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ABSTRACT

The Deep Underground Neutrino Experiment (DUNE) will be a long baseline neutrino
oscillation experiment using a high purity muon neutrino beam and near detector, both
located at the Fermilab National Accelerator Laboratory, and a far detector hosted 1300 km

downstream at the Sanford Underground Research Facility. The 10 kt fiducial mass of liquid
argon will allow DUNE to have a rich off-beam neutrino physics programme, including the study
of neutrino signals from core collapse supernovae.

The single phase DUNE far detector module will read out ionisation data at a rate of 1.2 TBs−1

whilst only a total data volume of 30 PB per year can be permanently stored. DUNE will make
use of field programmable gate array (FPGA) resources in the front-end of the data acquisition
(DAQ) as part of the necessitated triggering system.

This thesis presents a validation study of the FPGA-based trigger primitive generation
(TPG) in the front-end DAQ using data collected by the ProtoDUNE experiment hosted at the
European Council for Nuclear Research. The FPGA-based TPG was utilised as the first stage
of a baseline supernova burst (SNB) trigger whose performance was evaluated using simulated
neutrino interactions for a 11.2m⊙ progenitor star. The efficiency of the baseline SNB trigger
was determined to have a lower limit of 97.7+0.2−0.3% for supernovae at a distance 20 kpc, achieving
the technical requirements set out for DUNE. To improve the performance of the SNB trigger
at greater SNB distances, the use of a bounding box proposal network, You-Only-Look-Once
version 3 (YOLOv3), was explored. This was found to improve the efficiency of the SNB trigger to
100+0.0−0.0% up to the far side of the Milky Way galaxy and to 92.5+0.5−0.5% at the Large Magellanic
Cloud.
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1
INTRODUCTION

The Standard Model (SM) of particle physics, consisting of 12 elementary fermions, 4

elementary gauge bosons and the scalar Higgs boson, has proven to be exceptionally

accurate at explaining experimentally observed phenomena. However, the SM does not

explain a number of observations, including neutrino oscillations [1][2] and the baryon asymmetry

problem [3], where more matter than antimatter is observed in the universe. Other failures

include the inability to explain experimental observations of gravity [4], dark matter [5] and dark

energy [6].

The Deep Underground Neutrino Experiment (DUNE) is a long baseline neutrino oscillation

experiment currently under construction which will attempt to address some of these failures.

It will be hosted by the Fermi National Accelerator Laboratory (FNAL) and the Sanford Un-

derground Research Facility (SURF). A high purity muon neutrino beam will be sent 1300 km

through the Earth from Fermi National Accelerator Laboratory (FNAL) to a set of 4 far detector

(FD) modules located 1.5 km underground at the Sanford Underground Research Facility (SURF).

Each detector module will have a fiducial mass of 10 kt of liquid argon (LAr). The rate of disap-

pearance of muon neutrinos and appearance of electron neutrinos as they travel is dependent

on the baseline of the experiment and the energy of the neutrinos. By probing oscillations of

neutrinos over a wide energy band, DUNE will be able to disentangle different contributions to

the oscillation rate and provide measurements of neutrino oscillation parameters. A near detector,

also based at FNAL will characterise the neutrino beam to avoid biases in the measurements.

The main goal of DUNE is to make measurements which determine whether CP violation occurs

in the lepton sector and determine the ordering of the neutrino mass hierarchy. Oscillations will

also allow a measurement of the θ23 mixing angle.

The large volume of liquid argon (LAr) will make DUNE a useful tool in the search for proton
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CHAPTER 1. INTRODUCTION

decay signals which could provide evidence for grand unified theories [7]. DUNE will also be

used to investigate neutrinos from non-beam sources, such as solar neutrinos and atmospheric

neutrinos. A high priority goal is to be able to detect the neutrino signal from a core collapse

supernova (SN) within the Milky Way with high efficiency. Core collapse supernovae (SNe) release

99% of their energy in a burst of neutrinos. The observation of this signal would allow insights to

be made about the formation processes of neutron stars and black holes as well as having the

potential to constrain neutrino properties.

A single far detector (FD) module will read out 1.2 TBs−1 of data but only 30 PB of data will

be able to be stored per year. This means that DUNE will require a system to identify and record

interactions in the detector which are of physics interest, such as neutrino interactions, or proton

decay. This ‘trigger’ must be able to keep up with the online data collection rate and maintain as

high an efficiency as possible whilst keeping background rates below the permitted thresholds.

Once triggered upon, collected data can be analysed by more sophisticated algorithms offline.

The trigger system in DUNE will utilise field programmable gate array (FPGA) resources for

front-end readout and processing to allow data processing to keep up with the input data rate.

Subsequent algorithms implemented via central processing unit (CPU) resources will allow each

module to trigger independently, collecting data which is then stored for further filtering and

offline analysis.

1.1 Thesis Overview

This thesis describes validation of data processing algorithms implemented in the front-end FPGA

hardware and studies of SNB triggering in the DUNE FD. The validation studies culminated in

the validation of the FPGA data processing algorithms when implemented in the ProtoDUNE

detector. An analysis of a baseline supernova burst (SNB) trigger algorithm which utilised these

data processing algorithms is then presented. This is followed by studies which made use of a

machine learning algorithm, YOLOv3, to attempt to improve the performance of the SNB trigger.

Firstly, the physics of neutrino oscillations and the motivation for their study are described

in chapter 2. The interactions of neutrinos in a liquid argon time projection chamber (LArTPC),

such as DUNE, are introduced followed by an introduction to core collapse SNe and a description

of the neutrino signal which has been used for the SNB trigger studies presented.

In chapter 3 DUNE is introduced. The FD detector and DAQ system, including the functional

blocks studied in validation work, are described. The technical requirements for a SNB are set

out, followed by the baseline SNB trigger algorithm. ProtoDUNE is also introduced, including

the setup in which it was used to validate the FPGA-based data processing algorithms. These

validation studies are described in chapter 4.

An analysis of the performance of the baseline SNB trigger is presented in chapter 5. Details

of data simulation are described and the objects generated at each stage of the trigger are
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1.1. THESIS OVERVIEW

characterised before the computed SNB trigger efficiency is presented.

Chapter 6 explains the theory behind machine learning (ML) including convolutional neural

networks (CNNs) and sets out the YOLOv3 network whose implementation as part of the trigger

chain was studied. These studies are presented in chapter 7 and indicate whether this ML

algorithm could improve upon the baseline SNB trigger algorithm by more accurately identifying

the signals from the low energy neutrino interactions characteristic of a SNB. The possible areas

where ML could be introduced into the DAQ are discussed and the reasons behind the choice of

YOLOv3 are communicated. The preparation of data and choices of hyperparameters to train

the model are set out. The training metrics are evaluated followed by an analysis of the network

predictions and the impact that the use of the YOLOv3 network can make to a SNB trigger.

Chapter 8 looks back over the main findings presented in this thesis. The outcomes of the

studies are summarised, including the performance of the baseline and ML approaches to a SNB

trigger. Recommendations are made for areas of future study.
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2
PHYSICS

The SM treats neutrinos as massless and therefore does not explain the observations of

neutrino flavour oscillation for which Kajita and McDonald were awarded the 2015 Nobel

Prize in Physics. The SM also fails to explain the baryon asymmetry problem, where more

matter than antimatter is observed in the universe. This asymmetry may have been produced

in the early universe if the three Sakharov conditions [3] required for a baryon-generating

interaction to produce matter and antimatter at different rates from an initial balanced state are

satisfied. The first of these is baryon number violation, resulting in the creation of more baryons

than antibaryons. The second is that charge conjugation (C) and charge conjugation parity (CP)

symmetry must both be violated in order for processes which produce an excess of baryons to

occur at a different rate than complementary processes which produce an excess of antibaryons.

The final condition is that there must be a departure from thermal equilibrium. The first two

Sakharov conditions can be tested within the SM of particle physics.

The SM is observed to have charge, parity and time reversal (CPT) symmetry, though C,

P and CP (and therefore T) symmetry violation have been observed individually. To date no

baryon number violation has been experimentally observed and, though theoretically possible, no

significant CP violation due to strong force interactions has been observed either.

In 1957 parity violation in weak interactions was first detected in beta decay of 60Co nuclei [8].

This was followed by the detection of indirect CP violation in kaon decays in 1964 [9]. Direct

CP violation has since been observed in kaon decays [10] [11], B mesons [12] and D mesons [13].

However, the CP violation in the quark sector is not significant enough to explain the matter

asymmetry problem [14]. The T2K experiment has shown hints that CP violation may occur in

the lepton sector but the results do not yet constitute a discovery [15].

The first of DUNE’s primary science goals is to detect oscillations of beam-produced neutrinos.

5



CHAPTER 2. PHYSICS

This will allow measurements of the CP phase term and allow the neutrino mass hierarchy to be

determined. Oscillations will also allow a measurement of the θ23 mixing angle. The large active

detector volume and use of LAr as a detector medium will also allow searches for proton decay, a

secondary main science goal. Proton decay may provide evidence for Grand Unified Theories of

physics which break baryon number symmetry and satisfy the first Sakharov condition. The final

main goal for DUNE is to measure the neutrino flux from a core collapse supernova (SN) within

our galaxy or its satellites. These neutrinos would provide constraints on neutrino properties

and valuable insights into the internal mechanisms of SNBs to allow the validation of theoretical

models.

In this chapter neutrino oscillations and the oscillation matrix are introduced, along with

existing measurements. The measurement of δCP and the determination of the mass hierarchy

in DUNE is then described, followed by the physics of particle interactions in LAr. The DUNE

oscillation physics projections are then presented before a discussion of SNB physics and the

signals they are expected to produce in DUNE.

2.1 Neutrino Physics

Neutrinos were postulated as massless particles by Fermi [16] to solve the problem of the contin-

uous β-decay energy spectrum observed by Chadwick [17]. The first observations of neutrinos

produced by the Savannah River nuclear reactor were made in 1956 via inverse β-decay [18]. The

discovery of these (anti) electron neutrinos preceded the subsequent discovery of muon neutrinos

in 1962 at the Brookhaven National Laboratory [19] and the later observation of the tau neutrino

by the ‘Direct observation of the nu tau’ (DONUT) experiment in 2001 [20]. The Z mass and

width provide experimental evidence which suggests that the electron, muon and tau neutrinos

are the only 3 active flavours [21] but it is possible for there to be additional ‘sterile’ neutrino

flavours which do not interact via the weak, strong or electromagnetic forces. In the case that

sterile neutrinos do exist, it is possible to extend the SM to account for neutrino oscillations via

the seesaw mechanism [22].

In this section the history of neutrino oscillation measurements is introduced, followed by the

parameterisation of neutrino oscillations and an explanation of the parameters involved. Next,

the current best fit values for these parameters are presented followed by the expected sensitivity

of DUNE.

2.1.1 History of Neutrino Oscillations

Neutrino oscillations were anticipated by Pontecorvo who devised the first phenomenological

model of neutrino oscillations in 1967 [23], predicting that if the oscillation length was smaller

than the radius of the sun, the flux of electron neutrinos from the Sun would be half that of the

total neutrino flux (assuming only two neutrino flavours). The first indication of oscillations was
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in the Homestake experiment, designed to measure the flux of electron neutrinos produced in

the Sun. Theoretical calculations of this using standard solar models (SSMs) [24] predicted a

large flux of electron neutrinos from fusion processes in the stellar core, with the majority of

these having sub-MeV energies. The Homestake experiment was mainly sensitive to neutrinos

produced from

(2.1) 8B→ 8Be+ e++νe

decays which have an average energy of around 7 MeV but only form 10-4 of the solar neutrino

flux. The neutrinos were detected using a large tank of tetrachloroethylene via the charged

current (CC) interaction

(2.2) νe + 37Cl→ e−+ 37Ar,

where the subsequent radioactive decays from the 37Ar atoms were observed. The observed

neutrino flux was around 30% of that estimated by the SSM over the operation of the detector

from 1970 to 1998 [25]. Subsequent gallium-based detectors, the Gallium Experiment [26] and

the Soviet-American Gallium Experiment [27] were sensitive to ∼0.23 MeV neutrinos produced

in the

(2.3) p+ p → d+ e++νe

deuterium-producing fusion reaction (which produces 90% of solar neutrinos). They measured

electron neutrino fluxes 60-70% of that expected in the absence of oscillations.

The mystery of this ‘solar neutrino deficit’ persisted until the Sudbury Neutrino Observatory

(SNO) experiment published results in [2]. SNO was a Cerenkov light detector filled with 1000 t of

D2O. Whilst SNO had an energy threshold only capable of detecting neutrinos from the reaction

shown in equation 2.1, the use of D2O as a detector medium allowed detection of the CC reaction

sensitive only to electron neutrinos:

(2.4) νe +d → p+ p+ e−,

as well as the neutral current (NC) interaction

(2.5) νx +d → n+ p+νx,

where x denotes any lepton flavour. The cross section for equation 2.5 is independent of neutrino

flavour. The additional reaction

(2.6) νx + e− → νx + e−

is the elastic scattering (ES) reaction which is primarily sensitive to electron neutrinos via the

exchange of either a W or a Z boson, but also has sensitivity to the muon and tau neutrinos via Z
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boson exchange. The flux of the CC reaction was measured and compared to the flux from NC

interactions. The ES flux was observed to be consistent with that observed by the Homestake

detector, providing further evidence for neutrino flavour oscillation.

In addition to electron neutrino oscillations, strong evidence for muon neutrino oscillations

was detected by the Super-Kamiokande (SK) experiment in 1998 [1]. Filled with 50 kt of water,

Super-Kamiokande (SK) was another Cerenkov light detector, capable of detecting the charac-

teristic signals produced when electron or muon neutrinos with energies greater than ∼1 GeV

interact with the water nuclei to produce an electron or muon. Pions created from the interaction

of a cosmic ray proton with nuclei in the upper atmosphere decay to produce electron and muon

neutrinos. SK was able to detect the azimuthal angle (and therefore the distance, L which the neu-

trino had passed through the Earth before detection) and the energy, E, of the interaction signals.

When plotting the proportion of muon neutrinos observed to muon neutrinos expected, νo
µ/νe

µ,

as a function of L/E it was observed that νo
µ/νe

µ dropped to around 0.5 for L/E = 103 kmGeV−1,

a clear indication of muon neutrino oscillation. The SK detector was also used in the first long

baseline neutrino experiment, KEK to Kamioka (K2K), where 112 beam neutrinos were detected

from an expected 158±9 [28].

2.1.2 Neutrino Oscillations

Experiments including those described in section 2.1.1 have produced evidence for oscillations

between the 3 active neutrino flavours, νe, νµ and ντ. These interactions can proceed via a weak

CC interaction through W boson exchange. In order to oscillate between flavours, a neutrino

flavour eigenstate, να must be composed of a superposition of mass eigenstates, νi and can be

expressed as such through the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, U [29]:

(2.7) |να〉 =
3∑

i=1
Uαi |νi〉 .

The PMNS matrix is a 3x3 unitary parametrised by 4 free parameters. These are the 3 neutrino

mixing angles, θi j where i < j and the CP-violating phase δCP and are expressed as:

(2.8) U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

=


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e−iδ

0 1 0

−s13eiδCP 0 c13




c12 s12 0

−s12 c12 0

0 0 1


where ci j is cosθi j and si j is sinθi j.

The probability that a neutrino generated as a particular flavour, να, oscillates into another,

νβ, as it travels through a vacuum is dependent on the ratio of the distance it has travelled, L, to
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its energy, Eν [30]:

P(να→ νβ)= δαβ−4
∑
j>k

ℜ(Uα jU∗
β jU

∗
α jUβk)sin2

(
1.267

∆m2
jk[eV2]L[km]

Eν[GeV]

)

+2
∑
j>k

ℑ(Uα jU∗
β jU

∗
α jUβk)sin

(
1.267

∆m2
jk[eV2]L[km]

Eν[GeV]

)
,

(2.9)

with the final term changing in sign for the case of antineutrino flavour transitions να → νβ.

Evidently the transition probability also depends on the mass difference between the differ-

ent mass eigenstates. As ∆m2
32 +∆m2

21 −∆m2
31 = 0, neutrino oscillations in a vacuum are only

parameterised by 6 free parameters.

Experiments sensitive to ‘1-2 sector’, have measured solar neutrino oscillations (Homestake

[25], GALLEX [26], SAGE [27], SK [1], SNO [2]) and reactor neutrinos (KamLAND [31]) to

determine θ12 and ∆m2
21. The ‘2-3’ sector has been measured via atmospheric neutrino oscillations

(Kamiokande [32], SK, IMB [33], IceCube [34]) and long baseline neutrino beams (K2K [28],

NOvA [35], OPERA [36]). θ13 and |∆m2
31| have been studied by reactor experiments (Chooz [37],

Palo Verde [38], Daya Bay [39], Double Chooz [40], RENO [41]).

From these experiments it has been determined that ∆m2
21 ≪|∆m2

31| ≃ |∆m2
32|. However, the

sign of ∆m2
32 is not yet known. If m2

1 < m2
2 ≪ m2

3, then the mass eigenvalues are said to follow

the ‘normal hierarchy’. If instead m2
3 ≪ m2

1 < m2
2, then they have an ‘inverted hierarchy’.

A precise measurement of P(νµ→ νe) and P(νµ→ νe) via a long baseline neutrino experiment

would allow the remaining unknowns in the neutrino oscillation parameters to be constrained

[42]. These are the octant of θ23, δCP , the mass hierarchy and the independent determination of

θ13.

Neutrinos in this experiment would propagate through the Earth rather than a vacuum. This

requires the effects of neutrinos interacting with matter to be taken into account in order to

disentangle the contribution of δCP from that of matter effects [43] and allow a measurement of it.

The asymmetry, A, between the oscillation probability of P(ν)≡ P(νµ→ νe) and P(ν)≡ P(νµ→ νe)

is [44]:

A(νµ→ νe)≡ (P(ν)−P(ν))≡∆P1 +∆P2 +∆P3

= 16
a

∆m2
31

sin2 ∆m2
31L

4Eν
c2

13s2
13s2

23(1−2s2
13)

−4
aL

2Eν
sin

∆m2
31L

2Eν
c2

13s2
13s2

23(1−2s2
13)

−8
∆m2

21L
2Eν

sin2 ∆m2
31L

4Eν
sδc2

13s13c23s23c12s12,

(2.10)

where sδ = sinδCP and a = 2
p

2GF neEν is the matter effect factor. This is composed of the Fermi

constant, GF , and the electron density of the medium the neutrinos are travelling through, ne.

The 3 terms on the right hand side of the equation are referred to as ∆P1, ∆P2 and ∆P3.
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The ∆P1 and ∆P2 terms of equation 2.10 are proportional to the matter effect factor, a, which

itself is proportional to Eν. The third, ∆P3, is proportional to sδ which arises from CP violation

only. In the few GeV energy range the degeneracy between the asymmetries from the matter

effect and CP violation can be resolved for a baseline over 1200 km [45]. To observe how an

increased baseline and ability to use a wide energy band of energies helps disentangle ∆P1, ∆P2

and ∆P3, the values of ∆P1/L, ∆P2/L and ∆P3 as a function of L/Eν can be plotted as in figure

2.1. The asymmetry terms all oscillate with zeros at L/E = 2πn/∆m31 for n = 0,1, ... but have an

envelope which differs in magnitude as L/E increases. ∆P1/L has an envelope which decreases

whilst ∆P2/L has an envelope of constant magnitude. In contrast, ∆P3 has an envelope which

increases, allowing the CP violating term to be differentiated from the matter terms using a

single detector as long as a sufficient bandwidth of Eν can be probed.

Figure 2.1: The matter effect terms ∆P1 (left) and ∆P2 (centre) both divided by the baseline, L of
the neutrino oscillation experiment for the assumption that ∆m2

21, c2
13s2

13s2
23(1−2s13)2 > 0. The

envelopes of these terms decrease and stay constant as a function of L/E. In contrast the CP
violation term ∆P3 is plotted on the right using the assumption that sδc2

13s13c23s23c12s12 > 0. It
has an envelope which increases as a function of L/E. Reprinted with permission from [44]1.

2.1.3 Current Observed Oscillation Parameters

The data collected by the experiments listed in section 2.1.2 have been used by NuFIT to perform a

global analysis [46]. The resulting best fit oscillation parameters are listed in table 2.1. Currently

the normal mass hierarchy is favoured over the inverse hierarchy by only a 1.6σ significance.

The ∆χ2 projections from NuFIT for the values of neutrino mixing parameters are shown in

figure 2.2. for the normal (red) and inverted (blue) hierarchies. DUNE and other future neutrino

experiments intend to further constrain the mixing angles, establish the neutrino mass hierarchy,

constrain neutrino masses and mass differences further as well to establish whether CP violation

occurs in the lepton sector.

2.1.4 Projected Sensitivity Of DUNE

DUNE will use a high purity muon neutrino beam which can be configured to produce neutrinos

or antineutrinos over a wide energy band in the range of several GeV. This allows electron

1Copyright 1997 by the American Physical Society
2Image reproduced under Creative Commons 4.0 license https://creativecommons.org/licenses/by/4.0/
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Table 2.1: NuFIT 5.1 best fit for neutrino oscillation parameters [46] when including Super-
Kamiokande atmospheric neutrino data. Values are quoted with 1σ error bars. ∆m2

3l =∆m2
31 > 0

for the normal mass hierarchy and ∆m2
3l =∆m2

32 < 0 for the inverted mass hierarchy.

Parameter Normal hierarchy Inverted hierarchy
sin2θ12 0.304+0.012−0.012 0.304+0.013−0.012

sin2θ23 0.450+0.019−0.016 0.570+0.016−0.022

sin2θ13 0.02246+0.00062−0.00062 0.02241+0.00074−0.00062

δCP (◦) 230+36−25 278+22−30

∆m2
21

10−5eV2 7.42+0.21−0.20 7.42+0.21−0.20

∆m2
3l

10−3eV2 +2.510+0.027−0.027 −2.490+0.026−0.028

neutrino appearance and muon neutrino disappearance to be probed over a wide range of L/Eν.

It will have a baseline of 1300 km, which, in combination with the wide neutrino energy band,

should allow mass and CP violation effects to be separated. Therefore DUNE should be capable

of high sensitivity measurements of neutrino mixing parameters.

The sensitivity of DUNE to δCP is observed in figure 2.3, where the statistical significance

expected to be gained from operation of DUNE for 7 years (purple) and 10 years (orange) are

shown for different values of δCP . The smaller the CP violating phase is, the more difficult CP

violation is to detect.

For the case of maximal CP violation sensitivity (δCP = −π/2), less than a year of data

collection will be required to achieve a 5σ measurement of the neutrino mass hierarchy. No

matter what the value of δCP is, a 5σ measurement should take less than 3 years of collected

data.

DUNE will also be sensitive to sin2 2θ23 using observations of νµ→ νµ and to sin2θ23 through

νµ→ νe. The octant of θ23 is most difficult to detect near a value of sin2θ23 = 0.5. After 10 years

the octant should be detectable at 5σ if sin2θ23 is outside the range 0.46-0.58. An additional 5

years of data collection will improve the range of 5σ sensitivity by 0.01.

2.2 Neutrino Interactions In DUNE

DUNE will utilise LAr as a detector medium. The LAr will be held in a uniform electric field

allowing any deposited ionisation to drift towards and be detected via instrumentation on the

anode planes. This constitutes a liquid argon time projection chamber (LArTPC), first proposed

12
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Figure 2.3: DUNE physics projections for sensitivity to CP violation as a function of the true value
of δCP . Purple corresponds to 7 years of data collection and orange to 10 years. Uncertainties are
quoted in 1σ error bands. Image reproduced from [47]3.

in 1977 [48] and is illustrated in figure 2.4. A full description of the detector readout on the anode

planes can be found in section 3.2.

LAr constitutes an ideal detector medium for LArTPCs as a result of its properties. It

has a high density, ρ = 1.4 gcm−3, maximising the number of neutrino interactions, and has

negligible electronegativity, so it does not attract or repel free electrons. It also has a high electron

mobility, µ, which in typical LArTPC conditions of E = 500 Vcm−1 leads to a high drift velocity of

vd =µE = 1.6 mmµs−1. Combined with a low transverse (and even lower longitudinal) diffusion

constant of DT = 13.2 cm2 s−1 [49], a LArTPC is able to detect signals with a high resolution. By

using multiple sets of sensing wires which are not parallel, measuring the signal on each over

time, and detecting characteristic scintillation photons (which provide a t0 for an interaction),

the charge deposited in the 3D volume can be reconstructed. This can be converted to determine

the energy loss of an ionising particle as it travels a distance x through the detector medium,

dE/dx, which can be used for particle identification. In this section the production of signals in

LArTPCs through ionisation and scintillation is described, followed by an explanation of the low

energy neutrino interactions (<100 MeV) relevant to the work presented in this thesis.

3Image reproduced under Creative Commons 4.0 license https://creativecommons.org/licenses/by/4.0/
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Figure 2.4: LArTPC volume with an applied electric field. Ionisation electrons drift towards the
anode plane consisting of sensing wires, allowing the ionisation signals to be plotted as a function
of time. Reproduced from [50]4.

