Linearization about an

equilibrium point is required to convert the set of nonlinear equations to state space form.

This process can become rather laborious for aerospace applications where much of the

aircraft derivative data is a function of flight condition. The state, control, and reference

vectors for the state space model are

x =



h

V

γ

ψ



u =


T

L

φ



r =


rh

rV

rψ


The state space model is derived by applying the first order Taylor series expansion to

the state equations. Stevens and Lewis provide a compact method using four Jacobians
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to determine the state space matrices required to define the system [23]. These Jacobian

derivatives represent the rate that state equations change as each of the variables move away

from the chosen equilibrium point, as denoted by the δ notation. The state space equation

provided by Stevens and Lewis is

∂f

∂ẋ
δẋ+

∂f

∂x
δx+

∂f

∂u
δu+

∂f

∂r
δr = 0 (4.6)

Applying linearization of the form shown above requires the non-linear state equations be

rearranged into homogeneous form f(x, ẋ, u, r) = 0. The Jacobian matrices are extracted

using this homogeneous form of the state equations

f1(x, ẋ, u, r) = 0 → −ε̇h + h− rh = 0 (4.7a)

f2(x, ẋ, u, r) = 0 → − ˙εV + V − rV = 0 (4.7b)

f3(x, ẋ, u, r) = 0 → −ε̇ψ + ψ − rψ = 0 (4.7c)

f4(x, ẋ, u, r) = 0 → −ḣ+ V sin γ = 0 (4.7d)

f5(x, ẋ, u, r) = 0 → −mV̇ + T −D −mg sin γ = 0 (4.7e)

f6(x, ẋ, u, r) = 0 → −mV γ̇ + L cosφ−mg cos γ = 0 (4.7f)

f7(x, ẋ, u, r) = 0 → −mV ψ̇ cos γ + L sinφ = 0 (4.7g)

The state space equation shown in 4.6 can be solved for δẋ to obtain the canonical form of

a state space model

ẋ = Ax+Bu+Gr (4.8)
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Rearranging terms in 4.6 gives

δẋ = −
(
∂f

∂ẋ

)−1 [
∂f

∂x
δx+

∂f

∂u
δu+

∂f

∂r
δr

]
(4.9)

Using the above equation, the state space matrices A, B, and G are easily identified and

extracted. A deconstructed solution for each state space matrix is shown as

A = −
(
∂f

∂ẋ

)−1
∂f

∂x
(4.10)

B = −
(
∂f

∂ẋ

)−1
∂f

∂u
(4.11)

G = −
(
∂f

∂ẋ

)−1
∂f

∂r
(4.12)

The equations for the state space matrices show that four Jacobians must be computed:

−
(
∂f
∂ẋ

)−1
, ∂f
∂x

, ∂f
∂u

, and ∂f
∂r

. The first Jacobian is evaluated by differentiating the seven

homogeneous model equations, shown in equation 4.7 with respect to ẋ.

∂f

∂ẋ
=



−1 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 −m 0 0

0 0 0 0 0 −mV 0

0 0 0 0 0 0 −mV cos γ



(4.13)

The first Jacobian matrix is diagonal and can be inverted simply by taking the inverse of
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each diagonal element. Including the minus sign in the matrix gives

−
(
∂f

∂ẋ

)−1
=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1
m

0 0

0 0 0 0 0 1
mV

0

0 0 0 0 0 0 1
mV cos γ



(4.14)

It is important to note that the last term in −
(
∂f
∂ẋ

)−1
is undefined if the flight path angle is

equal to ±π
2
. This is known as the gimbal lock scenario for a three gimbal system, such as

the Euler sequence used in this aircraft model. This phenomenon occurs when two gimbals

are parallel, therefore a degree of freedom is lost in the system. Gimbal lock shows up in

this model when the aircraft is flying straight up or down. The azimuth angle ψ is not well

defined because, in this condition, the aircraft is not flying in the north-east plane at all.

The impact of gimbal lock in this model is not an important restriction.

Taking derivatives of the homogeneous model equations with respect to the state vec-

60



tor results in

∂f

∂x
=



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 0 sin γ V cos γ 0

0 0 0 −∂D
∂h

−∂D
∂V

−mg cos γ 0

0 0 0 ∂L
∂h

cosφ −mγ̇ + ∂L
∂V

cosφ mg sin γ 0

0 0 0 ∂L
∂h

sinφ −m cos γψ̇ + ∂L
∂V

sinφ mV ψ̇ sin γ 0



(4.15)

Within the matrix, ∂f
∂x

, four partial derivatives are left to be expanded. The non-zero density

gradient present in the atmosphere ∂ρ
∂h

creates the terms ∂D
∂h

and ∂L
∂h

. However, the density

gradient is assumed to be small enough that the partial derivatives with respect to altitude

can be neglected. The same assumption has already been made to address the change in

gravity with respect to altitude ∂g
∂h

. The acceleration due to gravity changes with altitude,

but this change is sufficiently small that the effects due to this gradient can be neglected

from the model. To address the two remaining partial derivatives ∂D
∂V

and ∂L
∂V

, the expres-

sions for aircraft lift and drag must be examined. Lift is obtained from the lift coefficient

by multiplying by the dynamic pressure and the aircraft wing reference area.

L = CL ·
1

2
ρV 2S (4.16)

Differentiating the aircraft lift equation with respect to velocity gives

∂L

∂V
=
∂CL
∂V
· 1

2
ρV 2S + CL · ρV S (4.17)
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The aerodynamic model used to relate aircraft lift to drag is a drag polar, which is included

in the model using a parabolic curve fit. The term ∂CL
∂V

is likely nonzero due to its depen-

dence on Mach number and Reynolds number. But, the aerodynamic model used lacks

the detail required to approximate the effects of Mach and Reynolds number on the lift

coefficient. Therefore, the partial derivative is neglected from the state space model.

Aircraft drag is obtained from the non-dimensional drag coefficient CD. Multiplying

by dynamic pressure and the aircraft wing reference area allows the dimensional aircraft

drag to be obtained as

D = CD ·
1

2
ρV 2S (4.18)

Differentiating the aircraft drag equation with respect to velocity gives

∂D

∂V
=
∂CD
∂V
· 1

2
ρV 2S + CD · ρV S (4.19)

Knowing that CD is computed using parabolic curve fit of the drag polar relationship CD =

CD0 + kC2
L, the dependence of drag coefficient on velocity can be expanded as

∂CD
∂V

=
∂CD0

∂V
+
∂k

∂V
C2
L + 2k

∂CL
∂V

(4.20)

The terms ∂CD0

∂V
and ∂k

∂V
are neglected using the same logic as ∂CL

∂V
. The aerodynamic model

does not contain the detailed data required to approximate the partial derivative. These

reductions allow the Jacobian with respect to the state vector to be significantly simplified.

