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ABSTRACT
A myriad of factors have been shown to influence the morphology of
freshwater fish. However, studies that parse out where variation is coming
from (e.g. body size, sex, and habitat) as well as what potential these
changes have to influence function (e.g. swimming performance) are
understudied. Therefore, the objectives of this study were to describe
morphological variation of Bluegill Lepomis macrochirus across the Grand
Lake St Mary’s watershed area (northwest OH, USA) and test for
covariation of morphology with size, sex, and habitat as well as to assess
swimming performance to discern whether any differences in habitat (and
morphology) correspond with functional aspects related to critical
swimming velocity. Geometric morphometric methods were used to
assess shape variation among individuals and general linear models were
used to test for covariation of morphology with size, sex, and habitat.
Analyses indicated that body size was the strongest driver of
morphological variation followed by sex, habitat, and interactions –
indicating the presence of allometry, sexual dimorphism, and the potential
for habitat induced plasticity. In general, more robust morphologies
tended to correspond with larger individuals, males, and/or individuals
from lentic habitats. Swimming performance trials supported functional
differences as individuals from lotic habitats demonstrated significantly
higher Ucrit swimming performance values (»+20%) than lentic
individuals. Broader applications of these findings can link to evolutionary
ecology, management, and conservation.

KEYWORDS
Ecomorphology;
centrarchidae; geometric
morphometrics; allometry;
sexual dimorphism; habitat
induced plasticity; swimming
performance

Introduction

The relationship between organismal morphology and environment is a long standing topic of inter-
est among ecologists and has been steadily gaining interest since the first ecomorphology studies
began to relate form, function, and environment (Delacour & Mayr 1945; Verheyen 1953; Delacour
1959). Ecomorphology has helped facilitate understanding of what can potentially drive body shape
and niche and has established templates for the study of morphological relationships with resource
use, life history, and evolution. Specifically, the application of ecomorphology can provide valuable
insight into ontogeny, phylogeny, and evolution. However, despite the obvious utility of ecomor-
phology and its growing literature base – there is still much room for improving our understanding
of the various taxonomic groups and clades of North American fishes.
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Morphological variation is driven by the influence of evolutionary (Felsenstein 1976; Fran-
sen 2011) and environmental factors (Green & Côt�e 2014; Santos & Ara�ujo 2014) which con-
tribute to both intraspecific and interspecific variation. Such selective pressures are not
mutually exclusive, however, as both couple together in driving morphological variation on an
individual and population level (Dhuyvetter et al. 2007). While the comparison of morphologi-
cal characters and molecular markers provide valuable insights into evolutionary and environ-
mental processes that contribute to morphological variation, the relative contributions made
by either factor is understudied. Furthermore, while morphological variation is expected in
freshwater fishes (Alexander et al. 2006), how much or what proportion of variation is attrib-
utable to physiological changes in body size or sex or environmental changes in habitat is
largely unknown for many taxa.

The development of morphological features as a function of body size is a major source of shape
variation within fish species. Across a given species complete ontogeny the morphological variation
exhibited is often the greatest contributor to shape change (Wainwright 1996). Ontogenic variation
in growth-morphology trajectories are shaped by selective pressures relating to a variety of func-
tional factors, including diet, maturity, predation pressures, and habitat type (Hjelm et al. 2001;
Neves et al. 2015) that coincide with change during a lifetime of development. Morphological
changes during ontogeny strongly influence performance and can provide implications for success
of particular size classes dependent on diet, sex, and/or habitat. The effects of available food resour-
ces, sexual maturity or reproductive life history, as well as habitat differences on morphological vari-
ation in growth trajectories coinciding with body size between fishes have been identified and tied
back to increased advantages for some individuals (Wainwright 1996). For example, the complex set
of interrelationships that accompany ontogenic changes has been well documented in populations
of Eurasian Perch (Perca fluviatilis) collected from different habitats where ontogenic trends in mor-
phology have been shown to differ between littoral and pelagic microhabitats in the same ecosystem
(Svanb€ack & Eckl€ov 2002).

