Wright State University CORE Scholar

Browse all Theses and Dissertations

Theses and Dissertations

2021

Characterization of Inhbb, Heatr5a, & Cyp2s1 Expression in Dorsal Root Ganglia by In-Situ Hybridization

Joshua D. Krech Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

Part of the Anatomy Commons

Repository Citation

Krech, Joshua D., "Characterization of Inhbb, Heatr5a, & Cyp2s1 Expression in Dorsal Root Ganglia by In-Situ Hybridization" (2021). *Browse all Theses and Dissertations*. 2540. https://corescholar.libraries.wright.edu/etd_all/2540

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

CHARACTERIZATION OF *Inhbb*, *Heatr5a*, & *Cyp2s1* EXPRESSION IN DORSAL ROOT GANGLIA BY IN-SITU HYBRIDIZATION

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

By

JOSHUA D. KRECH

B.S., Ohio University, 2019

2021

Wright State University

WRIGHT STATE UNIVERSITY

GRADUATE SCHOOL

April 22, 2021

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Joshua D Krech ENTITLED Characterization of *Inhbb*, *Heatr5a*, & *Cyp2s1* Expression in Dorsal Root Ganglia by In Situ Hybridization BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science.

> David R. Ladle, Ph.D. Thesis Director

Eric S. Bennett, Ph.D. Department Chair Department of Neuroscience, Cell Biology and Physiology

Committee on Final Examination

David R. Ladle, Ph.D.

Patrick M. Sonner, Ph.D.

Mark M. Rich, M.D., Ph.D.

Barry Milligan, Ph.D. Vice Provost for Academic Affairs Dean of the Graduate School

ABSTRACT

Krech, Joshua D. M.S. Department of Neuroscience, Cell Biology and Physiology, Wright State University, 2021. Characterization of *Inhbb*, *Heatr5a*, & *Cyp2s1* Expression in Dorsal Root Ganglia by In Situ Hybridization.

Multiple studies have shown that gene expression changes occur in sensory neurons after peripheral nerve injury (PNI). These expression changes include many genes that are turned on specifically in response to injury, but much less is know about expression changes in stable genetic markers of particular sensory neuron populations. This study characterized the expression of three markers of proprioceptive neurons *Inhbb*, *Heatr5a*, *Cyp2s1* in lumbar dorsal root ganglion (DRG) neurons in intact animals and after PNI. To perform these experiments, we subcloned segments of the coding sequences of these genes and generated DIG-labeled riboprobes. Control experiments demonstrated the validity of these probes for these genes on brain tissue from adult mice. Then we examined expression in the lumbar L4-L6 DRGs from adult mice that had undergone sciatic nerve transection or sham surgeries. Our results are preliminary but suggest that overall expression patterns did not change with each of the genes when comparing control and injured tissue. Nevertheless, further investigation is needed to make any conclusive results.

TABLE OF CONTENTS

I.	IN	TRODUCTION	1
	a.	Proprioceptor Function	1
	b.	Development of Proprioceptors	1
	c.	Peripheral Nerve Injury	3
	d.	Mechanisms of Peripheral Nerve Injury	3
	e.	Peripheral Nerve Regeneration	5
	f.	Monosynaptic Reflex	7
	g.	Transection vs Crush Peripheral Nerve Injury Studies	8
II.	M	ATERIALS AND METHODS	10
	a.	Animals	10
	b.	Tissue Samples	10
	c.	Creating RNA Probes	11
	d.	In-Situ Hybridization	12
	e.	Analysis	13
III.	RE	ESULTS	15
	a.	Cloning	15
	b.	Control Tissue	16
	c.	Transection-Injured Tissue	18
IV.	DI	SCUSSION	59

	a. Inhbb	59
	b. <i>Heatr5a</i>	60
	c. <i>Cyp2s1</i>	61
V.	REFERENCES	62

LIST OF FIGURES

Figure		Page
1.	Full Inhbb cDNA Sequence	19
2.	Full <i>Heatr5a</i> cDNA Sequence	20
3.	Full Cyp2s1 cDNA Sequence	21
4.	Subcloned Inhbb confirmation Gel	23
5.	Inhbb miniprep confirmation Gel	24
6.	Linearized Inhbb confirmation Gel	25
7.	Inhbb riboprobe confirmation Gel	26
8.	Inhbb pCR TM II Vector	27
9.	Subcloned <i>Heatr5a</i> confirmation Gel	28
10.	<i>Heatr5a</i> miniprep confirmation Gel	29
11.	Linearized <i>Heatr5a</i> confirmation Gel	30
12.	<i>Heatr5a</i> riboprobe confirmation Gel	31
13.	Heatr5a pCR ^{тм} II Vector	32
14.	Subcloned <i>Cyp2s1</i> confirmation Gel	32
15.	<i>Cyp2s1</i> miniprep confirmation Gel	33
16.	Linearized Cyp2s1 confirmation Gel	34
17.	<i>Cyp2s1</i> riboprobe confirmation Gel	35
18.	Cyp2s1 pCR TM II Vector	36
19.	Allen Brain Atlas expression patterns of Inhbb	37
20.	Brain Tissue expression patterns of Inhbb in 93-week-old mice	38
21.	Allen Brain Atlas expression patterns of Heatr5a	39

22.	Brain Tissue expression patterns of <i>Heatr5a</i> in 93-week-old mice	40
23.	Allen Brain Atlas expression patterns of Cyp2s1	41
24.	Brain Tissue expression patterns of <i>Cyp2s1</i> in 93-week-old mice	42
25.	Inhbb Control tissue expression	43
26.	Inhbb Transection-Injured tissue expression	44
27.	Heatr5a Control tissue expression	45
28.	Heatr5a Transection-Injured tissue expression	46
29.	Cyp2s1 Control tissue expression	47
30.	Cyp2s1 Transection-Injured tissue expression	48
31.	PValb Control tissue expression	49
32.	PValb Transection-Injured tissue expression	50
33.	Inhbb Right vs Left DRG expression in Control Tissue	51
34.	Inhbb Right vs Left DRG expression in Transection-Injured Tissue	52
35.	Heatr5a Right vs Left DRG expression in Control Tissue	53
36.	Heatr5a Right vs Left DRG expression in Transection-Injured Tissue-	54
37.	Cyp2s1 Right vs Left DRG expression in Control Tissue	55
38.	Cyp2s1 Right vs Left DRG expression in Transection-Injured Tissue	-56
39.	PValb Right vs Left DRG expression in Control Tissue	57
40.	PValb Right vs Left DRG expression in Transection-Injured Tissue	58

I. Introduction

Proprioceptor Function

Proprioceptors are a unique collection of sensory neurons which are used to detect the stretch, position, movement, and force of our muscular system. These proprioceptive sensory neurons (PSN) are directly related to coordination and proper movement of our extremities (Proske & Gandevia, 2012). The constant feedback from proprioceptive fibers provides the foundation needed to perceive a three-dimensional environment.

Proprioception is carried out by two separate mechanoreceptors, muscle spindle (MS) and Golgi tendon organ (GTO) afferent fibers. MSs are distinctive skeletal muscle fibers which are innervated by group Ia and group II afferents, which detect the length of stretch within a muscle (Wu et al., 2019). GTOs are located within the tendonous region of the muscle and are innervated by group Ib afferents, which detect tensile force (Wu et al., 2019). Together these mechanisms communicate vital information for the body's perception of movement.

Development of Proprioceptors

MS and GTO neurons have cell bodies located in the dorsal root ganglion (DRG). The cell bodies store the genetic information in the nucleus which encodes for the functionality and morphology expressed by the neuron (Lallemend & Ernfors, 2012). Genetic information can be related to the functionality of the neuron by looking at the lineage and genetic markers during neurogenesis within the DRG. There are two genetic lineages with sensory neurons. These lineages can be divided into the Tkb+/Shox2+ and TrkC+/Rx3+ gene lines (Kramer et al., 2006; Lallemend & Ernfors, 2012; Levanon et al., 2002; Ma et al., 1999). The TkB+/Shox2+ lineage consists of the Meissner and Pacinian Corpuscle sensory afferents which are responsible for light tactile touch and deep pressure sensation. Together these afferents are classified as rapidly adapting- low threshold mechanoreceptors (RA-LTMR) (Levanon et al., 2002). The TrkC+/Rx3+ lineage consists of the Merkel cells and PSNs like the GTOs and MSs mentioned above. Merkel cells are responsible for the shape and form of objects felt, and PSNs are previously mentioned to be subdivided into GTO and MS functions (Levanon et al., 2002). These are classified as slow adapting-low threshold mechanoreceptors (SA-LTMRs). Additionally, SA-LTMR that are TrkC+/Rx3+ and show expression of parvalbumin (PV+) are further defined as special mechanoreceptors called proprioceptors. This differentiates them from other SA-LTMRs which are PV negative (Levanon et al., 2002; Wu et al., 2019).

During embryogenesis proprioceptors are further differentiated into MS and GTOs by genetic markers that are expressed in this cell lineage beginning at embryonic day e12.5 in mice. Intrinsic transcription factors and extrinsic receptor sensory factors play a vital role in differentiating expression in stages throughout development. Proprioceptors reach their peripheral targets through day e17.5 (Wu et al., 2019). These genetic markers are classified as early, late, and transient markers depending on the stage at which they are first expressed during embryogenic development. Early markers are expressed from e12.5 and before the PSNs have reached their peripheral nerve endings, transient markers are expressed during innervation around e14.5, and the late markers are expressed after e17.5 and even during post-natal development (Wu et al., 2019). In this

study, we will focus on three genes: *Inhbb*, *Heatr5a*, and *Cyp2s1* which are classified as late markers and compare their expression in relation to peripheral nerve injury.

Peripheral Nerve Injury

In this study we must define what peripheral nerve injury (PNI) entails. We are focusing on specific PNIs induced by kinetic energy. Peripheral injuries induced by kinetic energy can be classified as penetrating trauma wounds (Robinson, 2000). These can occur by several means such as work-related injuries, falls, gun-shot wounds, or any other incident with traumatic penetrating trauma (Noble et al., 1998; Kouyoumdjian, 2006; Missios et al., 2014; Kouyoumdjian et al., 2017). PNIs can go undiagnosed for several days due to other serious injuries needing more immediate attention (Noble et al, 1998; Robinson, 2000). PNI which are specifically induced by kinetic energy have been reported in about 1% of motor vehicle accidents and in 2% of patients in level 1 trauma centers (Noble et al, 1998). In this study we are excluding PNIs which are induced by chemical, hypoxic, thermal, or any diseased state which may cause nerve degeneration.

Mechanisms of Peripheral Nerve Injury

Peripheral nerve injuries can result in considerable neuronal damage and create loss of motor and sensory function (Navarro et al., 2007). PNIs can be broken into several stages. First is the acute injury which occurs during the onset of the trauma. During the acute injury stage where the axon is severed there is an immediate influx of extracellular sodium and calcium cations (Ziv and Spira, 1993). The positively charged sodium and calcium creates high frequency signals inducing action potentials that make their way to the neuron cell body. These high frequency signals inform the soma that the plasma membrane is damaged by the induced trauma (Navarro et al., 2007; Raivich and Makwana, 2007). Schwann cells covering the axon are also damaged and send intracellular signals up the axon in a retrograde fashion back to the soma of the neuron. This retrograde transport of intracellular components from the Schwann cell is believed to initiate the degeneration of the axon (Ziv and Spira, 1993; George et al., 1995). The degeneration of the axon is believed to begin around 24-48 hours after onset of the injury in rodents (Tsao et al., 1999). Humans on the other hand take much longer and this depends on the location of the injury in relation to the soma. Depending on the location of the injury whether proximally or distally to the soma, axon degeneration in humans can be delayed up to 7 days after injury (Chaudhry & Cornblath, 1992).