The state matrix A is obtained with equation 4.10 using the two Jacobians that have
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been computed.

A =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 0 sin γ V cos γ 0

0 0 0 0 − 1
m

∂D
∂V

−g cos γ 0

0 0 0 0 − γ̇
V

+ ∂L
∂V

cosφ
mV

g
V

sin γ 0

0 0 0 0 − ψ̇
V

+ ∂L
∂V

sinφ
mV cos γ

ψ̇ tan γ 0



(4.21)

This aircraft model will always be initialized in trimmed flight. The trimmed flight condi-

tion is defined as a flight point where rotations about the aircraft center of gravity are zero.

For the point mass aircraft model, this condition has the implication that γ̇ and ψ̇ are zero.

The aircraft is also initialized in a steady flight condition meaning no instantaneous speed

change. The last descriptor that can be applied to the model initialization is the aircraft

starts wings level to the ground (in a flat Earth sense), making γ and φ equal to zero. This

fully defines the initialization point for the aircraft model as steady, level, trimmed flight.

Applying the simplifications introduced by the initial condition, the state matrix reduces to
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A0 =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 V 0

0 0 0 0 − 1
m

∂D
∂V
−g 0

0 0 0 0 1
mV

∂L
∂V

0 0

0 0 0 0 0 0 0



(4.22)

The initial condition used as the equilibrium point in the state space linearization signif-

icantly reduces the complexity of the state matrix A. The reduced state matrix is only a

function of speed, mass, gravity, and two aerodynamic derivatives. To derive the control

matrix B, a third Jacobian matrix is required. This matrix is obtained by differentiating the

homogeneous model equations with respect to the control vector u.

∂f

∂u
=



0 0 0

0 0 0

0 0 0

0 0 0

1 −∂D
∂L

0

0 cosφ −L sinφ

0 sinφ L cosφ



(4.23)

There exists one partial derivative left to be expanded within the above Jacobian, ∂D
∂L

. Solv-
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ing for CL in equation 4.16 and substituting the expression into the drag polar equation

creates drag as a function of lift.

D =
1

2
ρV S

(
CD0 + k

(
2L

ρV 2S

)2
)

(4.24)

Differentiating the drag equation with respect to lift results in the partial derivative

∂D

∂L
=

4kL

ρV 2S
(4.25)

Using equation 4.11, the state space control matrix becomes

B =



0 0 0

0 0 0

0 0 0

0 0 0

1
m
− 4kL
mρV 2S

0

0 cosφ
mV

−L sinφ
mV

0 sinφ
mV cos γ

L cosφ
mV cos γ



(4.26)

Applying the steady, level, trimmed initial condition allows the control matrix to be sim-
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plified as

B0 =



0 0 0

0 0 0

0 0 0

0 0 0

1
m
− 4kL
mρV 2S

0

0 1
mV

0

0 0 L
mV



(4.27)

The reduced control matrix is now purely a function of lift, velocity, mass, and aerodynamic

parameters. The last state space matrix left to be computed is the reference command

matrix G. This matrix is included to fully define the controller state equations in state

space form. The last Jacobian required to create the reference command matrix is obtained

by differentiating with respect to the reference command vector r. The resulting matrix

contains only three terms. These terms are constant at every flight condition, so the steady,

level, trimmed flight condition applies no simplification to the matrix.

G =
∂f

∂r
=



−1 0 0

0 −1 0

0 0 −1

0 0 0

0 0 0

0 0 0

0 0 0



(4.28)
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The state space representation of the reduced order aircraft model is now fully defined.

The nonlinear homogeneous differential equations have been linearized with respect to the

initial condition that will start a simulation. The state space model is a requirement for the

development of many optimal control laws, such as LQR controllers. The development of

the LQR control law can now continue by designing the weighting matrices that define the

LQR cost function.

4.1.2 Cost Function Design

The Matlab LQR function used to generate the LQR gain matrix requires the state space

model A and B matrices. It also requires three weighting matrices Q, N , and R that

originate from the LQR cost function, equation 2.3. The Q matrix penalizes a non-zero

state vector. The R matrix imposes a penalty on control effort. The N matrix is used to

create a cross-coupling penalty between states and controls.

To create analytic expressions for the cost functional, all seven state space equations

are squared so as to create quadratic forms. To keep the following equations readable,

matrix element notation is used to denote the element row and column. This means the a

and b terms in these equations refer to elements of the state space A and B matrices. The
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expressions appear as

ε̇2h = h2a21,4 + 2hrV a1,4g1,1 + r2V g
2
1,1

(4.29)

ε̇2V = V 2a22,5 + 2V rγa2,5g2,2 + r2γg
2
2,2

(4.30)

ε̇2ψ = ψ2a23,7 + 2ψrψa3,7g3,3 + r2ψg
2
3,3

(4.31)

ḣ2 = a24,6γ
2 (4.32)

V̇ 2 = L2b25,2 + 2LTb5,1b5,2 + 2LV a5,5b5,2 + 2Lγa5,6b5,2 + T 2b25,1

+ 2TV a5,5b5,1 + 2Tγa5,6b5,1 + V 2a25,5 + 2V γa5,5a5,6 + γ2a25,6

(4.33)

γ̇2 = L2b26,2 + 2LV a6,5b6,2 + V 2a26,5 (4.34)

ψ̇2 = b27,3φ
2 (4.35)

We observe from these expressions, that due to the large number of zeroes in the A and

B matrices (equations 4.22, 4.27) we can identify elements in the Q, N and R matrices

that must be zero. This is accomplished through execution of a MAPLE script that uses

symbolic algebra to perform a term-wise comparison of an expansion of the cost kernel

xTQx+ uTRu+ xTNu (4.36)

By identifying common terms involving the state and reference data, analytic expressions

for non-zero terms in the Q, N and R matrices are created. This reduces the number of

potential design parameters from 55 down to 13.

The LQR cost function shown in Section 2.1 does not include the reference command

vector, so the terms that contain r in these equations are eliminated. Before constructing
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the penalty weighting matrices, a set of tunable gains are introduced so the user has some

ability to change the response of the controller. The α1−13 gains are used to weight all the

equations included in the LQR cost function. A description of the weight assignment is

shown in Table 4.1.