Sexual dimorphism between male and female individuals provides an additional source of mor-
phological variation. Although not necessarily independent of ontogenic changes, as many species
do not diverge in morphology until reaching sexual maturity (Jacquemin & Pyron 2013), sexual
dimorphism is widespread among many organisms and suggests that variation between sexes is a
result of adaptation (Shine 1989). Describing shape variation between male and female individuals
can provide valuable information on the mechanisms present in reproductive processes. Although
not universal across species, numerous species which demonstrate sexual dimorphism in morphol-
ogy (as well as size) have been linked back to a balance between fecundity constraints and success
(Svensson et al. 1986). To further complicate this interpretation, recent studies have identified varia-
tion in size, age, and morphology of those individuals that become sexually mature that can be con-
tingent on levels of intraspecific competition (Ehlinger 1997). Although differences in morphology
between sexes can be nuanced as a result of habitat, diet, competitive interactions, etc. at a very fun-
damental physiological level, these differences are typically the result of females carrying ovaries
(typically a larger organ) filled with eggs (a larger gamete) compared with males carrying testes filled
with sperm (Parenti & Grier 2004).

Morphological variation can also be induced by environmental factors. This can occur as a result
of phenotypic plasticity, selection, or a combination (Hollander et al 2006). The ability of a single
genotype to produce more than one phenotype as a result of environmental heterogeneity (at multi-
ple scales) is a response that is well documented in freshwater fishes (Franssen 2011). However, it is
important to note, that environmentally induced differences are indirect measures, rather than
direct, where other factors associated with the change in habitat play a larger role. Similar to other
factors that relate to morphological variation, environmentally induced shape divergence in fish has
been associated with a variety of parameters, including risk of predation (Reznick 1982; Bro��nmark
& Miner 1992; Godin & Briggs 1996), diet availability (Showalter et al. 2016), differences in flow
regime (Hendry et al. 2006), and more. For example, studies on populations of Poeciliidae indicate
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that those experiencing increased levels of predation tend to exhibit larger caudal and smaller head
regions than those without high levels of predation risks (Langerhans & Makowicz 2009) and that
this relationship can be sex specific (Hendry et al. 2006). Moreover, these variations in shape as a
result of habitat have been linked to swimming performance, a major driver of escape behavior and
dispersal ability in moving water, where as a result of developing a deeper body one could be
expected to reduce swimming efficiency due to drag (Law and Blake 1996; Zimmerman 2007). Vari-
ation in flow regimes contribute to many habitat differences and have been shown to have a pro-
found effect on morphological characters in freshwater fishes (Langerhans et al. 2003; Langerhans
et al. 2007). Populations which inhabit regions with increased flow (lotic) tend to develop stream-
lined bodies which correspond with reduced drag and increased abilities to maintain steady swim-
ming speeds in flow. By contrast, individuals from habitats with no flow (lentic) tend to develop
deeper bodies which elevate its ability to traverse structurally complex habitats (Langerhans 2008;
Santos & Ara�ujo 2014). Water flow is thought to drive predictable morphological variation, but
comparative evidences have shown that fish can develop different environmental responses based
on energetics and cost reduction strategies leaving many unanswered questions regarding pheno-
typic variation across flow regimes (Pakkasmaa & Piironen 2000; Langerhans 2008).

Overall, evidence coupling together size, sex, and environment indicates that a suite of fac-
tors – albeit individually or interacting – can potentially drive morphological variation among
populations (Hendry et al. 2006; Langerhans & Markowicz 2009). These variations in mor-
phology are important to quantify as they can facilitate a greater understanding of ecology by
providing clear functional links that can then be used to better understand a host of issues
associated with niche, adaptation, persistence, performance, and more. Despite the breadth of
the aforementioned literature and clear applications, morphological responses are not fully
understood for all taxonomic groups and clades, where many species are understudied or
could benefit from additional inquiries pulling from other populations, methodologies, or func-
tional approaches. The study organism associated with this research, the Bluegill
(Lepomis macrochirus), represents a case where a growing literature base already describes a
variety of aspects of biology but could benefit from additional morphological study. Bluegill is
endemic to freshwater ecosystems in North America and is considered abundant across a wide
variety of habitats. From a management perspective, Bluegill is a highly sought after sportfish
and are heavily stocked in many lakes, reservoirs, and ponds (Jackson 2002; Yokogawa 2013;
Taguchi et al. 2014). From a biological perspective, past works have described their general
niche (Spotte 2007), diet (Werner & Hall 1988; Masagounder et al. 2014), behavior (Werner &
Hall 1977; Partridge et al. 2015), and aspects of morphology ranging from variation between
sizes, sexes, particular habitats (micro and macro), reproductive state, and life histories, to the
role that museum preservation may play on shape (Layzer and Clady 1987; Ehlinger 1990;
Ehlinger 1991; Ehlinger et al. 1997; Yokogawa 2009; Colborne et al. 2011; Gaston et al. 2013;
Yokogawa 2013; Gaston and Lauer 2015). However, despite this growing literature base there
is a lack of watershed level information on the relative influence of body size, sex, and habitat
(particularly with regard to morphological responses to flow) that controls for covariates,
accounts for interactions, and uses laboratory testing to directly verify and test any resulting
hypothesized links with any functional application to the observed morphological variation in
Bluegill. Therefore, the primary objectives of this study were to (1) describe variation in Blue-
gill body morphology across the Grand Lake St Mary’s (GLSM’s) watershed area by testing for
morphological covariation with body size, sex, and local habitat using novel morphometric
methodologies as well as (2) to review and establish potential functional mechanisms related
to morphological variation that could be tied to diet, fecundity, and/or swimming performance
using a combination of literature reviews and laboratory testing. We predicted that morpho-
logical variation would be exhibited in populations across the watershed consistent with body
size, sex, and habitat type as a result of selection for ontogeny, sexual dimorphism, and envi-
ronmental plasticity.
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Methods