2.2.1 Ionisation in a LArTPC

The mean rate of energy loss for moderately relativistic heavy charged particles due to interaction

with the electrons bound to atoms in the absorbing medium is described by the Bethe-Bloch

equation [51]:

(2.11)
〈
− dE

dx

〉
= K z2 Z

A
1
β2

[
1
2

ln
2mec2β2γ2Wmax

I2 −β2 − δ(βγ)
2

]
,

where K = 4πNAr2
emec2, a product of Avogadro’s number, the classical electron radius, the

electron mass and the speed of light. The charge of the interacting particle is z whilst Z and

A are the atomic number and mass of the absorbing medium. β is the proportion of c that the

particle is travelling at, γ is the Lorentz factor, Wmax is the maximum energy transfer to an

electron in a single collision and I is the mean excitation energy. The final term, δ(βγ) is a density

correction term. A muon minimum-ionising particle (MIP) in LAr loses energy at an expected

4Image reproduced under Creative Commons 4.0 license https://creativecommons.org/licenses/by/4.0/
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rate of 2.1 MeVcm−1 [49].

The deposited energy ionises atoms in the detector medium, resulting in the production of free

electrons which drift if there is an applied electric field. In LAr, the average energy dissipation

per electron-ion pair produced is Wion = 23.6eV [52] and the number of produced ion pairs has

root mean square error which is dependent on the Fano factor F = 0.107 [49][53]:

(2.12) r.m.s=
√

F
E0

Wion

where E0 is the total energy of the ionising particle absorbed in the medium. The Fano factor takes

into account the energy deposited via excitation but ignores the (negligible) nuclear scattering

effects.

After production of ion pairs, a proportion immediately recombine. The efficiency of converting

deposited energy into observable charge is known as the recombination factor, Rc and depends on

the applied electric field and the density of the ionisation. It can be described by Birk’s law [54]:

(2.13) Rc =
dQ
dx
dE
dx

= A

1+ k
ϵ

dE
dx

where Q is the observable charge, A = 0.8, k = 0.0486(g/MeVcm2)(kVcm−1) and ϵ = EFρ, the

product of the electric field and the density.

Whilst drifting to the anode plane, the electrons may be lost due to interactions with impuri-

ties, such as oxygen, water and nitrogen molecules, in the time projection chamber (TPC). The

proportion of the ionisation charge which remains after drifting for a time td through the detector

medium is:

(2.14) Q(td)=Q0e−
td
τe

where τe = 1/ksNs is the electron lifetime, a product of the rate of attachment of electrons to

impurities, ks, and the concentration of impurities in the detector, Ns.

The Bethe-Bloch equation describes energy loss for heavy charged particles but energy loss

of electrons and photons in matter proceeds in a more complex manner. At energies lower than

the ‘critical energy’, Ec, electrons and positrons lose energy primarily via ionisation [51]. Above

Ec, bremstrahlung is the majority contribution to energy loss. For LAr, Ec = 30.5MeV [49]. The

rate of energy loss via ionisation rises logarithmically with the electron energy whilst the rate of

energy loss via Bremstrahlung rises linearly, causing it to be dominant at > Ec.

The main mechanism of energy loss for photons is also dependent on the particle energy. At

low energies photons mainly interact via the photoelectric effect, which causes the emission of

photoelectrons, and the Compton effect where the photon loses energy via inelastic scattering by

an atomic electron. At higher energies, pair production (γ→ e−e+) becomes the primary mecha-

nism. High energy electrons and photons can initiate electromagnetic cascades as pair production
4Image reproduced under Creative Commons 4.0 license https://creativecommons.org/licenses/by/4.0/
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and bremstrahlung result in a shower of lower energy photons and electrons, eventually below

the energies required for pair production.

2.2.2 Scintillation in a LArTPC

Scintillation in LAr is dependent on the formation and decay of diatomic excited molecules

(excimers) of argon, Ar∗2 . This occurs via 2 processes, self-trapped exciton luminescence and

recombination luminescence [55][56].

In the first of these processes, the excimer is generated through excitation of an argon atom

allowing it to form an excimer state with another argon atom. This can then radiate a photon of

characteristic wavelength and decay to the usual atomic argon state. Recombination luminescence

requires an argon atom to be ionised and be in the presence of an electron cloud. This reaction

depends on the applied electric field and the greater the recombination and light yield, the lower

the ionisation yield. The processes are:

(2.15) Excitation : Ar∗+Ar→Ar∗2 →Ar+Ar+γ

for excitation and

(2.16) Recombination : Ar++Ar+ e− →Ar∗2 →Ar+Ar+γ

for recombination.

The excimers are produced in singlet or a triplet states, with the weighting of the production

of these states being different for the two reaction paths. The singlet state has a lifetime of 6 ns

and the triplet state a lifetime of 1.6 µs [57], producing light with a wavelength of 128 nm. LAr is

transparent to its own scintillation light, allowing it to be detected without attenuation. In the

absence of an electric field the photon yield is ≈ 5×104 photons per MeV [56].

2.2.3 Neutrino Interactions in LAr

In the work presented in this thesis, interaction signals from low energy electron neutrinos were

studied. At low energies (5-100MeV) nuclear interaction processes dominate, with neutrinos

interacting with LAr via charged current interactions, elastic neutrino-electron scattering and

neutral current excitation interactions [58]:

(2.17) νe + 40Ar→ e−+ 40K
∗
,

(2.18) νe + 40Ar→ e++ 40Cl
∗
,

(2.19) νx + e− → νx + e−

(2.20) νx +Ar→ νx +Ar∗.
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Equations 2.17 and 2.18 possess Q-values of 1.5MeV and 7.48MeV respectively. The first excita-

tion level of 40Ar is 1.46MeV, ensuring that the neutral current excitation interaction also has a

low threshold similar to that of νe
40Ar CC [59].

The νe component in equation 2.19 is greater than the νµ,τ components due to the additional

charged current component and the cross sections for ES increase linearly with the neutrino

energy. If neutrinos are expected to come from a point source, such as a supernova, ES interactions

may allow the location of the supernova in the sky to be determined [60].

Figure 2.5: Neutrino cross sections for low energy interactions in LAr. The dominant cross section
is 40Ar charged current. Reproduced with permission from [59]5.

The cross section for each of these interactions is shown in figure 2.5, where it can be seen that

the νe
40Ar CC interaction is dominant, particularly at low energies. Calculated cross sections

(with the exception of ES) are expected to have errors of 10-20% [58] but no direct measurements

of the cross sections within this energy range yet exists.

5Copyright 2003 by IOP Publishing. Reproduced with permission. All rights reserved. https://doi.org/10.
1088/1475-7516/2003/10/009.
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2.3 Supernova Burst Physics

Supernovae are powerful explosions which result in the end of the life of some stars. There are a

number of different types of SN, differentiated by spectroscopic characteristics and their light

curves. For the purposes of studying the neutrino flux, the main subjects of interest are SN which

proceed via an iron core collapse. This SN mechanism is the most common, applying to stars

whose mass is at least 9 solar masses (≳ 9m⊙).

In a core collapse SN, the star loses 99% of its gravitational binding energy (2−4×1046 J)

through emission of ∼ 1058 neutrinos [30]. Studies have estimated the expected rate of SNe in

the Milky Way to range from 1.2 to 8.4 per 100 years, with most estimates being towards the

lower value [61][62][63][64].

Since the advent of large neutrino detection experiments, a neutrino signal has only been

detected from the SN1987A supernova event which occurred in the Large Magellanic Cloud

(LMC) at a distance of 50 kpc. 25 neutrinos with energies consistent with a core collapse SN

(5-50 MeV [65]) were detected by the Kamiokande-II [66], Irvine-Michigan-Brookhaven [67] and

Baksan [68] experiments over a timescale consistent with a core collapse SN. These neutrinos

have been used to verify the basic theoretical process of a core collapse SN and provide a number

of constraints on physics properties including the energy loss and temperature of the SN [69].

Other studies have used them to set constraints on beyond the standard model physics signals

[70], neutrino masses [71][72], the electron neutrino magnetic moment [73] and neutrino electric

charge [74].

In this section the core collapse SN dynamics are described. The spectral form of the neutrino

flux will be introduced along with a discussion of how it can change due to neutrino oscillations.

This will be followed by a discussion of the parameters which detection of neutrinos from SNe

can help to determine. Finally, the energy-time neutrino spectrum used in analyses in this thesis

will be introduced and characterised.

2.3.1 Core Collapse Dynamics

Core collapse SNe can occur for stars whose masses are in the range of 9−40m⊙, and up to 60m⊙
if they have a high metallicity. SNe from 10−25m⊙ result in a neutron star, whilst those from

> 25⊙ usually result in a black hole unless they have a high metallicity.

2.3.1.1 Capture Phase

The central region of a massive old star is composed of an iron core surrounded by concentric

shells composed of lighter elements (primarily silicon, oxygen, helium and hydrogen, from inside

to out) and supports its own weight through the pressure of degenerate relativistic electrons. Iron

is the most tightly bound nucleus that can be achieved in stellar fusion and cannot be further

burned. As the iron core contracts and the temperature of the core rises, iron can photodissociate
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into α particles and neutrons:

(2.21) γ+ 56Fe→ 13α+4n,

which absorbs 124 MeV of energy and reduces the kinetic energy of the electrons. Electrons also

capture on nuclei and free protons, producing neutrons and electron neutrinos which can leave

the core and carry away much of the electrons’ kinetic energy. The photodissociation and electron

capture reduce the pressure provided by the electrons until the core collapses. As it does this,

photodissociation and electron capture rates increase, acting to accelerate the collapse. Stars

with a mass of 9−10m⊙ are not massive enough to burn oxygen but have neon and magnesium

in their core which can undergo electron capture. As they do and begin a core collapse, these stars

convert the oxygen, neon and magnesium to iron and also undergo an iron core collapse [30].

Over the course of this ‘capture’ or ‘infall’ phase, the density of the inner part of the core

increases from 1010 gcm−3 to 1014 gcm−3, the density of nuclear matter, over less than 10 ms.

Due to the short time taken and high density, the capture phase only releases around 1044 J of

energy. Above ∼ 3×1011 gcm−3 the neutrinos can no longer escape from the inner part of the core

as their mean free path becomes too short.

2.3.1.2 Neutronisation Burst

Upon reaching the density of nuclear matter, the inner part of the core is supported by nucleon

degeneracy pressure and achieves hydrostatic equilibrium, forming a proto-neutron star. When

the inner core stops collapsing and rebounds to become stable, it causes a supersonic shock wave

which propagates through the outer iron core which is still contracting. The gas which is in a

near free-fall state is decelerated significantly by the shock and begins to more slowly accrete

onto the inner core. However, the rest of the outer core dissipates the energy of the shock via

photodissociation of nuclei into free nucleons. The protons have a high electron capture rate,

resulting in the production of electron neutrinos which pile up behind the shock wave until it

reaches a region of density that is not opaque to them. This vast flux of ∼ 1046 J electron neutrinos

occurs over a few ms and is known as the ‘neutronisation burst’ signal.

2.3.1.3 Accretion Phase

The shockwave loses about 1045 J for each 1m⊙ of material it photodissociates. If the shockwave

is able to expel the entire envelope of a star, it is likely to do this on a timescale of ∼ 100 ms.

However, even for stars weighing 10m⊙ the shockwave is likely to stall but will continue to

photodissociate the matter which falls through it. A stalled shockwave can lead to the formation

of a black hole without a full SN if the shock wave cannot recover from stalling.

During this ‘accretion phase’ neutrinos of all flavours are produced through heating of the

shocked, hot material via energy released by accretion of matter to the proto-neutron star core.

These are produced via electron-positron pair annihilation, electron-nucleon bremstrahlung,
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nucleon-nucleon bremstrahlung, plasmon decay and photoannihiliation which respectively take

the forms [30]:

(2.22) e−+ e+ → γ+γ

(2.23) e±+N → e±+N +ν+ν,

(2.24) N +N → N +N +ν+ν,

(2.25) γ→ νν,

(2.26) γ+ e± → e±+ν+ν.

Additional electron neutrinos are created via electron capture and antineutrinos via positron

capture.

In the case of a stalled shock (considered to be the baseline model for a core collapse SN), a

SN may still occur via thermally produced neutrinos in the core of the proto-neutron star [75] or

through convection or oscillations [76]. This is still an area of active research, with few models

having been able to successfully produce SNs from a stalled shock until recently [77][78]. The

shockwave is expected to revive on the timescale of 0.5 s.

2.3.1.4 Neutrinosphere

The radius at which the density becomes low enough for the mean free path of the neutrino to

allow it to stream out freely is called the neutrinosphere. The neutrinosphere is energy dependent,

with lower energy neutrinos having a greater mean free path.

In fact there are actually 3 different types of neutrino which have their own energy-dependent

neutrinosphere due to the impact of their interactions on their opacity. Charged current inter-

actions with the protons and neutrons dominate for νe and νe respectively. Combined with the

region behind the shockwave being dominated by neutrons due to electron capture, the opacity is

greater for νe, resulting in a larger neutrinosphere radius. The νµ and ντ and their antiparticles

only interact via neutral currents and have lower neutrinosphere radii. This effect is generally

modelled as producing a neutrino flux φ which, at a given time, is a function of the neutrino

energy, Eν, and a pinching parameter, α, which controls the suppression of the high energy tail

[79]:

(2.27) φ(Eν)= N
(

Eν

〈Eν〉
)α

exp
[
− (α+1)

Eν

〈Eν〉
]
.

The mean neutrino energy is 〈Eν〉 and N is a normalisation constant.
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2.3.1.5 Cooling Phase

The accretion phase tends to produce neutrinos with a relatively low energy due to the increased

neutrinosphere radius for higher energies. However, after the shockwave has revived, the matter

density continues to decrease further and higher energy neutrinos stream out from the SN. Only

∼ 1% of the energy of the SN goes into the ejection of matter in SNe, with the rest being carried

away by neutrinos (in fact an order of magnitude more neutrinos than the initial number of

leptons which were present [47]).

2.3.1.6 Summary Of Core Collapse

Initial collapse of the core produces an electron neutrino flux only as a result of electron capture.

Once the inner core has achieved the density of nucleons, a shockwave occurs, allowing material

which was already in an almost free-fall state to begin accreting on to the inner core and

producing neutrinos of all flavours via equations 2.23-2.26. The shockwave itself results in a

large neutronisation burst of high energy electron neutrinos until it is stalled. Whilst stalled, the

neutrinosphere radii for the different types of neutrino stay relatively constant in size. When

the shockwave resumes expansion, the neutrinosphere radii decrease in size, allowing a greater

proportion of higher energy neutrinos to escape. The thermal emission of neutrinos is expected to

last ∼ 10s or more.

2.3.2 Searching For Physics Using Supernovae

Observation of a SN neutrino signal may allow a number of astrophysical and particle physics

phenomena to be investigated. Simple examples include comparison of the neutrino time of flight

to any gravitational wave signals and the potential to use the prompt neutrino signal to point

telescopes in the right direction before the optical signal of the SN is observed. Additionally, if no

SN is observed after a core collapse, then the formation of a black hole is expected to lead to a

cutoff of the neutrino signal [80].

Other examples include oscillation of νe in the neutronisation burst and additional effects

from neutrino-neutrino scattering within a halo of neutrinos [81]. The shockwave [82] and

neutrino hydrodynamics [83][84] may also lead to oscillations which could have an observable

impact on the neutrino flux. Understanding the neutrino energy spectrum will also help resolve

models of SN dynamics.

As a SN is expected to be highly hermetic, measurements of the observed energy released by

a SN in comparison to the expected energy converted through the loss of gravitational potential

and the cooling rate of the SN can be used to search for potential new physics [85].

There are also a number of effects which the mass ordering is expected to have on the observed

signal [86]. The most robust of these, both theoretically and observably, is the neutrino flux during

the capture and neutronisation burst phases. The impact of the mass ordering on the expected
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Figure 2.6: Expected event rates in a 40 kt LAr detector for a 9m⊙ SN at a distance of 10 kpc.
The early unoscillated (blue) neutrino signal due to electron capture during core collapse and the
subsequent neutronisation burst is suppressed due to neutrino oscillations in the normal mass
ordering (red) and the inverted mass ordering (green). Image reproduced from [47]6.

signal in a LAr detector such as DUNE can be seen in figure 2.6, with neutrino oscillations

very strongly suppressing the early flux in the case of the normal mass hierarchy and partially

suppressing it in the case of the inverted hierarchy. This suppression is observed during the time

period in the SN where the matter potential is dominant over the neutrino-neutrino potential

and the flavour oscillations are more dependent on the matter effect [43].

2.3.3 Supernova Neutrinos In DUNE

The expected number of interactions observed in DUNE depends on the SN model used and the

distance to the SN. Different SN models for different mass stars using different hydrodynamic

equations of state and neutrino transport exist and are an active area of study [87].

The analyses of SNB trigger efficiency present in this thesis rely on a core collapse SN

neutrino energy-time distribution [88]. This distribution is plotted in 2.7(a), with zero time taken

to be the time of core bounce. The z axis represents the number of neutrino interactions for a

SN at a distance of 10 kpc. This spectrum was produced using a program called SuperNova

Observatories with GLoBES (SNOwGLoBES) [89] which convolved the expected neutrino flux,

the neutrino cross sections and a simplified detector response. The neutrino flux was taken from

the ‘Hudepohl-Cooling-Shen-s11.2co’ model [87] which corresponds to an 11.2m⊙ mass progenitor

star. As mentioned in section 2.2.3, there are 10-20% uncertainties on CC and NC cross-sections
6Image reproduced under Creative Commons 4.0 license https://creativecommons.org/licenses/by/4.0/
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in LAr, with the νe
40Ar CC channel being dominant by an order of magnitude or more over

the next most dominant cross section, ν40Ar NC, for the energy range that the majority of SN

neutrinos possess (5−50 MeV).

The energy spectrum provided was for the reconstructed energy, observed from a simplified

detector response model. Ideally the energy spectrum would be quoted using the neutrino energy,

but this information has not been provided. Despite this, the particular ‘smearing matrix’ (used

by SNOwGLoBES to smear neutrino energy into a reconstructed neutrino energy with a given

resolution) used in this case was from a model with a high resolution and should track the true

neutrino energy reasonably well [88]. The energy spectrum for the expected number of neutrino

energy interactions from a 10 kpc distant SN is plotted in figure 2.7(b). There is a hard cut-off at

5 MeV because the proportion of neutrino interactions producing enough ionisation charge to be

detected in DUNE was expected to become negligible. The majority of neutrinos have an energy

from 5−30 MeV.

The spectrum provided for these studies was computed from a model which did not include

any neutrino oscillations and as a result contains a large neutronisation burst feature, as can

be seen in figure 2.7(c). As can be observed from figure 2.6, oscillations and the mass hierarchy

have a large impact on the SN flux as a function of time. As a result of not having access to

oscillated spectra, when studying triggering on this SNB signal it is best to look at the number

of interactions over as long a time period as possible rather than to rely on any characteristic

feature.

The expected number of neutrino interactions in 10 kt of LAr for SNe at different distances

is shown in figure 2.7(d). The expected distance at which a SN is most likely to occur is around

10-15 kpc [47]. For a SN which occurred at a distance of 50 kpc (like SN1987A, although this had

a much more massive progenitor), it is expected that there would have been 11 interactions in

10 kt of LAr. At a distance of 10 kpc, this model is expected to lead to ∼ 267 interactions. SNe with

larger masses would be expected to provide larger neutrino fluxes but 11.2m⊙ is a reasonable

mass to establish a baseline efficiency for SN triggering.

Whilst the SN neutrino time-energy spectrum does not include any oscillations, has potentially

large uncertainties in the 40Ar cross sections and is for a single SN progenitor mass and model, it

provides an opportunity measure the efficiency of a SNB trigger. Because the observed neutrino

energy resulting from the model used should track the neutrino energy quite well, the observed

neutrino energy will be used to approximate the true neutrino energy when drawing from this

spectrum in studies presented in section 5.4 and 7.6.2. Due to the large number of uncertainties

and the fact that only a single SN model was used, only the statistical errors computed for SNB

trigger efficiencies are quoted in the results presented in this thesis.
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Figure 2.7: The unoscillated neutrino energy-time spectrum used as a benchmark for trigger
studies, projections to the energy and time axes and the expected number of interactions as a
function of SN distance, all for a detector volume of 10kt of LAr. The full energy-time spectra for
a 11.2m⊙ SN progenitor at a distance of 10kpc is shown in (a), with projections to the energy and
time axes given in (b) and (c) respectively with bin widths of 0.5 MeV−1 and ms−1. The expected
number of interactions in 10 kt of LAr, along with a band showing the 1σ statistical uncertainty
from Poisson statistics is plotted in (d).
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DUNE DETECTOR

The DUNE and the Long Baseline Neutrino Facility (LBNF) projects are hosted by FNAL

and SURF. The LBNF project provides the conventional facilities for the DUNE detectors

and the LBNF beamline. These will be located at a ‘near’ site at FNAL in Illinois and

a ‘far’ site at SURF in South Dakota. As illustrated in figure 3.1, the near site will host the

beamline and facilities for producing the high intensity neutrino beam as well as the DUNE near

detector (ND), whilst the far site will host the DUNE FD.

The neutrino beam will be generated from a proton beam incident on a graphite target to

produce secondary pions and kaons which will be focussed via a magnetic horn. The hadrons

of a given charge can be selected to produce a muon neutrino via π+ →µ++νµ or an antimuon

neutrino via π− →µ−+νµ and similarly for kaons. The LBNF beamline will utilise the Fermilab

Main Injector proton beam after the Proton Improvement Plan II (PIP-II) upgrade [90] to the

linear accelerator (LINAC). This will provide a proton beam with a power of 1.0 MW to 1.2 MW

and a wide energy band from 60 GeV to 120 GeV [91].

3.1 DUNE Near Detector

The resulting neutrino beam will pass through the ND 574 m downstream, which will serve

as a control for the experiment by measuring the initial νµ and contaminant νe spectra and

constraining the systematic errors. The ND will actually be composed of 3 detectors, which can

be aligned along the beam axis. The upstream detector will be a 5 m (along the beam axis) by

7 m by 3 m LArTPC with a fiducial mass of 67 t called the ArgonCube Liquid Argon detector [92].

Immediately downstream from this will be a high pressure gaseous argon TPC surrounded by an

electromagnetic calorimeter, referred to as the Multi-Purpose Detector (MPD). This calorimeter
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Figure 3.1: Cartoon of the path of the neutrino beam generated by the proton LINAC at FNAL
through the ND, also located at FNAL to the FD hosted 1300 km away and 1.5km underground
at the SURF from [50] 1.

will have an active region of 5.2 m in diameter and 5 m in length. It will be required to measure

the momentum of muons with momenta greater than 0.7 GeV/c as these will not be contained by

the LArTPC. From the measured muon momenta, the νµ energy can be inferred. The ArgonCube

detector and the MPD will both be able to move off-axis by up to 33 m to measure the neutrino

flux spectrum away from the the beam axis. These off-axis measurements will allow DUNE

to avoid biases in measured oscillation parameters [92]. The downstream part of the ND, the

System for on-Axis Neutrino Detection (SAND), will be permanently located on the beam axis to

ensure that the beam remains stable during off-axis data collection and will reuse the KL
0 LOng

Experiment (KLOE) detector and electronic calorimeter [93].

3.2 DUNE Far Detector

The neutrino beam will travel 1300 km through the Earth to the DUNE FD, which will be

located 1.5 km underground. Its subterranean depth will reduce the background rate of cosmic

ray interactions in the detector at the surface from 165 kHz, corresponding to a ratio of less than

1 neutrino interaction per million cosmic rays, to just over 1 neutrino interaction per cosmic

ray [50]. The DUNE FD will be composed of 4 large cryostat modules each filled with 17.5 kt of

LAr and possessing a fiducial mass of 10 kt contained within LArTPCs. Each cryostat will be

encapsulated by an insulated double membrane based on technology commonly used in industry

for storage of liquefied natural gas. There are multiple detector designs for installation in these

cryostat modules, with at least 1 module using single phase (SP) LArTPC technology previously

tried and tested on a smaller scale at ICARUS [94][95] , MicroBooNE [96] and ProtoDUNE single

phase (ProtoDUNE-SP) [97] among others.

1Image reproduced under Creative Commons 4.0 license https://creativecommons.org/licenses/by/4.0/
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At least one module will use a different technology called ‘vertical drift’ [98]. The technology

for use in the remaining modules is yet to be decided, with ArgonCube LArTPC technology used

in the ND being a candidate for use in one of them [99]. The studies presented in this thesis were

performed on the SP LArTPC technology as presented in the following sections. First, the SP FD

is introduced, followed by an explanation of the anode plane assembly (APA) instruments used to

detect ionisation and scintillation in the detector volume. The detector readout is then explained,

followed by the components of the DAQ system relevant to triggering the detector and storing

the collected data.

3.2.1 DUNE Single Phase Far Detector

A DUNE SP FD module will have its fiducial volume of LAr held at 88 K and contained in a field

cage. Within this field cage the detector will be split into LArTPCs between the 3 anode planes

and the 2 cathode planes, as shown in figure 3.2. The planes extend for 58.2 m along the beam

(z) axis of the detector and 12 m along the vertical (y) axis. The cathode planes will be held at a

voltage of −180 kV and in combination with the field cage, provide a uniform electric field in the

fiducial volume of the detector which act to drift ionisation electrons towards the anode plane.