Weighting Expression Description

α1ε
2
h α2ε

2
V α3ε

2
ψ Penalize tracking error integral states

α4ε̇h
2 α5 ˙εV

2 α6ε̇ψ
2 α7ḣ

2

α8V̇
2 α9γ̇

2 α10ψ̇
2

Penalize changes in compensator and state variables

α11T
2 α12L

2 α13φ
2 Penalize control expenditure

Table 4.1: User specified cost function weighting terms

Weighting defined by α1−13 is included in the cost function by placing consistent coeffi-

cients in the weighting matrices. The three weighting matrices are now defined as

Q =



α1 0 0 0 0 0 0

0 α2 0 0 0 0 0

0 0 α3 0 0 0 0

0 0 0 α4a
2
1,4 0 0 0

0 0 0 0 a22,5α5 + a25,5α8 + a26,5α9 α8a5,5a5,6 0

0 0 0 0 α8a5,5a5,6 a24,6α7 + a25,6α8 0

0 0 0 0 0 0 α6a23,7



(4.37)
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N =



0 0 0

0 0 0

0 0 0

0 0 0

α8a5,5b5,1 α8a5,5b5,2 + α9a6,5b6,2 0

α8a5,5b5,1 α8a5,6b5,2 0

0 0 0



(4.38)

R =


α8b

2
5,1 α8b5,1b5,2 0

α8b5,1b5,2 α8b
2
5,2 + α9b

2
6,2 0

0 0 α10b
2
7,3


(4.39)

The term by term comparison method coupled with the reduced set of alpha gains has

reduced the number of weights the user must select from 55 (assuming symmetric Q and

R matrices) to 13 weights. While this is a large improvement, there are still a large number

of weights that will change the controller response. The fact that these gains don’t have the

same units makes this problem more challenging. The problem of unit inconsistency can

be addressed using normalization. Nelson suggests using an ideal maximum value for all

penalty variables in the cost function to non-dimensionalize the cost function entirely [14].

The first alpha weight can be used as a general example of normalization. α1 shows up in

the LQR cost function because the term α1ε
2
h is included. εh has units of ft · s. Therefore,

the ideal maximum value with units of feet can be used to normalize α1ε
2
h by

α1 =
1

∆hmaxτ

2

(4.40)
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The variable τ is introduced to non-dimensionalize the time component of the integral

state εh. This variable τ can be thought of as the time to regulate error. To reduce the

dimensionality of the user selected design parameters, τ can be set to one second for all

alpha terms, so that it weights all three tracking loops equally. Applying this normalization

to all of the alpha weights gives

α =
1

∆hmaxτ

2

,
1

∆Vmaxτ

2

,
1

∆ψmaxτ

2

,
1

ε̇hmax

2

,
1

ε̇V max

2

,
1

ε̇ψmax

2

,

1

ḣmax

2

,
1

V̇max

2

,
1

γ̇max

2

,
1

ψ̇max

2

,
1

Tmax

2

,
1

Lmax

2

,
1

φmax

2 (4.41)

Significant user design burden remains even with the gains now normalized. An optimiza-

tion routine could be used to determine the best set of gains to evoke the intended response

performance from the controller. Instead, a user driven trial and error method is used to

alter the gains to achieve the desired response. The set of 13 gains must be reduced further

using engineering judgment to simplify the design process. Ideally, all 13 gains would be

retained to give the user the greatest ability to shape the closed loop system response. This

solution is not feasible for constructive simulation because controller design would take a

large amount of time due to the high number of gains. Therefore, engineering judgment,

in this application, means that control over the system response is sacrificed to make the

design process easier for a user. The claim is not made that this reduced set of gains is the

best solution. This reduced set makes the controller design process easier and has provided

good results in practice. The final set of gains used to design the closed loop system are

obtained through three reductions.

The first set of gains to be examined are associated with ε̇, the rate of change of the

controller integrator states. They differ from ε by a single integration. If only one set of

gains were to be chosen, the ones that include integral action are preferred to retain the

ability to regulate steady-state error. The state feedback component of the control law will

stop the closed-loop system from becoming oscillatory, which is typical for integral only
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control systems. With this reasoning, α4−6 can be set to zero.

The second reduction of gains regards the redundancy in penalizing the control vector

explicitly. The equations of motion (V̇, γ̇, ψ̇) contain terms that include the control vector,

which creates an implicit penalty on the controls. Therefore, it makes sense to penalize

non-zero accelerations, which will create a driving force in the cost function pushing the

system towards a stable flight condition. Applying this to the cost function results in α11−13

being eliminated.

The final gain reduction regards the inclusion of ḣ in the cost function. A penalty exists

for γ̇, which penalizes accelerations in the vertical maneuver band. It seems unnecessary

to also penalize altitude rate, since accelerations are more closely linked to control effort.

Therefore, α7 is set to zero for this design.

The reduction of gains in this section has reduced the set from 55 to 13 using term by

term comparison and 13 to 6 using further engineering judgment. Having only six gains

allows the user to better understand the implications of each gain. The reduction to six

gains is also important because there are two gains for each tracking loop (h, V, ψ), which

can be used to balance tracking performance and aircraft control effort. With expressions

created for the Q, N , and R penalty weighting matrices, Matlab’s LQR function can be

used to create a gain matrix K that will provide tracking of the reference command vector.

4.2 Controller Tuning

The LQR closed-loop controller is tuned with step response behavior in mind. The user

has six gains available to change the response of the closed-loop system. In this section,

the tuning methodology is demonstrated to achieve the desired response according to time

domain step response metrics.

Time domain step response performance metrics were introduced in Section 2.3 and

give the control system designer a variety of metrics from which to design the system’s
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closed-loop performance. These time domain metrics are examined for a step command of

five feet of altitude, one foot per second of speed, and one degree of heading at the cruise

flight condition. It is important to note that the LQR controller isn’t the only control signal

affecting the aircraft. Since the controller is constructed using a perturbation state space

model, the control solution required to stabilize the aircraft at the steady, level, trimmed

flight condition is used as an open-loop control signal to the aircraft equations of motion.

This control solution is obtained using the zero angle of attack equations of motion because

expressions for the required control vector are analytically solvable. The initial condition

values added to the LQR signal are constants so they will not affect the step response.

Figures 4.2 - 4.4 use unity values for the six normalization values that create the six

α weights to show a baseline behavior that will be improved upon. All step response

data is obtained using the model that includes the zero angle of attack assumption. This

eliminates the initial stabilization that occurs due to the discrepancy between the control

solution and the nonlinear angle of attack model. Therefore, the response shown in the

following figures is attributed to the step inputs only. If the nonlinear angle of attack plant

were used, a numerical solver would need to be implemented to determine the stabilizing

control vector at the initial condition. This would be important so the transients that arise

due to inconsistency of the initial control vector and the plant are eliminated.