Study area

The GLSM watershed covers about 239 km2 in northwest Ohio and eventually empties into the
Wabash River and ultimately contributes to the area of the Ohio River drainage basin (Figure 1).
However, one important peculiarity to note is that as a result of anthropogenic influences on the
basin during widespread shipping canal use in the mid-1800s, Grand Lake is also connected to the
St Mary’s River, a major tributary of the Maumee River and ultimately Lake Erie drainage basin
(Figure 1). Past studies (Hoorman et al. 2008; Filbrun et al. 2013; Dumouchelle & Stelzer 2014) have
documented highly variable water quality parameters within the GLSM watershed area consistent
with seasonal variation in water temperature, dissolved oxygen, turbidity, nutrient loading
(e.g. nitrates and phosphates), and specific conductance.

The aquatic habitat of the GLSM watershed area is composed mostly of low gradient streams of
small to medium size with primarily sand and silt substrate resultant of glacial till depositions. These
tributaries primarily drain in to the main body of water – GLSM, which is one of the largest man-
made lakes in North America, covering about 54.4 km2 in Mercer and Auglaize counties
(Ohio, USA). Hand dug in 1837, GLSM functioned as a supply reservoir for the Miami and Erie
Canal (Clark 1960) but currently serves as a public water supply for the city of Celina and recrea-
tional outlet (Davenport & Drake 2011). The GLSM terrestrial and riparian area is primarily com-
posed of row crop and animal based agriculture (82%), residential (5%), forest (4%), and animal
feeding operations (1%) (GLSM, 2005). Specific to biota, Ohio EPA fisheries surveys have identified

Figure 1. Collecting site locations within the GLSM’s watershed.
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27 fish species within the lake with as many as 49 species from connected inflow/outflow waterways
outside the immediate basin as well as tributaries such as the St Mary’s River, Chickasaw Creek, and
Beaver Creek (Figure 1; Ohio Environmental Protection Agency sampling efforts 1995–2015). Due
to the high levels of natural and anthropogenic connectivity, movement of fishes is theoretically pos-
sible between the reservoir, major tributaries, and outflow locations although this phenomenon has
not been formally studied.

Habitat characterization and specimen collection

Sites in this study were chosen to represent both lentic and lotic habitats across the GLSM basin and
connected waterways (St Mary’s River) based on site accessibility and continuity with long term
GLSM ecological research (Table 1; Figure 1). Additionally, the potential to show variation in water
quality parameters was among the criteria considered in site selection. Each lentic site covered
around 100m of shoreline while each lotic site covered approximately 10–15 times the wetted stream
width. Habitat at each site was described using dissolved oxygen, pH, temperature, conductivity,
average depth, substrate type, turbidity, as well as discharge and fetch length for lotic and lentic sites,
respectively. In situ water quality parameters (dissolved oxygen, pH, temperature, and conductivity)
were taken using a Hach Multimeter (HQ40D Multi) while turbidity measurements (NTU) were
gathered using a Hach Turbidimeter (2100P). Average depth and substrate type was determined at
each site using a standardized probing approach. A series of 25 probes equally spaced throughout
each site were used in characterizing substrate type and depth. Measurements gathered from the
longest uninterrupted stretch observed at each lentic site accounted for the maximum fetch length,
which was taken from a southwestern direction to coincide with prevailing winds. Specific to lotic
sites, discharge rates were gathered from the USGS National Water Information System. Chemical
and physical water quality and habitat data taken at each site were described using basic general
descriptive statistics.