The anode planes will be composed of APAs which are each 2.3 m wide and 6 m tall. Each anode

plane will have APAs stacked 25 wide and 2 high, resulting in 50 APAs per plane and 150 in a

FD module.

Complementarily, the cathode planes will each be composed of 300 cathode plane assemblies

(CPAs), each 1.2 m wide and 4 m tall, which will be bolted together to match the 58.2 m by 12 m

size of the anode planes. The CPAs are composed of glass-reinforced epoxy laminate frames 6 cm

thick and holding 3 mm thick panels coated in a thin layer of Kapton (a highly resistive material).

The drift length between the anode and cathode planes will be 3.59 m, resulting in an electric

field of 500 Vcm−1. The drift velocity will be 1.6 mmµs−1 [100]. The signal attenuation over the

drift distance should be limited to less than 20% [101] which requires an electron lifetime of

11 ms.

In addition to the ionisation produced in the detector, the APAs will also use silicon photomul-

tipliers (SiPMs) mounted on the APAs to detect the scintillation light produced. This will allow

the time of interactions to be determined more accurately. These will follow the X-ARAPUCA

design [102], where the SiPMs will be mounted inside casings composed of a dichroic filter and a

wavelength shifter to select the characteristic LAr scintillation light and shift it into the visible

spectrum for detection. In the work presented in this thesis, only ionisation information detected

via the APAs has been used.

3.2.2 Anode Plane Assemblies

APAs of the same design have already been successfully built for and implemented in the

ProtoDUNE experiment [97]. Each APA consists of an aluminium frame with 4 layers of 152 µm
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Figure 3.2: Cross section of a DUNE SP FD module through the x-y plane showing the arrange-
ment of anode (A) and cathode (C) planes inside the surrounding field cage. Dimensions are
58.2 m along the z (beam) axis, 12 m along the y axis and 3.5 m for each drift length between an
anode plane and a cathode plane. Image reproduced from [50]2.

diameter beryllium-copper wires held under a tension of 6 N. Three of these layers are connected

to the cold electronics (CE) for readout whilst the outermost layer is not. It instead acts to shield

and improve the signal shaping on the inner wires. This outermost layer of 960 (480 per APA

face) wires is known as the grid (G) layer and the wires are aligned parallel to the y axis of the

detector when installed.

The next two layers of 800 wires each are induction wires, denoted as the U and V layers.

These receive an induced bipolar signal as charge drifts past them towards the innermost

(collection) wires. This innermost layer of wires, also denoted as the X layer, consists of 960

collection wires (480 wires per APA face), which collect the charge and receive a unipolar signal.

In between the X wires on each APA plane is a grounding mesh which acts to improve the

uniformity of the electric field. As illustrated in figure 3.3, the X wires are arranged parallel to

2Image reproduced under Creative Commons 4.0 license https://creativecommons.org/licenses/by/4.0/
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Figure 3.3: Diagram of the APA frame in black, with the cold electronics on the right side at
one end. These read out the signals induced on the U (pink) and V (green) induction wires. The
induction wires are wrapped at 35.7° relative to the collection/grid wires (blue), overlapping with
each once. When installed, the collection wires are parallel to the y axis of the detector. Image
reproduced from [100] 3.

the y axis of the detector whilst the U and V wires are wrapped around them at a relative angle

of ±35.7°. This ensures that each X wires crosses each U and V wire once, which allows ionisation

depositions to be mapped on the y-z plane (the face of the APA). The voltages each wire layer is

held at ensure that the first two layers are transparent to the drifting electrons. These properties

of the wire layers and the voltages they are held at during operation are summarised in table 3.1.

Table 3.1: Summary of APA wires from outermost (G) to the innermost (X), the bias voltages used
in DUNE and the connection to the CE.

Layer Number of wires Bias voltages (V) Connection to CE Wire pitch (mm)
Grid (G) 960 -665 None 4.79

Induction (U) 800 -370 CR board 4.67
Induction (V) 800 -0 Direct 4.67
Collection (X) 960 820 CR board 4.79

Grounding mesh n/a 0 n/a n/a

The U and X wires are connected to the CE through capacitive resistance boards which act as

a high pass filter but the V wires are directly connected to the CE.

3Image reproduced under Creative Commons 4.0 license https://creativecommons.org/licenses/by/4.0/
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3.2.3 Cold Electronics

As seen in figure 3.3, the TPC readout CE is directly mounted to the head (right) end of the

APA, minimising the capacitance of the connecting wires and therefore the electronics noise. The

immersion of the CE in the 88 K LAr also helps to reduce the inherent electronic noise.

The 2560 wires on an APA are read out by 20 front-end motherboards (FEMBs), corresponding

to 128 wires each. Each FEMB hosts 8 front-end (FE) application specific integrated circuits

(ASICs) and 8 16-channel analogue to digital converted (ADC) ASICs. The FE ASICs provide

amplification and signal shaping, whilst the ADC ASICs digitise these signals over a 12 bit range

at a sampling rate of 2 MHz. Saturation occurs at the collection of 500,000 electrons, but the

ADC conversion response otherwise linearly scales with the charge collected. For context, a MIP

deposits 20,000 to 30,000 electrons depending on recombination effects [100]. The TPC electronics

are required to have an ‘equivalent noise charge’ of 1000 or fewer electrons.

The layers of anode wires on the APA are separated by 4.75 mm and the drift velocity between

the wire planes is between 1.4 mmµs−1 and 2.1 mmµs−1. The time taken for a signal to transition

from its baseline to its maximum value is known as the peaking time. The time taken for the

drifting charge to travel between the wire layers typically corresponds to the duration of the

signals observed. As a result, the peaking time used for signal shaping in the FE electronics is

programmable in the range 1-3µs. The signal is then sampled at a rate of 2 MHz according to

the Nyquist-Shannon sampling theorem [103], which allows the discretisation to capture all the

information from the continuous time signal.

The FEMBs are connected to warm interface boards (WIBs) via a signal cable, with each

WIB interfacing to 4 FEMBs (therefore there are 5 WIBs per APA). The WIBs pass TPC data

downstream to the DAQ.

3.3 Data Acquisition

There will be a mezzanine floor above each FD module, referred to as the Cryo Mezzanine

(CM). The DAQ system will be located physically at SURF, split between the CM and the main

communications room (MCR) located on the surface. The raw data rate will be 1.2 TBs−1 per

FD module, with the vast majority resulting from the ionisation information collected by the

APAs. Only 30 PB per year of data storage will be allocated for all the data saved to disk from a

single FD module, necessitating a reduction in the data volume by over 3 orders of magnitude.

As a result, DUNE must make use of a trigger to limit data collection to important physics data.

Triggering will be implemented as part of the DAQ system and the required processing must be

able to keep up with the data rate from the FE without any dead-time.

The DAQ will be split into 5 subsystems: upstream data acquisition (UD), data selection (DS),

the DAQ back-end (BE), the control, configuration and monitoring (CCM) and the timing and

synchronisation system. As shown in figure 3.4, the data flow is from the UD through the DS

30



3.3. DATA ACQUISITION

and subsequently the DAQ BE. Data triggered on by the DAQ will be sent from the DAQ BE via

a wide area network (WAN) to FNAL for permanent storage. The timing and synchronisation

subsystem will distribute synchronous time signals to the DAQ and detector components, whilst

the CCM subsystem orchestrates the data collection.

Figure 3.4: Diagram of the connections between the DAQ subsystems for a FD module. The split
of DAQ subsystems between the cryostat, Cryo-Mezzanine and Main Control Room, from left
to right, is shown by dashed lines. The UD subsystem is coloured orange, the DS subsystem is
coloured blue, the BE subsystem is coloured in yellow, the CCM subsystem is coloured brown and
the timing and synchronisation is coloured grey. Image reproduced from [100]4.

The UD subsystem will be located in the CM and be responsible for reception, buffering and

preprocessing of the raw data. The DS subsystem will receive the preprocessed data from the

UD and perform additional processing which may result in a trigger command being issued

by the module level trigger (MLT). Data selection will be split between the CM and the MCR,

with the data bandwidth for transmitting triggering information from the low level DS to the

surface limited to 10 Gbit/s. If a trigger command is issued to the DAQ BE, then it will request

the corresponding data from the UD buffers which will be read out over a 100 Gbits−1 ethernet

network and formed into an event record.

Multiple triggering algorithms may be applied in the MLT and potentially the high level filter

(HLF), with the goal of each being to save event records relevant to signals from a given type of

event. The DUNE DAQ design has been driven by the following 2 scenarios:

4Image reproduced under Creative Commons 4.0 license https://creativecommons.org/licenses/by/4.0/
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1. a localised high energy (>100 MeV) interaction

2. an extended low energy trigger for SNBs which will result in multiple low energy (≈10 MeV

visible energy) interactions over 10 s over the entire detector volume.

Each event record will consist of the full detector readout for a time period dependent on the

event type. For a localised high energy interaction, 1 event is 5.4 ms of ionisation data, which will

correspond to 6.5 GB. However, in the case of a SNB event, 100 s of data will be collected by the

detector module, requiring 120 TB of data for the event record. The event records will be stored

in a buffer in the DAQ BE before being sent to permanent storage. Event records in this buffer

may be accessed by a HLF (a part of the DS subsystem) which will apply further processing and

can discard records which do not meet the criteria for permanent storage.

Apart from the 100 Gbits−1 connection between the DAQ BE and the UD data buffer, the

UD, DS and DAQ BE subsystems will be connected via a 10 Gbits−1 switched network which

will allow data, processed trigger summary information, trigger decisions and data requests to

be communicated. Further details about the UD and DS and DAQ BE subsystems relevant to

triggering on SNB events will be given in the following sections.

3.3.1 Upstream Data Acquistion

The scope of the UD in the trigger chain will be from the reception of data from the WIBs to

provision of trigger primitives (TPs) (detailed in section 3.4.1) to the DS subsystem. The UD

will be comprised of 75 DAQ readout units (RUs), each with identical hardware and responsible

for processing the ionisation data from 2 APAs. Each DAQ RU will be composed of a DAQ FE

computer and a server which hosts custom hardware, firmware and software which implement

the reception, buffering and preprocessing of the raw data, as well as receiving and fulfilling data

extraction requests.

The server will host 256 GB of double data rate fourth generation (DDR4) random-access

memory (RAM) and 2 TB of solid-state drive (SSD) storage. This will satisfy the requirements to

be able to buffer 10 s of TPC information and to stream 100 s of TPC information to disk upon a

SNB trigger command. Localised activity in the detector should require only 1 s of buffering but

the early part of a SNB event signal may look similar to the signal from inherent radiological

background in the detector and require a longer time, up to 10 s of buffering before a trigger will

be issued.

The DAQ RU server will also host 2 front-end link exchange (FELIX) input/output cards

[104]. The FELIX cards will each be responsible for processing all the TPC data from a single

APA. Each FELIX card supports a bandwidth of 16 GBs−1 with its host computer over Peripheral

Component Interconnect Express (PCIe) 3.0.

Raw TPC data from each APA will be conveyed from the WIBs via ten 10 Gbits−1 optical links

to the FELIX FPGA board via multi-gigabit transceivers (MGTs). This data will be temporarily
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stored in a circular RAM buffer and be interpreted and processed in the FPGA to extract summary

information for use in triggering. Each instance of this low level summary information, is called

a trigger primitive (TP). These will be passed downstream to the DS subsystem. The trigger

primitive generation (TPG) functional block is explained in greater depth in section 3.5.2.

3.3.2 Data Selection

The DS subsystem will be hierarchical, with a low-level data selection stage implemented in

the MLT, and a high-level stage optionally implemented in the HLF. In the low-level data DS,

the TPs produced by the UD will be further processed on the server using CPU resources. TPs

will only summarise signals on a single wire. The low-level DS aggregates TPs into one or more

trigger cluster (TC), which represents the charge collected in a local region of the x-z plane

(corresponding to time and wire extent) in the detector. As illustrated in figure 3.4, these TCs

will be sent to the MLT, which uses them to form a module-level trigger decision.

The MLT will also be connected to the external trigger interface (ETI), through which it can

be sent external triggers. These may be triggers from other MLTs, such as in the case of a SNB

trigger being issued in another detector module. The MLT will also be able to receive external

triggers from global coincidence trigger alerts, such as the supernova early warning system

(SNEWS) [105], which looks for coincident signs in multiple detectors of the rising neutrino flux

which occurs before core-collapse of a SN. It will also be able to receive trigger commands from

another detector system in the module, such as the calibration system.

The last stage of the DS is the HLF. The low-level data selection should significantly reduce

the amount of data which is read out by the DAQ BE. The HLF acts on event records, allowing it

to implement DS algorithms which are more complex. The scope of the processing which may be

applied in the HLF could be very simple or quite complex. For example, the low-level DS will not

be able to apply algorithms which suppress correlated noise across wires in the detector and may

result in a trigger command being issued. In such a case, the HLF could apply simple processing

to discard any such event records (or retain them if physics signals remain). The hardware which

will be used in the HLF is not yet decided but has the potential to be largely graphics processing

unit (GPU) based.

3.3.3 Data Acquisition Back-end

The DAQ BE will have 3 parts: a data flow orchestrator (DFO), a set of event builder (EB)

processes and a storage buffer. The DFO will receive the trigger commands from the MLT and

distribute each to an EB process. The EB will query the UD buffers and then receive and process

the data into event records which are saved as files in the output buffer. The output buffer will

allow the DAQ to be resilient to fluctuations in trigger rates and potential delays in processing

event records in the HLF. The output buffer will consist of several PB of storage, allowing several
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days of the triggered data to be stored. This will ensure that short breaks in the connection

between the DAQ and offline storage do not affect the up-time of the detector.

3.3.4 DAQ Requirements

The DAQ is specified to require >95% efficiency for triggering on SNBs within 20 kpc. These are

expected to produce at least 60 neutrino interactions in the active volume of a detector module

during the first 10 s of the burst signal. Therefore the maximum latency of the SNB trigger is

10 s, although faster triggering would be beneficial as this would preserve interactions from

any neutrinos which may precede the core collapse. The latency would also be affected by the

energy-time spectrum of the SNB, which depends on the mass hierarchy, as shown in section 2.3.

The false positive rate (FPR) of the SNB trigger will be the main limiting factor on the

achievable efficiency. As mentioned in section 3.3, only 30 PB per year per FD module can be sent

to permanent storage. Of this, 2 PB will be allocated to store data from SNB triggers, leading to a

maximum FPR of around one per month.

Fifteen PB of the data volume will be allocated to store all the TPs found by the UD as well as

the data for detector performance studies. The intrinsic rate of radiological 39Ar decays (present

in the LAr) has been suggested for use as a calibration source, as ∼ 250,000 decays can provide

measurement of electron lifetime to 1% accuracy [106]. The data volume collected would depend

on the desired pixelisation for the measurement of the electron lifetime. One measurement per

APA per day to this accuracy would require 1.5 PB per year but finer pixelisation is desirable.

The quoted offline data storage volumes are before any data compression. DUNE will use

lossless compression algorithms. From previous studies in the Micro Booster Neutrino Experiment

(MicroBooNE), TPC information is expected to compress by a factor between 2-4 [107] but the

TPs will not be compressible. Balancing the disk space required by detector performance studies,

a conservative limit on the rate of TPs would be 2 PB per year per FD module.

Once the data from a SNB trigger has been stored offline it can be further investigated. If it

became clear that the data did not result from a SNB, then the event record could be deleted,

freeing up additional offline storage space and allowing the false SNB trigger rate to be relaxed.

However, no studies of algorithms to reject SNB candidate event records have been done, so 2 PB

per year and the resulting once per month FPR will be used as a conservative limit to determine

the performance of SNB trigger algorithms.

3.4 Baseline SNB Trigger

The baseline SNB trigger design for DUNE is a simple trigger that counts the number of TCs

which occur in a given time window and issues a SNB trigger command if a threshold (set using

the 1 false positive SNB per month requirement) is met. As a result this trigger depends directly

on the algorithms used to create TPs and TCs and their particular parameters. Its efficiency
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is limited by the radiological backgrounds present in the detector. In this section TPs and TCs

will be defined, along with the algorithms which have been used to generate them in the work

presented in this thesis.

The baseline design for the DUNE DAQ is to process TPC data using FPGA logic. A previous

study has been completed by DUNE collaborators to determine the performance of a SNB trigger

using a TPG algorithm designed to be implemented in CPU [85]. The algorithm which will be

implemented in the FPGA-based SNB trigger will follow the same processing steps as that studied

for CPU but using some different parameters. The differences between the two approaches exist

only in the TPG stage and are elaborated on in chapter 5, where the TPs, TCs and SNB trigger

performance resulting from FPGA-based TPG will be characterised.

In the CPU TPG study, the parameters used for clustering the TPs into TCs were chosen to

be those which achieved the optimal SNB trigger efficiency for a FPR averaging one fake trigger

per month. A ‘brute force’ method was used to study 40 combinations of clustering parameters

and the resulting optimal clustering parameters are set out in section 3.4.2. These parameters

were re-used to determine the performance of the baseline SNB trigger which uses FPGA-based

TPs as will be reported in chapter 5.

3.4.1 Trigger Primitive Generation

TPs summarise the charge deposited on individual wires by ionisation signals to reduce the data

volume passed downstream. The TPG is composed of 3 stages: pedestal subtraction, filtering and

hit-finding. In FPGA-based TPG these algorithms will be implemented in a series of functional

blocks which will be explained in section 3.5. The pedestal subtraction will act as a high pass

filter and the filtering as a low pass filter. This will effectively result in a bandpass filter which

futher shapes and smooths the signal on each wire. If the resulting signal (each digitised sample

will be referred to as an ADC sample) exceeds a set hit-finder threshold, THF , then a TP will

be formed which describes the signal for the duration it exceeds the threshold. This threshold

is a parameter which can be adjusted to satisfy the limits on the number of TPs which can be

saved to disk and should be kept as low as possible. TPs may also be referred to as ‘hits’ and the

properties of each TP will be:

• Start tick, HS, the tick of the first ADC sample which meets or exceeds THF

• End tick, HE, the tick of the last ADC sample which meets or exceeds THF

• Ticks over threshold, HTOT = HE −HE

• Peak tick, HP , the tick of the ADC sample within the TP with the highest ADC value

• Peak ADC, HP ADC, the ADC value corresponding to HP
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• Summed ADC, HSADC, the sum of all ADC values during the period the signal equals or

exceeds THF .

Each TP will also contain a timestamp which will allow the tick information to be related to

the detector clock and information allowing the individual wire to be identified in the detector

module.

3.4.1.1 Pedestal Subtraction

When there is no ionisation input, the signal measured is called the pedestal. To remove fluctua-

tions due to slow changes in the pedestal of the signal, a frugal streaming algorithm [108] was

used. This simple algorithm made use of two quantities which were updated as each ADC sample

on a wire was processed: a pedestal, P and an accumulator Pa. The pedestal was subtracted

from the ADC value to ensure that in the absence of a signal the high frequency noise oscillated

around a baseline of zero. The accumulator was used to update P before it was subtracted from

the ADC value. If the next ADC sample was above P, then Pa would be increased by 1 (vice versa

for below the pedestal). If Pa reached a threshold of ±X , then P would be increased or decreased

by 1. This algorithm allowed slow changes in the pedestal to be tracked and eliminated from the

signal. A value of X = 10 was used for all studies presented in this work.

3.4.1.2 Filtering

After application of the pedestal subtraction (PS), to smooth fluctuations in the signal due to

high frequency random noise on a wire, a finite impulse response (FIR) filter was used. This

is essentially a weighted sum of the last N samples in the signal. The weights are referred to

as ‘filter taps’, T and are configurable to shape the signal in a desired way. As unipolar signals

were expected on collection wires, the values of these filter taps were chosen to be symmetrically

distributed around the central tap, with the outside taps having the lowest values and the central

ones the highest. For a digital signal with n samples, and a filter with N taps, the output for the

n’th sample from the application of the FIR filter f depends only on samples xn−N , ..., xn:

(3.1) fn =
∑N

i=0 Tixn−i∑N
i Ti

.

where i is the index of the filter tap and the weighted sum has been divided by the sum of the

filter taps to preserve the dynamic range. Using the symmetric and centrally peaked filter tap

values causes the FIR filter to act to narrow and delay the peak of the signal by N/2 samples.

3.4.2 Trigger Cluster Generation

Whilst low energy neutrino interaction signals are quite small on an APA, to be detected with a

low enough FPR they need to be differentiated from the ionisation which results from radiological
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backgrounds. This will be discussed further in chapter 5. To identify local regions of charge

deposition which span one or more wires, the TPs are clustered together into TCs. TPs within

a certain wire tolerance, tW , are first grouped into protoclusters. The TPs in protoclusters are

then grouped into TCs if they fall within a certain tick tolerance, tT . The tolerance is defined as

the number of wires or ticks without a TP which can be tolerated between adjacent TPs in the

cluster. Clusters can be discarded using thresholds based on their properties. The full clustering

algorithm is set out in appendix A.1.

The TCs possess the following properties:

• The number of TPs they are formed from, Cn

• The number of wires the TPs are on, CnW

• The tick width, CrT , which is the range of samples the TC covers

• The wire width, CrW , which is the range of wires the TC covers

• The cluster ticks over threshold (TOT), CTOT , which is the total number of ticks the TPs

were above the hit-finder threshold for

• The summed ADC, CSADC, which is the sum of the HSADC values from the TPs.

From the study mentioned at the start of section 3.4, the combination of clustering parameters

and applied thresholds which was found to result in the greatest SNB trigger efficiency is shown

in table 3.2.

Table 3.2: Clustering parameters found to provide the greatest efficiency for a SNB TC counting
trigger using CPU-based TPs [85].

Clustering Parameter Clustering Parameter Value
Wire tolerance (tW ) 1
Tick tolerance (tT ) 20

Minimum Cn 6
Minimum CnW 2

3.4.3 Supernova Burst Counting Trigger

The SNB counting trigger is a simple algorithm which counts the TCs which occur within a

time window in the detector module and issues a SNB trigger command if the count reaches a

threshold, TSNB. To determine the performance, the rate of TCs from background sources in a

given time window is determined and a threshold for the number of TCs which keep the false

SNB rate to once per month or below is computed. This threshold is used as TSNB to determine

the efficiency for the SNB trigger, ϵSNB, as a function of the distance of a SNB.
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3.5 Data Processing Firmware Architecture

The UD implements data processing to generate TPs in the FPGA mounted to the FELIX board

using firmware implemented in a series of functional blocks. DUNE will use the same firmware

architecture as has been developed by the DUNE DAQ collaboration and tested in ProtoDUNE-SP

with small changes as explained in section 3.6. Each block in the firmware architecture fulfils a

task in the processing pipeline which is run at 250 MHz to allow it to keep up with the online

data rate.

The raw data is received from the MGTs in data packets, called WIB packets, each holding

ADC data from two FEMBs (in total 256 channels) for a single detector tick. Ten instances of the

data processing firmware, one per MGT are instantiated. As illustrated in figure 3.5, the ADC

TPC data is received by the data router block which performs some data transformation and

stores the data in a circular buffer in the dual ported random access memory (dpRAM) buffer.

The unpacker then accesses this data when ready and demultiplexes it to be processed on 4

identical TPG blocks which each process the signal from a single wire at a given time. The TPs

determined from the signal are packaged into ‘hit packets’ and pushed to the arbitrator block,

which multiplexes them and forwards the data to the central router (CR) interface block which

transforms the TPs into a format interpretable by the DS. The CR is able to prevent backpressure,

filter out empty hit packets, and remove corrupted hit packets in addition to translating hit

formats.

Dual-Port
RAM

data
reception

unpacker

tpg[1]

tpg[0]

tpg[2]

tpg[3]

arbitrator cr_if CRMGTs

Header Stripper/Combiner

pedsub fir hf

FLX
CORE

netio

HostFPGAFELIXFELIX Hitfinder Hitfinder

Figure 3.5: Firmware functional blocks in the FPGA and the connections between them. The data
router block is highlighted in red, the TPG generation block is highlighted in green, the data
arbitrator is highlighted in yellow and the CR interface is highlighted in blue. Image reproduced
with permission from [109].
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3.5.1 Data Router Block

The data router receives the ADC TPC data from an APA via an MGT and transforms multiple

WIB packets of the data into ADC processing packets which carry the ADCs for a single wire

for a given number of ticks. This number is configurable and limited by the block random access

memory (BRAM) constraints of the FPGA. A value of 64 ticks was used in the work which will be

presented in chapter 4. Any TPs which extend beyond the boundary of an ADC processing packet

will be flagged and stitched back together in the downstream DS before clustering.

Once the ADC processing packets are stored in the dpRAM, these are accessed by the

unpacker subblock which reads and demultiplexes the data for 4 channels at a time, providing

each ADC processing packet to an independent TPG block instance. The ADC processing packets

are transmitted downstream using the advanced extensible interface 4 stream (AXI4-Stream)

protocol [110] which is used until the CR interface converts the format of the TPs and passes

them to the FELIX CR.

3.5.2 TPG Block

The TPG block has several subblocks. The first strips header information and passes it down-

stream to become the header for the hit packet which results from the ADC processing packet.

The ADC processing packet has PS and FIR filtering applied to it, both of which implement

saving and restoring of state between consecutive ADC processing packets from a given channel.