Initially Schwann cells will produce macrophages which release cytokines that act as pro-inflammatory mechanisms. Eventually these macrophages will then release antiinflammatory cytokines which promote the healing and regeneration process (Gaudet et al., 2011; Chen et al., 2015). These macrophages clean up necrotic tissue and debris around the area of the injury during the first week of recovery in humans (Gaudet et al., 2011) The Schwann cells also produce neurotrophins which promotes neuronal survival and regeneration (Scheib and Höke, 2013). The neurotrophins do this by retrogradely traveling up the axon to the soma and promote phosphorylation cascades. These phosphorylation cascades will alter expression patterns of up to 60 proteins (Komori et al., 2007). Cellular debris and axonal injured tissue leftover will produce an increase in fatty acids. This will down-regulate some of these proteins involved with lipid biosynthesis. Some proteins will be upregulated like antioxidant and metabolic proteins because they will protect the injured neuron from oxidative degradation (Fu and Gordon,

1997; Komori et al., 2007). Overall, the acute phase of PNIs consists of the onset of injury, inflammatory response, neuronal repair, and survival. However, after the immune response subsides the healing and regeneration phase can be prolonged for months after the initial injury (Gaudet et al., 2011; Chen et al., 2015).

Peripheral Nerve Regeneration

During the regeneration phase of the axon, there is time sensitive interactions needed for reinnervation, this is known as the regrowth phase (Fu and Gordon, 1997; Komori et al., 2007) Significant reinnervation of axons to target tissues in humans are known to last between 10-12 months, compared to 35 days in adult mice (Ma et al., 2011). This time sensitive regrowth phase must occur before the degradation of the basal lamina in Schwann cells, loss of innervation causing muscle atrophy, and prior to an increase in the growth-inhibiting chondroitin sulfate proteoglycans (Zuo et al., 1998; Scheib and Höke, 2013).

Due to the time sensitive nature of the regrowth phase, studies have focused on increasing the growth rate which is between 1-3mm/day (Sunderland, 1947; Verdú and Navarro, 1997). Current studies focus on electrical stimulation and exercise. These studies have shown to help accelerate the regeneration of motor and sensory fibers (Elzinga et al., 2015; Gordon and English, 2016). However, patients still exhibited some disability and motor deficits even though axon regrowth was accelerated (Wong et al., 2015). The plasticity helps with gross motor components but the effect on fine motor skills is maladaptive, leading to neuropathy and other issues (Navarro et al., 2007). Studies also show that smaller diameter axons grow faster and more efficiently (Kang and Lichtman, 2013). These small-diameter axons include free-nerve endings in the skin

which are responsible for tactile sensation. As these smaller diameter afferents reinnervate with their nerve endings they simultaneously regain function (Verdú and Navarro, 1997). Compared to the larger diameter axons, which include the MS and GTOs, these smaller diameter afferents do not have specific targets. This is believed to be the reason why functionality is not fully gained in larger diameter axons because of their requirement to contact unique nerve ending targets to successfully transduce the appropriate sensory signals (Verdú and Navarro, 1997; Vogelaar et al., 2004).

When studying sciatic nerve crush injuries in adult mice, many large diameter afferents took up to 21 days after the injury to reinnervate plantar muscles in the distal foot (Verdú and Navarro, 1997). Although, even after axons reached their end point, axon projection density can increase for more than an additional 20 days. This means that it takes several weeks for specialized organs such as MS and GTOs to reinnervate with their end targets, which indicates that full regrowth of these afferents can extend beyond the critical period (Verdú and Navarro, 1997; Ma et al., 2011). Importantly, extra recovery time did not show any increased functional gains beyond those obtained during the critical period (Wang et al., 2015).

Focusing on the positive aspects of peripheral neuronal regeneration and limiting negative effects is an ongoing endeavor, and "an important direction for ongoing research is the development of therapeutic strategies that enhance axonal regeneration, promote selective target reinnervation, but are also able to modulate central nervous system reorganization, amplifying those positive adaptive changes that help to improve functional recovery but also diminishing undesirable consequences." (Navarro et al.,

2007). Reviewing mechanisms like the monosynaptic reflex will provide better understanding of the role's proprioceptors play in addition to their sensory inputs.

Monosynaptic Reflex

The proprioceptive feedback mechanism communicates in multiple ways with our central nervous system. Mentioned previously were ways in which these sensory fibers convey ongoing stimulus to help with the bodies sense in space as well as balance and posture (Zimny, 1988). An important element of this sensation is the monosynaptic reflex. When the muscle is stretched, MSs are activated and send sensory information back to the spinal cord. Here the neuron immediately synapses with the motor neuron soma and stimulates an action potential from the excitatory stimulus. This generates contraction of the same muscle that was stretched. At the same time, the sensory neuron synapses with an inhibitory interneuron within the spinal cord that synapses with the motor neuron success. So, the overall effect of MS stimulation is to contract the same muscle that was stretched while relaxing the muscle in opposition to it simultaneously. This process happens very fast, on the order of 10s of milliseconds since the signal does not travel up to the brain before the motor response.

In peripheral nerve regeneration studies, the monosynaptic reflex has shown to fail to return to normal once the PNI and regeneration phase has occurred. This occurs even though the sensory and motor neurons reinnervate their ending targets (Bullinger et al., 2011; Prather et al., 2011; Verdú & Navarro, 1997; Wang et al., 2015). The PNI causes a reduction of synapses from the proprioceptive sensory afferents onto motor neurons within the spinal cord resulting in perpetual alterations of the monosynaptic

reflex function (Schultz et al., 2017; Bullinger et al., 2011). However, reflex abnormalities still exist when the circuitry abnormalities are controlled for (Vincent et al., 2015).

Transection vs Crush Peripheral Nerve Injury Studies

Major differences between transection and crush procedures affect the outcome of the peripheral nerve recovery. During crush injuries the axon and basal lamina are still intact, and the neurons are still capable of following the same path back to the receptor end points (Hyde & Scott, 1983; Robinson, 2000). However, during transection injuries the axons and basal lamina are severed. This leaves neurons more vulnerable to innervating the inappropriate end receptors during reinnervation (Banks & Barker, 1989; Collins et al., 1986) Reviewing these studies can possibly lead to understanding the abnormalities observed with the monosynaptic reflex after peripheral nerve injury (Prather et al., 2011).

Studies have shown that neurons with non-specific binding during reinnervation tend to show physiological characteristics of the new receptors they innervate (Collins et al., 1986). So, neurons that originally innervate GTOs, could reinnervate with a new receptor ending that performs a different function. Meaning if the original GTO neuron reinnervates a MS fiber, that neuron will act as a MS sensory afferent and send information regarding muscle stretch (Banks & Barker, 1989; Collins et al., 1986). Once non-specific binding occurs during reinnervation, the monosynaptic reflex shows abnormalities causing incorrect feedback signals within the spinal cord (Pierrot-

8

Deseilligny et al., 1981). The original synapse is retained within the spinal cord, but with

new peripheral innervation to a different nerve ending, the monosynaptic reflex fails (Prather et al., 2011). Performing peripheral nerve crush injuries and observing the regeneration results, showing monosynaptic abnormalities, indicated that there was more occurring than just non-specific binding caused by transection (Prather et al., 2011).

Intrinsic factors of PNIs have not been studied in relation to proprioceptor regeneration. Perhaps some combination of altered intrinsic factors could explain why the monosynaptic reflex is lost even if the axon and basal lamina are intact. Reviewing specific genes that are present during peripheral nerve crush injuries could reveal more mechanisms occurring that are not yet known. Genes that are expressed in the adult mouse could be down or upregulated after PNI and could result in changes to the neuron function. Comparing the different types of proprioceptor genes mentioned earlier including the early, transient, and late markers in relation to these PNIs would give insight to the intrinsic factors expressed. This study is focused on the late markers that are shown to be expressed during embryonic day e17.5 and occur post-natal, which includes genes Inhbb, Heatr5a, and Cyp2s1 (Wu et al., 2019).

In order to study the expression of these factors, we began by cloning and creating an anti-sense RNA probe which would detect *Inhbb, Heatr5a* and *Cyp2s1* expression patterns within the L4-L6 lumbar DRGs and brain. By creating these anti-sense RNA probes, we could compare the difference in expression pattern between adult wild type mice and mice who underwent sciatic nerve transection surgery. We observed these expression pattern differences by using in-situ hybridization techniques. Observing these differences, we aspired to understand the intrinsic factors related to PNIs.

II. Materials & Methods

Animals

The experiments performed on all animals abided by the guidelines created by the National Institute of Health and approved by the Institutional Animal Care and Use Committee at Wright State University. In this study, seven wild type mice (52.A-F & 9.A) were used. These mice were euthanized on postnatal day 93, in preparation for in-situ hybridization. This was to test for the anti-sense RNA probes *Inhbb, Heatr5a, and Cyp2s1*. Two of the mice (52.A,52. F) underwent sham surgery consisting of the exposal of the sciatic nerve without sciatic nerve damage. Four of the mice (52.B-E) underwent sciatic nerve transection surgery. All mice were between 12-13 weeks old during the time of surgery. These surgeries consisted of exposing and in the case of the transected mice severing the left sciatic nerve. The mice (9.A) did not undergo transection or sham surgery but instead was used as a control showing the expression of the anti-sense RNA probes in the brain tissue using in-situ hybridization.

Tissue Samples

After euthanasia, the mice were fixed in 4% paraformaldehyde (PFA). Dissection was performed exposing the vertebral column away from the rest of the body. The tissue was then stored in PFA for 24 hours, washed with PBS 3 times for 5-minute intervals, and then stored in 30% sucrose overnight. Dissection of the L4, L5, and L6 lumbar DRGs were then performed from a posterior approach. These DRGs were then frozen in a

mounting compound in a -80°C freezer until ready for the cryostat. The samples were cut using the cryostat at 16 µm thickness and placed onto individual slides. The slides were then stored at -80°C until ready for in-situ hybridization. Control tissue consisted of the parallel DRGs associated with the L4, L5, and L6 DRGs on the right side, since the left side underwent the transection or sham surgery.

Creating RNA Probes

Anti-sense RNA probes were created using subclones from full length cDNA. Novel primers were used to amplify between 500-900 base pairs unique to the specific cDNA sequences. Some of the primer sequences were taken from Wu, et al. (2019). Primer sequences consisted of: *Inhbb*- CCCTGACTTGTCCCAGGTTC forward primer, and TACGTGTGTCCAGAAGTGGC reverse primer; *Heatr5a*-

GACGGAGCACAAGAACCTGA forward primer, and

CAGATTGGGCCTCGGTACTC reverse primer; Cyp2s1-

ATTCACCCTGCTCGCTCTAC forward primer, and ACGCTTCCAAACCTCAGGTC reverse primer. Polymerase chain reaction (PCR) experiments were performed using these primers to amplify the unique region on the cDNA. PCR products were then ligated with TA-cloning pCRTMII Vectors. PCR results were confirmed with gel electrophoresis on 1% agarose gel and compared to a 100 base pair ladder. The subcloned plasmid was then transformed using competent cells and grown on an Ampicillin plate. White colonies were selected and grown up using LB broth and Kanamycin in a liquid culture. The liquid cultures were spun down and used to create a purified plasmid by miniprep. The purified plasmid was confirmed using gel electrophoresis on a 1% agarose gel and compared to a 1Kb ladder. Orientation was confirmed using genetic sequencing (GeneWiz). The

subcloned plasmid was then linearized, this was also confirmed using gel electrophoresis on a 1% agarose gel and compared to a 1Kb ladder. In the process of linearization, the subcloned plasmid was purified by using phenol/chloroform/isoamyl alcohol extraction.

Lastly, the linearized subclone was used to create a digoxigenin-labeled riboprobe by using SP6/T7 DIG labeling mixture. This DIG labeled probe was confirmed using gel electrophoresis and compared to a 100 base pair ladder. Concentrations and purity of all products were recorded using a spectrophotometric Nanodrop Machine (Thermo Scientific). The final riboprobes were used during in-situ hybridization experiments to show expression of specific genes (*Inhbb, Heatr5a, and Cyp2s1*) after PNI.