Bluegill utilized in this study were collected from GLSM as well as tributary (Chickasaw Creek)
and outflow locations (St Mary’s River, Beaver Creek; Figure 1) during June of 2015 and 2016. Sam-
pling efforts included a barge electrofishing and beach seines as part of an ongoing project monitor-
ing the biological integrity of GLSM watershed. Electrofishing surveys were conducted using an ETS
Electrofishing Systems unit operating under standard duty cycles, pulse frequencies, amperage, and
voltage (250 v). Beach seines (5 mm mesh size; 15 £ 2 m) were also pulled at each site a total of 5–
10 times. Individuals at all stages of maturity were collected where all specimens were enumerated.
Total length (to the nearest millimeter) and weight (to the nearest gram) was measured for each
individual. Sex was determined through visual inspection of milt or eggs and verified using micro-
scope dissection of gonads using a subset of specimens vouchered for archive in the WSU Biological
Collection (Lake Campus, Celina, OH, USA). Individuals not vouchered were released following
measurements and data collection. All collection efforts were consistent with Wright State Univer-
sity Animal Care and Use Committee Protocol (IRB – IACUC: AUP 1063) and Ohio Department of
Natural Resources Collecting Guidelines.

Morphological data analysis

To characterize morphology of Bluegill, geometric morphometric methods were used. Geometric
morphometrics is a contemporary approach to describing morphological variation using multivari-
ate statistical analysis to evaluate the spatial arrangement of designated coordinates in reference to a
common shape. Representing a series of manually set homologous landmarks, these coordinates
provide effective visualizations of shape variation relative to all individuals (Klingenberg 2015). To
describe shape configurations, each fish was first placed on a flat surface immediately upon collec-
tion and lateral images of the left hand side of each individual were captured using a digital camera
(Nikon Coolpix 7620) adjacent to a reference scale. Images were digitized using the open-source
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Thin-Plate Splines (TPS) software tpsDIG (ver. 2.19; Rohlf 2001), according to a series of 15 manu-
ally set landmarks (Figure 2). TPS software was also used to produce visualizations of shape and
deformations relative to multiple individuals (Requieron et al. 2012; Mayer et al. 2014). Specimens
were digitally unbent to account using a series of 4 landmarks placed at the tip of the snout and
along the midline of each specimen (Rohlf 2004). Following digitization, geometric morphometric
techniques were used to extract, visualize, and test for shape variation consistent with body size, sex,
and habitat type.

Generalized Procrustes Analysis (least squares method) was used to align and transpose all indi-
viduals along a common scale (Cho et al. 2013). In doing so, comparisons in shape can be made
between each specimen (Bartoli et al. 2013). Visualizations of shape variance were performed by
TPS software by way of deformation grids produced by tpsRelw (Rohlf 2015) and tpsRegr (Rohlf
2016) software. Relative warp scores were used to summarize shape variation among individuals
and were assigned to each specimen in relative warp analysis (RWA) as characterized by a single
value which was then used to ordinate and assess differences in shape gradients among all individu-
als (Demayo et al. 2013). Extracted shape gradients accounting for at least 1% of variation were
included in subsequent analyses.

Morphological differentiation as a function of habitat type, sex, and body size was tested for using
a combination multivariate analysis of variance (MANOVA) and general linear modeling (GLM)
techniques done in the R statistical environment (Shuker 2012). MANOVA using the Wilks’ statistic
was used to test for morphological differentiation as a function of body size (length to the nearest
millimeter), sex (M vs F), and habitat type (i.e. lentic or lotic) within the entire GLSM watershed.
Visualizations of these overall trends elicited by MANOVA were done using the tpsRegr software
(Rohlf 2016). In this analysis, RWA scores were designated as dependent response variables and
body size, sex, habitat type, and interactions between body size £ sex, body size £ flow, and body
size £ sex £ flow were designated as independent predictor variables. General linear models (GLM)
were then used to further explore the significant effects and slope relationship of body size, sex, and
habitat type on each of the primary RWA axes from morphology data of specimens within the
GLSM watershed. RWA axes were designated as independent response variables and body size, sex,
habitat type and interactions between body size £ sex, body size £ flow, and body size £ sex £ flow