The ADC processing packet is then processed by the hit-finder (HF) subblock and the processing

packets now hold the TPs which were found from the 64 ADC samples. Any resulting TPs are

recombined with their header information by the header combiner. The arbitrator block multi-

plexes the outputs of the 4 different TPG instances back into a single AXI4-Stream output before

the CR-interface translates these AXI4-Stream hit packets into the CR hit packet format, which

is propagated forward.

3.6 ProtoDUNE Single Phase Detector

The DUNE collaboration has constructed and operated 2 large prototype detectors at European

Council for Nuclear Research (CERN), one of which demonstrated the SP detector technology.

Unlike DUNE, these are both located on the surface ensuring a high rate of cosmic ray interac-

tions. They are also located at the end of a beamline able to provide beam particles with energies

from 0.5 GeV to 7 GeV to perform detector, physics and calibration studies. ProtoDUNE-SP was

completed in September 2018 and collected beam data until December 2018. During this period

it was triggered externally, using beam spill signals or random triggers.

After this ProtoDUNE-SP was used as a test-stand to implement and test improvements to

the detector, one of which was the testing of FPGA-based TPG as a step towards FPGA-based

self-triggering. ProtoDUNE-SP demonstrated the use of the FELIX board as the detector readout
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technology. In this section, the ProtoDUNE-SP detector design will first be explained followed by

the setup for testing FPGA-based TPG.

3.6.1 ProtoDUNE-SP Detector

ProtoDUNE-SP has a total mass of 770 t of LAr and is the largest monolithic LArTPC built

to date but still only holds almost 1/20 of the total LAr mass which will be in a DUNE SP FD

module. However, it allows the prototyping of detector components at a 1:1 scale in preparation

for building the SP DUNE FD module.

The geometry of ProtoDUNE-SP leads to an active volume which is essentially a subvolume

of the active volume of a DUNE SP module. It is 7 m deep along the z axis, 6 m high along the

y axis and 3.5 m wide along the x axis for each drift volume (of which there are 2). There are 6

APAs, arranged in 2 planes of 3 which are on each side of the detector parallel to the z axis, as

can be seen in figure 3.6. Between the anode planes is a cathode plane held at −180 kV to achieve

the same 500 Vcm−1 electric field that will be present in DUNE.

3.6.2 FPGA-based TPG Testing Setup

To test and validate TPG, both the original ADC data from the WIBs and the TPs which were

output to the FELIX host from the FPGA needed to be concurrently published and saved to disk.

This was done for short test periods and used to validate the TPG using ProtoDUNE TPC data.

These TPs were not stitched back together (as would occur in the FELIX host for DUNE) because

this setup was designed to test the TPG firmware set out in section 3.5.

5Image reproduced under Creative Commons BY-SA 4.0 license https://creativecommons.org/licenses/
by-sa/4.0/
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Figure 3.6: ProtoDUNE-SP detector which acts as a prototype for the DUNE SP FD. The test
beam enters via the beam plug. The APAs are mounted to the detector support structure with a
plane of 3 either side of the CPA plane in the centre of the active volume. Image reproduced from
[111]5.
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4
VALIDATION OF TRIGGER PRIMITIVES

The firmware architecture, data flow of the data processing functional blocks and concepts

of an ‘ADC processing packet’ and a ‘hit packet’ were introduced and described in section

3.5. The firmware was developed as a series of blocks, each implementing a stage of data

processing and requiring validation. It was vital to be able to verify that the logic which was being

applied to a test vector performed the intended task throughout the DAQ development cycle.

Each of these blocks was validated through comparison with an emulation of the same algorithm

implemented in stand-alone software. When using the same test vector, the outputs from the

software emulation and the firmware were required to be identical to validate that the firmware

performed correctly. The writing of firmware to program the FPGA to carry out these operations,

including firmware testbenches and the integration of the firmware in ProtoDUNE was done

by collaborators in the UD group. Collaborators also recorded the ProtoDUNE data which has

been used for validation. A gold-standard implementation of the TPG algorithms in LArSoft was

created by myself. A software suite for bit-wise validation of the whole firmware architecture was

collaboratively contributed to by the UD group, including significant contributions from myself.

This chapter details work that was carried out during the development of the firmware to

validate the correct implementation of the TPG algorithms. Firstly, validation of the PS and FIR

filtering algorithms using simulation tools is presented. The data format used for validation

of TP in ProtoDUNE is then introduced. An analysis which compares the TPs collected from

implementing the hit-finder firmware architecture in ProtoDUNE to the TPs found through a

bitwise emulation of the TPG firmware is then presented.
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4.1 Validation In Simulation

The first subblocks to be developed in the data processing functional block were those which

applied the PS and FIR filtering algorithms to ADC data on a single wire. This section describes

the initial validation of these algorithms using a software emulation (SWEM) of the algorithms

and a simulation of the firmware (FWSIM). At this stage of development, no state save/restore

functionality was present in the firmware. These subblocks do not perform the operation of

creating ADC processing packets from the test vector and, as such, will operate on as many ADC

samples as are provided in the test vector.

A testbench, which was run using the Xilinx Vivado Design Suite [112], simulated the Very

High-Speed Integrated Circuits Hardware Description Language (VHDL) code which defined the

logic for these processes. Software emulation was carried out using standalone software tools

developed in DUNE’s LArSoft based offline software framework. The test vector which was used

for this validation test was a 1 GeV electron event generated with its momentum parallel to the z

axis of the detector (along the beam axis). To allow a high statistics test on a single wire, the ADC

samples from each collection wire were concatenated (for all 12 APAs in the detector simulation

geometry) on to a single wire, resulting in a total of 51 million ADC samples which were used to

validate the implementation of these algorithms. Noise was added to the simulated ADC samples

using a Gaussian distribution with a standard deviation of 2.5 ADC counts.

4.1.1 Pedestal Subtraction

The ADC values returned by the firmware simulation and from software emulation of the PS

were compared value by value and found to be identical, verifying that the outputs from software

emulation and firmware in simulation agreed. This can be observed in figure 4.1(a), where the

distribution of ADC values for samples is plotted for both the SWEM (blue) and FWSIM (red).

The perfect overlap which results from the identical SWEM and FWSIM outputs causes the

distribution to be coloured purple. From the distribution of the post PS ADCs, it is observed

that the application of PS reduces the post-PS ADC value to near zero for the vast proportion of

samples. The PS algorithm acts as a high pass filter which eliminates the effect of low frequency

noise or pedestal drift. Low frequency noise was not present in this simulation and the high

frequency noise is not filtered out. This was reflected by figure 4.1(c), in which the difference

between consecutive ADC samples after PS was plotted. The subsequent samples can be seen to

differ with a close relationship to the spectrum of the Gaussian noise, which has been plotted

over the central peak in yellow after scaling the magnitude by the number of ADC samples.

4.1.2 FIR Filtering

The output from the PS was used as the input test vector for the validation of the FIR filtering

algorithm. An exact match between the outputs from firmware simulation and software emulation
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(a) (b)

(c) (d)

FIGURE 4.1. Validation of PS and FIR filtering algorithms on a single wire using a
test vector of 51 million ADC samples from a 1 GeV electron event and added
Gaussian noise with a standard deviation of 2.5 ADC counts. (a) ADC values
after PS has been applied to test vector in firmware simulation (FWSIM) and
in software emulation (SWEM). (b) ADC values after PS and subsequent FIR
filtering have been applied to test vector in firmware simulation (FWSIM) and in
software emulation (SWEM). (c) Difference between consecutive ADC values after
PS has been applied to test vector in firmware simulation (FWSIM) and in software
emulation (SWEM). (d) Difference between consecutive ADC values after PS and
subsequent FIR filtering have been applied to test vector in firmware simulation
(FWSIM) and in software emulation (SWEM).
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were also found for the two implementations of the FIR filter. The distribution of the post FIR

ADC values is shown in figure 4.1(b), which is seen to be similar in shape to the post PS values.

The application of FIR filtering on the reduction of high frequency noise is shown in figure 4.1(d),

where the difference between subsequent ADC samples after the application of FIR filtering is

plotted. The distribution of ADC values is seen to narrow, demonstrating the use of the FIR filter

as a low pass filter.

4.1.3 Summary

The PS and FIR algorithms were successfully validated against a gold-standard SWEM using

FWSIM testbenches. At the time the PS and FIR algorithms were validated against SWEM in

LArSoft, the hit-finder subblock was not yet ready. Test vectors for the validation of the hit-finding

block were provided to the firmware developers who made use of these during its development.

However, it was unfeasible to support the validation of anything more than data processing

algorithms applied to ADC data using the LArSoft framework. Therefore, for the validation of the

firmware comprising the data router, arbitrator and CR interface blocks, as well as the header

stripper/combiner in the TPG block, a more formal bitwise validation technique was required.

A Python-based software suite was created for bit accurate verification of the firmware. It

was designed to replicate the firmware components and the interfaces between them. Python

classes were used to represent data at each stage of the hit finder firmware architecture and

facilitate the conversion between different data formats throughout the processing pipeline. This

was used to create test vectors for each firmware block for signals with a range of complexities.

These were distributed to the firmware developers.

4.2 Hit Packet Structure

The TPs which resulted from the firmware TPG chain were stored in ‘hit packets’. The hit packet

contains the header information for the ADC processing packet and contains the TPs which

resulted from it. This data was stored in a ‘header frame’ and one or more ‘hit frames’, whose

formats are shown in words 2-7 and 8-13 respectively in figure 4.2. For validation of the TPG an

additional ‘pedestal frame’, as defined in words 14-19 in figure 4.2, was required. References to

hit packet in the remainder of this chapter will include the pedestal frame implicitly.

Hit packets were the output of the TPG block. Multiple hit packets were output to a FELIX

network buffer to form a ‘network packet’. The buffer was parsed and published by an onhost-

BoardReader (BR) process which added two BR words to allow comprehension of the hit raw

binary capture files. The first was a ‘magic word’ to allow the start of the hit packet to be identified.

The second specified the size of the network packet which was read by the onhost-BR.

The pedestal frame contained ‘magic words’ which allowed the individual hit packets to be

differentiated from each other and subsequently interpreted. They also contained the value of
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the pedestal and the accumulator which was retrieved from the saved state for the given wire.

These pedestal and accumulator terms were introduced in section 3.4.1.1. The pedestal and

accumulator values were vital to retrieve to enable perfect software emulation of the TPG. The

frugal streaming [108] algorithm used for pedestal subtraction depends on all previous ADC

samples processed. It was not possible to capture ADC samples from the moment that the hit

finding firmware was flashed, which would be required to retrieve every ADC sample processed.

Instead, by having access to the pedestal and accumulator it was possible to set the initial

conditions to emulate TPG on each wire as long as at least 2 TPs were found on that wire during

with the period processed. No hit packets were written if no TPs were found, depriving any wires

without TPs from being validated.

Word Bit
Data Frame

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Boardreader Word 0: Magic Word (0xABCD)
BR words

1 Boardreader Word 1: Size (FELIX Frame size in bytes)

2 crate No. fibre No. wireIndex No.

Header Frame

3 slot No. Header Frame: Word 1: Reserved for flags

4 Header Frame: Word 2: Time Stamp

5 Header Frame: Word 3: Time Stamp

6 Header Frame: Word 4: Time Stamp

7 Header Frame: Word 5: Time Stamp

8 Hit Frame: Word 0: Hit Start time (relative to 64 sample packet)

Hit Frame

9 Hit Frame: Word 1: Hit End time (relative to 64 sample packet)

10 Hit Frame: Word 2: Hit Peak or Amplitude

11 Hit Frame: Word 3: Hit Peak time (relative to 64 sample packet)

12 Hit Frame: Word 4: Hit Summed ADC

13 Hit Frame: Word 5: Hit Continue and other reserved flags

14 0xF Pedestal Frame: Word 0: median

Pedestal Frame

15 0xB Pedestal Frame: Word 1: accumulator (twos complement)

16 Pedestal Frame: Word 2: Magic Word (0xFEED)

17 Pedestal Frame: Word 3: Magic Word (0xF00D)

18 Pedestal Frame: Word 4: Magic Word (0xDEAD)

19 Pedestal Frame: Word 5: Magic Word (0xBEEF)

20 Boardreader Word 0: Magic Word (0xABCD)
BR words

21 Boardreader Word 1: Size (FELIX Frame size in bytes)

FIGURE 4.2. Network packet structure. The BR words include information about the
number of words published in a network packet. The network packet encloses 1
or more hit packet, each of which contain a header frame and a pedestal frame
as well as 1 or more hit frames. The second set of BR words shows the start of a
subsequent network packet. The pedestal term in the pedestal frame is labelled as
the ‘median’.
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4.3 Validation of Hits Captured In ProtoDUNE

The UD group integrated the TPG firmware with the ProtoDUNE DAQ and collected data to

enable validation studies to be performed on the TPs recorded in ProtoDUNE. To validate the

TPs, the raw ADCs were also saved to disk.

Beyond the hit-finding firmware architecture, some additional data processing was required

to save the hits and ADCs to raw binary files. The FELIX card has two logic regions (super-logic

regions (SLRs)) which each performed hit-finding on five of the ten ADC data streams. The hits

computed from each of these SLRs were published to the network in an additional single data

stream. A configurable BR [113] software process was executed on the host which serialised all

these data streams from a direct memory access (DMA) buffer so that the TPs, ADCs and hits

could be captured.

4.3.1 Study Outline

The validation study on ProtoDUNE TPs was carried out using the TPs collected with a single

ADC data stream and a single TP data stream. This allowed the ADC samples from a single MGT

(256 wires) to be used to validate the TPs which were produced by the hit finder firmware and

the software surrounding it. To validate the TPs captured in ProtoDUNE, both the raw binary

files containing the TPs and ADCs needed to be interpreted. The interpreted TPs provided the

first opportunity to look for bugs by investigating whether each of the words in the hit packet

were within the set of possible values defined by the TPG algorithm and firmware.

The ADC and TP captures did not contain data for exactly the same detector timestamp

range, but did overlap each other. Therefore the timestamps at which they started and stopped

overlapping were determined and these were used to extract the WIB packets and hit packets

which had timestamps in this region.

To allow software emulation of the TPG algorithm, format conversion tools were used to

convert the WIB packets into ADC processing packets. In order to correctly emulate TPG on these

ADCs, the initial conditions for pedestal subtraction needed to be known. To allow the pedestal

and accumulator values to be correctly set for TPG emulation, the TPs found in ProtoDUNE

were interpreted and stored using a Python class. The first TP on each wire was determined and

its pedestal frame was used to access the pedestal and accumulator values which were loaded

from the saved state in the firmware prior to it applying PS to the ADC processing packet which

produced that hit.

With the initial pedestal and accumulator values known, emulation of PS could be applied

to the ADC processing packet. However, the FIR filtering causes an additional complication for

emulation. Due to its symmetric tap coefficients, it effectively delays the signal by N/2 detector

ticks, where N is the number of filter taps. This means that any hits found in software emulation

in the first N/2 ticks will not be equivalent to those in the TP capture file. To avoid this affecting
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the accuracy of the validation, any TPs from this first ADC processing packet, whether emulated

or from firmware, were dropped before comparison.

After TPG emulation, the emulated TPs were compared to the firmware TPs to identify

potential bugs from discrepancies.

4.3.2 Investigating Raw TP Captures

A number of quantities in the header and hit frames were checked against the range of values

which it was possible for them to possess. Within the header frame, the crate number was checked

(used to denote the APA in ProtoDUNE that this data was collected on). The slot number was

checked to be within the range 0−4 and the fibre number was checked to be 1 or 2. These two

quantities were used to track the path of the ADCs through the interface between the CE and

the DAQ hardware.

The TP quantities were checked in a similar manner. Any hit start or end ticks which were

> 61 or > 63 respectively were searched for in addition to any end ticks occurring in the first 2

ticks in the ADC processing packet. These values were chosen because the firmware hit finding

was designed to require hits to be above the threshold for 2 or more ticks. Checks were also made

that the peak ADC value was above the threshold used for hit finding and that the peak tick was

within the range 0−63.

Word 5 of the hit frame, as defined in figure 4.2, contains a flag which indicates if the TP

continues up until the end of the ADC processing packet. This is stored in the least significant bit

(LSB) of this word, while the remaining 15 bits are reserved for other flags. However, these were

not actually defined in the firmware and should remain as zeros. Any occasion that this was not

the case was checked for. Finally, the last check carried out was to identify any TPs which were

flagged to be above threshold until the end of the ADC processing packet, but did not have a hit

end tick of 63.

As a result of these checks, 3 different types of bugs were identified as reported in table 4.1.

An example of each is shown. To verify that these were present in the raw binary files, they

were hexdumped into 32 bit words and examples of TPs possessing these bugs were identified.

These 32 bit words are presented in hexadecimal representation in figures 4.3(a)-4.3(c), which

contain all words from the start of the header frame to the end of the pedestal frame. They can

be interpreted with the hit frame structure in figure 4.2. The subsequent 16b words which make

up a 32b word are arranged from left to right.

Out of a total of ∼ 11×106 TPs that were collected in the TP binary file, a total of ∼ 2×105

possessed one of these bugs (1.85%). The ‘Continues Flag and End Tick’ bug shows that there were

occasions where the hit continue bit was toggled to 1 but the last tick with an ADC sample over

the threshold was not the last tick in the ADC processing packet. The ‘Hit Flags’ bug indicates

that the 15 most significant bits (MSBs) in the 5th 16 bit word of the hit frame were non-zero.
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Lastly, the ‘No Peak/Sum’ bug is present where the peak ADC sample, peak ADC tick and the

summed ADC (SADC) are all zero.

Any TPs which possessed any of these bugs were removed from the set of TPs carried forward

for validation with software emulation.

TABLE 4.1. The 3 different bug types that were identified by interpreting all hits
collected for 5 hit finder links. An example of each type of bug extracted from the
raw hit capture file is presented.

Bug Type Hit
Start
Tick

Hit
End
Tick

Hit
Peak
ADC

Hit
Peak
Tick

Hit
Summed
ADC

Hit
Flags
15b

Hit
Con-
tin-
ues
Flag

Continues Flag and End Tick
< 63

51 62 337 57 3635 0 1

Hit Flags != 0 44 58 123 51 1748 30 0
No Peak/Sum 59 63 0 0 0 0 1

4.3.3 Comparison of Captured Firmware Hits and Software Emulated Hits

The procedure used to emulate the firmware TPs using the Python software suite was described in

section 4.3.1. In this section, the selection of the firmware TPs used in this study is described. This

is followed by a description of the process of pairing the firmware and emulated TPs. These paired

TPs are compared and successive selections based on the most commonly observed dissimilarities

are made. The possible causes of each dissimilarity are discussed before the paired TPs in that

selection are removed and the next selection is made. Finally the proportion of pairs which

perfectly match each other is reported.

4.3.3.1 FW Hits Used In Validation Study

There were ∼ 11×106 TPs which were present in the binary capture, which records TPs from five

raw ADC data streams. A single ADC data stream and the TPs captured from it in ProtoDUNE

were used in this study. TPs which did not originate from this ADC data stream were discarded

along with any TPs which did not occur during the timestamp region where the captured ADC

stream and captured TPs overlapped. TPs which contained bugs identified in section 4.3.2 were

also discarded.

The number of remaining firmware TPs was 937, which occurred on 198 of the 256 wires

being recorded in the data stream. As the first TP on each wire was used to set the pedestal and

accumulator values, this left a remaining 739 TPs to use in the validation study. The total number
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(a) (b)

(c)

FIGURE 4.3. (a) 32 bit word representation of the example ‘Continues Flag and End
Tick’ bug reported in table 4.1. (b) 32 bit word representation of the example ‘Hit
Flags’ bug reported in table 4.1. (c) 32 bit word representation of the example ‘No
Peak/Sum’ bug reported in table 4.1.

of TPs generated through software emulation was 868. Bugs in the firmware implementation

could result in some TPs not being identified, which may account for why there were 129 fewer

firmware TPs found than emulated TPs. The low statistics were primarily a result of the ADC

data stream being captured for a shorter time than the TP data stream. The timestamp range of

the raw ADC capture was 0.22% of the timestamp range of the captured TPs and equates to 5.48

milliseconds of recording.

4.3.3.2 Pairing Of Firmware and Emulated Hits

To make a comparison between the emulated TPs and the firmware TPs, it was necessary to

assign emulated and firmware TPs to each other based on a TP property. The same emulated

TP could be paired to multiple firmware TPs but each firmware TP was paired to only a single

emulated TP. A pair of assigned TPs are referred to as ‘paired’ TPs. If all of the TP properties are

identical, they are referred to as a ‘perfect pair’. If any of their properties differ, they are referred

to as a ‘nonperfect pair’.

The approach taken was to assign the firmware and emulated TPs which occurred closest

together in time to each other. Then the properties of these paired TPs were compared and
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used to identify a selection of paired TPs which were nonperfect pairs. The potential origins of

these nonperfect pairs were investigated and this selection was then removed. The process was

repeated until there were no more significant nonperfect pairs remaining.

The proportion of emulated TPs for which a pair remained, ηm, is reported after the TPs

identified in each selection were removed:

(4.1) ηm = Nm

NSWEM
,

where Nm is the number of paired TPs and NSWEM is the number of emulated TPs used in the

validation study.

The starting tick used for pairing TPs was calculated from the combination of the hit packet

timestamp and the hit start tick within the hit packet. The difference between the starting ticks

(S) for the software emulated and firmware TPs is ∆T = |SSWEM −SFW |. For each firmware TP,

the emulated TP on that wire with the smallest absolute value of ∆T was paired to it. As can be

seen from a comparison of the starting ticks in figure 4.4(a), some of the pairs were very poor,

occurring thousands of ticks apart. However, there is a central peak around zero, which indicates

that many of the pairs may be close. Looking more closely at this central region in figure 4.4(b),

the majority of close pairs were observed to occur within ±20 ticks. As a result, the first cut

to be applied to the paired TPs was that pairs were required to have start ticks which were

within 20 ticks of each other. It was assumed that paired TPs which were more distant than this

were not directly related to one another and that this was probably a result of the firmware not

finding a TP which it should have. After removing all pairs which did not meet this requirement,

ηm = 77.5%, with 673 remaining pairs.

There was a clear disparity between the summed ADC values of the paired software emulated

TPs and the paired firmware TPs, as illustrated in figure 4.5. The summed ADC values from

the firmware TPs were found not to exceed 4095. There was a strong linear correlation between

the firmware and software emulated summed ADC values up to values of 4095. For software

emulated TPs with summed ADC values larger than 4095, this linear correlation appears to

continue as if the summed ADC value in the paired firmware TPs is 12 bit masked. The lack of

any firmware TPs with summed ADC values larger than 4095 despite there being emulated TPs

with larger ADC values and 16 bits allocated to store the summed ADC value in the firmware,

appeared to indicate that there was a bug in the firmware implementation.

4.3.3.3 Selection 1

The TP properties after discarding pairs with ∆T > 20 are shown in figure 4.6(a)-4.11(a). Each

of these figures corresponds to a particular hit property and the other sub-figures present are

the result of removing the paired TPs from each successive selection. These plots comparing the

distributions of the properties of the remaining paired TPs were used to identify off-diagonal

populations. The first of these selections, which will be referred to as selection 1, was identified
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(a) (b)

FIGURE 4.4. (a) The start tick of the paired firmware TPs subtracted from the start tick
of the emulated TPs. (b) The same plot as figure 4.4(a) centred on the central 128
ticks, equivalent to the number of ticks in 2 ADC processing packets.

from figure 4.7(a) and contained 43 TPs, lowering ηm to 72.6%. Paired TPs which had firmware

end ticks equal to 63 and software emulated end ticks lower than 25 were classified as members

of selection 1. The effect of removing selection 1 can be seen from the distribution of each hit

property in figure 4.6(b)-4.11(b). When selection 1 was removed, it became apparent from the

paired TPs removed between figure 4.6(a) and figure 4.6(b) that the emulated TPs had start

and end ticks which were within the first 25 ticks, whilst the firmware TPs had start and end

ticks which were all later than tick 40. The start ticks of the emulated TPs were mostly zero

and the end ticks of the firmware hits were mostly 63. So the mismatched TPs in selection 1

always occurred at different times in an ADC processing packet and this was evidence that the

paired TPs were related to signals which stayed above threshold over ADC processing packet

boundaries. It was found that the emulated hits in selection 1 all occurred one ADC processing

packet after the firmware TP which they were paired to. This was consistent with the other

strange phenomenon present in the paired hits, which was that no firmware hits had a start tick

before the 10th tick in the ADC processing packet. The existence of a bug which causes the TPG

to be unable to find TPs at the start of an ADC processing packet would lead to cases where an

emulated TP which continues over a packet boundary for a short time can only be paired to the

firmware hit at the end of the previous ADC processing packet. Indeed, the paired hits which

have been removed between figure 4.8(a) and figure 4.8(b) were all 25 ticks or shorter.

By insisting that TPs had to come from the same ADC processing packet, the 43 TPs in

selection 1 and 3 additional TPs not in selection 1 were removed, with these 3 additional

discarded TPs reducing the ηm to 72.6%.
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FIGURE 4.5. Comparison between the summed ADC of the paired TPs. Firmware hits
had summed ADC values limited to the range 0-4095.

4.3.3.4 Selection 2

However, after the removal of selection 1, remaining paired TPs were not all perfect pairs.