The cruise flight condition for the UAV 3100 is the design point for the closed-loop

system, so the step commands input to the model represent small deviations from the cruise

point. Like the roll dynamics model, simulation results shown in this section are achieved

using Matlab/Simulink. The step response data from the reduced order aircraft model is

obtained utilizing a 0.01 second time step using a fixed step integration scheme.
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Figure 4.2: Altitude step response and control effort with unity gains and initial condition:
M = 0.7, h = 20000 feet

Figure 4.3: Velocity step response and control effort with unity gains and initial condition:
M = 0.7, h = 20000 feet

74



Figure 4.4: Heading step response and control effort with unity gains and initial condition:
M = 0.7, h = 20000 feet

It can be seen that the response in the altitude loop is much faster than the speed or

heading loops. All three loops reach the steady-state value in under 6 seconds. While

the response maybe not be suitable for every user, the controller does track the reference

command with zero user tuning (unity gains). The thrust command plot shows that the

commanded and actual signals are always equal, meaning the controller never issues a

command that exceeds the engine limits of the aircraft. This simple test shows the controller

provides accurate tracking performance using the simplest set of design gains and provides

the user with a good baseline.

One issue that has potential to cause problems is the small magnitude of the R matrix.

A small R matrix means the controls have a very small penalty which can cause high gains

in the K matrix. The weights on V̇ , γ̇, and ψ̇ can be tuned, keeping the diagonal elements

of the R matrix much closer to one. Another reason to keep the R matrix close to diagonal

with MIMO systems is that stability methods show that stability can degrade for an R

matrix with off-diagonal terms. Therefore, tuning the weighting matrices to get closer to

an identity matrix is a reasonable goal.
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The tuning process is continued by establishing a design goal. The magnitudes of

the step inputs were selected as a command that the closed-loop controller should quickly

track. The rise time shown in Figure 4.2 is coincidentally equal to one second. Perhaps a

user would conclude that nzmax = 1.25 is too large for the small five foot altitude step. In

this case, the rise time of the system should be increased to make the closed-loop response

slower. The work to address the small R matrix leaves the user with three gains to change

the response of the three loops. The result of the tuning process is shown in Figures 4.5 -

4.7.

Figure 4.5: Altitude step response and control effort with initial condition: M = 0.7, h =
20000 feet
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Figure 4.6: Velocity step response and control effort with initial condition: M = 0.7, h =
20000 feet

Figure 4.7: Heading step response and control effort with initial condition: M = 0.7, h =
20000 feet

To create a slower response to the step commands, a design goal for rise time of

two seconds was selected for all three tracking loops. The step responses shown are not

pushing performance limits of the aircraft as nzmax = 1.07. This is to be expected since it
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would not be ideal for the aircraft to perform an aggressive maneuver for small changes

in reference command. The purpose of this tuning exercise is to demonstrate that it is

possible to achieve a desired step response using the reduced set of weights. The example

of matching rise time is a very simple design problem for this controller. It is possible that

the user wants to match all four time domain criteria which could require more weights to

be retained and use of an optimization script. However, the user might also care more about

overall mission tracking than step response performance, where the unity gains may work

well enough. The main point is that the design goals could vary so widely that narrowing

the scope to matching one time domain metric is still useful.

4.2.1 Stability Analysis

One of the main reasons that LQR controllers are desired is the guaranteed closed-loop

stability. Stability is only guaranteed at the gain matrix design point, which is the cruise

flight condition for this model. The other design points in the flight envelope must be

examined to have confidence that the gain matrix will not destabilize the aircraft at any

off-design condition. The gain and phase margin for the closed-loop system at the UAV

3100 design points are shown in Table 4.2. The stability margins are calculated using the

same MIMO technique as is described in Section 2.2. The LQR gain matrix used in these

calculations is calculated at the cruise flight condition.
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Mach Altitude (ft) Gain Margin (dB) Phase Margin (deg)

0.7 20000 [-9.4, 47.6] 59.7

0.6 30000 [-10.5, 48.7] 59.8

0.85 0 [-8.6, 38.8] 59.2

0.2 0 [-12.5, 57.9] 59.9

0.3 20000 [-12.6, 53.3] 59.9

Table 4.2: Gain and phase margin using the designed LQR gain matrix at the reference
flight conditions for the UAV 3100

The stability margins for the closed-loop system vary as the flight condition gets fur-

ther away from the cruise point. Gain margin varies significantly more than phase margin.

LQR control theory claims that the closed loop system will have a gain margin that ap-

proaches positive infinity and a phase margin of 60 degrees. This guarantee, however,

hinges on a diagonal R matrix. The design of the weighting matrices using term by

term comparison created off-diagonal elements, meaning these guarantees can no longer

be made [25]. Evidence of this can be seen in the reduction of gain margin in Table 4.2.

It is typical for the control system designer to have ideal stability margins for the

closed-loop system. Typical values for aircraft actuation control loops state that minimum

gain and phase margin should be 6 dB and 30 degrees, respectively [23]. Applying these

design goals to the current system gives a great amount of confidence in the stability robust-

ness of the system. The closed-loop system easily satisfies these stability goals for every

design point for the UAV 3100.

The data presented in Table 4.2 serves as a quick check of the stability of the closed-

loop system throughout the flight envelope. However, it does not guarantee that there are

no regions within the flight envelope that degrade stability. Bode’s gain-phase relationship

states that there is a link between phase margin and the damping ratio of the system [2].

Lower phase margin results in a more oscillatory response, while higher phase margin
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provides a highly damped response. A phase margin of 60 degrees is a balance point

between tracking performance and oscillatory nature. Therefore, it is worth investigating

phase margin on a more detailed level to determine if undue oscillations arise between the

design points. This can be investigated by computing the phase margins at a sweep of flight

conditions within the flight envelope, shown in 4.8. Again, only one gain matrix is used

in the analysis. Calculating the gain matrix at every point would be appropriate if a gain

scheduling approach were to be studied.

Figure 4.8: Phase margin within the flight envelope using the cruise condition gain matrix

The flight condition sweep shows phase margin does not deteriorate significantly as

the aircraft moves away from the design point. The maximum reduction in phase margin

over the flight envelope is one degree. The vast majority of the flight envelope has a phase

margin of nearly 60 degrees, only degrading slightly at higher Mach numbers. This is very

close to the guaranteed phase margin suggested by LQR control theory. The analysis of

this section shows that gain scheduling is not required to maintain phase margin across the

flight envelope. This, however, does not guarantee that closed-loop response will also be

preserved in the same way. The tracking performance of the designed LQR controller is

analyzed in the following section with respect to the UAV 3100 design mission.
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4.3 Feedback Tracking of the Design Mission

The closed-loop system designed in preceding sections exhibits ideal step response behav-

ior at the cruise point and has sufficient stability margins at the off-design points. Another

goal is to have the controller track the design mission specified in Section 3.5. Figures

4.9 - 4.11 show the tracking performance of the LQR controller in the altitude, speed, and

heading loops while highlighting the tracking error throughout the mission. The control

signal of the LQR controller is added to the trim values for the control vector because the

system is modeled as a perturbation off the initial steady, level, trimmed flight condition.