Figure 2. Location of 18 manually set landmarks used for morphological analysis of Lepomis macrochirus: 1 tip of snout; 2 nuchal
hump (follows angle of operculum to body); 3 anterior insertion of dorsal fin; 4 posterior insertion of dorsal fin; 5 insertion of last
dorsal ray on caudal fin; 6 insertion of last ventral ray of caudal fin; 7 posterior insertion of anal fin; 8 anterior insertion of anal fin;
9 insertion of pelvic fin; 10 gill juncture; 11 midpoint of eye; 12 insertion of pectoral fin; 13 ventral insertion of opercular flap; 14
dorsal insertion of opercular flap; and 15 posterior edge of opercular flap. Landmarks numbered 1, 16, 17, and 18 were used to dig-
itally unbend each specimen and thereby not included in the analyses.
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were designated as dependent variables. Reduced models were utilized where interaction terms or
variables that were non-significant were excluded from subsequent model analysis (Ho et al. 2007).
Coupling these individual models with the overall models facilitated conclusions regarding overall
patterns, dominant morphological gradients, slope trajectories, and interaction points among group-
ing variables.

Functional mechanisms of morphology

To provide potential functional linkages between body shape and size, sex, and habitat, laboratory
studies were undertaken to assess relationships between Bluegill body morphology and swimming
performance. Since data in the literature is not available regarding swimming performance of Blue-
gill from different habitats, laboratory tests for swimming performance were conducted to fill in this
gap. Swimming performance tests were undertaken using a Blazka style chamber (»100 liter tank
with 12 £ 30 cm working section) and measured with a Ucrit protocol across a subset of similarly
sized individuals comprising both male and female individuals from lentic (GLSM) and lotic sites
(St Mary’s River) within the watershed. Collected Bluegill were transported in aerated coolers back
to 20 gallon lab aquaria at a maximum density of 4 fish per tank for approximately 7 days. During
this time fish were exposed to 12:12 light cycles, climate controlled room temperatures, and fed a
combination of brine shrimp and commercial flake meal twice daily. Physiochemical conditions
were monitored every 3 days using standard Hach test kits to ensure appropriate water quality
parameters were maintained. Individuals were deprived of food 12 hours before the start of testing
so as to maintain a post-absorptive state. Prolonged swimming speed tests (critical swimming speed
[5/5Ucrit]) were conducted following a 1 hour acclimatization time where flow remained at 0 cm/s
for 30 min and was increased to 5 and 10 cm/s at the 45 and 60 min mark. Testing followed incre-
mental increases in flow speeds of 5 cm/s at 5 min intervals. Swimming performance trials tested
prolonged swimming speeds using the Ucrit calculation (see below) for Bluegill, where Vp is the final
flow velocity achieved by the specimen before fatigue. Vi corresponds to the velocity increase per
time, while Tf and Ti are the final velocity increase and incremental time, respectively (Brett 1964;
Wolter & Arlinghaus 2003):

Ucrit¼ Vpþ Vi Tf =Ti
� �� �

For this experiment, fatigue was defined as a state in which the specimen becomes unable to
maintain its position within the chamber followed by impingement with the downstream screen.
Swimming performance data will be analyzed using general descriptive statistics. General linear
models (GLM) were used to explain significant effects of size, sex, and site on Ucrit swimming perfor-
mance metrics for the subset of individuals tested from within the GLSM watershed. Specific Ucrit

values (cm/s) were designated as independent response variables and body size, sex, and site were
designated as dependent variables. All tests for significance corresponded with an alpha level of 0.05.

Results

A total of 336 individuals were collected from GLSM, as well as several tributaries and outflow loca-
tions (St Marys River, Beaver Creek, and Chickasaw Creek). Individuals ranged from 23 to 207 mm
in total length and included a total of 189 females and 146 males. RWA retained 12 axes which
explained a total of 95% of the morphological variability, weighed most heavily along the first 3
which explained 65% of morphological variation of Bluegill in the GLSM watershed area.

MANOVA (eta2) of RWA scores revealed significant differences in shape attributed to length
(mm TL), sex (male vs female), and habitat (lentic vs lotic). Significant interactions between length
£ sex and length £ habitat were also present in the MANOVA (Table 2; Figure 3). Among all

422 A. J. BELL AND S. J. JACQUEMIN



individuals sampled, length was the primary variable explaining morphological variation while sex
and interactions between length £ sex and length £ flow were secondary (Table 2; Figure 3).