Therefore, a second population of nonperfect pairs, labelled selection 2, was identified. Selection

2 was made from any paired TPs whose emulated peak ADC value was greater than the peak

ADC value of the firmware TP. This selection consisted of a further 105 paired TPs and reduced

ηm to 60.1% . Removing paired TPs in selection 2 had the effect of removing paired TPs which

were far closer to the central line of equivalency than the removal of selection 1 did. This effect

was pronounced in figure 4.6(c), where many paired firmware TPs with start ticks below 20

which were paired to emulated TPs with earlier start ticks have been removed as a result. This is

consistent with the paired hits which were removed between figure 4.9(b) and figure 4.9(c), which

appear to indicate that the peak ADC tick of the paired emulated hits in selection 2 was earlier
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than the firmware TP, but not necessarily always earlier than the start tick of the firmware TP.

Peak ticks are seen to be consistent between paired TPs only after the 20th tick in the packet. A

similar story was true for the impact of the removal of selection 2 on the distribution of paired

end ticks in figure 4.7(c). The vast majority of paired TPs in selection 2 had more ticks over

threshold (TOT) in the emulated TP than the firmware TP, as can be seen from figure 4.8(b) and

figure 4.8(c), again suggesting that the major reason for the discrepancy in peak ADC value was

due to the firmware being unable to detect TPs occurring early in a packet.

4.3.3.5 Selection 3

A third and final population of nonperfect pairs was identified from figure 4.6(c) where the

firmware start tick was later than the software emulated start tick and composed of a further

47 pairs, lowering ηm to 54.7%. Apart from looking at the start ticks of paired TPs, the effect of

removing this 3rd selection could be seen most clearly in the difference between figure 4.8(c) and

figure 4.8(d). It removed most of the remaining paired TPs where the emulated TP lasted longer

than the firmware TP. Selections 1, 2 and 3 are all consistent with having resulted from a bug

in the implementation of TPG in firmware which did not allow TPs in the first part of the ADC

processing packet to be detected. Upon insisting that the emulated and firmware TPs pair exactly

(except for the summed ADC due to the inconsistency identified earlier), then ηm became 51.8%.

4.3.4 Conclusions

This chapter has explained the work done to validate the implementation of TPG in firmware

and has set out the scope of this process throughout the development of this firmware. An

example of an initial study was provided and the data collection process for capturing firmware

generated TPs online using ProtoDUNE was explained, along with the resulting network packet

format. Potential bugs in the firmware implementation were identified through both looking at

the properties of a high number of captured TPs as well as running a bitwise emulation of the

firmware TPG and comparing the resulting TPs to those found in ProtoDUNE for a known set of

initial conditions and captured raw ADC data. The bugs identified from looking at TPs in bulk

were listed in table 4.1 and are:

1. TPs with a hit continues flag but an end tick before the end of the ADC processing packet

2. TPs with a non-zero entry for their hit flags term

3. TPs with a peak ADC value, peak ADC tick and summed ADC value all of 0.

These bugs were present in 1.85% of TPs. An additional couple of bugs were identified through

software emulation. The first was that the summed ADC values of firmware TPs were never

larger than 4095 and the second was that there were no firmware TPs with start ticks in the first
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(a) (b)

(c) (d)

FIGURE 4.6. The start tick within the ADC processing packet of paired firmware and
software emulated TPs for: (a) pairs with ∆T < 20 ticks; (b) pairs remaining after
also removing selection 1 ; (c) pairs which remain after additionally removing
selection 2 ; (d) pairs remaining after further removing selection 3.

several ticks of any ADC processing packet. When paired TPs were required to be perfect pairs,

ηm was determined to be 51.8%.

These bugs were reported to the firmware developers, who managed to identify probable

causes for some of them and implement fixes. The lack of firmware TPs in the first few ticks of a

packet was found to be a result of a local reset problem. The local reset was occuring a clock cycle

too early, which interfered with the state save/restore mechanism for the FIR subblock. The bug

where TPs had peak ADC values, peak ADC ticks and summed ADC values of 0 was identified to
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(a) (b)

(c) (d)

FIGURE 4.7. The end tick within the ADC processing packet of paired firmware and
software emulated TPs for: (a) pairs with ∆T < 20 ticks; (b) pairs remaining after
also removing selection 1 ; (c) pairs which remain after additionally removing
selection 2 ; (d) pairs remaining after further removing selection 3.

likely be a corner case due to multiple TPs in a packet. Since the HF subblock needed 6 clock ticks

to output the TP properties, if a second TP occurred within this time frame the hit packet output

could be a result of improper combination of two hit frames. This was fixed by buffering the TPs

found in each packet before sending them to the output and requiring the minimum number of

ticks to be above threshold for a TP to be increased to 4. This constrained the maximum number

of TPs per packet so that memory resources could be guaranteed to be sufficient.

For the bug where the 15 MSB of the hit continues flag were not 0, no obvious cause was

57



CHAPTER 4. VALIDATION OF TRIGGER PRIMITIVES

(a) (b)

(c) (d)

FIGURE 4.8. The number of TOT within the ADC processing packet of paired firmware
and software emulated TPs for: (a) pairs with ∆T < 20 ticks; (b) pairs remaining
after also removing selection 1 ; (c) pairs which remain after additionally removing
selection 2 ; (d) pairs remaining after further removing selection 3.

found. The same was true for the bug where the LSB of the hit continues flag was 1 but the TP

did not last up to the end of the packet. These could not be reproduced using the simulation tools

or feeding test data patterns through a ZCU102 board. There will be the opportunity to repeat

validation tests similar to those performed on ProtoDUNE data and presented in this chapter

when the second iteration of the ProtoDUNE-SP detector is commissioned in early 2022. These

will be an essential step towards validating that the FPGA-based TPG performs correctly in

experimental conditions to prepare for its use in the DUNE SP FD module.
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(a) (b)

(c) (d)

FIGURE 4.9. The peak tick within the ADC processing packet of paired firmware and
software emulated TPs for: (a) pairs with ∆T < 20 ticks; (b) pairs remaining after
also removing selection 1 ; (c) pairs which remain after additionally removing
selection 2 ; (d) pairs remaining after further removing selection 3.
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(a) (b)

(c) (d)

FIGURE 4.10. The peak ADC value of paired firmware and software emulated TPs for:
(a) pairs with ∆T < 20 ticks; (b) pairs remaining after also removing selection 1 ;
(c) pairs which remain after additionally removing selection 2 ; (d) pairs remaining
after further removing selection 3.
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(a) (b)

(c) (d)

FIGURE 4.11. The summed ADC of paired firmware and software emulated TPs for: (a)
pairs with ∆T < 20 ticks; (b) pairs remaining after also removing selection 1 ; (c)
pairs which remain after additionally removing selection 2 ; (d) pairs remaining
after further removing selection 3.
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BASELINE SUPERNOVA BURST TRIGGER PERFORMANCE

As described in section 3.3.4 the DAQ needs to meet the following requirements:

• a data volume of 2PB per year of TPs to be saved to disk from a 10 kt detector module

• an average SNB false trigger rate of 1 per month

• a > 95% expected efficiency for a SNB with at least 60 interactions, each of a minimum

10 MeV in true neutrino energy.

A study on the performance of a similar SNB trigger has been completed by DUNE collab-

orators on TPs generated using a similar TPG algorithm designed to be implemented in CPU

instead of a FPGA [85]. This algorithm was found to have a SNB trigger efficiency of 100% in the

Milky Way, dropping to an efficiency of 8% at the LMC [114]. The solar system is 8.2 kpc from the

centre of the Milky Way galaxy [115] and the distribution of expected supernovae in the Milky

Way as a function of galactocentric distance falls to near zero beyond 18 kpc [116]. The LMC is

located at a distance of 49.6 kpc [117].

The reported SNB trigger efficiencies from their study were the highest achieved through

a grid search over clustering parameter values. The optimal clustering parameters found were

described in section 3.4.2.

The efficiency of the SNB trigger in the CPU-based TPG study was determined by first finding

the threshold on the number of TCs in a 10 second window required to achieve a false SNB

trigger rate lower than a 1 per month. A Poisson distribution was assumed to describe the rate

of background clusters. For a SNB expected to produce N neutrino interactions in the detector

(ie: occurring at a given distance), this number of interactions was combined with the overall

clustering efficiency to create an expected number of neutrino interactions to use as the mean
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rate of another Poisson distribution. This was then used to determine the probability that the

number of interactions detected met the required SNB trigger threshold.

This chapter describes a study of the performance of the baseline SNB trigger using FPGA-

based TPG. There are small differences between the TPG algorithm parameters used for the

CPU-based TPG study and the FPGA-based algorithm. The CPU-based TPG used a 7 tap FIR

filter whose coefficients summed to 100 [118] and a hit-finding threshold of 16 ADC counts. The

FPGA-based TPG used a 16 tap FIR filter whose coefficients summed to 144. Its hit-finding

threshold was configurable and was chosen to be that which limited the data volume of TP to

2 PB per year. It is possible to filter which TPs are saved to disk by their properties (such as a

threshold on HP ) but the selection of a hit-finding threshold via this method allows a reasonable

lower limit on the SNB trigger efficiency to be determined. The optimal clustering parameters

found in the study on CPU-based TPs were re-used to cluster the FPGA-based TPs in the studies

presented in this chapter. The false trigger rate and efficiency of the SNB trigger is evaluated

using a Monte Carlo method.

The DUNE production team simulated a dataset of neutrino interactions and background

decays in the DUNE FD. Code emulating the FPGA-based TPG has been written and run on this

dataset to produce TPs. Firstly, the details of the dataset and its simulation are described. This is

followed by characterisation of the TPs and the subsequent TCs. Finally, the Monte Carlo method

is explained and the SNB trigger efficiency is reported.

5.1 Monte Carlo Simulation

The LArSoft toolkit [119] is designed to allow the accurate simulation of physics in LArTPC

neutrino experiments. It was used to simulate supernova neutrinos, radiological backgrounds and

detector noise in the DUNE FD. This simulation was performed in the following steps, which are

each described in their own subsection. Firstly, lists of primary particles from neutrino interac-

tions and radioactive decays within the detector geometry (and any modelled surroundings) were

simulated. The interactions of these particles within the detector volume were then simulated

using GEometry ANd Tracking 4 (GEANT4) software [120], followed by a simulation of the

detector response.

5.1.1 Primary Interaction

The detector geometry used in simulations was the 1×2×6 geometry, which corresponded to the

number of APAs along the x, y and z detector axes respectively. This allowed the simulation of

12% of the volume of a single FD module. This allowed the simulation to be more computationally

tractable as the number of objects and wires in the simulation was reduced but meant that

there were limitations on the effectiveness of simulating external backgrounds. The APAs in the

1×2×6 geometry corresponded to a sub-region of the central anode plane in the detector. As a
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result, neutrons from spontaneuous fission of 238U in the concrete of the detector walls are not

proportionally represented. Neutrons could travel for metres before being captured, so additional

sources of this background would be present in a simulation of the full detector geometry. The

configuration of backgrounds which was used is known as "Model 1". The full list of backgrounds,

rates and their points of origin is tabulated in table 5.1.

Table 5.1: Types of radioactive decay present in the simulation for the "Model 1" background
configuration and their origins in the detector.

Radioactive decay Decay rate Decay origin
39Ar beta decay 1.41 mBqcm−3 liquid argon
42Ar beta decay 128 nBqcm−3 liquid argon
85Kr beta decay 0.16 mBqcm−3 liquid argon

222Rn decay chain 55.8 µBqcm−3 liquid argon
222Rn decay chain 5 µBqcm−3 photon detector surface

60Co beta decay 82 µBqcm−3 anode plane assembly (APA) frame
40K beta decay 2.72 mBqcm−3 cathode plane assembly (CPA) frame

238U spontaneous fission 7.60 µBqcm−3 concrete

The drift time between the anode and cathode planes was 2.25 ms. Neutrino interactions were

generated with a uniform distribution in the detector volume. The detector was simulated for a

drift time either side of the time at which the neutrino interactions were generated, t = 0. This

allowed the radiological decay signals to travel an entire drift length before the simulation began

to record signals at t = 0. Each of these simulated time periods is termed an ‘event’ in LArSoft.

The primary particle lists corresponding to neutrino interactions were generated using the

Model of Argon Reaction Low Energy Yields (MARLEY) event generator [121] which is specifically

designed for the simulation of low energy (several MeV) neutrino interactions and expected to

be accurate for neutrinos with energies up to ∼ 50 MeV. In this dataset only the products from

the charged current interaction in equation 2.17, the dominant cross section in DUNE, were

simulated. The energies of the interacting neutrinos were drawn from the energy spectrum of the

‘Hudepohl-Cooling-Shen-s11.2co’ model [87] which corresponds to an 11.2m⊙ mass progenitor

star. This is the same model which produced the spectra shown in figure 2.7.

The relationship between the energy spectrum for the incoming neutrinos and the electrons

from their interaction with the argon nuclei is shown in figure 5.1. The neutrino energies range

from 3 MeV to 60 MeV, with the energies of the primary electrons being linearly correlated in a

series of bands. Each LArSoft event simulated 3 neutrino interactions to save on storage space.

5.1.2 Particle Propagation

The primary particles were stepped through the detector volume using GEANT4 which deter-

mined the ionisation and scintillation signal in the LAr. The individual energy depositions

resulting from each propagated particle, and its daughters, were recorded so that the signals
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Figure 5.1: Relationship between the incoming neutrino energies and the energy of the primary
electron produced from the charged current interaction, equation 2.17, when simulated with
MARLEY.

could be tracked back to the primary particle. GEANT4 split charge deposits into clusters of

electrons and propagated the ionisation through the LAr to the APAs, including the application

of attenuation, diffusion and distortions of the electric field. It then determined the wire on the

APA that each of these electron clusters was collected on. In this study only the charge deposited

on collection wires was used.

5.1.3 Detector Response Simulation

The response of the detector cold electronics to these charge deposits was then simulated to

determine the raw signal in ADC counts. No deconvolution or further processing was applied

to this signal. It should also be noted that no detector noise was added up to this point in the

simulation. The dataset of neutrino and background interactions which was simulated by the

DUNE production team was provided in this state.

The standard DUNE noise model written by David Adams was then used to add noise to the
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raw detector response ADC counts on each wire. No coherent noise across wires was added. The

details of this implementation are given in appendix A.2. After this, the default pedestal used for

collection wires in DUNE, 500 ADC counts, was added.

The emulation of FPGA-based TPG was then applied to the ADC counts from t = 0 to

t = 2.246 ms in the simulation. To avoid extra computation required to stitch hit packets together,

instead of using a packet size of 64 ticks, a packet size including all 4492 ticks in the drift window

was used. This resulted in TPs which were identical to those produced by stitching TPs with a

smaller packet size together without needing to apply hit-stitching.

The TPs were tracked back to primary particles using a backtracking algorithm in LArSoft

which finds the energy deposits which were deposited on the same channel as the TP over the

same time window that the TP covered. The time window that was searched for these energy

deposits was widened by 20 ticks at the start and end of the TP. The window was also shifted to

account for the delay in the start time of a TP caused by the 16 tap FIR filter. The TP was labelled

as being of an unknown origin if no ionisation was deposited on the wire during this time window

and these were a result of detector noise. Otherwise, the origin of the TP was set by finding the

GEANT4 track which deposited the largest proportion of the energy in the specified time window.

This track ID was used to track it back to a primary particle from either a MARLEY interaction

or one of the radiological backgrounds.

5.2 Characterisation of Trigger Primitives

Several hit-finder thresholds were studied to determine a threshold which produced TPs at a

low enough rate to satisfy the 2 PB per year requirement. Hit-finder thresholds from 15 to 80

counts were used. In these studies 10,000 events were used to determine the distributions of TP

properties. This dataset is labelled ‘10k events containing SN neutrinos’.

In order to determine the rate of TPs from the detector noise and radiological backgrounds,

the TPs which were backtracked to MARLEY neutrino interactions were filtered out. The rate of

TPs from each of the THF values is displayed in figure 5.2, where the rate of TPs which survive

the application of a threshold on the HSADC, HP ADC and HTOT are shown in sub-figures a, b

and c respectively. Each TP is 24 bytes including metadata, so limiting the data volume to 2 PB

per year leads to a required rate of 2.64×106Hz of TPs. A THF of 20 ADC counts can be seen to

satisfy the 2PB per year requirement.

It was observed that the choice of THF applied in TPG affected the hit quantities. The most

obvious effect can be observed in figure 5.2(b), where the minimum HP ADC is limited to be that

of THF or above. It can also be observed from figure 5.2(c) that as THF is increased, the TPs have

fewer ticks over threshold and therefore are only probing the peak of a region of signal which is

shown to extend further when a lower THF is applied. This is supported by figure 5.2(a) where

the HSADC for lower THF values is consistently observed to be greater than that for higher THF .
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These observations are not surprising but demonstrate clearly that increasing the threshold will

result in the loss of some signals.

The difference between the TP rates for different THF values is within an order of magnitude

above HSADC = 1000 ADC counts. However, whilst the maximum rate of TPs for THF = 80 is

below 1 kHz, for THF = 20 the maximum rate is just above 2 MHz. It is clear that the use of a high

THF causes the TPG to discard the majority of TPs from background sources. These background

signals can be used in detector calibrations [122], so it is advantageous to record as many as

possible. The lowest THF which satisfied the 2PB per year requirement, 20 ADC counts, was

chosen to produce the TPs used henceforth in this work.
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FIGURE 5.2. Comparison of TP rates for different hit-finder thresholds, THF , used in
TPG as a function of thresholds on the TP properties: (a) Hit summed ADC, HSADC;
(b) Hit peak ADC, HP ADC ; (c) Sum of ticks over threshold in hit, HTOT .
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Whilst the rate of TPs has been chosen to be as high as possible, it is useful to know the

source of origin of these TPs. It was found that there were no TPs which were produced only as a

result of detector noise as they could all be tracked back to originate from a radioactive decay

source. From figure 5.3(a) it can be seen that the vast majority of TPs were a result of 39Ar and
85Kr decays. This is expected from the comparatively high decay rates of these isotopes in the

detector simulation (see table 5.1) and the fact that they were present throughout the liquid

argon in the detector volume.

However, compared to the other backgrounds, these sources produce a HSADC distribution

which does not extend beyond HSADC = 1500. This may be explained by the maximum possible

energies of the electron produced in their beta decays which are 566 keV and 687 keV respectively.

These are low energies in comparison to the other beta decay sources tabulated in table 5.2.

The only other radioactive decay which has no TPs with a HSADC value above 1500 is 40K. This

undergoes beta decay producing electrons with energies up to 1.31 MeV and has a high decay rate

but is present only in the CPA frame. It is possible that the lack of a strong ionisation signal is a

result of recombination or diffusion effects which may be more pronounced for particles produced

in these decays as the ionization has to drift an entire drift length to the collection wires before it

is collected and digitised.
60Co beta decays produce TPs with a larger maximum HSADC value. These are the lowest

energy beta decays in this set of radiological backgrounds but produce an excited nucleus, 60Ni∗

which decays to two photons with energies of 1.17 MeV and 1.33 MeV. These 60Co TPs with

higher HSADC values may result from resulting Compton scattering of electrons in the LAr.

Spontaneous fission of 238U originating in concrete around the detector results in neutrons

which may be captured by the LAr nuclei. The TPs which result have a distribution whose rate

drops to zero at HSADC = 4000. The only producers of TPs with greater HSADC values are 42Ar

and the 222Rn decay chain. Whilst 42Ar produces electrons with an energy of 599.4 keV from

its own beta decay, the resulting 42K nucleus has a half-life of 12.36 hours and beta decays to

produce an electron with an energy of 3.52 MeV. This may explain how the HSADC distribution

for TPs resulting from 42Ar extends to higher values than other sub-MeV beta decays. The 222Rn

decay chain has two sources in the detector simulation: the LAr and the photon detector surface.

No TPs were found which originated from 222Rn in the photon detectors but TPs which originated

from 222Rn in the LAr were found to occur at a rate of 13 kHz per FD module.

The distribution of TP rates follows a very similar trend for the HP ADC value as can be seen

in figure 5.3(b). This is expected since the HP ADC value is expected to be quite closely coupled

to the HSADC value. As illustrated in figure 5.3(c), there is not a clear relationship between the

decay source and the TP TOT which may be due to the fact that the radioactive decay products

are emitted in random directions whilst the collection wires are aligned with the y-axis of the

detector.

The MARLEY-generated neutrino interactions produced primary electrons whose energy
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Table 5.2: Maximum beta decay energies for decays present in the simulation for the "Model 1"
background configuration

Decay Type Maximum Decay Energy
39Ar beta decay 565.5 keV
42Ar beta decay 599.4 keV followed by beta decay of 42K with 3.52 MeV
85Kr beta decay 687 keV
60Co beta decay 317 keV followed by 60Ni∗ → 2γ with energies of 1.17 MeV and 1.33 MeV
40K beta decay 1.31 MeV

spectrum peaks between 5 and 20 MeV as shown in figure 5.1. Only a small proportion of

primary electrons have energies as low as the primary electrons produced from the radiological

backgrounds. Therefore it makes sense that the HSADC distribution of the TPs which originated

from MARLEY neutrinos extends to much larger values than those of the background TPs, which

is shown in figure 5.4(a). The full range of the MARLEY HSADC distribution extends up to 30,000.

However, it is observed that fewer than 5% of them have HSADC > 5000, which is the value

at which the rate of background TPs falls below 1 Hz. Once again the HP ADC distribution in

figure 5.4(b) is very similar to the TP HSADC distributions in figure 5.4(a). The TOT appears

to discriminate more weakly between TPs from MARLEY neutrinos and backgrounds than the

HSADC or HP ADC as the difference in the initial gradients in figure 5.4(c) is shallower.

5.3 Characterisation of Trigger Clusters

In this section the TCs which resulted from using the optimal clustering parameters set out

in table 3.2 during the application clustering on this dataset are investigated. Firstly clusters

composed only of TPs from background sources are characterised, followed by the characterisation

of the clusters which result when including the TPs from neutrino interactions.

5.3.1 Cluster Background

In order to determine the rate of clusters which resulted from background sources only, the TPs

which were labelled as originating from neutrino interaction were filtered out before clustering.

When the background TPs from this dataset were clustered, it was discovered that no TCs

occurred which were solely a result of backgrounds.

Investigation revealed that using these tick and wire tolerances for clustering, clusters

remained whose extent in wires on an APA, CrW , was up to 4. However, the maximum number of

TPs in a background cluster, Cn, was found to be only 4. As a result, to characterise the clustering

of backgrounds, the clustering was re-run after changing to use Cn ≥ 2, which is simply requiring

that a cluster has at least 2 TPs.
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FIGURE 5.3. Comparison of TP rates for different detector background sources as a
function of thresholds on the TP properties: (a) Hit summed ADC, HSADC; (b) Hit
peak ADC, HP ADC ; (c) Total ticks over threshold in hit, HTOT .

The clusters were assigned to a particular background source based on which TPs in the

cluster deposited the greatest proportion of the cluster summed ADC, CSADC.

As can be seen by contrasting the distribution of CSADC in figure 5.5(a) with the distribution

of HSADC in figure 5.3(a), it is apparent that the same background sources lead to the clusters and

hits with the highest and lowest summed ADC values. This is unsurprising, as the concurrence

of TPs in the detector has been found to be low. The similarity between the hits and clusters

from the same radiological backgrounds extends to the comparison of their total time length.

This is parameterised by the tick range of the clusters, CrT , and the HTOT of the hits. Both of

these distributions show that TPs and TCs do not extend beyond 40 ticks in length. These can
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FIGURE 5.4. Comparison of the proportion of TPs from detector backgrounds and
MARLEY neutrino interactions which remain after applying thresholds on: (a) Hit
summed ADC, HSADC; (b) Hit peak ADC, HP ADC; (c) Total ticks over threshold in
hit, HTOT .

both be contrasted with the distribution of the total number of ticks over threshold of the cluster,

CTOT , in figure 5.5(c), where it can be seen that 222Rn, 42Ar and neutrons are the only sources of

backgrounds which result in clusters made up from TPs which have a non-negligible HTOT in

more than 1 wire.

5.3.2 Clustering With Neutrinos

The optimal clustering algorithm was then applied to the TPs whilst including the TPs from

neutrino interactions. The dataset had 3 neutrinos simulated in the 1×2×6 geometry per event,
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FIGURE 5.5. Comparison of TC rates for different thresholds on TC properties for each
radiological background: (a) Cluster summed ADC CSADC; (b) Tick width of cluster,
CrT; (c) Total ticks over threshold in the cluster, CTOT .

so to avoid any pileup of neutrino signals, the TPs from only 1 neutrino at a time were included

when applying the clustering. If a TC possessed 2 or more TPs which were labelled as being from

the neutrino interaction, it was classified as a successfully detected neutrino signal (also referred

to as a neutrino cluster).

The resulting properties of the neutrino clusters are plotted in figure 5.6, where it can be seen

that the distributions of CSADC, CrT , CTOT , Cc and CrW all follow an exponential drop-off as the

threshold on the cluster property is increased. The distribution of Cn, figure 5.6(d) shows that

more than 50% of the detected clusters contain 8 or more TPs, though these do not all necessarily

correspond to TPs from a neutrino interaction. The background clusters which were found using

the relaxed clustering algorithm in figure 5.5(a) only extend to having CSADC up to 7000. The
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neutrino clusters are observed in figure 5.6(a) to almost all have CSADC values larger than this

and extend up to 60,000. The maximum CrT is also observed to be four times larger and both the

CTOT and CrW are seen to be 6 times larger than for the background clusters. Taken together,

these properties indicate that the neutrino interactions deposit a larger ionisation signal and do

so over a greater region of the detector.