In-Situ Hybridization

In-situ hybridization experimentation was used to show the expression of proprioceptive genes *Inhbb*, *Heatr5a*, and *Cyp2s1* in PNI and control mice tissue. Digoxigenin-labeled riboprobes previously mentioned were used to reveal gene expression. The protocol is a 3-day process and is outlined below.

Day 1: Tissue sections were thawed at room temperature. While the tissue was thawing, solutions were made for the various washing cycles. The slides were washed in a series of solutions including 4% paraformaldehyde, PBS, proteinase K, an Acetyl buffer, and formamide to prepare for the DIG labeled probes. After formamide solution was added and the slides were left to sit for an hour. A hybridization buffer was made which consisted of formamide, 20x SSC, 50x Denhardts, yeast RNA, salmon sperm DNA, molecular biology grade water, and unique DIG labeled probe. After the hour wait time,

the solution was dumped off and the hybridization buffer was added. A cover slip was added, and the slides were left to incubate overnight at 65°C.

Day 2: After overnight incubation slides were washed with preheated 5x SSC to remove cover slips and then set to incubate in 0.2x SSC at 65°C for one hour. Slides were then washed in PBST. A solution of 10% normal goat serum was made and added to the slides to incubate at room temperature for one hour. Then, a solution of 1% normal goat serum and anti-DIG antibody in PBST was added. The slides were then stored in a moist chamber at 4°C fridge overnight.

Day 3: The slides were rinsed with a series of washes with PBST and B3. A developing solution was made by adding B3 and developing reagents. This developing solution is light sensitive and was kept in the dark by enclosing the tube containing the solution with foil. Once the developing solution was added to the slides, the plastic chambers were also encased with foil. The slides were examined every hour under a microscope until expression was shown. Some slides received an additional dose of developing solution and were stored in the 4°C fridge overnight. Once slides were done developing, they were heated at 55°C to dry and Dako glycergel mounting medium was added to preserve them.

Analysis

The gene expression patterns were examined using a brightfield Olympus BX51 microscope. CellSens software was used to capture and observe images of the DRGs from the slides. Each DRG was imaged using 4x and 10x lenses and labeled accordingly. Images were analyzed using ImageJ software and specific rainbow expression pattern images were collected using unique Allen brain atlas look up tables (LUT) (Allen, 2007).

DRGs were analyzed for specific gene expression patterns by counting the number of cells showing positive expression and dividing by the total area of each DRG. To calculate the specific area of each DRG, the ImageJ software was used and set to scale by measuring the 100 µm scale created by the CellSens software used to image the DRGs. Positive expression was determined by significant dark purple staining cells. Only the L5 images of the DRGs from each animal were used for analyzation because in previous findings the L5 DRG contains the majority of proprioceptive cells from the sciatic nerve.

III. Results

Cloning

The goals of this study consisted of creating anti-sense riboprobes that specifically identified the expression patterns of our genes in question (Inhbb, Heatr5a, and Cyp2s1). The gene sequences are shown in Figures 1, 2, & 3 and show the unique forward and reverse primers used additional to SP6 and T7. To accomplish the objective of our anti-sense riboprobe a subclone of these genes' DNA sequence was amplified using PCR. Results from the PCR amplification are conveyed in Figures 4, 9, and 14. Next, this amplified sequence was ligated using TA-cloning pCR[™]II vectors. A representation of the pCRTMII vector is represented in a vector map from Figures 8, 13, and 18 indicating sequence orientation, location of primers, and enzymes used to linearize the plasmids. These plasmid vectors were then grown up on LB agar plates and X-Gal was added to transform any bacterial colony which did not contain the DNA inset to a blue colony. So, only white colonies were selected and grown in a liquid culture. A miniprep of the spun down liquid cultures was performed to purify the plasmid. Results in Figures 5, 10, and 15 show the expected base pair length of the purified plasmid, showing evidence that the plasmid correctly represents the specific gene sequence in question additional to the pCRTMII vector. The plasmid vector was then linearized to allow for proper binding to DNA during in-situ experiments. The linearized plasmids are confirmed using gel electrophoresis and are represented in Figures 6, 11, and 16. Finally

a DIG labeling mixture and T7 polymerase was added to the *Inhbb* and *Heatr5a* linearized plasmids. Adding the T7 polymerase is specifically added due to the plasmid's orientation. For *Cyp2s1* a SP6 polymerase was used due to its reverse orientation. The final riboprobes are confirmed for base pair length using Gel electrophoresis and are shown on Figures 7, 12, and 17. *Inhbb* and *Heatr5a* showed expected base pair length when compared to a 100 BP Ladder. However, in Figure 17 *Cyp2s1* was expected to have a base pair length of 404 BP, but showed a base pair length between 700-800 BP. Again, the purified plasmid after the miniprep was sent for sequencing (GeneWiz). So, our results for the *Cyp2s1* riboprobe were inconclusive. Nevertheless, we knew our gene specific sequence was still within that base pair length, and due to time constriction, we decided to move on to the In-situ hybridization stage to confirm the validity of our riboprobes.

Control Tissue

Our first goal of confirming our DIG labeled riboprobes worked was conveyed through using the control brain tissue of 93-day-old mice (9.A). This showed expression patterns of our specific genes throughout the brain. Sagittal sections of the brain were viewed throughout various regions of the brain including but not limited to the cortex, cerebellum, hippocampus, and olfactory bulb. After In-situ hybridization the brain tissue was imaged and analyzed. These images were compared to images taken from In-situ hybridization experiments performed by the Allen Brain Institute which are represented in Figures 19, 21, and 23 (Allen, 2007). Expression patterns unique to each gene were examined and carefully compared to the Allen Brain Atlas (ABA) images. The *Inhbb* riboprobe in both the control shown in Figure 20 and ABA tissue (Figure 19) showed

high expression in the cerebellum, olfactory bulb, cortex, and the hippocampus. This is different to the expression patterns shown in Figures 22 and 24 (*Heatr5a* and *Cyp2s1* respectively). *Heatr5a* (Figure 22) and ABA tissue (Figure 21) showed high expression in the cerebellum, cortex, and olfactory bulb but not in the hippocampus. While *Cyp2s1* (Figure 24) and ABA tissue (Figure 23) mainly showed expression in the cerebellum and cortex.

Separate from our control brain tissue, we used sham surgery injured animals as a control. As stated previously, sham animals undergo sciatic nerve exposure surgery, but no damage is done to the sciatic nerve. Additional to the sham animals, only the left sciatic nerve was transected in each injured animal, meaning that the right side of that animal provided an additional internal control. So, along with the sham animals (52.A/52.F) the parallel right DRGs were used as controls to the left DRGs on the injured side. Lastly, expression of *Parvalbumin*, a known marker of proprioceptive neurons, was used as an additional control as its expression is known to remain stable after peripheral nerve injury (Wu et al., 2019).

In Figures 25, 27, 29, and 31 (*Inhbb, Heatr5a, Cyp2s1, and PValb respectively*) shows the results from comparing the number of genes expressed (dark staining) over the area of the total DRG in μ m². These figures showed the relationship between the sham injury animals and the transection-injured animals right L5 DRGs (nonaffected side). Based on the data in these figures we observed no change in expression in our control tissues with all our genes. Lastly, in Figures 33, 35, 37, and 39 expression of our genes were compared in the sham animals (52.A/52.F) between the right and left DRGs. Additional to the In-situ results, these images were rendered with the Allen Brain Atlas

look up tables to better represent the effects of the expression patterns. Reviewing the figures below some DRGs show greater expression than others, but as stated previously comparing the sham animals, there was no difference in the average expression numbers when divided by the total area of DRGs in μ m².

Transection-Injured Tissue

Once we confirmed that our DIG labeled riboprobes worked, our next goal was to see if there was any change in expression between our control DRGs and the transectioninjured tissue. Our general assumption was that since *Inhbb, Heatr5a,* and *Cyp2s1* are late markers (expressed post-natal), expression would be down-regulated 10 days after surgery when the tissue was collected.

When observing Figures 26, 28, 30, and 32 we can see the expression patterns compared to the sham animals (52.A/52.F). This was data collected from the left L5 DRGs from each transection-injured animal and the two sham surgery animals. Expression patterns showed no change when compared to the sham animal controls. In Figures 34, 36, 38, and 40 the transection-injured animals right vs left L5 DRGs were compared. Although, expression was shown in each DRG, as stated previously no significant change in expression was observed. ORIGIN