The equations of motion used in this test include nonlinear angle of attack, therefore this

test will show if the zero angle of attack assumption used to create the gain matrix is good

enough to provide accurate tracking.

Figure 4.9: LQR altitude tracking and tracking error for the design mission

The altitude plot shows an initial climb of 20000 feet and a descent near the end of

a mission. The controller provides accurate tracking throughout the mission. By reducing

the error to zero near the middle of the mission, the controller shows its capability to track

a constant command with zero steady-state error. Small errors of 35 to 45 feet arise when

the controller is fed a ramp reference command. Errors would be smaller for a more casual

maneuver, but this accelerating climb maneuver pushes the engine limits of the aircraft. The
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creation of small errors during the ramp section is to be expected because the design goal

of this controller was to track a constant command with zero steady-state error. Additional

work would be required to design a controller that is able to track a ramp command, mainly

adding a set of integrators to the compensator. The speed tracking loop is shown in the

following figure using Mach number so the speed command changes due to speed of sound

are not visible.

Figure 4.10: LQR Mach number tracking and tracking error for the design mission

Like the altitude plot, the controller provides accurate tracking of Mach number. One

important observation is the non-zero speed error from 2500 to 3300 seconds. At first

glance, this might be attributed to poor controller performance, but this flight segment is

a constant speed descent. The small speed error arises due to the coupling of the V̇ and γ̇

equations of motion. Heading tracking performance is displayed in the final plot.
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Figure 4.11: LQR heading tracking and tracking error for the design mission

Again, the tracking performance in the heading loop is excellent. The maneuvers in the

heading direction are less aggressive than the altitude and speed directions. This can be

seen in the very small heading errors that arise during the ramp commands. This design

mission shows that the magnitude of the steady-state error for a ramp command is directly

a function of the maneuver aggressiveness.

The results shown in this section rely on the closed-loop LQR controller to close

out any tracking errors. The next section investigates the expanded use of the open-loop

equations to reduce the control burden placed on the LQR controller.

4.4 Feedforward Control

The previous sections have discussed the inclusion of the trim control vector to allow

steady, level, trimmed initialization at any point in the flight envelope. This means the

LQR controller only provides control action when the the aircraft deviates from the ini-

tialization point. For the design mission, the aircraft spends most of its time away from

the initial point, with a max deviation of 20000 feet and Mach 0.5. The LQR controller is

responsible for the entire difference. Typically control designers want the feedback con-
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troller to close small tracking errors instead of the entire error. Feedforward control is used

to achieve this behavior. Open-loop control equations exist for this aircraft model and can

be used to provide an estimate of the control vector required to track the reference com-

mand vector. The interaction between the feedforward and feedback controllers is shown

in block diagram form as

Figure 4.12: Combined feedforward, feedback control architecture

The dynamic equations of motion without angle of attack can be analytically solved

for open-loop control equations as a function of aircraft state and V̇, γ̇, ψ̇. The equations

4.4 allow for the creation of a feedforward control signal that will drive the aircraft near

the intended reference value. By adding the feedforward command to the LQR control, the

LQR controller should only work on the small modeling discrepancies that arise due to the

zero angle of attack assumption present in the analytic control equations. In practice, the

two controllers track the reference command, but exhibit a fighting behavior. This is not an

acceptable response for the controller and more work must be done for the controllers to

work together to track the reference command signal.
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4.4.1 State Projection

The open-loop commands generated from equations 4.4 are a good estimate of the control

vector that is required to reach the desired state. Since this estimate is available, it can

be used to minimize the effort of the closed-loop controller. The remaining problem to be

addressed is how to create a control architecture where the closed-loop component works

in conjunction with the open-loop estimate. The LQR controller has no knowledge of the

open-loop component, so it not surprising that disturbances in the control vector cause

problems in the controller response. A solution proposed for this design problem is called

state projection. The general idea is to project the effect the open-loop control vector will

have on the aircraft model states and use that projection to reduce the error vector that is

input to LQR for regulation.

State projection is applied to the model by running the open-loop control vector

through the zero angle of attack equations of motion. The outputs of this operation are

the projected aircraft states assuming the open-loop control vector is held constant during

one model time step. The projected states can then be used to feed the LQR controller

to clean up any errors between the projection and the reference vector. Finally, the open

and closed-loop control vectors are added to create the vector of T , L, and φ that is sent

to the aircraft equations of motion that include non-linear angle of attack dynamics. The

combined controller is a form of cascade control, where the outputs of one controller affect

the behavior of another controller. The control architecture exists in block diagram form as

Figure 4.13: Control architecture with state projection
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The effects of feedforward control with state projection can be examined by compar-

ing the control effort exercised by the feedforward and closed-loop controllers over the

course of the design mission. The following sections investigate the differences in track-

ing performance using the feedforward controller with state projection compared with the

LQR controller alone. The distribution of control effort will also be compared to show the

reduced control burden placed on the closed-loop controller.

4.5 Feedforward, Feedback Tracking of the Design Mis-

sion

The UAV 3100 design mission is used to determine the effectiveness of the inclusion of

feedforward terms. The plots are of a slightly different layout as those in the LQR only

section. Instead of comparing the actual aircraft state with the commanded reference value,

they compare the state history for each control strategy: LQR control and LQR + feed-

forward control. This exercise is meant to investigate the differences caused in tracking

performance when feedforward control is introduced. Figures 4.14 - 4.16 display the track-

ing performance along with instantaneous tracking error throughout the design mission.

The model used in this exercise includes the same nonlinear angle of attack dynamics as

the previous tracking plots, so the only difference in the model is the inclusion of the open-

loop equations and state projection. The change in error displayed in the plots refers to

the difference in instantaneous tracking error with the addition of feedforward control. A

positive value means the combined controller increased tracking error and negative values

mean it decreased tracking error.
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Figure 4.14: LQR and feedforward altitude tracking and tracking error for the design mis-
sion

Figure 4.15: LQR and feedforward Mach number tracking and tracking error for the design
mission
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Figure 4.16: LQR and feedforward heading tracking and tracking error for the design mis-
sion

All three tracking loops show that the addition of feedforward terms does not signifi-

cantly affect the tracking performance of the controller. This is not a poor result as the track

performance was accurate using LQR alone. The purpose of adding feedforward control is

to minimize the control effort expended by the LQR controller.