General linear mixed models (GLMM) were used to determine morphological variation and
directionality attributed to length, sex, and habitat (i.e. flow) across the three primary axes (Table 3).
In RWA1 (40%), gradients were consistent with shifts in body shape from more robust morpholo-
gies (i.e. pronounced nuchal humps and increased caudal-peduncle area; positive loading) to more
streamlined counterparts (i.e. increased streamlining and decreased nuchal hump; negative loading;
Figure 4). Among the variables tested in this model, length accounted for the largest amount of vari-
ation explained (Table 3 and Figure 5). More specifically, individuals developed a more robust mor-
phology as body size increased. This relationship was also relevant relative to sex as an interaction
between sex £ length was also recovered. Morphological variation extracted from RWA2 (17%)
evaluated length, sex, flow and interactions between length £ flow using GLMM. Shifts from ante-
rior (positive loading) to posterior (negative loading) placement and orientation of the operculum,
pelvic, and pectoral fins were observed (Figure 4). Such shifts were consistent with increasing size as
larger individuals exhibited a more posterior placed operculum relative to smaller individuals.
Among the variables tested, the interaction between length and sex as well as length £ flow emerged
as significant variables indicating differential responses between length and sex and habitat among
individuals (Table 3 and Figures 5–9). Finally, shape variation retained in RWA3 (8%) evaluated
length, sex, and flow (Table 3). Results therein indicated shifts in dorsal fin placement, body

Figure 3. Overall visualizations for morphological variation in the GLSM watershed area.
Note: Figures magnified 3x in tpsregR software.

Table 2. MANOVA results of relative warp analyses of all individuals collected from the GLSM
watershed. Length is the primary predictor of morphology in Bluegill.

Variable eta2 Test Statistic F df p

Length 0.90 0.86 668.07 328 <0.01
Sex 0.25 0.16 20.76 328 <0.01
Flow 0.11 0.03 2.31 328 0.05
Length£ sex 0.20 0.11 13.16 328 <0.01
Length£ flow 0.09 0.04 4.74 328 <0.01
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Figure 4. RWA for three primary axes which explained 65 percent of morphological variation in the GLSM watershed area, includ-
ing significant relationships with parent terms as shown in general linear models.

Table 3. GLM results of relative warp analyses of all individuals collected from the GLSM watershed.

Source Estimate Standard error T p

RWA1
Length 0.00071 0.000022 32.32 <0.05
Sex ¡0.0029 0.0041 ¡0.72 0.47
Flow 0.0013 0.0019 0.699 0.49
Length£ flow 0.000072 0.000032 2.258 <0.05

RWA2
Length 0.00014 0.000037 3.85 <0.05
Sex 0.014 0.0066 2.14 <0.05
Flow 0.021 0.000052 2.73 <0.05
Length£ sex ¡0.00026 0.000052 ¡5.10 <0.05
Length£ flow ¡0.0002 0.000077 ¡2.56 <0.05

RWA3
Length 0.000014 0.000023 0.62 0.54
Sex 0.0025 0.0020 1.26 0.21
Flow -0.0092 0.0058 ¡1.58 0.12
Length£ flow 0.00016 0.000058 2.74 <0.05
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orientation, and reduction nuchal regions. More specifically, shifts were observed from increased
nuchal regions (positive loading) to a posteriorly placed dorsal fin and upturned body orientation
(negative loading; Figure 4). Along this third primary axis, flow, particularly the interaction with
length emerged as the most significant predictors in morphological variation in RWA3 (Figure 9).

To specifically quantify the potential effect of flow differences on swimming performance, a sub-
set of 21 similarly sized individuals ranging from 95 to 164 cm total length were used to compare
GLSM to St Marys River populations. One individual was found to be a non-performer (e.g. exhib-
ited erratic or atypical behavior during swimming tests) and was excluded from subsequent analyses.
GLMM were used to determine swimming performance variation attributed to size, sex, and habitat
(GLSM; St Mary’s River). Not surprisingly, given the specific size class used, fish size was found to
be insignificant (p < 0.05). In addition to size, sex was also found to be an insignificant predictor of
swimming performance (p < 0.05). However, habitat was found to be an overall indicator of

Figure 5. Scatterplot of RWA1 and RWA2 for both male and female individuals in the GLSM watershed. Closed circles indicate
females and open circles indicate males.

Figure 6. Scatterplot of RWA 1 and total length with regressions for Bluegill. Closed circles and solid regression line indicate
females and open circles and dashed regression line indicate males.
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swimming performance (Est = 5.9, SE = 2.4, t = 2.4, p = 0.03), where individuals from lotic sites
(mean Ucrit 51.5 cm/s¡1; SD Ucrit 9.7 cm/s¡1) swam approximately 20% faster and exhibited less
variation relative to those from the lentic site (mean Ucrit 39.6 cm/s¡1; SD Ucrit 11.9 cm/s¡1).