1	cccggagctc	cgggtggctc	gcaggacacc	tgtacgtcgt	gcggcggcgg	cggcggcggc
61	ttccggcggc	cggaggagct	gggccgggtg	gacggtgact	tcctggaggc	ggtgaagaga
121	cacatcttga	gccgcctgca	gttgcggggc	cggcccaaca	tcacgcacgc	tgtccccaag
181	gccgccatgg	tcacggccct	gcgcaagctg	cacgccggca	aggtgcgcga	ggacggccgc
241	gtggagatcc	cgcacctcga	cggccacgcc	agcccgggcg	ccgacggcca	ggagcgcgtc
301	tccgagatca	tcagctttgc	agagacagat	ggcctcgcct	cctcccgggt	ccgcctgtac
361	ttcttcgtct	ctaatgaagg	caaccagaac	ctattcgtgg	tgcaggccag	cctgtggctg
421	tacctgaaac	tgctccccta	tgtcctggag	aagggcagca	ggaggaaggt	acgggtcaag
481	gtgtacttcc	aagaacaggg	tcacggagac	aggtggaatg	tggtggagaa	gaaggtggac
541	ctgaaacgta	gcggctggca	tacctttccc	atcacagagg	ccatccaggc	cttgtttgag
601	cqaqqcqaqa	gacgccttaa	cctggatgtg	cagtgtgaca	gctgccagga	gctggccgtg
661	qtqcctqtqt	tcgtggaccc	cqqtqaqqaq	tcacacaggc	cctttgtagt	ggtgcaggcc
721	cgcctgggcg	atagcagaca	tcgcatccgc	aaacqqqqcc	tagagtgtga	tgggcggacc
781	agcetetgtt	qcaqqcaaca	gttcttcatc	gactttcggc	tcatcggctg	gaacgactgg
841	atcattgcgc	ccactggcta	ctacqqqaac	tactgtgagg	qcaqctqccc	ggcctatctg
901	accadaatcc	ctggctcagc	ttcctccttc	cacacaqccq	tqqtqaacca	gtaccgcatg
961	cqtqqcctqa	accctqqqcc	cqtqaactct	tgctgcatcc	ctaccaaqct	gagetceatg
1021	tccatqctct	actttgatga	cgagtacaac	attqtcaaqc	qqqatqtacc	caacatgatc
1081	atagaggagt	ataactacac	ctgacagagg	caacqqqqqc	qqaqcacaqq	cccatqqqtc
1141	tttgagggag	caggagaggg	aggtgggctg	agtgtggttg	ttccattggg	ccgtgaagag
1201	taccagagta	aggeetgaaa	taatgttctc	ccgctttgta	gaaaaccagt	caggaccaga
1261	gggagaatcc	ctctgtgaca	cgagagactc	ctaactgcac	acatagacac	gcatagccag
1321	actcacqcaq	tctqccaccc	acacaqcaqc	ctctqqqata	ccaqcaaacq	gatgcggtga
1381	caaatqqcac	caatgcctgt	cagtctgaaa	qaatqqqqtq	agcagccacc	attcccacca
1441	actaaccaaa	cactctgaat	tacaccttct	gagcacacat	aaaaqcacac	aaagacagag
1501		apatapaca	and a concord	2202002222	accadatada	
T O O T	gacacagaga	yaytyaytta	yayayulall	aayayyaaaa	ycayyycyyy	aycacayycy
1561	ggtggagggc	catgtgt	tgacttgtcc	caggttcttc	accgaagcgc	ctggcacagt
1561 1621	ggtggagggc cctgcctgct	catgtgt catgcccgc	tgacttgtcc ctggcatcct	caggttc ccatgctttg	accgaagcgc aggccagcag	ctggcacagt agctgtgcca
1561 1621 1681	ggtggagggc cctgcctgct cccctgttct	catgtgtgcccgc cactgcccgc tggagagggc	tgacttgtcc ctggcatcct aagtagccca	caggttc ccatgctttg ggagggactc	accgaagcgc aggccagcag acctgtcaca	agcacaggeg agctgtgcca gagaccatgg
1561 1561 1621 1681 1741	ggtggagggc cctgcctgct cccctgttct agcagggaca	catgtgt ccc cactgcccgc tggagagggc gtgacccttt	tgacttgtcc ctggcatcct aagtagccca gatggtctgt	caggttc ccatgctttg ggagggactc cacttgcgtc	accgaagcgc aggccagcag acctgtcaca ccccatgtga	ctggcacagt agctgtgcca gagaccatgg cttatatatg
1561 1621 1681 1741 1801	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg	catgtgt catgtgt cactgcccgc tggagagggc gtgacccttt tgtttgtttt	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt	caggttc ccatgctttg ggagggactc cacttgcgtc ggggggagga	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt
1561 1621 1681 1741 1801 1861	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa	catgtgt catgtgt cactgcccgc tggagagggc gtgaccttt tgtttgtttt attcatctcc	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cggggggtgtt aacaactgac	caggttc ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa
1561 1561 1621 1681 1741 1801 1861 1921	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc	catgtgt catgtgt cactgcccgc tggagagggc gtgaccttt tgtttgtttt attcatctcc agctatggcc	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg	caggttc ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg aaaggccaaa	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgagaaggaa
1561 1561 1621 1681 1741 1801 1861 1921 1981	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt	catgtgt ccc cactgcccgc tggagagggc gtgacccttt tgtttgtttt attcatctcc agctatggcc gcaatcggtg	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg	caggttc ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg aaaggccaaa gggacttcct	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgagaaggaa tgcttagagg
1561 1561 1621 1681 1741 1801 1861 1921 1981 2041	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac	catgtgt ccc cactgcccgc tggagagggc gtgacccttt tgtttgtttt attcatctcc agctatggcc gcaatcggtg tggcaaggga	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg	caggttc ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg aaaggccaaa gggacttcct ggaggcagtg	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgagaaggaa tgcttagagg gctgttctga
1561 1621 1681 1741 1801 1861 1921 1981 2041 2101	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc	catgtgt ccc cactgcccgc tggagagggc gtgacccttt tgtttgtttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctgggctt	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cggggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg ggagagagagag	caggttc ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg aaaggccaaa gggacttcct ggaggcagtg ggaggagcttt	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggttgcttt	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgagaaggaa tgcttagagg gctgttctga gcagaagttg
1561 1621 1681 1741 1801 1861 1921 1981 2041 2101 2161	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc ggagggccac ggagctgctc tccccgaggg	catgtgt catgtgt cactgcccgc tggagagggc gtgaccttt tgtttgtttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctgggctt tgagccctgg	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg ggagagagag cttcagggtt	caggttc ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg aaaggccaaa gggacttcct ggaggcagtg ggagagcttt gtccgtggac	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggttgcttt atgtcccctg	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgagaaggaa tgcttagagg gctgttctga gcagaagttg cccagttcac
1561 1621 1681 1741 1801 1861 1921 1981 2041 2101 2161 2221	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc tccccgaggg ttgccctccc	catgtgt ccc catgtgt ccc tggagagggc gtgaccttt tgttgttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctgggctt tgagccctgg gcctgctcca	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg ggagagagag cttcagggtt caatgcactt	caggtte ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg aaaggccaaa gggacttcct ggaggcagtg ggagagcttt gtccgtggac gcggtcctga	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggttgcttt atgtcccctg gtgaatgcac	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tggaaggaa tgcttagagg gctgttctga gcagaagttg cccagttcac accacaatag
1561 1621 1681 1741 1801 1921 1981 2041 2101 2161 2221 2281	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc tccccgaggg ttgccctccc cacttgcagg	catgtgt catgtgt cactgcccgc tggagagggc gtgaccttt tgtttgtttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctggctt tgagccctgg gcctgctcca tc <mark>tacgtgtg</mark>	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg ggagagagag cttcagggtt caatgcactt tccagaagtg	caggttc ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg aaaggccaaa gggacttcct ggaggcagtg ggagagcttt gtccgtggac gcggtcctga gcggtcctga	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggttgcttt atgtcccctg gtgaatgcac gagagcttga	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tggttagagg gctgttctga gcagaagttg cccagttcac accacaatag cgtggctgtc
1561 1621 1681 1741 1801 1861 1921 1981 2041 2101 2161 2221 2281 2341	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc tccccgaggg ttgccctccc cacttgcagg	catgtgt catgtgt catgcccgc tggagagggc gtgaccttt tgtttgtttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctggctt tgagccctgg gcctgctcca tc <mark>tacgtgtg</mark> tccaagtgcc	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg ggagagagag cttcagggtt caatgcactt tccagaagtg acgtgaacta	caggttc ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg aaaggccaaa gggacttcct ggaggcagtg ggagagcttt gtccgtggac gcggtcctga gccctggggc tgcaatttaa	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggttgcttt atgtcccctg gtgaatgcac gagagcttga agggttgacc	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgagaaggaa tgcttagagg gctgttctga gcagaagttg cccagttcac accacaatag cgtggctgtc cacactaggc
1561 1621 1681 1741 1801 1861 1921 1981 2041 2101 2161 2221 2281 2341 2401	gdtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc tccccgaggg ttgccctccc cacttgcagg gaaactggac	catgtgt catgtgt catgcccgc tggagagggc gtgaccttt tgtttgtttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctgggctt tgagccctgg gcctgctcca tctacgtgtg tccaagtgcc tcgtacgact	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg ggagagagag ctcagggtt caatgcactt tccagaagtg acgtgaacta cttttatatt	caggttc ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg aaaggccaaa gggacttcct ggaggcagtg ggagagcttt gtccgtggac gcggtcctga gccctggggc tgcaatttaa tttatacttg	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggttgcttt atgtcccctg gtgaatgcac gagagcttga agggttgacc aaatgaaatc	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgagaaggaa tgcttagagg gctgttctga gcagaagttg cccagttcac accacaatag cgtggctgtc cacactaggc ttttgcttct
1561 1621 1681 1741 1801 1861 1921 1981 2041 2101 2161 2221 2281 2341 2401 2461	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc tccccgaggg ttgccctccc cacttgcagg ctcgtggatg gaaactggac tttctaagcg	catgtgt catgtgt catgtgt cactgcccgc tggagagggc gtgaccttt tgtttgtttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctgggctt tgagccctgg gcctgctcca tctacgtgtg tccaagtgcc tcgtacgact aatgattgc	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg ggagagagag cttcagggtt caatgcactt tccagaagtg acgtgaacta cttttatatt ttcaatgttt	caggttc ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg aaaggccaaa gggacttcct ggaggcagtg ggaggcgtct gtccgtggac gcggtcctga gccctggggc tgcaatttaa tttatacttg gcactgatct	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggttgcttt atgtcccctg gtgaatgcac gagagcttga agggttgacc aaatgaaatc agttgcatgg	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgagaaggaa tgcttagagg gctgttctga gcagaagttg cccagttcac accacaatag cgtggctgtc cacactaggc ttttgcttct ttagtcagaa
1561 1621 1681 1741 1801 1861 1921 1981 2041 2101 2161 2221 2341 2401 2461 2521	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc tccccgaggg ttgccctccc cacttgcagg ctcgtggatg gaaactggac tttctaagcg actgccattt	catgtgt catgtgt catgtgt catgcccgc tggagagggc gtgaccttt tgtttgtttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctgggctt tgagccctgg gcctgctcca tctacgtgtg tccaagtgcc tcgtacgact aatgattgct gaaaaaaag	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg ggagagagag cttcagggtt caatgcactt tccagaagtg acgtgaacta cttttatatt ttcaatgttt ttatttttat	caggttc ccatgctttg ggaggggactc cacttgcgtc ggggggaggga aggtcactgg aaaggccaaa gggacttcct ggaggcagtg ggaggagcttt gtccgtggac gcggtcctga gccctggggc tgcaatttaa tttatacttg gcactgatct agctgcagaa	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggttgcttt atgtcccctg gtgaatgcac gagagcttga agggttgacc aaatgaaatc agttgcatgg aaatgaatac	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgagaaggaa tgcttagagg gctgttctga gcagaagttg cccagttcac accacaatag cgtggctgtc cacactaggc ttttgcttct ttagtcagaa
1561 1621 1681 1741 1801 1861 1921 1981 2041 2101 2161 2221 2341 2401 2461 2521 2581	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc tccccgaggg ttgccctccc cacttgcagg ctcgtggatg gaaactggac tttctaagcg actgccattt attatacata	catgtgt catgtgt catgtgt catgccgc tggagagggc gtgaccttt tgtttgtttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctgggctt tgagccctgg gcctgctcca tcaagtgcc tcgtacgact aatgattgct gaaaaaaag attttggaac	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg ggagagagag cttcagggtt caatgcactt tccagaagtg acgtgaacta cttttatatt ttcaatgttt ttatttttat	caggttc ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg aaaggccaaa gggacttcct ggaggcagtg ggaggagcttt gtccgtggac gcggtcctga gccctggggc tgcaatttaa tttatacttg gcactgatct agctgcagaa agcggatcaga	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggttgcttt atgtcccctg gtgaatgcac gagagcttga agggttgacc aaatgaaatc agttgcatgg aaatgaatac ttttaatttt	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgagaaggaa tgcttagagg gctgttctga gcagaagttg cccagttcac accacaatag cgtggctgtc cacactaggc ttttgcttct ttagtcagaa agttaaatgt tattagatgg
1561 1621 1681 1741 1801 1861 1921 1981 2041 2101 2161 2221 2341 2401 2521 2581 2641	ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc tccccgaggg ttgccctccc cacttgcagg gaaactggac tttctaagcg actgccattt attatacata tgaggccatc	catgtgt cc catgtgt cc catgtgt cc cactgcccgc tggagagggc gtgaccttt tgtttgtttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctgggctt tgagccctgg gcctgctcca tctacgtgtg tccaagtgcc tcgtacgact aatgattgct gaaaaaaag attttggaac ttctatgagg	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg cccttgctg gagagacagg ggagagagag cttcagggtt caatgcactt tccagaagtg acgtgaacta cttttatatt ttcaatgttt taatgtct taagaggcc tagatgtct	caggtte ccatgctttg ggagggactc cacttgcgtc gggggaggga aaggtcactgg aaaggccaaa gggacttcct ggaggcagtg ggaggagcttt gtccgtggac gcggtcctga gccctggggc tgcaatttaa tttatacttg gcactgatct agctgcagaa agcggatcag aaacaatcct	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggttgcttt atgtcccctg gtgaatgcac gagagcttga agggttgacc aaatgaaatc agttgcatgt atgtcatgt	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgagaaggaa tgcttagagg gctgttctga gcagaagttg cccagttcac accacaatag cgtggctgtc tagtcagaa agttaaatgt tattagatgg tgccagtgtt
1561 1621 1681 1741 1801 1861 1921 1981 2041 2101 2161 2221 2341 2401 2521 2581 2581 2641 2701	gdtadagdgd ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc tccccgaggg ttgccctccc cacttgcagg ctcgtggatg gaaactggac tttctaagcg actgccattt attatacata tgaggccatc tcagggtata	catgtgt catgtgt catgtgt catgcccgc tggagagggc gtgaccttt tgtttgttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctgggctt tgagccctgg gcctgctcca tctacgtgtg tccaagtgcc tcgtacgact aatgattgct gaaaaaaag attttggaac ttctatgagg aatgatttt	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg ggagagagag cttcagggtt caatgcactt tccagaagtg acgtgaacta cttttatatt ttcaatgttt ttattttat caagaggcc tagatgtct tttttattca	caggtte ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg aaaggccaaa gggacttcct ggaggcagtg ggaggagcttt gtccgtggac gcggtcctga gccctggggc tgcaatttaa tttatacttg gcactgatct agctgcagaa agcggatcag aaacaatcct gttgatgtgt	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggttgcttt atgtcccctg gtgaatgcac gagagcttga agggttgacc aaatgaaatc agttgcatgg aaatgaatac ttttaatttt ttgagtggcc cttttctgtc	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tggaaggaa tgcttagagg gctgttctga gcagaagttg cccagttcac accacaatag cgtggctgtc tagtcagaa agttaaatgt tattagatgg tgccagtgtt cgtacacac
1561 1621 1681 1741 1801 1921 1981 2041 2101 2161 2221 2281 2341 2401 2521 2581 2641 2701 2761	gdtgdagdgd ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc tccccgaggg ttgccctccc cacttgcagg ctcgtggatg gaaactggac tttctaagcg actgccattt attatacata tgaggccatc tcagggtata cagaaggtag	catgtgt catgtgt catgtgt catgcccgc tggagagggc gtgaccttt tgtttgttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctggctt tgagccctgg gcctgctcca tctacgtgtg tccaagtgcc tcgtacgact aatgattgct gaaaaaaag attttggaac ttctatgagg aatgatttt agtaaaataa	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg ggagagagag cttcagggtt caatgcactt tccaagagtg acgtgaacta cttttatatt ttcaatgttt ttattttat caagaggcc tagatgtct tttttattca atgactggtg	caggttc ccatgctttg ggagggactc cacttgcgtc ggggggaggga aggtcactgg aaaggccaaa gggacttcct ggagggagcttt gtccgtggac gcggtcctga gccctggggc tgcaatttaa tttatacttg gcactgatct agctgcagaa agcggatcag aaacaatcct gttgatgtgt gagtgaaggt	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggttgcttt atgtcccctg gtgaatgcac gagagcttga agggttgacc aaatgaaatc agttgcatgg aaatgaatac ttttaatttt ttgagtggcc cttttctgtc gtggctgta	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tggtgaaggaa tgcttagagg gctgttctga gcagaagttg cccagttcac accacaatag cgtggctgtc tattgcttct ttagtcagaa agttaaatgt tattagatgg tgccagtgtt cgtacacacc agtcctcacc
1561 1621 1681 1741 1801 1921 1981 2041 2101 2161 2221 2281 2341 2401 2521 2581 2641 2701 2761 2821	guedeegugd ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc tccccgaggg ttgccctccc cacttgcagg ctcgtggatg gaaactggac tttctaagcg actgccattt attatacata tgaggccatc tcagggtata cagaaggtag tttagtttat	catgtgt catgtgt catgtgt catgcccgc tggagagggc gtgaccttt tgtttgttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctgggctt tgagccctgg gcctgctcca tctacgtgtg tccaagtgcc tcgtacgact aatgattgct gaaaaaaag attttggaac ttctatgagg aatgattttt agtaaaataa ttaataaatc	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg ggagagagagg cttcagggtt caatgcactt tccaagagtt tccaatgcacta ttttatatt ttcaatgttt ttatttttat caaagaggcc tagatgtct tttttattca atgactggtg cctccttagg	caggttc ccatgctttg ggagggactc cacttgcgtc ggggggaggga aggtcactgg aaaggccaaa gggacttcct ggagggagcttt gtccgtggac gcggtcctga gccctggggc tgcaatttaa tttatacttg gcactgatct agctgcagaa agcggatcag aaacaatcct gttgatgtgt gagtgaaggt ttctgtttca	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggttgcttt atgtcccctg gtgaatgcac gagagcttga agggttgacc aaatgaaatc agttgcatgg aaatgaatac ttttaatttt ttgagtggcc cttttctgtc gtgtgctgta taataactta	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgatagaggaa tgcttagagg gctgttctga gcagaagttg cccagttcac accacaatag cgtggctgtc tattagtcagaa agttaaatgt tattagatgg tgccagtgtt cgtacacacc agtcctcacc aaaccaaaca
1561 1621 1681 1741 1801 1921 1981 2041 2101 2161 2221 2281 2341 2401 2521 2581 2581 2581 2581 2701 2761 2821 2881	guedeegugd ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc tccccgaggg ttgccctccc cacttgcagg ctcgtggatg gaaactggac tttctaagcg actgccattt attatacata tgaggccatc tcagggtata cagaaggtag tttagtttat atttccccc	catgtgt catgtgt catgtgt catgcccgc tggagagggc gtgaccttt tgtttgtttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctgggctt tgagccctgg gcctgctcca tctacgtgtg tccaagtgcc tcgtacgact aatgattgct gaaaaaaag attttggaac ttctatgagg aatgattttt agtaaaataa ttaataaatc acagactggc	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg cctttgctg gagagacagg ggagagagagg cttcagggtt caatgcactt tccaagagtg acgtgaacta cttttatatt ttcaatgttt ttattttat caagaggcc tagatgtct ttttattca atgactggtg cctccttagg tgtcttaagt	caggttc ccatgctttg ggagggactc cacttgcgtc ggggggaggga aggtcactgg aaaggccaaa gggacttcct ggagggagcttt gtccgtggac gcggtcctga gccctggggc tgcaatttaa tttatacttg gcactgatct agctgcagaa agcggatcag aaacaatcct gttgatgtgt gagtgaaggt ttctgttca atttacgtt	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggtgcttt atgtcccctg gtgaatgcac gagagcttga agggttgacc aaatgaaatc agttgcatgg aaatgaatac ttttaatttt ttgagtggcc cttttctgtc gtgtgctgta taataactta catgtacagt	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgagaaggaa tgcttagagg gctgttctga gcagaagttg cccagttcac accacaatag cgtggctgtc tattagtcagaa agttaaatgt tattagatgg tgccagtgtt cgtacacacc agtcctcacc agtcctcacc aaccaaaca ttaagacaat
1561 1621 1681 1741 1801 1861 1921 1981 2041 2101 2161 2221 2281 2341 2401 2521 2581 2581 2641 2701 2761 2821 2881 2941	gdtgdagdgd ggtggagggc cctgcctgct cccctgttct agcagggaca tgtgtatgtg tatgctttaa agagcctatc agaaaatgtt ggagggccac ggagctgctc tccccgaggg ttgccctccc cacttgcagg ctcgtggatg gaaactggac tttctaagcg actgccattt attatacata tgaggccatc tcagggtata cagaaggtag tttagtttat attttccccc aaaagatgga	catgtgt catgtgt catgtgt catgcccgc tggagagggc gtgaccttt tgtttgtttt attcatctcc agctatggcc gcaatcggtg tggcaaggga agctgggctt tgagccctgg gcctgctcca tctacgtgtg tccaagtgcc tcgtacgact aatgattgct gaaaaaaag attttggaac ttctatgagg aatgattttt agtaaaataa ttaataaatc acagactggc gtgccacggg	tgacttgtcc ctggcatcct aagtagccca gatggtctgt cgggggtgtt aacaactgac tttgaagcgg ccctttgctg gagagacagg ggagagagag ctcagggtt caatgcactt tccagaagtg acgtgaacta cttttatatt ttcaatgttt ttattttat caagaggcc tagatgtct ttttattca cagatgttct tttttattca atgactggtg cctccttagg tgtcttaagt caaaaaaaaaa	caggttc ccatgctttg ggagggactc cacttgcgtc gggggaggga aggtcactgg aaaggccaaa gggacttcct ggagggagcttt gtccgtggac gcggtcctga gcactgatct agctgcagaa agcggatcag aaacaatcct gttgatgtgt gagtgaaggt ttctgttca atttacgtt aaaaaaaaaa	accgaagcgc aggccagcag acctgtcaca ccccatgtga gagaagaagg tgccagttgc cgattcgaag cctggtgtta gcagagtgag tggtgcttt atgtcccctg gtgaatgcac gagagcttga agggttgacc aaatgaaatc agttgcatgg aaatgaatac ttttaatttt ttgagtggcc cttttctgtc gtgtgctgta taataactta catgtacagt aaaaaaaaaa	ctggcacagt agctgtgcca gagaccatgg cttatatatg gtcttaattt agaattgaaa tgagaaggaa tgcttagagg gctgttctga gcagaagttg cccagttcac accacaatag cgtggctgtc tagtcagaa agttaaatgt tattagatgg tgccagtgtt cgtacacacc agtcctcacc aaccacaaca taagacaat agtaaaaaaaaaa