This shows that this clustering algorithm can indeed be used to detect neutrino signals with

a low background. However, it was not the case that all neutrinos were successfully detected.

Figure 5.7 shows the efficiency of finding at least one neutrino cluster as a function of the neutrino

energy. The neutrino energy spectrum for the dataset is peaked between 5 MeV and 30 MeV

and in this region it is observed that the clustering efficiency increases from 20% to 40% as the

neutrino energy increases. It does not appear that the efficiency increases significantly past 40%

though the statistics for these outlying regions are low so this cannot be said with certainty.

The clustering parameters tW and tT seek to limit the range over which TPs are collected into

a TC whilst Cn ensures that clusters with too few TPs are filtered out. As figure 5.6(d) shows

that > 70% of TCs have Cn ≥ 6, it is clear that the combination of the Cn with tW and tT are

responsible for the reduction in clustering efficiency.

5.4 SNB Trigger

The SNB trigger is a simple algorithm which counts the TCs which occur within a time window in

the detector module. To determine the performance, the rate of TCs from background sources in

a given time window is determined and a threshold for the number of TCs which keeps the false

SNB rate to once per month or below, TSNB is computed. This threshold is used to determine the

efficiency for the SNB trigger, ϵSNB as a function of the distance of a SNB.

As explained in the introduction to this chapter, previous studies done by collaborators first

determined TSNB by modelling the rate of background clusters as a Poisson distribution. They

then combined the overall neutrino clustering efficiency with the expected number of neutrino

interactions in the detector for a SN at a given distance. The resulting expected number of

observed interactions in the detector was used as the mean of a Poisson distribution to determine

ϵSNB using the TSNB.

In the work presented in this section a different approach was taken. A Monte Carlo (MC)

method was used determine ϵSNB. One identical assumption which was made was to assume the

rate of TCs which result from backgrounds followed a Poisson distribution. As no TCs were found

in this sample of 10000 events, an upper limit on the rate of TCs due to backgrounds was used

as the mean. This was 0.367 Hz, equivalent to the precision of the dataset used. This provides

an upper limit for the rate of clusters due to backgrounds and has been used to determine a

lower limit on the rules-based SNB trigger efficiency. In addition, the average number of neutrino

clusters (rather than efficiency) as a function of neutrino energy has been determined and is used
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FIGURE 5.6. Proportion of TCs remaining for different thresholds on TC properties for
TCs including ≥ 2 TPs from neutrino interactions: (a) Cluster summed adc, CSADC;
(b) Tick length of cluster, CrT ; (c) Total ticks over threshold of cluster, CTOT ; (d)
Number of hits in a cluster, Nc; (e) Wire range of cluster, CrW .
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Figure 5.7: Efficiency of finding at least 1 TC with ≥ 2 neutrino hits by clustering the TPs from
both backgrounds and neutrino interactions as a function of the neutrino energy. The horizontal
error bars denote the width of the energy bins and the grey band denotes the a 95% confidence
bound for clustering efficiency.

in combination with the SN energy-time spectrum reported in figure 2.7 to allow a more accurate

determination of ϵSNB.

In this section the Monte Carlo method is described and the performance is reported.

5.4.1 Monte Carlo Model

Each trial simulated the number of TCs in a single FD module for 10 s - the maximum SNB

trigger latency as a result of the 10 sec buffer. Trials were run separately for the background

only and the combined background and SNB cases. The background-only trials were used to

determine the false positive SNB trigger rate and the combined trials were used to determine

ϵSNB. All SNB events started at t = 0 seconds in the trials and one set of trials was run for each

SNB distance studied.

The simulation was split into 1 ms time bins. For each bin the number of background TCs was

drawn from a Poisson distribution whose mean was the expected number of TCs from background

sources - in this case 0.367 Hz. For trials which included a SNB event, the number of TCs in each

signal additionally included a number of TCs from the SNB added according to the following

procedure.
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The 2D histogram, figure 2.7(a), containing the neutrino energy-time spectrum for a 11.2m⊙
SN at a distance of 10 kpc was used. The expected number of neutrino interactions in this

distribution is given as a function of the time since the neutrino horizon reached the detector.

These interactions could be simply scaled for different SNB distances using the inverse square

law. The number of neutrino interactions was sampled for each time tick by projecting this

histogram on to the time axis. This value was then used as the mean to sample a random number

of neutrino interactions from a Poisson distribution.
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Figure 5.8: The average number of TCs as a function of the neutrino energy when using the
baseline clustering algorithm with the optimal parameters. The horizontal error bars denote the
width of the energy bins and the grey band denotes the a 95% confidence bound for clustering
efficiency.

For each interaction, the neutrino energy was sampled by taking the distribution of energies

for the given time bin and sampling from this histogram via the rejection method [123]. Since

each neutrino interaction has been assigned an energy, the expected number of clusters was

determined from figure 5.8, which plots the average number of TCs as a function of the neutrino

energy for this clustering algorithm. The average number of TCs from the appropriate energy bin

was then used as the mean of another Poisson distribution which was used to sample the number

of TCs which resulted from this neutrino interaction.

After applying the same logic to determine the number of neutrino interactions in each bin in

each trial, the total number of TCs in each trial was summed. Two months of background was

simulated. Sets of 10,000 trials each were run to simulate SNB events at distances from 5-60 kpc.
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5.4.2 Supernova Burst Trigger Performance

In order to determine ϵSNB, the TSNB which was required to limit the false positive rate of SNB

triggers to fewer than one per month was determined. The effect of the threshold on the number

of TCs on the SNB false trigger rate can be seen in figure 5.9. A threshold of 15 TCs decreased

the false SNB trigger rate to less than one per month.
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Figure 5.9: The false SNB trigger rate in Hz as a function of the threshold on the number of TCs
collected within a 10 sec window. A threshold of 15 TCs was found to limit the false SNB trigger
rate to less than one per month. Error bars show the 95% confidence region.

The efficiency resulting from this TSNB as a function of the SNB distance is shown in figure

5.10. A SNB efficiency of 100% was achieved up to 15kpc which dropped to 97.7+0.2−0.3% at 20kpc

and 71.3+0.9−0.9% at 25kpc. The efficiency at the LMC (50kpc) was found to be 1.4+0.1−0.1%, lower than

the 8% reported in the study on CPU-based TPG.

The DUNE SNB trigger is required to have an expected efficiency of > 95% for a SNB with

at least 60 interactions, each of a minimum 10 MeV in true neutrino energy. As can be seen in

figure 2.7(d), the distance at which 60 neutrino interactions are expected in a 10 kt detector

module is 20kpc. Therefore, the rules-based SNB trigger satisfies the DUNE requirement for

SNB sensitivity.
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Figure 5.10: The efficiency of the SNB trigger using a threshold of 15 TCs within 10 sec to limit
the false SNB trigger rate to less than one per month. Error bars were negligible.

5.5 Conclusions

In this chapter the baseline SNB trigger algorithm utilising FPGA-based processing has been

simulated to determine its efficiency for a 11.2m⊙ progenitor SN. It was determined that a

threshold of 20 ADC counts was required after filtering the signals in order to achieve a data rate

of < 2PB per year of TPs. The properties of these TPs were characterised and they were clustered

to form TCs. If a TC was formed from at least 2 TPs which had been back-tracked to a neutrino

interaction, it was categorised as originating from a SN neutrino. The energy spectrum for the

average number of TCs per neutrino interaction was determined along with an upper limit for

the expected rate of TC due to backgrounds. These were used as inputs to determine the baseline

SNB trigger efficiency using a toy MC method. The required threshold of TCs required to limit

the SNB trigger to a false trigger rate of < 1 per month was determined to be 15. This resulted in

an efficiency of 97.7+0.2−0.3% at 20kpc. As can be observed from figure 2.7(d), this is the distance at

which 60 neutrino interactions are expected in a FD module. Therefore, the baseline triggering

algorithm fulfils the technical requirements for DUNE to be able to trigger on a SNB which

produces at least 60 neutrino interactions in the detector with an efficiency of > 95%. However,

for SNBs beyond 20kpc, the efficiency for detection rapidly falls of, dropping to 6% at 40kpc. If

a SNB were to occur in the LMC, it would only have a 1.4% chance of being detected via this

baseline SNB trigger. Whilst at this distance only 10 neutrino interactions are expected, similarly
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small numbers of neutrino interactions from SN1987A have led to hundreds of publications on

constraints to neutrino properties and core collapse SN models. Being able to study the electron

neutrino signal in DUNE would also complement the detection of electron antineutrinos in

currently active water cerenkov detectors to allow additional insights into neutrino formation in

SNe. Due to the low expected rate of occurrence of SNe in the galaxy, there is a strong motivation

to increase the efficiency of the SNB trigger to be as high as possible, at least up to the LMC,

which is the furthest source of SNe that would likely lead to several neutrino interactions in a

FD module.

As stated in the introduction to this chapter, the clustering parameters used in this work were

the optimal parameters found via a grid search of permutations in a previous study on similar but

CPU-based TPs by DUNE collaborators. A more sophisticated Monte Carlo technique was also

used to determine the SNB efficiency in the study which has been presented. The performance

of FPGA-derived TPs was found to be only slightly poorer, with ϵSNB dropping from 100% to

97.7% at 20kpc and dropping from 8% to 1.4% at the LMC. This may be a result of their use of a

lower peak-finding threshold in addition to the other differences. In the SNB triggering study

presented in this chapter, the peak-finding threshold used was that which limited the total rate

of TPs to less than 2 PB per year. If a lower threshold was found to increase the SNB trigger

efficiency further, it would be possible to use it for SNB triggering and limit the rate of TPs saved

to disk by filtering TPs based on their properties.

The optimal clustering algorithm was also determined from the exploration of quite a limited

hypothesis space. Rules-based clustering depended on low energy neutrino signals leaving

localised charge deposits which could be differentiated from backgrounds using only information

about their spatial extent and constituent TP. It may be advantageous to explore a less limited

hypothesis space and, rather than use a grid search to determine the optimal parameters, to

converge upon them iteratively.
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MACHINE LEARNING

An algorithm can be used to parameterise a process and express a mathematical model

of a system. Models are often used to perform classification of data or use it to make

predictions through regression. All data can be considered to have an underlying dis-

tribution or function which generates it. Sampling this distribution generates a dataset. The

optimal values of the parameters in a model can be iteratively converged towards by providing

data to a ML algorithm, which can be said to have learned from some data if its performance

at a task improves when measured by a given performance measure [124]. However, the no

free-lunch theorem [125] states that if all data-generating distributions are averaged over, then

every classification algorithm has the same error rate when classifying previously unobserved

data points. This means that no ML algorithm will universally perform better than any other

algorithm when applied to model all functions. Therefore, when applying machine-learning to a

given real problem, assumptions have to be made about the kind of functions which can be used

to model it. By making these assumptions ML algorithms can be designed which can allow a

model to improve its performance at a given task on data sampled from a given distribution.

A parametric function, g, can be used to make predictions of some distribution or vector

of parameters (vectors are represented with bold typeface), θ, from a set of m independent

and identically distributed data points, x(1), ..., x(m), each consisting of a vector describing the

observation such as physical quantities or pixels in an image. Point estimators, θ̂, are an attempt

to make a prediction of the θ parameters only from the set of m observed data points [126]:

(6.1) θ̂ = g(x(1), ..., x(m)).

The hat represents the fact that the point estimator is determined from observed data. Since the

data is drawn randomly from the unknown data-generating distribution, pdata(x), θ̂ is a random

variable.
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In order to determine the best θ̂ for a given model given some observed data points, maximum

likelihood estimation (MLE) can be used. The maximum likelihood point estimator, θ̂ML, for the

parameter space indexed by θ when using a model composed of a set of parametric probability

distributions, pmodel(x;θ) is

(6.2) θ̂ML = argmax
θ

m∏
i=1

pmodel(x(i);θ).

When the likelihood function is maximised, the observed data is most probable as a result of the

statistical model.

As the MLE is difficult to compute, the logarithm can be taken to instead obtain θ̂ML as a

sum. After taking the logarithm and dividing through by m, θ̂ML can instead be expressed as an

expectation value, E, with respect to the distribution defined by the observed data points, p̂data:

(6.3) θ̂ML = argmax
θ

Ex∼p̂data log(pmodel(x;θ)).

Therefore the MLE is actually a minimisation of the dissimilarity of the empirical distribution

p̂data - which is represented by the observed data points - and the distribution represented by

the model pmodel(x;θ). By using a measure of the difference between probability distributions,

the Kullback-Leibler (KL) divergence [127] DKL:

(6.4) DKL = (p̂data||pmodel)= Ex∼p̂data [log(p̂data(x))− log(pmodel(x)],

it can be seen that to minimise DKL, only −Ex∼p̂data log(pmodel(x) is a function of the model. Hence

when training a ML model on some observed data, only this negative log-likelihood needs to

be minimised. The MLE is particularly useful in ML because as m →∞, the MLE converges to

the actual θ value. When using a parametric model, a way to measure how close the value of a

parameter is to the true parameter is the mean squared error (MSE). The MSE decreases as m

increases and when m becomes large, the Cramer-Rao lower bound shows that no estimator has

a lower MSE than the MLE [128] [129].

The concept of a MLE has been introduced. It has been shown that a MLE can be used in

conjunction with observed data to identify the optimum parameters for a given model and can

increasingly closely approximate the truth parameters as the sampled data set increases in size.

Deep learning algorithms are composed of a model, a dataset, an optimisation procedure and a

cost function which is minimised through the negative log-likelihood described above, leading to

the maximum likelihood estimation.

In this chapter the concepts and theory of artificial neural networks (ANNs) and convolutional

neural networks (CNNs) will be explained, including the optimisation procedure and its relation

to the cost function. Finally the YOLOv3 network architecture and cost function will be introduced

along with the main metrics which can be used to evaluate its performance.

82



6.1. CNN THEORY

6.1 CNN Theory

CNNs are a class of ANN which make use of additional regularisation and are often applied to

data with a grid-like topology. In this section, the mathematics of ANNs and the training of their

parameters is introduced. These concepts are general to CNNs, which are then introduced along

with common techniques employed to improve their performance.

6.1.1 Artifical Neural Networks

ANNs can be used to approximate a complex function through the combination of simpler ones. A

feedforward ANN is described by a directed acyclic graph (DAG), made up of ‘nodes’ connected by

‘edges’. An example of an ANN is shown in figure 6.1, with a direction of propagation of the edges

from left to right. As the DAG is directional, any path through it is finite and will always go from

the input nodes to the output nodes. The input nodes are those which do not have any input edges

and are provided with values from the observed data set. Any computation only depends on the

previous nodes in the network. The computation at each node of the network, f i, is parametrised

by a vector of inputs, x and the weights in the network, w:

(6.5) f i(x,w)= g
(∑

j
x jwi j A i j −bi

)
where j is the index of the input edges to node i, x j is the input data carried by each edge, wi j are

the weights applied to the input data from the j’th edge at this node, A i j is the adjacency matrix

which describes the connections between nodes in the DAG and bi is a bias term for this node.

x jwi j A i j −bi is a linear function which describes an affine transformation from an input vector

to an output scalar. To allow the network to model a nonlinear function, a non-linear activation

function g is applied.

The nodes in an ANN are often arranged into layers where the nodes of each layer are

connected to all the nodes from the previous and next layers, forming a fully connected network.

The layers between the input and output layers are referred to as hidden layers. In most cases,

the network architecture is kept constant and the weights and biases are optimised iteratively.

From hereon the biases will be implicitly included whenever the weights are discussed. As a

whole, the network accepts an input vector x and produces an output vector ŷ. Through forward

propagation its action on x as a whole can be denoted as f (x,w), where w are the weights in the

network.

For an input dataset, x, the goal is to determine a set of weights, which map the input to a set

of targets, t, which represent the desired output of the network via the application of f (x,w). For

a given input-target pair, a ‘loss function’, L which evaluates the dissimilarity of ŷ and t can be

computed. The weights can be optimised to minimise L through gradient descent, as explained in

the following section. The goal is to determine an optimal set of weights, wML which optimises
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the loss function and can be parametrised as:

(6.6) wML = argmin
w

1
N

N∑
i=1

L( f ((xi,w), ti)),

where there are N input-target pairs.

Input Hidden Output

Figure 6.1: A fully connected artificial neural network with an input layer composed of 3 nodes, a
hidden layer with 4 nodes and an output layer with 3 nodes. Each node has a bias value. The
layers are fully connected by edges, each with a weight parameter. The computations are directed
from left to right.

6.1.2 Loss Functions and Backpropagation

The loss function is a measure of the difference between ŷ and t. When a network is used as

the model for a regression task, a common metric used to compute the loss function is the mean

squared error (MSE). The hidden layers of the network can be thought of as building up a

transformed representation of x and the last layer can be thought of as a linear regression under

the assumption that t follows a linear model in the transformed space representation. Assuming

that the errors are randomly distributed according to a Gaussian distribution, the probability of

observing the targets given the input data and network weights, p(t|x,w), is given by

(6.7) p(t|x,w)=
N∏
i

1p
2πσ

e
( f (xi ,w)−ti )2

2σ .
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Taking the logarithm this becomes

(6.8) ln
(
p(t|x,w)

)= N
2

ln(σ)+ N
2

ln(2π)+ 1
2σ

N∑
i

( f (xi,w)− ti)2

from which it can be seen that optimising a MSE loss is the MLE for a regression task with an

assumed Gaussian error distribution and a fixed data set size as p(t|x,w) is then dependent only

on the MSE term.

Unlike linear regression, neural networks with non-linear activation functions are not convex

functions and therefore have the possibility of getting stuck in local minima rather than always

finding a global minimum (in reality they will iterate towards a minimum asymptotically rather

than find it exactly). Despite this they are useful for approximating complex functions and their

behaviour during training can be controlled via optimization procedures.

As long as the feedforward network is composed of only differentiable functions and the

network architecture is acyclic, backpropagation [130] can be used to train the network. Back-

propagation makes use of the loss function to update the network weights in each layer. The loss

function can be expressed as

(6.9) L(x, t)=
N∑
i

l( f (xi,w), ti)

where l is the loss for the i’th input-target pair and f (xi,w) represents the action of the network

on the inputs with respect to w. In order to find the optimal weights ∇wL(x, t), the gradient of L,

can be taken to find the direction in which L is fastest minimised with respect to w:

(6.10) ∇wL(x, t)=
N∑
i
∇wl( f (xi,w), ti)

where

(6.11) ∇w =
( ∂ f
∂w

)T( ∂
∂ f

)
.

This can be used to determine an updated value for the weights w′, where the scale of the update

is controlled via a positive scalar, ϵ, known as the learning rate

(6.12) w′ = w−ϵ 1
N

∇wL(x, t).

As seen from equation 6.11, updating the weights in each node requires the computation of

the Jacobian of the function which represents the neural network. A gradient can be computed

for the output nodes of the network from the loss function. As the network is composed of simple

and differentiable functions and the connections between nodes represent a DAG where each

node depends only on the nodes in the previous layer, the chain rule can be applied recursively to

determine the partial derivative of the loss with respect to each of the weights in the network.

With this information the weights can be updated according to equation 6.12.
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6.1.3 Gradient Descent and Optimisation

In practice it is often unfeasible to use the ANN to process all N input-target pairs in the training

data set before updating the network weights. Optimisation algorithms which use the entire

training set to update weights are known as batch gradient methods, whilst those which only use

a single sample from the training set are known as stochastic gradient methods. As a result of

using only a subset of the training data, stochastic gradient methods have some inherent noise

when they are used in the optimisation of the weights but as long as the samples are independent

and identically distributed, stochastic methods will not bias the estimate of the gradient.

Rather than using batch or stochastic gradient descent it is usual in practice to use minibatch

stochastic gradient descent, where the weights are incremented after processing a subset of

several examples from the training data set, making up a minibatch. Minibatch stochastic

gradient descent (SGD) is set out in full in appendix A.3 and is the application of 6.12 to a

minibatch of data. Its use can result in the speedup of training even though larger minibatch

sizes give a more accurate estimate of the gradient.

When there is a shallow gradient, SGD converges slowly towards a minimum. Recent im-

plementations of gradient descent employ additional techniques to try to ensure a minimum is

reached efficiently. A widely used SGD algorithm known as Adam [131] incorporates momentum

by including a velocity term, v, which helps to accelerate the minimisation by keeping track of

an exponentially decaying average of the negative gradient over the previous iterations. This

is particularly helpful in situations where the stochastic gradient has high variance (which

can be a result of small minibatch sizes) and where the loss has a shallow gradient. The other

main conceptual differences from SGD are that Adam uses an adaptive learning rate for each

parameter instead of a fixed one and gradient rescaling is implemented. The details of the Adam

optimiser can be found in appendix A.4.

6.1.4 Activation Functions

All functions of which the network is composed must be differentiable. As a nonlinear activation

function is required to allow the network to approximate nonlinear functions, these activation

functions must also be differentiable. Some activation functions are commonly applied in the

hidden layers of the network, some only ever applied to the output layers and some are applicable

to both cases.

6.1.4.1 Hidden Layers

A recommended activation function to use in the hidden layers of an ANNs is the rectified linear

unit (ReLU) [132]:

(6.13) grelu(z)=max(0, z),
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which is linear if z > 0 but zero if z ≤ 0. This has the effect of ensuring that any computed gradient

is large compared to the value which would be computed using other activation functions, such

as the sigmoid, gsig(z) = 1
1+e−z or the tanh function gtanh(z) = ex–e−x

ex+e−x . ReLU has been shown to

achieve a faster convergence during training in many cases than tanh or sigmoid activation

functions [133], which may be a result of vanishing gradients occurring in tanh and sigmoid

functions as the weights are trained.

The initialisation of weights is an important consideration when training a network. The

interactions between the techniques used to initialise weights and the activation functions as

the network trains are important to consider. In the situation that the weights in a node are

initialised to a negative value, the output from the applied ReLU on that node will be zero,

meaning that it does not contribute to the gradient. Additionally, no matter what activation

function is used, if all weights are initialised to the same value in a given layer of the network,

then all the nodes will be identical and, as they are fully connected in an ANN, will therefore be

learning exactly the same thing. This behaviour creates a network which is equivalent to a single

node at each layer which had its weights uniformly initialised. A conventional way to initialise

weights in nodes which use a ReLU activation function was set out by He et al [134] where for a

network layer with N nodes, the weights are initialised from a Gaussian probability distribution

with a mean of 0 and a standard deviation of
√

2
N .

A variation of the ReLU is the leaky ReLU, gleak, which is defined as [135]:

(6.14) gleak(z)=
z, z > 0

0.01z, else.

This increases the proportion of non-zero weights but allows a small, non-zero gradient when the

activation returns a negative value, allowing the weights to continue being optimized for this

node.

6.1.4.2 Output Layers

When applied to a regression problem, the output of a network will often simply use a linear

activation function. If instead a binary classification score is required, in most cases the sigmoid

activation function is used.

If there are K classes in the dataset and a vector holding the probabilities that the prediction

is a member of each class, c, is required, the softmax function is used:

(6.15) σsof tmax(c)= eci∑K
j=1 ec j

6.1.5 Convolutional Neural Networks

ANNs are not well suited to use in deep learning on image data. This is because for any image

with a reasonable number of pixels, a fully connected network would have to learn many millions
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of weights. This is impractical when training the weights and requires long computation times to

classify images from a trained model due to the large number of computations between layers.

Additionally, if an image is at all translated or rotated, this would cause completely different

activations in each layer of the network which makes generalisation increasingly problematic as

the number of network parameters increases.

Instead CNNs are commonly used to process data which has a known grid-like topology. They

learn the weights of ‘convolutional kernels’ rather than for connections between pixels. The cross

correlation, which is usually used in ML software libraries to perform convolutions, is described

by:

(6.16) S(i, j)= (K ∗ I)(i, j)=∑
m

∑
n

I(i+m, j+n)K(m,n)

where i, j are indices of the pixels in an input multidimensional array I, and m,n are the

indices of non-zero elements in the kernel K . The output S(i, j) is known as a feature map. The

multidimensional array may be an image with one or more colour channels or could be a vector of

feature maps. The kernel array is usually composed of weights which are zero except in a small

local region, as shown in figure 6.2. If the data is arranged in a 2D grid-like topology, such as an

image, then the kernel will possess learnable weights over two dimensions but will be applied to

all channels in the image.

Usually the kernel is much smaller than the array it is convolved with. This sparse connectiv-

ity between the inputs and the weights allows a decrease in the required number of computing

operations in addition to decreasing the required memory and learnable parameters. These

sparse kernels are still found to be useful in detecting features such as edges which can be useful

in many image processing tasks.

Repeated applications of sparse kernels in layers of deep CNNs allow more distant regions of

an input image to contribute to the output of a deeper convolution as shown in the right hand

side of figure 6.2. CNNs are implemented with kernels in each layer to allow multiple features to

be learned.