Discussion

This study provides strong support for morphological covariation with body size, sex, and habitat
within a local area and contributes to existing ecomorphological research by using field collections
to highlight these key corollaries and laboratory methods to identify functional effects and suggest
mechanisms that may drive these patterns. By exploring the interactions between morphology,

Figure 7. Scatterplot of RWA2 and total length (mm) with regressions for Bluegill individuals. Closed circles and solid regression
line indicate females and open circles and dashed regression line indicate males.

Figure 8. Scatterplot of RWA2 and total length (mm) with regressions for Bluegill individuals. Closed circles and solid regression
line indicate individuals from lentic habitats and open circles and dashed regression line indicates individuals from lotic habitats.
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physiological, and environmental gradients, biologists can better predict mechanisms that influence
both the morphology of organisms and their functional role in the ecosystem (Norton et al. 1995;
Langerhans & Reznick 2010). Here, evidence is provided that body size is the primary contributing
factor to morphological variation in Bluegill while sex and habitat are secondary. These results sug-
gest that a combination of factors ranging from ontogeny, sex, and environment may drive variation
in shape, likely as a result of selection for differences in diet, reproductive role, and flow regime of
habitat.

Allometric growth is expected to covary with ontogenetic changes as few fish actually exhibit iso-
metric patterns (Wainwright & Richard 1995). This is largely a reflection of resource use and physi-
ological changes that coincide with life history (Wainwright 1996; Svanb€ack & Eckl€ov 2002). The
analysis of body shape supports previous findings suggesting that Bluegill growth is not isometric
and thus certain morphological characters do not grow proportionally to the rest of the body. Simi-
lar to other studies that have observed morphological allometry in Bluegill (Ehlinger 1991; Yoko-
gawa 2013) individuals in this study were found to have developed a more robust morphology
(i.e. pronounced nuchal hump, stouter/increased caudal peduncle area) coinciding with increasing
size (i.e. age). Interestingly, several studies have identified key dietary shifts (zooplankton to benthic
invertebrates) in Bluegill linked to trade-offs in prey selectivity between individuals of different age
classes that occur at some point between 25 mm (Showalter et al. 2016) and 50 mm (Werner & Hall
1988). Other members of the genus Lepomis have also been shown to exhibit variation in body
shape, including gill rakers and pharyngeal jaw morphology, in response to dietary variation
(Hegrenes 2001). Linking the ontogenic variation in shape described in this study with past studies
delving into dietary and morphological variation provides a unique explanation for mechanisms
that can potentially explain shape variability among size classes. These functional variations likely
extend to variation between male and female individuals or individuals from different microhabitats
(Layzer & Clady 1987; Ehlinger 1990) as well. Building on this, one can also infer a degree of plastic-
ity that may be present as Bluegill could potentially adjust or be selected for various morphologies.
Thus, these ontogenic trends may be more broadly linked with aspects of optimal foraging theory,
sexual selection, or phenotypic plasticity.

In addition to ontogenic variation, a high degree of sexual dimorphism was also detected among
individuals. Variation in sexually dimorphic traits have been well documented in teleosts and have
been related to feeding mechanism, color, mating system, behavior, and size traits (Newman 1907;

Figure 9. Scatterplot of RWA3 and total length (mm) with regressions for Bluegill individuals. Closed circles and solid regression
line indicate individuals from lentic habitats and open circles and dashed regression line indicates individuals from lotic habitats.
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Kodric-Brown 1990; Parker 1992; Kazancio�glu et al. 2009; Mcgee & Wainwright 2013). In this spe-
cies, male bluegill exhibit increased growth rates and larger maximum size compared to females
(Ehlinger 1997; Yokogawa 2013) which when coupled with ontogenic morphological variation,
results in variation at particular age classes. Similar to other studies that have observed sexual varia-
tion in Bluegill morphology (Ehlinger 1991; Colborne et al. 2011; Yokogawa 2013), male individuals
in this study (while controlling for body size) were found to have developed increased dorsal height
and overall streamlining relative to the more ventrally deeper bodied females. This difference was
found to be highly size dependent and divergence between male and female body shapes did not
occur until approximately 100 mm in length. It seems probable that this major difference is a result
of female biased sexual sized dimorphism where selection has targeted phenotypic traits that con-
tribute to female body size and by relation correlate to increased fecundity. These trends may also
suggest that alternative reproductive strategies could be functionally supported in Bluegill (Gross &
Charnov 1980; Gross 1991; Ehlinger et al. 1997)). Alternative reproductive strategies (e.g. sneaker
males) have likely evolved in competitive systems and as a result, given the smaller sizes and shape
relationship present, a complete generalization of male and female Bluegill shape may be problem-
atic (Colborne et al. 2011). Future work in this area should focus on the identification and inclusion
of individuals exhibiting alternative life history strategies into morphological analyses at this scale.