Figure 1. Full *Inhbb* cDNA sequence map gathered from NCBI website. Original sample of cDNA sequence was from Dharmacon. Highlighted region represents subcloned section which was amplified using PCR. This consisted of 735 base pairs. The green highlighted represents the forward primer and the blue highlighted region the reverse primer.

Heatr5a cDNA Sequence (BP: 1-3793)

ORIGIN

	1	ggtgctccat	cttgctgact	tgatccgcat	ggctttcatg	gctgccacag	accacagtga
(61	ccagctccgt	ctctctggcc	ttgacacact	cttggtagtt	atccgacggt	ttgcagatat
12	21	tgcagagcca	gagtttccgg	gtcatgtgat	tctggaacag	tatcaagcca	atgttggagc
18	81	cgctcttaga	ccagccttca	cttcagagac	accacctgac	atcaccgcca	aagcatgtca
24	41	ggtttgcagt	gcttggatag	caagtggggt	tgttagtgac	ctcagcgatc	tccgcagagt
30	01	tcatcagcta	cttgtctctt	ccctgacgaa	gattcaggct	ggaaaagaag	ctctcagcca
3	61	gctgtacaat	gagagtgcct	ccaccatgga	gatcttagct	gtgctgagag	cctgggcaga
42	21	ggtctatata	attgctgtac	aaagacataa	aaatcacaag	caagccttga	agactactgt
48	81	taattctgaa	gacagtatga	gaaacgggtc	ctcttcagct	gctggtcttc	ttgacttagt
54	41	ctgcactgac	ctggccacgc	taagcaaact	ctggcttgct	gcacttcagg	attttgctct
60	01	cttaactttg	cctgcagaat	ttgcttccca	gcttcctact	gaaggtggtg	ctttctacac
6	61	agcagagacg	agcaagagtg	caaagctaca	ctaccacgac	tcctgggccc	tcatcctcca
72	21	cgctgcggcc	ctgtggctca	ccagcacggg	cttcgctgac	ccagatgaag	gcggtgccaa
78	81	tctctcaagg	cctgtaactc	caacatccat	gtgccagggc	tcatcatcat	caggagctgc
84	41	cgtgaagtcc	cccgaggatg	tctacactga	caggttccat	ctgattctag	gaatcagcgt
90	01	ggagttcctg	tgttccctgc	gctcagatgc	aagcttggaa	agcatcatgg	cttgtctgcg
91	61	tgcactgcag	gccctgctcg	atgttccttg	gcccaggtgg	agaattggca	gtgatcagga
102	21	cttgggtatt	gaattgctaa	atgtactaca	ccgagtaatt	ttgaccagag	agtcaccagc
108	81	cattcaactg	gcttcacttg	aagtggtcag	gcagattatc	tgcgccgccc	aagaacatgt
11,	41	gaaggaaaaa	agacgtagtg	cagaagttga	tgatggagcc	tctgagaagg	aaaccctgcc
120	01	agagtttggt	gaagggaagg	acacaggagg	actcgtacct	gggaagtctt	tggtctttgc
12	61	aaccctggaa	ctctgtgtct	gcatcctcgt	tagacagctc	ccagaactga	accctaagct
132	21	ggcaggtagc	ccaggaggaa	aggcttcaaa	gccgaagacc	ctgttggagg	agggaagtag
138	81	actggtggcg	gctgccctgg	ccatccttgc	tgagcttcct	gcagtgtgct	ctcctgaagg
144	41	cagcatctca	attctcccta	cagtattgta	ccttaccatc	ggagtcctcc	gggaaacggc
150	01	tgtgaagtta	cctgggggcc	agttatcctg	cacagtcacg	gcttccctgc	agactctgaa
15	61	aggaatctta	acttccccca	tggcccgggc	agaaaagagc	cacgaagctt	ggaccagcct
162	21	cctccaaagt	gcattagcaa	ctgtgcttga	ctgctggagc	ccagtt <mark>gacg</mark>	gagcacaaga
168	81	<mark>acctga</mark> tgaa	gtcagtctgc	ttactgccgt	cacagtattt	attttgtcta	<mark>ccagcccaga</mark>
17,	41	agtgacaacc	gtcccctgcc	ttcagaatcg	ctgcattgaa	aaatttaagg	<mark>ctgccctgga</mark>
180	01	gagcaaggac	tctgtggtgc	aaatgaagac	ctgtcagctc	ctccactcca	<mark>tttttcagta</mark>
18	61	tccaaagccg	gccgtttcct	acccatacat	ttattcctta	gcatcttcta	<mark>tcgtggagaa</mark>
192	21	gcttcaggac	atagccagga	ggaaacccga	agatgctacc	gagctgcagc	<mark>tctgtcaaga</mark>
198	81	aggaataaag	ctcttagaag	ctttggtcgc	cattgcggaa	gaagagcacc	gcgctcagct
204	41	ggtggcctgc	cttctgccca	tcctcatctc	cttccttttg	gatgagaatg	ctctgggatc_
210	01	agcaacttca	gtaacgagaa	gtctgcacga	ctttgctttg	cacagtctca	tgcagattgg
21	61	gcctcggtac	<mark>tc</mark> gtctgtgt	ttaaaagagt	catggcttct	tccccagccc	tgaaagcccg
222	21	gctggaggct	gctgtaaaag	gcaatcagga	aagtgtccga	gtggatccgc	cttctaagca
228	31	tgccaagaac	ctggccagga	actccagcat	ccagctaaag	accaatttcc	tgtgagctgc
234	41	tctcctagca	cactgagcgc	ctgaatgtaa	cgcttggtgt	ttccttgctt	tggggacaaa