CNNs also use a technique known as parameter sharing. In ANNs each weight is only applied

to each pixel once. However, in CNNs each kernel is applied to every pixel in the image (barring

edge effects) which allows a single set of weights to be learned for each kernel. This parameter

sharing means CNNs have equivariance to translation. Convolutions create a map of where a

given feature (represented by the weights in the kernel) is found in an image. When that feature

is translated in an image, the representation of that feature will be translated by the same

amount.

After applying a convolution and activation function, CNNs usually make use of a ‘pooling

function’. This replaces the output of the network by applying a function which summarises

a local region of the network. A popular function is max pooling [136] which returns only the

maximum value in a rectangular region of pixels, effectively selecting the most important local
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Figure 6.2: In a convolutional neural network a convolutional kernel, K with sparse connectivity
is convolved with a multidimensional array, such as the original image, I, or vector of feature
maps. The receptive field of repeated width 3 convolutions on a one-dimensional feature map is
demonstrated on the right, with the features in node 2 of layer T being receptive to features in
the nodes highlighted in blue. The weight parameters, Kmn in the applied kernel(s) are learned.

feature according to the kernel parameters. Pooling causes the network to be invariant to small

translations of an input. In deep networks consisting of repeated applications of convolution,

activation and pooling layers, the network can learn which transformations to become invariant

to, such as rotations or reflections. Often pooling is applied with downsampling as the output is

similar over the pooled region.

6.1.6 Practical Application of Convolution Kernels

The application of a convolutional layer may change the dimensions of the network. A convolution

applied to a feature representation of width n pixels will produce an image with the dimensions

n′ along that axis:

(6.17) n′ = n+2p− f
s

+1

where p is the number of pixels added along the axis as padding, f is the size of the convolutional

kernel along the axis and s is the ‘stride’ along the axis. Padding is where additional pixels are

added. These are usually initialised either to 0, from the neighbouring pixels, or from the pixels

on the opposite site of the image (wrap-around). Padding is often used to preserve the dimensions

of the network when convolutional kernels with f > 1 are used. The stride denotes the distance

in pixels between subsequent applications of the convolutional kernel. A stride of 1 means that

the kernel will be applied to each subsequent pixel along this axis whilst a stride of 2 means that

the kernel will only be applied to half of the pixels along the axis.

A convolutional layer may preserve the output dimensions of the previous layer, or it may

be a downsampling or upsampling layer. Downsampling layers produce feature maps whose

dimensions are smaller than the input to the layer. This may be achieved through pooling (usually

taking the maximum value) of a group of consecutive pixels. Alternatively a convolutional layer
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itself can perform downsampling through the use of a strided convolutional kernel. Upsampling

layers output feature maps whose dimensions are larger than the input to the layer. This is often

achieved through the introduction of an extra row of pixels between each existing row. The pixel

values are initialised from those of the existing pixels and this ‘upsampling’ of the feature map is

followed by the application of a convolutional kernel.

6.1.7 Batch Normalisation

‘Batch normalisation’ is a network optimisation strategy. Through backpropagation a neural

network determines how much to update the weights in a given layer based on the gradient

propagated from the subsequent layer. This assumes that all weights in previous layers are fixed.

Therefore the updated weights are not completely optimal. This effect is called ‘internal covariate

shift’ and can be reduced using batch normalisation [137].

Given that the weights of all layers are updated at the same time, exponentially large or

small gradients can result if the weights in subsequent layers are much larger or smaller than

1, causing the network to fail to converge. This effect is more prevalent for very deep networks.

The optimisation landscape becomes smoother from the application of batch normalisation and it

is this effect rather than internal covariate drift which Santukar et al [138] argue is the main

reason for the improved performance.

Batch normalisation is performed on the values output by a minibatch after the application

of a convolution. It can be applied either before or after the activation function, depending on in

which case the values are more likely to be Gaussian distributed. Let H be these values arranged

as a matrix with each image in the minibatch represented by a row in the matrix. To normalise

H to H′ the minibatch is normalised via [126]:

(6.18) H′ = H−µ
σ

where µ and σ are implemented element-wise to each row, i of H and are determined from

(6.19) µ= 1
m

m∑
i=1

H i

and

(6.20) σ=
√
δ+ 1

m

m∑
i=1

(H−µ)2
i .

δ is a small number to prevent undefined divide operations and m is the number of images in

the minibatch. These operations can be backpropagated through and ensure that updating the

weights never increases the standard deviation or mean of the parameters in a single row of H
only. The increased stability of training allows the learning rate used to be larger and therefore

increases the rate of convergence during training. ReLU activation functions usually have batch

normalisation performed on their inputs rather than their outputs whilst less linear activation
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functions such as tanh or sigmoid tend to have batch normalisation performed on the outputs of

the activation function.

6.1.8 Skip Connections

Skip connections either add or concatenate the feature maps learned by one layer with those

learned by a later layer. They are particularly useful in deep neural networks which are prone

to vanishing gradients in their early layers, which can slow convergence of the model. Skip

connections can be implemented over a short or long range.

Short range skip connections were introduced in the ResNet architecture [139]. These short

range skip connections form ‘residual blocks’ which are composed of two consecutive convolutional

layers. The inputs to the first layer are added to the outputs of the second layer, as shown in the

residual block diagram in figure 6.3. The dimensions of the layers must be preserved to allow this.

The residual blocks are shown to improve model convergence. They preserve information which

has been extracted by earlier layers of the network to later layers, helping to limit the abstraction

of the features deeper in the network but preserving the width probed by repeated convolutions.

Long range skip connections are most well known for their use in DenseNet [140] and U-Net

[141]. DenseNet is able to improve upon the performance of ResNet with the use of less than 10%

of the learnable parameters. The U-Net is an encoder-decoder architecture used for pixel-wise

labelling (known as semantic segmentation) and shows that long range skip connections are

effective for propagating localisation information so that it can be re-used in later layers. This

allows very accurate localisation predictions from the output layers. Long range skip connections

are usually implemented as concatenation of feature maps from an earlier layer to a later layer.

This requires that the dimensions of these layers are the same, with the exception of the number

of feature maps.

Conv block

2D 
Convolution

Batch
Normalisation

Leaky
ReLU

1x1 
Convolution +

Residual block

3x3 
Convolution

Figure 6.3: Composition of a convolutional block and a residual block. Convolutional blocks are
composed of a 2D convolution, followed by batch normalisation and application of a subsequent
leaky ReLU activation function. Residual blocks are composed of 2 convolutional blocks with a
short range skip connection which adds feature maps together.
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6.2 YOLOv3 Network

YOLOv3 [142] is a multi-reference, multi-resolution object detection network which makes object

predictions in images. It makes predictions utilising multiple reference boxes (also referred to

as anchor boxes) which guide the size and aspect ratio of the predictions. These predictions are

also made at 3 different scales, allowing the network to be more sensitive to small objects than

previous implementations of YOLO networks.

This section describes the architecture of the YOLOv3 network, including the inputs and

outputs. The contributions to the loss function are then explained. The post-processing which is

applied to the predictions is then set out, followed by a discussion of performance metrics.

6.2.1 YOLOv3 Network Architecture

The architecture of YOLOv3 is shown in figure 6.4. The input image is first passed to a Darknet-

53 feature extraction network, highlighted in yellow, which is designed to output high quality

feature maps. The path of the network follows a series of convolutions, denoted by solid dots,

which downsample the inputs and produce feature maps. After several stages of convolution

the feature maps are upsampled to double their dimensions using upsampling layers, coloured

in green. Long range skip connections propagate localisation information to later layers of the

network by concatenating their feature maps. Predictions are made at 3 stages, with the first set

of predictions being made by the most compact stage of the network and later predictions being

made after subsequent upsampling and concatenation of feature maps.

6.2.1.1 Network Inputs

The input to the YOLOv3 network is a 480x480 pixel image with 3 color channels. YOLOv3

is composed of only convolutional and upsampling operations, making it a fully convolutional

network. All convolutions are applied with zero-padding to preserve the output dimensions of the

network throughout.

6.2.1.2 Darknet-53

A feature extractor called Darknet-53 (referring to the 53 convolutional layers which it is com-

prised of) is first applied to the input. The spatial dimensions are not downsampled through

pooling in the YOLOv3 network but through strided convolutions which helps to preserve small

local features. The full Darknet-53 architecture is shown in table 6.1. A series of convolutional

blocks, as illustrated in figure 6.3, each using a specified number of kernels are applied. Each

convolutional block consists of a 2D convolution, followed by the application of batch normalisa-

tion and the leaky ReLU activation function. Many of these convolutional blocks are applied in

residual blocks, with these short range skip connections being applied to the entries in table 6.1

which include two convolutional blocks followed by a residual addition.
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Input image
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Scale prediction
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Concatenate
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Figure 6.4: The YOLOv3 network architecture is composed of a Darknet-53 feature extractor,
followed by additional convolutional layers which are each followed by batch normalisation and
a leaky ReLU activation but without short range skip connections. Predictions are made at 3
scales, with 3 predictions per grid cell. From left to right the scales are 1,2,3 and there are
15, 30 and then 60 grid cells along each axis. Scales 1, 2 and 3 therefore have grid cells which
correspond to 32, 16 and then 8 pixels in the original image respectively. The architecture follows
an encoder-decoder architecture where 2 long range skip connections are made after hidden
layers are upsampled. The predicted boxes from all 3 layers are the output of the network.

The network utilises 1x1 convolutions to extract the most salient features of the feature

maps output by the 3x3 convolutional layers. This helps to minimise the number of learnable

parameters whilst carrying forward the most important features. The application of a 1x1

convolution can be thought of as a weighted linear recombination of the feature maps.

Darknet-53 reduces the network to have width/height dimensions of 15x15. Each of these

elements therefore corresponds to a 32x32 pixel region in the original image.

In the last layer before the network is downsampled to a width/height of 30x30, the feature

maps are extracted so that they can be concatenated downstream in a long range skip connection.

The same occurs before the network is downsampled to 15x15.

Each convolutional layer is initialised using He initialisation, as described in section 6.1.4.

The convolutional blocks which are applied later in the network after the Darknet-53 architecture

also use batch normalisation and leaky ReLU but have no short range skip connections.

93



CHAPTER 6. MACHINE LEARNING

Table 6.1: The Darknet-53 feature extraction network architecture composed of convolutional
blocks, including convolutional layers with a stride of 2 which halve the dimensions of the
subsequent layer. Grouped convolutional blocks have short range skip connections after each
application. The number of kernels applied in each convolutional block, NK , their size and the
stride they are applied with are given in the second column. The third column denotes the
number of times a set of layers is repeated before the next set of layers is applied. Long range
skip connections extend from within Darknet-53 to later regions of the network.

Layer Kernels (NK , size, stride) Repetition Output size
Input image 480×480
Conv block 32, 3×3, 1 1 480×480
Conv block 64, 3×3, 2 1 240×240
Conv block 32, 1×1, 1 240×240
Conv block 64, 3×3, 1 1 240×240

Residual addition 240×240
Conv block 128, 3×3, 2 1 120×120
Conv block 64, 1×1, 1 120×120
Conv block 32, 3×3, 1 2 120×120

Residual addition 120×120
Conv block 256, 3×3, 2 1 60×60
Conv block 128, 1×1, 1 60×60
Conv block 256, 3×3, 1 8 60×60

Residual addition 60×60
Skip connection 60×60

Conv block 512, 3×3, 2 1 30×30
Conv block 256, 1×1, 1 30×30
Conv block 512, 3×3, 1 8 30×30

Residual addition 30×30
Skip connection 30×30

Conv block 1024, 3×3, 2 1 15×15
Conv block 512, 1×1, 1 15×15
Conv block 1024, 3×3, 1 4 15×15

Residual addition 15×15

6.2.1.3 Network Outputs

Additional convolutional blocks are applied to the network after Darknet-53 but the dimensions

are preserved until the output is split into two paths of convolutions. The first path of convolutions

acts on the feature maps to make predictions for the network in its current scale. The first set of

predictions are made whilst the network is in its most compact form and are said to be made by

‘scale 1’.

The outputs at each prediction scale are bounding boxes, described by a vector B = (x, y,w,h, o, c),

where x and y are predicted corner locations and w,h are predicted box width and heights. The

objectness score, o, represents the confidence with which the network predicts that the box
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holds an object. This may be an object from any class which is labelled in the training data. The

confidence corresponds to the probability that the predicted box corresponds to any of the classes

which were present in the training dataset. Finally, c is a vector holding the probabilities that

the bounding box corresponds to each of the classes which the network was trained on. In the

work presented in this thesis, only a single class is used for training and predicting objects. As

c is predicted using a softmax activation function (equation 6.15), the output will always be a

vector with a single entry whose value is 1. Therefore, the class score will not be optimisable.

The sizes and aspect ratios of the predictions are guided by ‘anchor boxes’. Three anchor boxes

are assigned to each scale of the network and each is used by every element of the network along

the width/height axes to make a bounding box prediction. Each element of the network which

makes a prediction is known as a ‘grid cell’. For the width/height of 15x15, this leads to the first

scale of the network making a total of 675 predictions.

The predictions for the x and y positions of each bounding box have a sigmoid activation

function applied to them before the coordinate location of the corner of the grid cell in the image

is added to correctly locate the corner of the predicted box. The network predicts the natural

logarithm of the w and h terms. The exponential of these terms is taken rather than applying a

conventional activation function. A sigmoid activation function is also applied to the object score

prediction, o.

The second path of convolutions leads to an upsampling layer which doubles the network width

and height dimensions to give it a width/height of 30x30. This upsampled layer is concatenated

with the feature maps output from the second long range skip connection from Darknet-53. More

convolutions are then applied until the convolutions split into two paths again. In the prediction

path, 3 bounding boxes are predicted from each of the 900 grid cells. These predicted boxes are

labelled as predictions from scale 2.

In the other path the upsampling and concantenation process is repeated, this time making

use of a longer range skip connection from Darknet-53 so that 3 bounding boxes are predicted for

each of the grid cells in a 60x60 grid, with these predictions being labelled as from scale 3. In

total the network proposes 14175 bounding boxes per input image.

6.2.2 YOLOv3 Loss Function

The network processes one minibatch of images at a time during weight training, predicting

14175 bounding boxes for each of them. The loss function is calculated on a per-minibatch basis

using minibatch SGD with an Adam optimiser. The loss is aggregated through averaging over all

images in a minibatch and over all the minibatches in an ‘epoch of training’ (one pass through

the entire training data set) using an average over all minibatches. The loss function for YOLOv3

is a combination of 5 terms relating to:

1. bounding box x, y
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2. bounding box w, h

3. object score o for predicted boxes associated with a truth box

4. object score o for predicted boxes not associated with a truth box

5. class score prediction, c

where as mentioned in section 6.2.1.3 the class score prediction is uniformly 1 after the application

of the softmax activation function for all predicted bounding boxes. Predicted boxes are associated

with truth boxes which they are expected to provide the highest quality prediction for. The

procedure for associating a truth box with a predicted box is explained in full in section 7.2.5.

The loss for each minibatch lminibatch is calculated for each prediction scale seperately and

then aggregated over all 3 scales before being aggregated over the images in the minibatch:

(6.21) lminibatch =
√∑3

i=1 wi l i

8

where wi is a scalar weight defined externally from the network for scale i and l i is the loss

computed for that scale. The wi terms were set to 1 in all studies in this thesis. The division is

by the number of images in a minibatch, which was 8 throughout the studies performed in this

thesis.

For a given scale the loss components from each contribution to the loss are summed:

(6.22) l i = lx,y + lw,h + lob j + lnoob j + lclass

where each of these loss terms are summed over all bounding box predictions from all grid cells

but are not summed over the minibatch:

(6.23) l j =
∑
α j

2

where α j is one of the loss contributions, αx,y, αw,h, αob j or αnoob j, which are defined in sections

6.2.2.1-6.2.2.4 below. Due to the softmax and single class, αclass is always equal to 0, providing

no contribution to the loss. The other α terms are MSE terms as the network is learning the

non-linear regression between the input images and the properties of the truth boxes.

6.2.2.1 Positional Loss Term

The contribution to the loss from the x, y predictions, Bx,y, made by the network is determined as:

(6.24) αx,y = Mx,y,w,h(t̂x,y −Bx,y)Ww,hwx,y,w,h,

where t̂x,y is the x, y truth value and Ww,h is a scaling factor depending on the size of the truth

box which is defined in section 6.2.2.5. These terms are arrays. wx,y,w,h is a scalar weight for the

lx,y loss term which is set to 1 in all studies presented.
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Mx,y,w,h is a binary mask array. The mask depends on whether the minibatch is processed in

a warm-up minibatch or a normal minibatch. The warm-up minibatch case is set out in section

6.2.2.6. In a normal minibatch this mask is 1 for all array entries where a truth box has been

assigned to a given predicted box and is 0 elsewhere. This ensures that only predictions with an

associated truth box contribute to lx,y.

6.2.2.2 Size Loss Term

The contribution to the loss from the width and height predictions of the network is:

(6.25) αw,h = Mx,y,w,h(t̂w,h −Bw,h)Ww,hwx,y,w,h.

This is very similar to eqn 6.24, except that the widths and heights of the predicted boxes, Bw,h

and the truth boxes, t̂w,h are used to compute this term.

As is the case with the αx,y term, contributions to the αw,h term in normal training come only

from predicted boxes which have an associated truth box.

6.2.2.3 Truth Associations Loss Term

Both the object score loss and the non-object score losses both depend on the predicted object

scores. The object score loss has similarities and differences to the x,y and w,h loss terms. It is

computed via:

(6.26) αob j = Mob j(t̂ob j −Bob j)wob j,

where t̂ob j and Bob j are truth and predicted object score arrays and Mob j is an array mask

which is 1 wherever a truth box is assigned and 0 otherwise. This is identical to Mx,y,w,h during

calculation of the normal loss but differs during warm-up minibatches, where Mob j is unchanged.

t̂ob j takes a value of 0 or 1, depending on whether the given grid cell and anchor has an associated

truth box, which happens to be exactly the same as Mob j in this case. The scalar weight wob j = 50

is the only scalar weight not set to 1 in the calculation of the loss. As a result of the array masks,

once again there are only contributions to this term in the loss from predicted boxes which have

an associated truth box.

6.2.2.4 No Truth Associations Loss Term

The non-object score loss takes into account the maximal intersection over union (IOU) score

(defined in section 6.2.4) for each prediction made by the network which does not have an

associated truth box as well as the object score prediction. It is calculated as the product of the

negative object mask, (1−Mob j), the maximal IOU score for each prediction, IOUmax and a scalar

weight wnoob j = 1:

(6.27) αnoob j = (1−Mob j)Bob j(IOUmax < T loss
IOU )wnoob j.
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The (IOUmax < T loss
IOU ) term is a mask which is zero wherever the maximal IOU is larger than a

given threshold value for the IOU, T loss
IOU , which was chosen to be 0.33 in the work presented in

this thesis. This maximal IOU is determined using the truth boxes for the given network scale

that the loss is being calculated for.

The overall effect of this term is designed to allow the network to recognise where predictions

are made with little overlap with truth boxes using the TIOU condition, avoiding training on

cases where truth boxes overlap with a grid cell but have not been assigned to it. The object

scores of all remaining predictions with no associated truth box, as well as their IOU scores are

minimised through this term in training.

6.2.2.5 Ww,h Scaling Factor

The scaling factor applies a weight to each truth box based on the area of the truth box. It is

defined as:

(6.28) Ww,h = 2− (e t̂w t̂h )
npixels

,

where t̂w and t̂h are the truth values for the width and height of the truth boxes. The exponential

of these values is taken because the natural logarithm is taken during preprocessing. npixels is

the number of pixels in the input image (480x480). The total effect is for the scaling factor term

to be 2 for very small truth boxes and 1 for truth boxes which are the same size as the image

with the intention of allowing the network to learn more difficult cases.

6.2.2.6 Warm-up Loss Calculation

For the first 2 epochs of training, the loss is calculated differently than during following epochs

in order to try and speed up the convergence towards the best weights. The training which

occurred during these first 2 epochs is denoted by the term ‘warm-up training’. During warm-up

training lx,y and lw,h were calculated differently than during normal minibatches. The equations

to calculate the losses for these terms are different from section 6.2.2.1 and section 6.2.2.2 only in

the fact that 3 terms were changed:

1. t̂x,y

2. t̂w,h

3. Mx,y,w,h.

During normal training t̂x,y and t̂w,h are only non-zero for predictions corresponding to array

indices where predicted boxes have an associated truth box assigned to them. During normal

training Mx,y,w,h is a mask which is non-zero only for the same case.

When warm-up training, the t̂x,y term has the location of the centre of each grid cell added to

it for all array indices which do not correspond to a truth box. The t̂w,h term is also altered to
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add ‘fake’ truth boxes to the array entries with no truth association. The fake truth box sizes are

guided by the anchor boxes for each scale. Finally, the Mx,y,w,h mask is set to 1 for every array

index, regardless of whether there is a truth association or not.

The combined effect of these modifications to tx,y, t̂w,h and Mx,y,w,h is designed to add ‘effective

truth boxes’ for all the predictions made which have no associated truth box, in order to improve

learning of the x, y,w,h parameters over the warm-up minibatches. It guides the randomly

initialised weights towards predicting bounding boxes in the centre of the grid cells and with

the same dimensions as the anchor boxes before allowing the network to specialise in making

predictions of the input images.

6.2.3 Filtering Predictions

Once the network is fully trained, it can be used to predict bounding boxes in an image. It is

useful to discard poor predictions based on their properties. Conventionally, a threshold is applied

on the object score, Tob j, so that only high quality predictions are retained. In the work presented

in chapter 7 a second threshold, TSPV , on the sum of the pixel values contained in the predicted

box was also used. The summed pixel value (SPV) is not a conventional part of most applications

YOLOv3 but was found to be useful in these studies.

6.2.4 Non-maximum Suppression of Predicted Boxes

Even after the filtering of predicted boxes, there may be a large number of overlapping predicted

boxes which remain for any given image. In order to determine which of the boxes are optimal, a

technique known as greedy non-maximal suppression (NMS) is applied. This attempts to retain

the highest quality predictions and discard other predictions which are sufficiently similar. NMS

can be used to discard predicted boxes which have a high IOU with other predicted boxes, where

the IOU is defined as the area of intersection between two boxes divided by the union of their

area:

(6.29) IOU = B1 ∩B2

B1 ∪B2
.

The predicted boxes are sorted into reverse object score order. The box with the highest object

score is kept and then has its IOU computed with each of the other boxes. If this value is larger

than a predefined threshold, TNMS, then the box is discarded. This algorithm is implemented

iteratively until no boxes remain which have not been kept. Using a low TNMS value results in

few predicted boxes being retained, whilst at high TNMS value requires predicted boxes to have a

large overlap before being discarded. In the case that there is a single class label for the predicted

boxes, the NMS algorithm is described in full in appendix A.5.
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6.2.5 Determining Performance

Once NMS has been applied to the predicted boxes, the predicted boxes can be labelled as true

positives (tps) and false positives (fps). The truth boxes can also be labelled as false negatives

(fns) (to avoid confusion with trigger primitive (TP), the classification of true positives will be

denoted as lower case tp and follow a similar convention for the other categories).

For every image with a truth box, the IOU of the truth boxes with each of the predicted boxes

is determined. Starting with the predicted box with the highest object score, as long as the IOU is

larger than a given threshold, TIOU , this box is assigned to the truth box which it has the largest

IOU with and is labelled as a tp. In all the studies presented in this thesis only a minimal IOU

(TIOU = 1e−10) is required to label a tp. A predicted box can only be assigned to a single truth

box and a truth box can only be assigned to a single predicted box. If there is no unassigned truth

box that a predicted box can be assigned to, it is labelled as a fp. Any truth boxes which were not

assigned to a predicted box are labelled as fns. This process is described in full in appendix A.6.

In object proposal networks there is not a coherent concept of true negatives (tns). In the loss

function, the grid cells that truth boxes were assigned to determined whether a prediction was

associated with a truth box. The loss function is designed to optimise the ability of the network

to make a prediction guided by a similarly sized anchor box centred in the same grid cell as the

truth box. However, lnoob j does not penalise predictions from other grid cells, or using close but

non-optimal anchors in the same grid cell due to the T loss
IOU as explained in section 6.2.2.4. Clearly

there is no guarantee that a prediction from a grid cell associated with a truth box will be the

truth box with the highest object score, or IOU with the truth box. It may also be removed after

application of NMS. This is unproblematic when determining the performance of the YOLOv3

network as the only quantities which need to be determined are the efficiency, ϵ, of predicting

tps and the rate of predicting false positives. The efficiency is defined as the proportion of truth

boxes which were assigned to a predicted box:

(6.30) ϵ= tp
tp+ f n

.

6.3 Summary

In this chapter the concept of machine learning as a way to approximate the MLE of a probability

distribution has been introduced. How it can be applied to identify the optimum parameters for a

given model has been explained. The theory underpinning ANNs and CNNs has been set out

and the full YOLOv3 object proposal network architecture has been described, including the loss

function, post-prediction processing and labelling of the predicted boxes.
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7
IMPACT OF ML ON THE TRIGGER PIPELINE

This chapter describes the implementation of the YOLOv3 network, the reasons behind

its selection, and presents an analysis of its performance, both for detecting individual

neutrino signals and using the predicted boxes as inputs to a SNB trigger. The YOLOv3

network was implemented using the Tensorflow [143] and Keras [144] Python packages and built

upon an implementation of the network architecture by H. Anh et al [145].