Tracking performance may be improved using open-loop equations that include angle

of attack, since these are the equations of motion used in the dynamic model. However,

these equations are not able to be obtained analytically, which is the reason for the zero

angle of attack assumption. A numerical solver would need to be implemented to determine

the control vector associated with the reference commands for the non-linear angle of attack

equations.

4.5.1 Control Effort Comparison

The control effort issued by the LQR controller is predicted to decrease with the addition

of feedforward control. The feedforward component should get much closer to the solution

than only using the initial condition control solution. Figures 4.17 - 4.18 display the control

distribution used to track the design mission using only the closed-loop LQR controller and
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the trim control vector.

Figure 4.17: Open-loop control vector for the design mission without feedforward control

Figure 4.18: Closed-loop control vector for the design mission without feedforward control

The open-loop control values do not change because they are a constant control vector

used to initialize the aircraft at a steady, level, trimmed flight condition. The closed-loop

LQR controller starts by issuing a control vector of zeros at the initialization point, but

quickly has to subtract from thrust and lift to adapt to the nonlinear angle of attack equa-

tions of motion. The LQR control effort used to track the design mission has a maximum
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magnitude of roughly 400 pounds of thrust, 200 pounds of lift, and 20 degrees of bank

angle. Figures 4.19 - 4.20 display the control distribution used to track the design mission

using the combined LQR and feedforward controller. The control vector defined by the

open-loop component will now change over time due to the addition of analytic feedfor-

ward equations.

Figure 4.19: Open-loop control vector for the design mission with feedforward control

Figure 4.20: Closed-loop control vector for the design mission with feedforward control

The component of the control vector issued by the LQR controller is smaller when
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feedforward terms are used. The maximum magnitudes of thrust and bank angle have been

reduced to 60 pounds and three degrees, respectively. The lift command does not show as

much of a decrease as the other two controls. The time history plot of lift shows that it ini-

tially decreases by 100 pounds, then only deviates from that number by about 50 pounds.

The is due to the feedforward control equations using the zero angle of attack assumption.

The feedforward component is almost always overestimating the control vector required to

reach the reference command. This again brings up the idea of using a numerical solver

to determine the control vector required for the non-linear angle of attack equations. But,

without the added complexity of requiring a numerical solver, the control architecture pre-

sented in the section provides accurate tracking of the design mission and the option to

include feedforward control to reduce the control burden placed on the closed-loop LQR

component.

4.6 Automated Gain Scheduling

Traditional control techniques, such as PID control, use gain scheduling in the presence

of a wide array of design points. The UAV 3100 would certainly require gain scheduling

to achieve desired performance over the full flight envelope using a nested PID control

strategy. The gain scheduling process involves tuning the controller at a set of design

points and using interpolation to find an intermediary solution. The set of five design points

used for the UAV 3100 could be sufficient to achieve desired performance across the flight

envelope. The results shown in Sections 4.3 and 4.5 showed the design mission was tracked

accurately using a single set of gains, making gain scheduling unnecessary. However, the

control system designer may desire consistent time domain response characteristics over

the flight envelope, where gain scheduling is likely required. Gain scheduling can be added

to the LQR control methodology developed in this thesis with no additional design burden.

Automated gain scheduling is a good name for this technique because the gain matrix is
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simply recomputed at a variety of flight conditions. The change in the state space matrices

adjust the gain matrix to account for flight condition. There is no limit to the number of

flight conditions at which the gain matrix is recomputed, so there is potential for a higher

density mesh. As an example, the gain matrix is computed at the five design points to show

how the elements change. Figure 4.21 shows the change in the non-zero elements of the

LQR gain matrix (the zero elements remain equal to zero). This plot is understood as a

change in magnitude because it is obtained by dividing each element by its value at the

cruise design point.

Figure 4.21: Variation of LQR gain matrix for five flight conditions points

The 11 non-zero elements of the gain matrix are shown to change over the five flight

conditions in Figure 4.21. The flight conditions shown in this plot are obtained from Table

3.1. The gain matrix elements both increase and decrease in magnitude over the set of

design points. This finding makes sense because the cruise condition, at which the gain

matrix was designed lies in the central region of the flight envelope. There are design

points at both higher and lower speeds. An interesting finding is that none of the gains

change sign at the off-design flight conditions. This makes physical sense because the only
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variables that should change sign are climb angle and heading. Climb angle is set to zero

due to the level initial condition. Heading does not show up in the state space matrices

because the only effect that heading has on the model is the change in north-east position

for the aircraft. A single gain matrix element is investigated for a much larger set of flight

conditions, the full flight envelope, in Figure 4.22.

Figure 4.22: Variation of K2,5 over the aircraft flight envelope

The gain matrix element K2,5 varies from 5 to 35 over the flight envelope. This ele-

ment was investigated because it showed the most significant change in magnitude over the

set of flight conditions. K2,5 is used to weight the effect of the aircraft velocity on the lift

command of the LQR controller. The contour plot shows that the change is almost entirely

a function of Mach number, with the largest changes occurring from Mach 0.1 to 0.3. It is

difficult to determine the exact reasoning for the behavior due to the method that generates

the gain matrix, solving the algebraic Riccati equation. The gain matrix requires the state

matrix, the control matrix, and the three cost function weighting matrices. The effects of

each on the gain matrix is not easily understood. However, it is reasonable that the lift

command should vary with velocity due to the aerodynamic model, the drag polar. Lift is

expressed as lift coefficient CL in this model, which picks up a V 2 term upon obtaining

93



dimensional lift.

The phase margin achieved using automated gain scheduling is shown in Figure 4.23.

The difference between this plot and Figure 4.8 is the flight condition where the gain matrix

is computed. This plot is obtained using the gain matrix consistent with the flight condition,

opposed to using the gain matrix computed at the cruise design point.

Figure 4.23: Variation of phase margin using automated gain scheduling

Phase margin is near the theoretical value of 60 degrees of phase using automated gain

scheduling. There was not much room for improvement since the lowest phase margin

using a single gain matrix was 59.2 degrees. One important difference was introduced

using automated gain scheduling opposed to a single gain matrix. Phase margin degrades

slightly at lower Mach numbers. This degradation is not severe with a minimum value of

54.5 degrees, but it is still important to understand. A probable explanation involves the

character of the R matrix. In preceding sections, it was said that the guaranteed stability

margins for LQR were only guaranteed for a diagonal R matrix. Although one of the

design goals was to achieve a near diagonal matrix, term by term comparison introduces

off-diagonal terms. The change in flight condition has likely made these terms sizable

due to their dependence on the aircraft states and control vector. While this degradation is
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important to discuss, this figure confirms that the closed-loop system will remain stable and

non-oscillatory in the presence of phase shift introduced through modeling uncertainty.