2401	agtggaactt	gaggcacgag	tgcacttgga	gatcctgttg	atcgttctca	tttcaggagg
2461	gaccgaaact	taacgttctt	ggtaattctg	gttttatttt	gtttccattt	actaagacca
2521	tggaactgtc	aggattcttg	ccaggcattt	caagaaagtg	ccaaagatcc	aaatttacta
2581	agcaatccac	tgctttgaaa	atgaagggat	gtcctctaac	agtctgtatg	tcctctaact
2641	gtctatcact	gtattataaa	gtatctgcgc	ttacaccaca	tcccactttc	tacatggact
2701	cctgccttat	tcagtggtcg	tatcaaactg	tgttgcattt	ctcaagcaac	atcaacaatt
2761	agagcagggg	agggtggcac	tcacctgagg	agactgagac	aggatgatca	tcaaagttcc
2821	aaccagcctg	gtctactgag	tgagttccag	accagctgtg	accacacgat	aggacttctc
2881	tcaaaaata	aattaacaaa	ctaactaaca	ataataatgc	caacaataaa	taagtgattg
2941	caacactctt	taataactag	acctaagcca	ggctcatgcc	tctaatccca	tcactcagga
3001	gacaggcaag	tggatctctg	tgagttcaag	gccagcctgg	tctacagagt	gagttccagg
3061	acagccaggg	ctacacagag	aaacctgtct	caaacaaaga	accaaatcta	gaattaccca
3121	acttataaca	ggagagacag	cttcagcccc	actgtgtggc	ttgaggctgt	ggtctcatga
3181	ttctgtcttt	taagtgagtc	tatgctgaga	tcacgcagga	tgcttttatg	tagaatatag
3241	aacgatcacc	ctcctaccat	tctcagatgg	attttctgtt	acctctgttc	cttttgtttt
3301	ggttttttat	ttgtggaaat	cattcatatt	gaaagcttaa	tatagagtca	tgtctatatc
3361	gatttggggt	tatatgaatg	tcagatttag	tacaacaaat	ttagaacttc	agtgaatacg
3421	aatactttt	taacacagaa	tgtattttaa	tataaaaata	taatgataaa	gtcatactgg
3481	tagaaaatat	tttttggctg	tttacgatca	ttttccctcc	acttcagtat	tgttctgtgt
3541	gaattgacca	ctgtgtcaga	atgatgcagc	ttcctgttaa	aatttacaaa	atgcagggac
3601	agaggtgtag	ccagaattga	gaaaaactga	ttagaccaag	agcacgtggt	ggactctgtt
3661	ttattatgtt	tgtatgtaaa	tactcttgta	aagcattcag	agtggaaaac	atttgacaaa
3721	ctctaacact	aaaatcaact	tttctacatt	acataaataa	agctaatttt	ctttaaaaaa
3781	aaaaaaaaa	aaa				

Figure 2. Full Heatr5a cDNA sequence map gathered from NCBI website. Original

sample of cDNA sequence was from Dharmacon. Highlighted region represents

subcloned section which was amplified using PCR. This consisted of 506 base pairs. The

green highlighted represents the forward primer and the blue highlighted region the

reverse primer.

Cyp2s1 cDNA Sequence (BP: 1-2664)

ORIGIN 1 cggcaaggag cttctaggag gtacagaccc agccgacctg cagagatgga ggcagccagc 61 acctgggcgc tgctgctggc cctgctgctg ctgctgctgc tgctgtctct gacgctattc 121 aggaccccgg cccgaggcta cctacccccg gggcccacgc cgctgccgtt gctggggaac 181 ctcctgcagc tgcgtcccgg ggctctgtac tcggggcttt tgcggctaag taagaagtat 241 gggcctgtgt tcacggtata cctgggcccc tggcgccgcg tggtggtcct ggttggacat 301 gatgctgtaa gagaagcctt gggaggtcag gctgaggaat tcagcgggcg tggaacattg 361 gcaacgctgg acaagacctt tgatggtcac ggagttttct ttgccaatgg ggagcggtgg 421 aaacagctga ggaaattcac cctgctcgct ctacgggacc tgggcatggg caagcgagaa 481 ggcgaggagc tgatccaggc ggaggtgcag agtctggtgg aggctttcca gaagacagaa 541 ggacgtccat tcaaccette catgetgetg geecaggeea cetetaatgt egtetgttee 601 cttgtct**ttg gcatccgttt** gccctatgac gataaagagt tccaggctgt gatccaggca 661 gcaagtggta ccttgttagg gatcagctct ccatgggggcc aggcctacga gatgttctcc 721 tggctactgc agcccctgcc aggcccccac acacagctcc agcaccactt gggcaccctg 781 gctgccttca ctatccagca ggtacagaaa caccagggac gcttccaaac ctcaggtcct 841 gcacgtgatg tcgttgacgc cttcctgcta aagatggcac aggagaaaca agacccaggt 901 acagaattca ccgagaagaa cttgctgatg acggtcacat acctgctgtt tgctgggacc 21

961	atgaccatcg	gtgccaccat	ccgctatgcc	ctcctgctcc	tgctgagata	ccctcaagtc
1021	cagcagcgcg	tccgggagga	gctcatacag	gagctgggtc	ctggcagggc	tccaagtctc
1081	agcgatcgag	ttcgcctccc	ttacacggat	gccgttttac	acgaggcaca	gcggctcctg
1141	gcactggtac	ccatgggcat	gccccacacc	atcacgagga	ccacttgctt	<mark>c</mark> cgagggtac
1201	actctgccca	agggcactga	ggtcttccct	ctgattggct	ccatactgca	tgaccctgcg
1261	gttttccaga	acccaggaga	gttccatcca	ggccgcttcc	tggacgaaga	tggtcggttg
1321	agaaaacacg	aagccttcct	gccctactcc	ttaggtaagc	gagtctgcct	gggagaaggc
1381	ctggctcggg	cggagttgtg	gcttttcttc	acttccatct	tgcaagcctt	ctccctggag
1441	accccgtgcc	cgccgggtga	cctgagcctg	aagccagcca	tcagtggact	tttcaacatc
1501	cccccggact	tccagctgcg	ggtctggccc	actggcgacc	agtccagatg	aaggaaggag
1561	tttggaaggt	gggagccctc	tgggctgaaa	gagccttact	cagggtgtgt	gtgaagcagg
1621	tgtctcagaa	gcaacatcac	actacacacc	acgtatcaag	gcagctgtgg	agaccaggga
1681	ccacaccact	acacaaccgc	acagcaactg	atgcataggc	ttctttttgg	agagggctgt
1741	ctgaaacggg	gatcttgtta	tgtggtgaca	caagccgaac	tcaaacttgt	gatcctcccg
1801	cctcggtgtc	ctgctcgctg	gaattacagg	tatgcgccac	catgagctgc	ataggctttc
1861	agcctacatc	atgtaatata	ggccatctgg	aattgcaagc	atatagctag	ataccccgct
1921	gtccaccaca	cgactctgta	tgctcacaac	tctaatccag	cgactgccta	cacaaacaca
1981	caaacaaccc	aaccgtattc	aggactctta	actctgtcta	acacgctcag	caccgctgtt
2041	gctgggtccc	cgccatagaa	aacagcaagc	cccagctggg	gtcatgtcac	agccagaacg
2101	atgttctgtc	tactcccatg	gatgacctca	ccaccatcca	ggctcatgag	tggctctatc
2161	aacggccacc	agccagtaat	ccacacagcc	aaaccgtatg	tgacaagatc	ttggcccttc
2221	caaacttctt	cccactgagg	cacaccgtga	cgacatacta	ttccccagtc	acgtccacac
2281	ccatgcccct	ccagcacgct	ccttccaaca	aatgttccca	aatataaagg	tttcctggtc
2341	tgtgattgtg	cacacagacc	ttctacaaat	gaggaccagc	gacccaaaga	aaaagggttt
2401	cccagtcatg	ttatcagggg	cctgctctca	aacgcattct	gatctctgag	ctgcctgcaa
2461	gtcctcatga	gagtgctgga	aatgtatcct	cctcctggaa	ggactaactg	gcctcacagg
2521	gatgatgcag	gggagtgctg	ttagctgttt	ccagccctcc	ttatcaggac	agaagccata
2581	gctgacctct	ttgtgacttg	aaggttcccg	ttttgcaata	aaagtttgtt	tctggcccga
2641	aaaaaaaaaa	aaaaaaaaaa	aaaa			

Figure 3. Full Cyp2s1 cDNA sequence map gathered from NCBI website. Original

sample of cDNA sequence was from Dharmacon. Highlighted region represents

subcloned section which was amplified using PCR. This consisted of 404 base pairs. The

green highlighted represents the forward primer and the blue highlighted region the

reverse primer.

Figure 4. Gel electrophoresis product of *Inhbb* PCR sublcone compared to a 100 BP Ladder. Band size showed a positive result of 735 base pairs which confirmed our product was the correct sequence length. This PCR product was then ligated with TA-cloning pCRTMII vector.

Figure 5. Gel electrophoresis product of *Inhbb* that has been grown up in a liquid culture and purified. The band length is compared to a 1Kb BP Ladder and is just under 3Kb BP in length which confirms our product is the correct length. This is considering the dark staining to be a supercoiled version of the plasmid vector. This product was sent off for sequencing (GeneWiz).

Figure 6. Gel electrophoresis product of purified *Inhbb* plasmid vector that has been linearized with BamH1. This product is compared with a 1Kb BP Ladder and confirms the phenol/chloroform/isoamyl alcohol extraction was succesful. This product was used to make the final riboprode product by adding a DIG labeling mixture to it.