Finally, this study indicated significant habitat-specific variations in Bluegill morphology where
lotic ecosystems yielded shallow bodied individuals and lentic ecosystems yielded deeper bodied
individuals. Past research in Bluegill has indicated microhabitat level variation that has been tied pri-
marily to prey selection, predation avoidance, and/or competition (Werner & Hall 1977; Layzer &
Clady 1987; Ehlinger 1990; Wilson et al. 1996). Beyond Bluegill, morphological variation attributed
to habitat type often corresponds to resource use and has been well documented in freshwater fishes
(Svanb€ack & Eckl€ov 2002; Langerhans et al. 2003; Franssen 2011; Santos & Ara�ujo 2014). In this
study, fish collected from lotic ecosystems experienced greater flow velocities and variation in both
physical and chemical habitat parameters relative to the deeper bodied fish from lentic ecosystems.
To further investigate potential mechanisms which could explain this pattern and given the paucity
of swimming performance studies on Lepomis, laboratory swimming performance tests were con-
ducted on individuals from lotic and lentic sites. Past works have investigated factors influencing
swimming performance in other taxa and have centered on both fish morphology as well as aspects
of locomotor ability (Videler 1993; Blake 2004). Both of which are intimately linked through a gen-
eral morphology, swimming performance, and fitness paradigm. As part of this system, the evolu-
tion of swimming performance is investigated at the lower level (i.e. fish morphology), while also
considering the potential impact of an organisms shape or abilities on higher levels (i.e. fitness;
Arnold 1983). Our analysis of swimming performance support prior findings in other taxonomic
groups which suggest that individuals with streamlined morphologies display increased locomotor
abilities favoring steady swimming in flow (Langerhans et al. 2003). Notwithstanding the role of
other selective agents, the evolution of swimming performance does not occur independently of
other adaptations and other factors influencing locomotor abilities – albeit evolutionary or ecologi-
cal – may interact with one another influencing responses to selection (Langerhans & Reznick
2010). Similar analyses posit that such mechanisms may serve as a priori predictors of morphologi-
cal variation and, by extension, swimming performance in fishes, a task which becomes particularly
important in the face of widespread landscape alterations (Langerhans et al. 2007; La Croix et al.
2011).

The environmental and genetic variation that underlie morphological variation between organ-
isms at the individual and population level have been fundamentally linked to trade-offs in swim-
ming performance (Gerry et al. 2012), predator –prey dynamics (Bro��nmark & Miner 1992;
Langerhans & Makowics 2009), and foraging efficiency (Svanb€ack & Eckl€ov 2002). Morphological
variation observed in Bluegill within the GLSM watershed area can be attributed to a number of
mechanisms. Here, it is shown that body size, and by relation ontogenetic growth, is a primary factor
in driving morphological variation. Other mechanisms, namely genetic components, are known to
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contribute to morphological variation at the population level (Lee et al. 2015). While there is no
genetic evidence included in this study, it seems likely that this mechanism would be secondary to
plasticity given the lack of physical barriers to gene flow present between sites.

Ecomorphological research posits that morphological patterns reflect differences in functional
mechanisms where variation is detected in physiology, environment, or diet composition and cova-
ries with body size (Norton et al. 1995; H€ussy et al. 2012). Further work is necessary to investigate
other mechanisms driving morphological variations described in the present study. While a growing
base of ecomorphological literature provides evidence of other causal mechanisms, further work is
needed to identify an underlying factor which accounts for between-habitat morphological varia-
tion. The current study as well as other studies moving to quantify such responses can prove useful
to natural resource managers as well as conservation workers. More specifically, such experiments
may serve as a priori predictors for morphological variation – a task which becomes particularly
important in the face of widespread landscape alterations. Though landscape alterations, specifically
those that alter flow regimes, are certain, modifications and restoration strategies which will better
maintain the biological integrity should be implemented. Morphological analyses allow biologists to
assess the implications associated with structures that impact our natural resources, and in doing so,
provide a way to better predict ecological communities in the face of variation in habitat.
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