The reason automated gain scheduling is being investigated is to create more consis-

tent response characteristics at the off-design flight conditions. Therefore, it is important

to investigate the change in step response caused by the updated gain matrix. Figures 4.24

- 4.26 show the step response in altitude, speed, and heading at a takeoff flight condition

using the gain matrix designed for the cruise point.

Figure 4.24: Altitude step response and control effort with cruise gain matrix and initial
condition: M = 0.2, h = 0 feet
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Figure 4.25: Velocity step response and control effort with cruise gain matrix and initial
condition: M = 0.2, h = 0 feet

Figure 4.26: Heading step response and control effort with cruise gain matrix and initial
condition: M = 0.2, h = 0 feet

One of the three tracking loops shows good performance using the cruise point gain

matrix at the off-design point. The original design goal of the closed-loop system was

to achieve a rise time of two seconds. The velocity tracking loop has a rise time of 1.95
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seconds, which is nearly identical to the cruise point. The heading tracking loops shows un-

dershoot instead of overshoot in the response to the step command, which is a characteristic

of an overdamped response. The altitude tracking loop shows the opposite performance as

the heading tracking loop. It has a response that is far too oscillatory, with an overshoot of

nearly 30 percent. This underdamped altitude response has a settling time that went beyond

the scope of the original step input test, so the end time had to be increased to 20 seconds.

The response of the system using the cruise point gain matrix is fine for tracking the design

mission, shown in Section 4.3. However, the step response is quite different than the orig-

inal design goal for the system. The effects of automated gain scheduling are analyzed in

Figures 4.27 - 4.29 by using the gain matrix consistent with the flight condition, instead of

the cruise point gain matrix.

Figure 4.27: Altitude step response and control effort with cruise automated gain schedul-
ing and initial condition: M = 0.2, h = 0 feet
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Figure 4.28: Velocity step response and control effort with automated gain scheduling and
initial condition: M = 0.2, h = 0 feet

Figure 4.29: Heading step response and control effort with automated gain scheduling and
initial condition: M = 0.2, h = 0 feet

The use of automated gain scheduling improves the step response performance in the

altitude and heading tracking loops. The velocity response is very close to using the cruise

point gain matrix. The heading response is changed from the overdamped response shown
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in Figure 4.26 to a slightly underdamped response showing around four percent overshoot.

The altitude response shows the most improvement of the three tracking loops. While the

rise time is still higher than the design goal of two seconds, the response is significantly

less oscillatory with an overshoot of about eight percent. This improvement in response

shows that, while automated gain scheduling may not guarantee that the step response is

identical everywhere in the flight envelope, it does a good job making the response more

consistent considering the system was only tuned at one design point.

The control system designer could gain schedule, in the more traditional sense of the

method, by tuning the controller via the α weights at the set of five reference flight con-

ditions. The tuning could then be paired with this automated method by interpolating the

set of α gains depending on flight condition. This process would still have a significantly

lower design burden than tuning a set of nested PID control loops. Since limiting user de-

sign burden is one of the main goals of this thesis, the automated method presented here is

valuable because it shows a fairly consistent response with no user design requirement and

allows for fine tuning by implementing traditional gain scheduling techniques on a small

set of gains.
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5. Conclusions and Recommendations

for Future Work

5.1 Conclusions

The focus of this project was to develop a closed-loop guidance controller tailored to con-

structive simulation applications. The reduced order aircraft model is the target of this work

as it is well suited to the constructive simulation studies discussed in Chapter 1, weighing

a balance of modeling fidelity and run-time performance. The ideal solution for the guid-

ance controller is to develop a controller that requires no user tuning to achieve sufficient

tracking performance of the design mission, but allows user tuning if finer control over the

response is desired. The LQR guidance controller developed satisfies this requirement. The

controller was shown to track the reference command in all three tracking loops using unity

gains for the α terms. Later, the controller was tuned using a trial-and-error process to meet

the time domain step response metric, rise time. An additional goal for the controller was

to guarantee the closed-loop system remains stable throughout the flight envelope. Widely

used MIMO stability margin methods were taken from the literature and applied to the re-

duced order aircraft model. Though this analysis, stability was maintained over the flight

envelope using a single gain matrix obtained at the cruise point. This means the closed-loop

system is both robust and tunable, which are the two most critical objectives of this work.
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The development of a controller that satisfies these objectives can be categorized into

four categories,

1. State Space Modeling

2. Cost Function Design

3. Inclusion of Feedforward Control

4. Automated Gain Scheduling

The creation of a state space model is a necessary condition for implementing an LQR con-

trol strategy. For the nonlinear equations of motion for the reduced order aircraft model,

the equations were linearized about a cruise condition to allow for state space represen-

tation. The linearization was achieved using a first order Taylor series expansion of the

equations of motion. Engineering judgment was used to eliminate terms in the state space

model based on the data available and the physical meaning of the terms. The steady, level,

trimmed flight condition was then applied to create a relatively compact state space model

that is easily understood by the user.

A methodology was developed to reduce the complexity of the LQR cost function.

Automated term-by-term comparison was used to implicitly define the cost function weights

as opposed to directly designing the elements of the LQR weighting matrices. This method

created a systematic way to include specific equations in the cost function and weighting

them on a per equation basis by way of the α weights. Further engineering judgment was

used to reduce the number of weights from thirteen to six – two for each tracking loop –

making the cost function weighting tractable. It also allowed for tuning the controller using

a trial-and-error method based on time domain step response metrics.

The high distribution of control effort placed on the LQR controller was addressed

by including the analytic open-loop control equations in the form of a feedforward con-

troller. This created a feedforward, feedback control architecture that placed the bulk of
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control effort on the the feedforward component. The errors accrued due to the modeling

assumptions were left to the LQR controller. The combined system tracked the reference

commands with zero steady-state error.

Finally, to address concerns of unintended controller response at off-design flight con-

ditions, a method to automatically schedule gains according to flight conditions was de-

veloped. The dependence of the LQR controller on the state space model allows the gain

matrix to be updated according to flight conditions. This is called automated gain schedul-

ing because it is provided at no additional design burden to the user. The results showed

that using automated gain scheduling performed much closer to the time domain design

goals at off-design points than using a single gain matrix.

5.2 Future Work

The controller developed in this thesis could currently be deployed to the constructive sim-

ulation applications highlighted in its design goals. However, multiple refinements have

emerged during this research and have potential to make improvements on the controller.