Figure 7. Gel electrophoresis product of *Inhbb* DIG labeled riboprobe compared to a 1Kb BP Ladder. The band size of 735 base pairs confirms that our sequence is of the right length. This product was used in our In-situ Hybridization experiments to show the expression of *Inhbb* in both the transection-injured and sham surgery mice.

Figure 8. *Inhbb* pCRTMII vector map. The base pair length, orientation, location of forward and reverse primers, and BamH1 enzyme location is shown.

Figure 9. Gel electrophoresis product of *Heatr5a* PCR sublcone compared to a 100 BP Ladder. Band size showed a positive result of 506 base pairs which confirmed our product was the correct sequence length. This PCR product was then ligated with TA-cloning pCR[™]II vector.

Figure 10. Gel electrophoresis product of *Heatr5a* that has been grown up in a liquid culture and purified. The band length is compared to a 1Kb BP Ladder and is just under 3Kb BP in length which confirms our product is the correct length. This is considering the dark staining to be a supercoiled version of the plasmid vector (1-4, & 6). The 5th row is considered to be in the open circular oriention. This product was sent off for sequencing (GeneWiz).

Figure 11. Gel electrophoresis product of purified *Heatr5a* plasmid vector that has been linearized with BamH1. This product is compared with a 1Kb BP Ladder and confirms the phenol/chloroform/isoamyl alcohol extraction was succesful. This product was used to make the final riboprode product by adding a DIG labeling mixture to it.

Figured 12. Gel electrophoresis product of *Heatr5a* DIG labeled riboprobe compared to a 100 BP Ladder. The band size of 506 base pairs confirms that our sequence is of the right length. This product was used in our In-situ Hybridization experiments to show the expression of *Heatr5a* in both the transection-injured and sham surgery mice.

Figure 13. *Heatr5a* pCRTMII vector map. The base pair length, orientation, location of forward and reverse primers, and BamH1 enzyme location is shown.

Figure 14. Gel electrophoresis product of *Cyp2s1* PCR sublcone compared to a 100 BP Ladder. Band size showed a positive result of 404 base pairs which confirmed our

product was the correct sequence length. This PCR product was then ligated with TAcloning pCRTMII vector.

Figure 15. Gel electrophoresis product of *Cyp2s1* that has been grown up in a liquid culture and purified. The band length is compared to a 1Kb BP Ladder and is just under 3Kb BP in length which confirms our product is the correct length. This is considering the dark staining to be a supercoiled version of the plasmid vector. This product was sent off for sequencing (GeneWiz).

Figure 16. Gel electrophoresis product of purified *Cyp2s1* plasmid vector that has been linearized with XhoI. This product is compared with a 1Kb BP Ladder and confirms the phenol/chloroform/isoamyl alcohol extraction was succesful. This product was used to make the final riboprode product by adding a DIG labeling mixture to it.

Figure 17. Gel electrophoresis product of Cyp2s1 DIG labeled riboprobe compared to a 100 BP Ladder. The band size of above 600 base pairs does not confirm that our sequence is of the right length. However, our product was sequenced previously with GeneWiz, and due to time constraint we decided to proceed. This product was used in our In-situ Hybridization experiments to show the expression of Cyp2s1 in both the transection-injured and sham surgery mice.

Figure 18. *Cyp2s1* pCRTMII vector map. The base pair length, orientation, location of forward and reverse primers, and XhoI enzyme location is shown.

Figure 19. In-situ Hybridization results of *Inhbb* expression in a mouse brain (Allen, 2007). 1A/2A: Expression of *Inhbb* in the cerebellum. 1B/2B: ABA look up table expression of *Inhbb* from 1A & 2A respectively. This expression is significant when compared to other regions of the brain tissue. 3A/3B: Expression of *Inhbb* in the hippocampus. This expression is significant when compared to other regions of *Inhbb* in the olfactory bulb. This expression is significant when tissue. 4A/4B: Expression of *Inhbb* in the olfactory bulb. This expression is significant when compared to other regions of the brain tissue.

Figure 20. In-situ Hybridization results from *Inhbb* ribroprobe on brain tissue of a 93week-old mouse. 1A/2A/1B/2B: Expression in the cerebellum. This staining was significant when compared to other tissue in the brain and also mirrors the *Inhbb* expression found in the ABA images. 3A/3B/3C/3D: Expression in the cortex. This staining was significant when compared to other tissue in the brain. 1C/1D: Expression in the hippocampus. This staining was significant when compared to other tissue in the brain and also mirrors the *Inhbb* expression found in the ABA images. 2C/2D: Expression in the olfactory bulb. This staining was significant when compared to other tissue in the brain and also mirrors the *Inhbb* expression found in the ABA images.

Figure 21. In-situ Hybridization results of *Heatr5a* expression in a mouse brain (Allen, 2007). 1A/2A: Expression of *Heatr5a* in the cerebellum. 1B/2B: ABA look up table expression of *Heatr5a* from 1A & 2A respectively. This expression is significant when compared to other regions of the brain tissue. 3A/3B: Expression of *Heatr5a* in the hippocampus. 4A/4B: Expression of *Heatr5a* in the olfactory bulb. This expression is significant when compared to other regions of the brain tissue. 3F and the olfactory bulb. This expression is

from the Allen Brain Atlas website and used as a tool to confirm proper expression of our control tissue (Allen, 2007).

Figure 22. In-situ Hybridization results from *Heatr5a* ribroprobe on brain tissue of a 93week-old mouse. 1A/2A/1B/2B: Expression in the cerebellum. This staining was significant when compared to other tissue in the brain and also mirrors the *Heatr5a* expression found in the ABA images. 3A/3B/3C/3D: Expression in the cortex. This staining was significant when compared to other tissue in the brain. 1C/1D: Expression in the hippocampus. 2C/2D: Expression in the olfactory bulb. This staining was significant when compared to other tissue in the brain and also mirrors the *Heatr5a* expression found in the ABA images.

Figure 23. In-situ Hybridization results of *Cyp2s1* expression in a mouse brain (Allen, 2007). 1A/2A: Expression of *Cyp2s1* in the cerebellum. 1B/2B: ABA look up table expression of *Cyp2s1* from 1A & 2A respectively. This expression is significant when compared to other regions of the brain tissue. 3A/3B: Expression of *Cyp2s1* in the brain stem. This expression is significant when compared to other regions of the brain tissue, however expression for this gene in the brain stem was not tested. These images were taken from the Allen Brain Atlas website and used as a tool to confirm proper expression of our control tissue (Allen, 2007).

Figure 24. In-situ Hybridization results from *Cyp2s1* ribroprobe on brain tissue of a 93week-old mouse. 1A/2A/1B/2B: Expression in the cerebellum. This staining was significant when compared to other tissue in the brain and also mirrors the *Cyp2s1* expression found in the ABA images. 3A/3B/3C/3D: Expression in the cortex. This staining was significant when compared to other tissue in the brain. 1C/1D: Expression in the hippocampus. 2C/2D: Expression in the olfactory bulb.

Figure 25. Comparing the number of genes expressed (dark staining) over the area of the total DRG in μ m² in the Right 5th Lumbar DRG for the *Inhbb* riboprobe. These figures showed the relationship between the sham injury animals and the transection-injured animals right L5 DRGs (nonaffected side). To calculate the specific area of each DRG, the ImageJ software was used and set to scale by measuring the 100 µm scale created by the CellSens software used to image the DRGs. Based on the data in this figure we observed no change in expression in our control tissues.

Figure 26. Comparing the number of genes expressed (dark staining) over the area of the total DRG in μ m² in the Left 5th Lumbar DRG for the *Inhbb* riboprobe. These figures showed the relationship between the sham injury animals and the transection-injured animals Left L5 DRGs (affected side). To calculate the specific area of each DRG, the ImageJ software was used and set to scale by measuring the 100 μ m scale created by the CellSens software used to image the DRGs. Based on the data in this figure we observed no change in our experimental tissue expression when compared to our control tissues.

Figure 27. Comparing the number of genes expressed (dark staining) over the area of the total DRG in μ m² in the Right 5th Lumbar DRG for the *Heatr5a* riboprobe. These figures showed the relationship between the sham injury animals and the transection-injured animals right L5 DRGs (nonaffected side). To calculate the specific area of each DRG, the ImageJ software was used and set to scale by measuring the 100 µm scale created by the CellSens software used to image the DRGs. Based on the data in this figure we observed no change in expression in our control tissues.

Figure 28. Comparing the number of genes expressed (dark staining) over the area of the total DRG in μ m² in the Left 5th Lumbar DRG for the *Heatr5a* riboprobe. These figures showed the relationship between the sham injury animals and the transection-injured animals Left L5 DRGs (affected side). To calculate the specific area of each DRG, the ImageJ software was used and set to scale by measuring the 100 µm scale created by the CellSens software used to image the DRGs. Based on the data in this figure we observed no change in our experimental tissue expression when compared to our control tissues.

Figure 29. Comparing the number of genes expressed (dark staining) over the area of the total DRG in μ m² in the Right 5th Lumbar DRG for the *Cyp2s1* riboprobe. These figures showed the relationship between the sham injury animals and the transection-injured animals right L5 DRGs (nonaffected side). To calculate the specific area of each DRG, the ImageJ software was used and set to scale by measuring the 100 µm scale created by the CellSens software used to image the DRGs. The data in this figure is inconclusive due to improper staining of the 52.A, 52.F, 52.B, and 52.D animals.

Figure 30. Comparing the number of genes expressed (dark staining) over the area of the total DRG in μ m² in the Left 5th Lumbar DRG for the *Cyp2s1* riboprobe. These figures showed the relationship between the sham injury animals and the transection-injured animals Left L5 DRGs (affected side). To calculate the specific area of each DRG, the ImageJ software was used and set to scale by measuring the 100 µm scale created by the CellSens software used to image the DRGs. The data in this figure is inconclusive due to improper staining of the 52.A, 52.F, and 52.D animals.

Figure 31. Comparing the number of genes expressed (dark staining) over the area of the total DRG in μ m² in the Right 5th Lumbar DRG for the *PValb* riboprobe. These figures showed the relationship between the sham injury animals and the transection-injured animals right L5 DRGs (nonaffected side). To calculate the specific area of each DRG, the ImageJ software was used and set to scale by measuring the 100 µm scale created by the CellSens software used to image the DRGs. Based on the data in this figures we observed no change in expression in our control tissues.

Figure 32. Comparing the number of genes expressed (dark staining) over the area of the total DRG in μ m² in the Left 5th Lumbar DRG for the *PValb* riboprobe. These figures showed the relationship between the sham injury animals and the transection-injured animals Left L5 DRGs (affected side). To calculate the specific area of each DRG, the ImageJ software was used and set to scale by measuring the 100 μ m scale created by the CellSens software used to image the DRGs. Based on the data in this figure we observed no change in our experimental tissue expression when compared to our control tissues.

Figure 33. 1A/1B: Expression of *Inhbb* in a Right L5 DRG from a sham animal (Control). 2A/2B: Expression of *Inhbb* in a Left L5 DRG from a sham animal (Control).Scale bar equals 100 μm.

Figure 34. 1A/1B: Expression of *Inhbb* in a Right L5 DRG from a transection-injured animal (Control). 2A/2B: Expression of *Inhbb* in a Left L5 DRG from a transection-injured animal. Scale bar equals 100 μm.

Figure 35. 1A/1B: Expression of *Heatr5a* in a Right L5 DRG from a sham animal (Control). 2A/2B: Expression of *Heatr5a* in a Left L5 DRG from a sham animal (Control). Scale bar equals 100 μm.

Figure 36. 1A/1B: Expression of *Heatr5a* in a Right L5 DRG from a transection-injured animal (Control). 2A/2B: Expression of *Heatr5a* in a Left L5 DRG from a transection-injured animal. Scale bar equals 100 μm.

Figure 37. 1A/1B: Expression of *Cyp2s1* in a Right L5 DRG from a sham animal (Control). 2A/2B: Expression of *Cyp2s1* in a Left L5 DRG from a sham animal (Control).Scale bar equals 100 μm.

Figure 38. 1A/1B: Expression of *Cyp2s1* in a Right L5 DRG from a transection-injured animal (Control). 2A/2B: Expression of *Cyp2s1* in a Left L5 DRG from a transection-injured animal. Scale bar equals 100 μ m.

Figure 39. 1A/1B: Expression of *PValb* in a Right L5 DRG from a sham animal (Control). 2A/2B: Expression of *PValb* in a Left L5 DRG from a sham animal (Control).Scale bar equals 100 μm.

Figure 40. 1A/1B: Expression of *Pvalb* in a Right L5 DRG from a transection-injured animal (Control). 2A/2B: Expression of *Pvalb* in a Left L5 DRG from a transection-injured animal. Scale bar equals 100 μm.

IV. Discussion

This study reviewed the effects of DIG labeled riboprobes which were used to observe the expression of three late marker genes *Inhbb, Heatr5a, Cyp2s1* in PNI lumbar DRG tissue. The results shown in our experiments confirmed that these DIG labeled riboprobes can be used to identify expression patterns within the DRG that are specific to PSNs.

Inhbb

Reviewing Figure 1 in comparison to Figure 4, we can confirm that our band length in Figure 4 is the same base pair length as our insert from Figure 1. This indicates that the PCR product shown is the ready for the ligation stage. After ligating with the $pCR^{TM}II$ vector the plasmid is purified. Figure 5 confirms that our DNA insert within the $pCR^{TM}II$ vector is the correct base pair length. This figure shows the plasmid vector in a supercoiled state, which is one of three states the plasmid vector can be oriented in within the Gel. The other two states are open-circular (observed in Figure 10) and linearized (observed in Figures 6, 11, & 16). The speed in which these states run through the gel are open circular, linearized, and supercoiled from slowest to fastest (Cole and Tellez, 2002). The linearized plasmid vector for *Inhbb* is confirmed in Figure 6. This indicates that the phenol/chloroform/isoamyl alcohol extraction worked, and the BamH1 enzyme was able to properly cut the *Inhbb* plasmid. The final RNA probe was confirmed to have the specific base pair length associated in Figure 1. In-situ hybridization results with the *Inhbb* riboprobe confirmed that this RNA probe can be used to show the expression of *Inhbb* in PNI tissue. As shown in figures 33 & 34 the expression patterns of *Inhbb* seem to be very nuclear in orientation when compared to the other riboprobes such *Cyp2s1* which showed more of a cytoplasmic expression (Figures 37 & 38). Using the 9.A mouse brain tissue as a control confirmed that our expression patterns for *Inhbb* in the brain tissue (Figures 20) when compared to the ABA (Figure 19) examples is unique. The overall expression patterns in Inhbb did not seem to change between the transection-injury and control tissue. Further investigation of this gene's expression needs to be done prior to making any certain conclusions. Future studies can focus on the expression on *Inhbb* in other tissue as well as in different aged mice, comparing young, adolescent, and adult mice. By reviewing this gene expression in other tissue when can better understand the role this gene has within the body.

Heatr5a

As previously stated, all the DNA labeled riboprobes showed confirmation of showing the specific gene expression with the PNI tissue. *Heatr5a* just like *Inhbb* had each step in the probe making process confirmed by Gel electrophoresis when compared to the band length and the respective base pair ladder. These findings are shown in Figures 9, 10, 11, & 12. When observing the In-situ hybridization tissue showing expression for *Heatr5a* (Figures 22, 35, and 36) confirms the ability of use for the riboprobe. *Heatr5a* in Figure 22 also showed to match the brain tissue expression pattern found in the ABA images on Figure 21. As previously stated with *Inhbb* further investigation of *Heatr5a*'s expression is needed to make any conclusive findings.

Cyp2s1

60

Cyp2s1 unlike the other genes had two slides 52.D and 52.F which did not show any expression within the DRGs. No evidence was shown during experimentation that would indicate this result. However, whether human error or improper band length shown in Figure 17 we at least met our first goal of creating a riboprobe which expression specific signaling in DRG tissue. All the steps in the probe making processed were confirmed with Gels as shown in Figures 14, 15, and 16. As stated previously the purified plasmid was sent for sequencing, so we knew our final product had our unique sequence, but do not know why this was not represented in Figure 17. However, the brain tissue signaling (Figure 24) still matched the expression shown in the ABA (Figure 23) tissue. When looking at Figures 37 and 38 a unique cytoplasmic expression is shown which is different compared to the other gene expressions. Further investigation could help answer the questions revealed in this study. For example, why did the late marker gene expression patterns not differ from the control and injured tissue? Originally, we hypothesized that since these peripheral nerves are in a regenerative state that they would express an increase in early embryonic markers and a decrease in late markers. However, due to time constraints we were not able to observe expression patterns with any early markers. Creating new riboprobes specific for early embryonic markers would be needed to further explain this question. Technical improvements, such as revising mounting techniques as well as other practices are needed to observe more crisp data. This includes increasing the sample size, observing gene expression before and after injury, and testing these probes on various ages of mice.

V. References

- Allen. (2007). ALLEN Mouse Brain Atlas. Gene Expression. https://doi.org/10.1038/nature05453
- Banks RW, Barker D (1989) Specificities of afferents reinnervating cat muscle spindles after nerve section. J Physiol.
- Beirowski B, Adalbert R, Wagner D, Grumme DS, Addicks K, Ribchester RR, Coleman MP (2005) The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neurosci.
- Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC (2011) Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. II. Loss of functional connectivity with motoneurons. J Neurophysiol.
- Chaudhry V, Cornblath DR (1992) Wallerian degeneration in human nerves: Serial electrophysiological studies. Muscle Nerve.
- Chen P, Piao X, Bonaldo P (2015) Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol.
- Cole, K. D., & Tellez, C. M. (2002). Separation of large circular DNA by electrophoresis in agarose gels. Biotechnology progress, 18(1), 82-87.
- Collins WF, Mendell LM, Munson JB (1986) On the specificity of sensory reinnervation of cat skeletal muscle. J Physiol.
- Elzinga K, Tyreman N, Ladak A, Savaryn B, Olson J, Gordon T (2015) Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats. Exp

Neurol.

- Fu SY, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol.
- Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation.
- George, E. B., Glass, J. D., & Griffin, J. W. (1995). Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. Journal of Neuroscience. <u>https://doi.org/10.1523/jneurosci.15-10-06445.1995</u>
- Gordon T, English AW (2016) Strategies to promote peripheral nerve regeneration: Electrical stimulation and/or exercise. Eur J Neurosci.
- Haftel VK, Bichler EK, Wang QB, Prather JF, Pinter MJ, Cope TC (2005) Central suppression of regenerated proprioceptive afferents. J Neurosci.
- Hyde D, Scott JJA (1983) Responses of cat peroneus brevis muscle spindle afferents during recovery from nerve-crush injury. J Neurophysiol.
- Kang H, Lichtman JW (2013) Motor axon regeneration and muscle reinnervation in young adult and aged animals. J Neurosci.
- Komori N, Takemori N, Hee KK, Singh A, Hwang SH, Foreman RD, Chung K, Jin MC,
 Matsumoto H (2007) Proteomics study of neuropathic and nonneuropathic dorsal root
 ganglia: Altered protein regulation following segmental spinal nerve ligation injury. Physiol
 Genomics.

Kouyoumdjian, J. A. (2006). Peripheral nerve injuries: a retrospective survey of 456 cases.

Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 34(6), 785-788.

- Kouyoumdjian, J. A., Graça, C. R., & Ferreira, V. F. (2017). Peripheral nerve injuries: A retrospective survey of 1124 cases. Neurology India, 65(3), 551.
- Kramer I, Sigrist M, De Nooij JC, Taniuchi I, Jessell TM, Arber S (2006) A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron.
- Lallemend F, Ernfors P (2012) Molecular interactions underlying the specification of sensory neurons. Trends Neurosci.
- Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R, Bernstein Y, Goldenberg D, Xiao C, Fliegauf M, Kremer E, Otto F, Brenner O, Lev-Tov A, Groner Y (2002) The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J.
- Ma Q, Fode C, Guillemot F, Anderson DJ (1999) NEUROGENIN1 and NEUROGENIN2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev.
- Missios, S., Bekelis, K., & Spinner, R. J. (2014). Traumatic peripheral nerve injuries in children: epidemiology and socioeconomics. Journal of Neurosurgery: Pediatrics, 14(6), 688-694.
- Navarro, X., Vivó, M., & Valero-Cabré, A. (2007). Neural plasticity after peripheral nerve injury and regeneration. Progress in neurobiology, 82(4), 163-201.
- Noble, J., Munro, C. A., Prasad, V. S., & Midha, R. (1998). Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. Journal of Trauma and Acute Care Surgery, 45(1), 116-122.
- Pierrot-Deseilligny E, Morin C, Bergego C, Tankov N (1981) Pattern of group I fibre projections from ankle flexor and extensor muscles in man. Exp Brain Res.
- Prather JF, Nardelli P, Nakanishi ST, Ross KT, Nichols TR, Pinter MJ, Cope TC (2011) Recovery of proprioceptive feedback from nerve crush. J Physiol.
- Proske U, Gandevia SC (2012) The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92:1651–1697.
- Raivich, G., & Makwana, M. (2007). The making of successful axonal regeneration: genes, molecules and signal transduction pathways. Brain research reviews, 53(2), 287-311.
- Robinson, L. R. (2000). Traumatic injury to peripheral nerves. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, *23*(6), 863-873.

Scheib J, Höke A (2013) Advances in peripheral nerve regeneration. Nat Rev Neurol.

Schultz AJ, Rotterman TM, Dwarakanath A, Alvarez FJ (2017) VGLUT1 synapses and Pboutons on regenerating motoneurons after nerve crush. J Comp Neurol.

Sunderland S (1947) Rate of regeneration of sensory nerve fibers. Arch Neurol Psychiatry.

- Tsao JW, George EB, Griffin JW (1999) Temperature modulation reveals three distinct stages of Wallerian degeneration. J Neurosci.
- Verdú E, Navarro X (1997) Comparison of immunohistochemical and functional reinnervation of skin and muscle after peripheral nerve injury. Exp Neurol.
- Vincent JA, Nardelli P, Gabriel HM, Deardorff AS, Cope TC (2015) Complex impairment of IA muscle proprioceptors following traumatic or neurotoxic injury. J Anat.

- Vogelaar CF, Vrinten DH, Hoekman MFM, Brakkee JH, Burbach JPH, Hamers FPT (2004) Sciatic nerve regeneration in mice and rats: Recovery of sensory innervation is followed by a slowly retreating neuropathic pain-like syndrome. Brain Res.
- Wang Y, Wang H, Mi D, Gu X, Hu W (2015) Periodical assessment of electrophysiological recovery following sciatic nerve crush via surface stimulation in rats. Neurol Sci.
- Wong JN, Olson JL, Morhart MJ, Chan KM (2015) Electrical stimulation enhances sensory recovery: A randomized controlled trial. Ann Neurol.
- Wu D, Schieren I, Qian Y, Zhang C, Jessell TM, De Nooij JC (2019) A role for sensory end organ-derived signals in regulating muscle spindle proprioceptor phenotype. J Neurosci 39:4252–4267.
- Zimny, M. L. (1988). Mechanoreceptors in articular tissues. American journal of anatomy, 182(1), 16-32.
- Ziv, N. E., & Spira, M. E. (1993). Spatiotemporal distribution of Ca2+ following axotomy and throughout the recovery process of cultured Aplysia neurons. European Journal of Neuroscience, 5(6), 657-668.
- Zuo J, Hernandez YJ, Muir D (1998) Chondroitin sulfate proteoglycan with neurite-inhibiting activity is up- regulated following peripheral nerve injury. J Neurobio.