If work were to be continued on this topic, six important points of interest would be:

1. Compensator Design: One design goal for the developed LQR controller was to track

the reference command vector with zero steady-state error for a constant command. The

design mission tracking results show that the controller achieves this design goal, only

accruing error as the reference command vector changes. While the accrued error is small

and bounded for a ramp command, the user may desire tracking the ramp commands of

the design mission with zero steady-state error. Achieving this new design goal requires

development of the compensator of the controller. Currently, the compensator contains a

set of three integrators responsible for closing steady-state error on a constant command,

one for each tracking loop. Tracking the ramp command with zero steady-state error would
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require some adjustment of the compensator design: the addition of three more integrators.

Figure 5.1 shows the updated controller architecture required to track a ramp command.

Figure 5.1: LQR controller architecture with ramp compensation

The addition of three integrators in the compensator would also show up as three new

control equations in the closed loop state space model. The cost function design method-

ology does not currently account for these extra integrator states. It is probable that the

number of α weights rise to 19 with this change. Although this proposed design change

has not been extensively tested, some results do exist as a proof of concept. Figures 5.2

and 5.3 show the ramp command tracking improvement as a result of the updated compen-

sation. The example application is the altitude tracking loop of the reduced order aircraft

model. The controller is tuned to have a slower response to highlight the improvement of

the updated compensator.
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Figure 5.2: Tracking performance using original compensator

Figure 5.3: Tracking performance using new compensator

As expected, the steady-state error for the ramp command is regulated to zero with

the addition of three compensator integral states. The design mission tracking performance

would surely be improved with this change. But, the design mission is tracked accurately

without these integral states. Therefore, the control system designer would have to decide
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if the improved ramp tracking is worth increasing the order of the closed-loop system by

three.

2. Feedforward Controller Development: The feedforward controller used for the re-

duced order aircraft model utilize the control equations for the zero angle of attack assump-

tion. These equations were used because they are an analytic expression for the control

vector, meaning no numerical solver is required. However, the more accurate equations

of motion, the ones used in the model plant, include angle of attack. This difference in

modeling assumption creates an inconsistency in the model. The implication of this incon-

sistency emerged as the control distribution was analyzed for the combined feedforward,

feedback system. The feedforward control vector consistently overestimated the thrust and

lift required to achieve the reference command vector. An improvement to the closed-loop

system would be to use the feedforward control vector consistent with the equations of

motion in the plant of the model. The drawback of this approach is the associated control

equations for the equations of motion with angle of attack are not analytically solvable.

Therefore, a numerical solver must be implemented to compute the consistent control vec-

tor. The Newton-Raphson method is a suitable choice of an iterator that will converge on

the correct control vector. This choice is made because the method requires knowledge of

the function and its derivatives, both of which are readily available. The Newton-Raphson

method is known to converge very quickly, so it may be enough to run a single iteration

for each time step of the model. The problem with using a numerical solver is the solu-

tion may diverge. This work has shown that the zero angle of attack analytic equations are

good enough to track the design mission accurately. Therefore, the control vector should

be reset using those analytic equation in the case of divergence. The use of the equations of

motion with angle of attack, together with the Newton-Raphson numerical solver, should

provide a much better approximation of the required feedforward control vector. This im-

provement has potential to further decrease the control effort required by the closed-loop

105



LQR controller. It is also likely that for application of the model in the terminal area, the

resolving the correct angle of attack could be of greater importance than for up-and-away

flight simulation.

3. Integrator Wind-up: The compensator designed for the closed-loop system included

three integrators to ensure zero steady-state error in the three tracking loops. Whenever

integrators are included in the controller, a discussion on integrator wind-up must occur.

Near the design points of the controller, integrator wind-up is not likely an issue because

the performance limits of the aircraft are not tested. At off-design points or in aggressive

maneuvers, the controller may issue a control vector that is not achievable due to aerody-

namic or engine performance limits. The implication is the error will not be closed and

the integrator state will keep rising (wind-up), which can eventually destabilize the system.

Three possible solutions to the integral wind-up problem are limiting the controller output,

limiting the integral state to produce a reasonable output, or resetting the integral state dur-

ing control saturation. A controller output limit makes sense for the reduced order aircraft

model because the engine power limits are available via a table lookup and the aerodynamic

limits are available through the drag polar and angle of attack curve fits. Adding protection

against integral wind-up would give further merit to the stability robustness claims made in

this thesis.

4. Additional Guidance Modes: The design mission for the reduced order aircraft model

consisted of smoothed time vectors of Mach, altitude, and heading. This guidance mode

was created to simplify the reference commands to only include one position command

(altitude). It is certainly feasible to re-design the controller to track speed and position

data required for trajectory tracking or waypoint following. Another approach would be to

process the trajectory or waypoint data to generate equivalent speed, altitude, and heading

commands to ensure accurate tracking. With either method, adding more guidance modes
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that the controller can accept would make this guidance controller better suited for the con-

structive simulation studies that motivated its creation.

5. Gain Optimization: The response design goal for the closed-loop system was to achieve

a rise time of two seconds in response to a step command. This design goal is one of the

four time domain step response performance metrics discussed; the others are peak time,

settling time, and overshoot percentage. It is not possible to satisfy design goals of mul-

tiple performance metrics using only two gains for each feedback loop. Introducing more

gains, however, makes the problem less tractable for the system designer. A solution to

this problem would be the use of an optimization routine. One example method would be

a gradient based method. There is no function that can be evaluated in this case, meaning

the values would be experimentally determined using the step response of the system. The

gradient would then be numerically calculated with respect to each gain using a finite dif-

ference scheme. This method would make the tuning process easier on the user because

they would only need to define the time domain performance metrics, instead of tuning the

gains via trial-and-error. Writing an optimization scheme to automatically select all thir-

teen α parameters is a very interesting possibility that may be pursued in the future.

6. Case Studies: The results provided in this thesis were obtained for a fictitious fixed

wing UAV with a 3100 pound gross weight. One example platform does not begin to cap-

ture the variations of aircraft size and performance present within the class of fixed wing

aircraft. Case studies investigating propeller driven transport aircraft (Ilyushin IL-14) or

agile fighter aircraft capable of supersonic flight (General Dynamics F-16) would begin to

broaden the scope of this research to a wider range of fixed wing aircraft.

The main design goals for the controllers developed in this thesis were to meet the

needs of constructive simulation; this generally translates to maximizing the run-time per-
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formance while minimizing required user input to instantiate a model. Refinements such

as inclusion of the feedforward controller appear to reduce the required user input while

marginally hindering run-time performance. However, including the feedforward signal

means that the LQR feedback controller works on a much smaller error, making the gain

scheduling less important for tracking so long as stability is maintained. Improvements,

such as this one, have the potential to improve the design goals for constructive simulation

activities and overall tracking performance of the system.
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