Firstly, possible avenues to introduce ML into the SNB trigger will be discussed and the choice

of the YOLOv3 network will be explained. Next the image preparation will be explained, followed

by the choice of hyperparameters for the network and the training of the network weights,

followed by a discussion of the training metrics. Subsequently, an analysis of the efficiency

and false positive rate of detecting neutrino signals when applying thresholds to the network

predictions is presented. Several promising working points are then used to determine the

performance of the SNB trigger in comparison to the performance from the TCs identified using

the rules based algorithm in chapter 5.

The YOLOv3 codebase was jointly developed by Joel Greer and Raul Stein, a collaborator

within the Bristol DUNE group. The derivation of the optimal anchor boxes explained in section

7.3.1 was carried out by Raul Stein. The training which is presented in this chapter was run on

an Nvidia T4 tensor core GPU.

7.1 Introducing ML to the Trigger Pipeline

7.1.1 DAQ Considerations

The possible scope to introduce ML methods to improve the SNB trigger is from the reception of

the ADC values in the FELIX card to the HLF. It may make use of the raw ADCs, TPs, TC or
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other pre-processed information. Wherever ML is introduced it needs to be able to keep up with

data reception and have a SNB trigger latency of less than 10 seconds. Each DAQ RU processes

the ADC values on each APA separately but it is also possible to combine the data on the RU

CPU server or add a GPU to the RU to accelerate image processing. Data from all RUs is passed

to the MLT, which presents another opportunity to implement an improved trigger. Alternatively,

it may be possible to implement a trigger pipeline which identifies high-interest detector regions

and which causes the data from these to be read out to the HLF where it can be processed on a

CPU or GPU cluster.

There are limitations in the bandwidth of data that can be passed between the different DAQ

components as explained in section 3.3. To pass the collection wire readout from the front-end of a

RU to its CPU server a 46 Gbits−1 link would be required rather than 10 Gbits−1. Therefore, it is

necessary to either implement rapid data compression or to process and aggregate the data before

passing it downstream. This could take the form of any region of interest (ROI) determination

algorithm, including the existing TPG algorithm.

Application of CNNs to LArTPCs and liquid scintillator neutrino detectors has been studied

in a number of experiments. Due to a TPCs being essentially a video readout of ionisation

in a detector, CNNs are well suited to this data. Previous studies have used CNNs to label

particle interactions (including neutrino interactions) by utilising simulated images produced

using deconvolved and corrected ADCs from a number of detector channels over a number of

detector ticks. In some cases ADC samples are used and in some it is hits derived from offline

reconstruction algorithms.

7.1.2 CNNs Which Use Reconstruction Information

DUNE collaboration members have studied the performance of a convolutional visual network

(CVN) [146] which utilises information from collection and induction channels for identification

of beam neutrino interactions, the number of protons, charged and neutral pions and neutrons

in the image as well as the type of charged current interaction and whether the neutrino was

an antiparticle. Hits derived using offline reconstruction algorithms [147] are used to select a

region of interest in each detector event record. From this an image of 500 wires by 3200 µsec

(in 500 time bins) is created which is the input of the CVN. This approach was found to improve

on the existing neutrino selection efficiency for neutrinos with a reconstructed energy less than

5 GeV but utilises information which is not available in online triggering, such as hits derived

from offline reconstruction algorithms. Reconstruction of a single event can take on the order

of seconds of computation time. If a similar approach were to be implemented making use of

TPs to identify off-beam neutrino interactions, then it would likely need to be implemented in

the HLF. The beam neutrino interactions have a much higher expected energy spectrum than

SN neutrinos, meaning that a low energy trigger to pass neutrino candidate images to the HLF

would need to be found. The rules-based clustering algorithm could be thought of as one such
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algorithm. In this case the additional use of a neural network to provide a probability score that

an image contained a neutrino could be used to provide weights for the SNB counting trigger.

The use of pixel-wise labelling has been implemented at MicroBooNE, another LArTPC

detector [148]. Once again, these studies use reconstructed information to create images which

are processed by an ‘Ultimate coupling of Registration and Segmentation with deep Nets’ (U-

ResNet) CNN. ADCs are deconvolved and 6 time ticks are summed together in the creation of

these images (MicroBooNE uses the same 2 MHz sampling rate as DUNE). The reconstructed

vertex information was used to select 512x512 pixel images as network inputs. This network was

used to label tracks and electromagnetic showers which achieved a pixel misclassification rate of

less than 5% for both classes and has applications in differentiating electron and muon neutrino

interactions. This kind of pixel-wise labelling could allow better quality clusters to be determined

by allowing the exclusion of hits from pixels which are labelled as background. When considered

for online use, this approach has similar disadvantages to the previous one and also requires

extra processing rather than replacing one or more steps in the baseline SNB trigger.

Another technique tried at MicroBooNE was the use of a ‘Faster Region-based CNN’ (Faster

R-CNN) [149] architecture based on AlexNet [133] to detect beam neutrinos in images with cosmic

ray backgrounds [150]. This utilises an object detection network which proposes rectangular

bounding boxes to encapsulate the region containing the neutrino signal and achieved an efficiency

of 87% at a purity of 73%. The images input to this network were raw ADC samples and

used reweighted real cosmic ray background data as noise. 864x756 pixel images were created

by downsampling by a factor of 4x and 8x for the channel and tick dimensions respectively.

Implementing something similar for online neutrino identification and triggering in the DUNE

DAQ system is still impractical as it would again require a separate low energy neutrino trigger

to identify detector regions which could be sent to the MLT or HLF level to be processed. However,

the proposal of a bounding box provides a possible avenue to replace at least the rules-based

clustering stage of the baseline SNB trigger.

7.1.3 Boosted Decision Trees

The use of boosted decision trees (BDTs) has been successfully applied to classify particles. These

use decision trees which make cuts on multiple variables to classify data. A small difference in

the training data set can cause a large difference in the resulting decision tree. For this reason

bootstrap aggregation, where many training datasets are created by uniformly subsampling the

whole dataset (with replacement), along with the use of multiple trees, each created from a boot-

strapped dataset can be used to improve the performance of the classifier [151]. Often a multitude

of decision trees (called random forests) are used, which enforces the use of a random subset

of the features in each decision tree. This helps to stop the trees used in bootstrap aggregation

becoming correlated due to some features being overwhelmingly strong predictors. The output

of the random forest is the class selected by the most trees. The MiniBooNE collaboration has
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studied the use of BDTs to identify and differentiate electron and muon neutrino interaction from

a beam source using reconstruction information [152] [153]. They found that a BDT approach

was more successful than a basic artificial neural network implementation. BDTs can only make

decisions using the variables they are provided and as a result information aggregation in the

DUNE DAQ is necessary for their use. The most basic aggregated information in the rules-based

algorithm are the TPs and TC properties. A potential task for BDTs in the SNB trigger would be

to classify whether a TC is a neutrino signal or not.

7.1.4 Sequence Information

A final area where ML could be introduced is in the final SNB trigger decision. There is the

possibility to replace the SNB trigger with a BDT which uses the TCs in a time window as

its input and classifies whether these were the result of a SNB or not. Alternatively, neural

networks which look at sequence information such as recurrent neural networks (RNNs) or a

long short-term memory (LSTM) network [154] could be used to classify a time sequence of TCs

as a SNB. However, the signal expected from a SN depends on the mass hierarchy, progenitor

properties and SN model parameters. Sequence information studies would require SN neutrino

spectra to ensure the classifier is sufficiently generalised.

7.1.5 Neutrino Identification in DUNE DAQ

One other study has been done on implementing CNNs, making use of the collection plane wires

to label images in DUNE as low energy (SN neutrino signal), high energy or background cases

within the online DAQ system [155]. A CNN architecture taken from [156] was trained on images

composed of raw ADCs after setting all pixels whose pixel intensity did not meet a threshold to

zero. A ROI region was found around the non-zero pixels in an image of 480 channels and 2.25 ms,

which was downsampled to a 64x64 pixel image used as the input to the CNN. This network is

suitable for implementation in the HLF as it requires a data bandwidth of only 22 Mbits−1 for

each RU after the ROIs have been found. The network achieved an accuracy of 94% on identifying

SN neutrino interactions and an accuracy of 99.53% on non-empty background noise ROIs. Using

the ROI threshold, it was found that only 2% of background images had non-zero values, offering

a factor of 50 in potential speedup of the network, whose inference time was 1.6 ms. This network

approach was also implemented in an FPGA (Zynq Ultrascale + XCZU9EG) using high level

synthesis (HLS) [157] tools to study the practicality of implementing it within the UD. It was

determined that use of the FPGA improved the inference speed by a factor of only 1.7 and the

power efficiency by a factor of 2.6. This study limits identification of a SN neutrino to a single

interaction per drift time per TPC and may not be robust to the case of multiple interactions,

as might occur from a nearby SNB. It could be used to replace the TP and TC steps in the

rules-based SNB trigger.
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7.1.6 Selection of the YOLOv3 Network

Taking inspiration from both the object proposal network which has been used at MicroBooNE to

identify neutrino signals and from the use of a CNN to perform fast inference within the DAQ or

HLF, in this thesis a study is presented on the use of a fast object proposal network which uses

minimal input information. The TPs which were produced from FPGA-based TPG have been used

to create pre-thresholded images where a YOLOv3 [142] architecture is used to predict bounding

boxes for neutrino interactions. The intention was to study whether an object proposal network

could be used to predict neutrino bounding boxes with a high enough accuracy and low enough

false positive rate using only TPs as the network inputs. This can be thought of as replacing the

clustering stage in the rules-based SNB trigger.

A YOLOv3 network was chosen over a region-based neural network (R-CNN) architecture

mainly due to the inference speed. Faster R-CNN [149] has an inference speed of 5 frames per

second (FPS) on a K40 GPU, whilst you-only-look-once (YOLO) architectures can achieve dozens

of FPS. This is partly because YOLO networks make region (bounding box) proposals and perform

classification at the same time, whereas R-CNN based networks utilise both a region proposal

network (RPN), which tells a subsequent detection network where to look, and a classification

network.

YOLOv3 runs at 34 FPS on a Titan X GPU but simpler YOLO architectures, such as You-Only-

Look-Once version 2 (YOLOv2) can achieve speeds of 67 FPS or above depending on the hardware

used to run them [158]. This work is intended to use YOLOv3 to evaluate whether object detection

networks are feasible for this task with this data and then to adjust the architecture until the

required inference speed to keep up with the DAQ is achieved. For example, much of the decrease

in speed of YOLOv3 over YOLOv2 was a result of a more complex feature extraction network,

using 53 convolutional layers instead of the 19 used in YOLOv2. This decreases the speed of the

network but improves its performance.

YOLOv3 was chosen over You-Only-Look-Once version 4 (YOLOv4) [159] - the most recent

update to the YOLO network family when these studies were carred out. YOLOv4 implements

data augmentation methods which are not well-suited to the sparse images that were fed to the

network in these studies. Therefore YOLOv3 was used instead, despite the modest performance

improvement that YOLOv4 promises on non-sparse images.

There is a rich literature of simplified YOLO models, including smaller network architectures

which can offer significant speed-up at the cost of some loss in performance as seen in table 7.1.

It has been shown that YOLO networks can be implemented within FPGAs [160] [161], showing

that they may have the potential for application in either the HLF or within the FPGA resources

in the RUs. Tools such as High Level Synthesis for Machine Learning (HLS4ML) [162] or LeFlow

[163] have made this process increasingly feasible in recent years.
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Table 7.1: Performance metrics of YOLO architecture versions on a Titan X GPU. Values are
taken from [164][142][158]. The mean average precision (mAP) is a metric commonly used for
comparing the performance of object detection networks on a given image dataset. It is the area
under the curve formed by plotting the efficiency of detections against the proportion of reported
detections which were correct. The Visual Object Class (VOC) dataset is considered to be easier
to achieve a high mAP than the Common Objects In Context (COCO) dataset.

Model Layers FLOPS(×109) FPS (GPU) mAP (Dataset)
YOLOv1 26 not reported 45 (Titan X) 63.4 (VOC)

YOLOv1-Tiny 9 not reported 155 (not reported) 52.7 (VOC)
YOLOv2 32 62.94 67 (Titan X) 76.8 (VOC); 48.1 (COCO)

YOLOv2-Tiny 16 5.41 244 (not reported) 23.7 (COCO)
YOLOv3 106 140.69 34 (Titan X) 55.3 (COCO)

YOLOv3-Tiny 24 5.56 220 (not reported) 33.1 (COCO)

7.2 Image Preparation

YOLOv3 requires images as inputs. This section describes all of the image preparation steps

used to create and transform the images which were fed into the network. These images were

synthesised from the TPs generated by applying the FPGA-based TPG algorithm.

In order to train a YOLOv3 network, the images which include a supernova interaction signal

also require a truth box which encompasses this signal. Once the truth box has been assigned to

a particular scale of the network it can be used for training.

In this section the image and truth box creation algorithms are explained, followed by how

truth boxes were assigned to the neutrino signals in the images. The downsampling algorithm

and the assignment of truth boxes to a given scale of the network is then set out. The breakdown

of images into training and testing datasets and finally the image augmentations applied to the

training dataset are then explained.

7.2.1 Image Synthesis

TPs contain only simple summary information on a single channel in the detector. Each event

contained the TPs for the 12 APAs in the 1x2x6 geometry for 2.246 msec (4492 detector ticks).

Only the TPs from collection channels were used in image creation.

Images were created on a per APA basis. Each APA contains 960 collection channels, so the

images created were 960x4492 pixels, with the x-axis representing the collection channel number

in the APA and the y axis being the detector tick number in the event. The start and end ticks of

the TPs were shifted 16 ticks earlier due to the average delay caused by the FIR filter (explained

in section 5.1.3).

Collection wires are spaced along the z-axis and run parallel to the y-axis of the detector. The

electric field is applied along the x-axis of the detector, meaning that the images are projections
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of the charge deposited in this volume over 1 drift time onto the x-z plane.

The TPs were mapped on to the image from their start tick to their end tick. The pixel value,

Pi, j, assigned to all pixels on the channel over the tick extent of the TP was the SADC of the TP.

The pixels values were then converted to the range 0-255 using a saturation value to preserve the

occupancy of the pixel value spectrum. A saturation value of 5000 was chosen using figure 5.4(a).

It was observed that whilst the SADC of TPs mapped to SN neutrino interactions exceeded 5000

5% of the time, the proportion of background TPs which exceeded a SADC of 5000 was less than

2×10−7. The new pixel values, P∗
i, j, were determined by applying

(7.1) P∗
i, j = Pi, j × 255

5000

and subsequently assigning any pixel values which remained above 255 to a value of 255.

The images fed to the network had 3 colour channels. The images were generated so that the

pixel values were grayscale. Instead of changing the network architecture, the grayscale pixels

were copied to all 3 color channels.

7.2.2 Truth Box Labelling

Each neutrino interaction may lead to TPs on multiple APAs but for each neutrino interaction on

an APA only one truth box was generated. In this dataset, 3 neutrino interactions were simulated

for each event in the detector simulation. These interactions were located randomly in the 1x2x6

geometry. This meant that a single APA (and therefore image) could have up to 3 truth boxes and

a single neutrino could have multiple truth boxes, with 1 per APA it produced a TP on.

The source of each TP was determined via backtracking through the GEANT4 event record.

For each APA with at least 1 neutrino interaction which resulted in 1 or more TPs, a truth

box was created for each of the neutrino interactions. The extent of each truth box was set to

correspond to the extent of the charge deposited from this neutrino in the APA. Padding of 3

channels and 11 ticks were added to each side of the truth box. Truth boxes which would extend

beyond image boundaries were limited to the image boundary.

7.2.3 Downsampling Algorithm

A custom downsampling algorithm was used to downsample the 960x4492 pixel images to the

480x480 pixels required to be input to the YOLOv3 network. The images were downsampled by a

factor of 2 along the channel axis and a factor of 9 along the tick axis. This required cropping the

images by 172 ticks before downsampling. For each image the 172 tick region along the tick axis

with the minimum sum of pixel values was determined across the entire width of the channel

axis. The image was then cropped by removing this region. The signals should be equivariant to

translation along the tick axis. The first pixel in the cropped image was taken to be the first pixel

after the removed region and the last pixel was taken to be the pixel before the removed region.
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The images were then downsampled by summing the pixel values of the cropped images

according to:

(7.2) Pds
k,l =

2+(2k)∑
i=1+(2k)

9+(9l)∑
j=1+(9l)

P∗
i, j,

where Pds
k,l is the pixel value for the downsampled image with the index k along the channel axis

and l along the tick axis. i and j are the respective indexes of the cropped image.

Once Pds
k,l was determined, the pixel values were rescaled to be within an 8-bit range via:

(7.3) Pds:∗
k,l = Pds

k,l ×
maxP∗

i, j

maxPds
k,l

and converted to integer values.

The truth boxes were shifted to account for the removed region of the image and also

downsampled in size by 2 times along the channel axis and 9 times along the tick axis.

The downsampling factors of 2 and 9 were chosen primarily for practicality. The images

represent the charge deposited in the TPC volume. The collection channels had a wire spacing

of 4.75 mm and the free electrons in the TPC were simulated with a constant drift speed of

1.6 mm/µsec. Each of the pixels in the downsampled images therefore had an aspect ratio of

132:100 along the channel and tick axes, with each downsampled pixel containing the ionization

deposited in a 9.5 mm by 7.2 mm area of the x-z plane.

7.2.4 Image Datasets

The images were generated from the ‘10k events containing SN neutrinos’ dataset. The TPs which

resulted from using an ADC threshold of 20 ADC counts were also used in the work presented in

this chapter, allowing the performance of the baseline SNB counting trigger and the ML-based

SNB counting trigger on the same TPs to be compared.

The images which included TPs from SN neutrino interactions were split into a training

dataset, a validation dataset and an evaluation dataset. The training dataset was used to train

the network. The validation dataset was used at the end of each epoch of training to determine

the performance of the network on a dataset independent from the training dataset. This was

useful to check for consistency with the loss and other metrics calculated on the training dataset

and to identify any overfitting on the training dataset. The evaluation dataset was used to assess

the performance of trained models and determine the efficiency for SN neutrino interactions.

The training/validation/evaluation split was 80%/10%/10%, with 23,656 images in the training

dataset, and 2952 images in each of the validation and evaluation datasets.

The images produced which only included TPs from background sources were not used for

training the network. This was because the network was already able to make use of predictions

which were not associated with a truth box in the training dataset to learn when predictions
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should be given a low objectness score. These images were instead used to determine false positive

rates for the predictions made by the trained model. A dataset of 36,000 of these background only

images was created.

7.2.5 Associating Predicted Boxes With Truth Boxes

Nine anchor boxes were used in the training of the network, with 3 assigned to each scale of the

network. The anchor box dimensions (in units of pixels in the downsampled images) are presented

in table 7.2. The derivation of the dimensions and number of these truth boxes is explained in

section 7.3.1. To determine whether the network was training to make good predictions, metrics

based on whether a predicted box was associated with a truth box were used. Truth boxes were

associated with predictions made using the anchor box which had the greatest IOU with the

truth box when both were fixed to have their bottom left corner at the origin. As each anchor

box was associated with a given scale and therefore set of grid cells, the grid cell for this scale

which the centre of the truth box was located in was assigned to be the one making the particular

prediction (guided by the anchor box) which was associated with a truth box. The total number of

truth boxes assigned to each dataset and the proportion assigned to each anchor box are also

shown in table 7.2. The smallest and largest anchor boxes have the lowest occupancy but the

proportion of truth boxes assigned to each scale was found to be 26.4±0.4% for scale 3, 42.3±0.2%

for scale 2 and 31.1±0.3% for scale 1. These proportions of truth boxes are not equal but no

scale dependent weighting was used in the loss function because the goal was to train to get the

optimal predictions from the dataset overall rather than to get equally good predictions from

each scale.

Table 7.2: Size of anchor boxes for each network scale in units of pixels in the downsampled
images, where Aw and Ah are the width and height of the anchor boxes. Also presented is the
number of truth boxes, TN , which were assigned to each anchor box for the training, validation
and evaluation datasets, denoted with superscript t, v and e respectively.

Scale Index Aw Ah T t
N Tv

N T e
N

3 1 3 2 26 (<1%) 4 (<1%) 3 (<1%)
3 2 3 3 1290 (3.4%) 166 (3.5%) 156 (3.3%)
3 3 4 3 8757 (23.0%) 1123 (23.4%) 1081 (22.6%)
2 4 6 6 6637 (17.4%) 811 (16.9%) 791 (16.6%)
2 5 9 12 4931 (12.9%) 661 (13.8%) 688 (14.4%)
2 6 13 33 4542 (11.9%) 550 (11.5%) 551 (11.5%)
1 7 26 16 4524 (11.9%) 572 (11.9%) 599 (12.5%)
1 8 39 51 5371 (14.1%) 657 (13.7%) 662 (13.9%)
1 9 217 143 2020 (5.3%) 245 (5.1%) 242 (5.0%)

Sum 38098 4789 4773
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7.2.6 Image Augmentations

Data augmentation was used to extend the effective size of the training dataset. This can

help to avoid overfitting of the training dataset and improve the generalisation of the network

performance.

Two different image augmentations were applied to the training dataset during training. The

first of these was a random shift of the image and the second was a rotation of the image.

In the random shift, the image and the bounding boxes were translated randomly by up to

half of the image width and up to half of the image height. Any pixels which were translated

beyond the edge of the image were wrapped around to the other side of the image. If any truth

boxes were shifted beyond the image boundary then the truth box and the image were shifted

back so that they were instead only shifted up to the edge of the image. As each APA covers

2 TPCs, with 1 on either side of the APA, the random shift helped to ensure that the training

dataset was equivariant to translation and should result in improved generalisation during

training.

A rotation of 180 degrees was applied to 50% of the augmented images instead of a random

rotation because the aspect ratio of the images was not 1:1.

7.3 Choice of Hyperparameters

The readiness of a network to minimise the loss during training is highly dependent on the

hyperparameters which are used. These hyperparameters include all the values which have an

impact on training, including the scaling factors introduced in section 6.2.2.

The number and size of the anchor boxes used to train a YOLOv3 network has to represent

the training dataset well in order for truth boxes to be assigned to anchor boxes in balanced

proportions. If an insufficient number of truth boxes are assigned to a particular scale, then the

training dataset for the scale will be small. This is likely to result in increased overfitting when

compared to the other scales of the network for the same number of epochs of training.

This section will start by explaining the technique used to derive the optimal anchor boxes

for training on this dataset and report their sizes. The learning rate optimisation techniques and

the early stopping conditions for training will then be explained. Apart from the anchor boxes,

the tuning of hyperparameters has not been studied in detail.

7.3.1 Anchor Boxes

As explained in section 6.2, the anchor boxes are used to guide the predictions made by the

network. For the network to be able to make good predictions, the truth boxes in the datasets

must be well represented by the anchor boxes used.

The optimal anchor boxes were determined through the application of a k-median clustering

algorithm which is set out in full in appendix A.7. This was applied to the truth boxes in the
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training dataset after the downsampling was applied to find the 9 anchor boxes which best

represented the truth boxes. The final anchor boxes are plotted in figure 7.1 relative to the width

and height of the downsampled images.
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Figure 7.1: Visualisation of the optimal anchor boxes as determined via k-median clustering.
Anchor box labels correspond to those in table 7.2. The anchor boxes are plotted relative to the
downsampled image width and height. The width corresponds to the channel dimension and the
height corresponds to the time dimension.

7.3.2 Learning Rate and Stopping Condition

The Adam optimiser set out in algorithm 3 was used to optimise training. The parameters used

during training were set to: ρ1 = 0.9, ρ2 = 0.999 and ϵ= 1×10−7.

The initial learning rate was set to lr = 1×10−4. During training the loss value calculated

from the validation dataset was monitored. If the validation loss did not decrease for 3 epochs

the learning rate was decreased to 10% of its previous value. This approach was used to allow the

network to probe the weight parameter space of the loss without skipping over local minima due

to a high learning rate.
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An early stopping condition was used to determine after how many epochs to stop training. If

the validation loss did not decrease after 10 epochs then training was halted. The final model

weights were then saved and used to evaluate the performance of the network.

7.3.3 Other Hyperparameters

During training the initial 2 epochs were set to use the warm-up loss defined in section 6.2.2.6.

As set out in section 6.2.2, the only fixed scaling factor which was not set to 1 was used in the

truth associations loss term defined in section 6.2.2.3. A minibatch size of 8 images was used for

training.

7.4 Training Metrics

It is important to assess whether it was possible to successfully train the network on the dataset

used. During training a number of metrics were computed on the training and validation datasets.

In this section the progression of these metrics during training is studied and interpreted to show

whether the training of the network was successful or not. These metrics were:

1. the overall training and validation losses, Lt and Lv respectively

2. the average object scores for predictions which were associated with a truth box for the

predictions from each scale of the network, labelled ōt
i:ob j for the training dataset (i = {1,2,3}

to denote the scale) and ōv
i:ob j for the validation dataset.

3. the average object scores for predictions which were not associated with a truth box for the

predictions from each scale of the network, labelled ōt
i:noob j for the training dataset and

ōv
i:noob j for the validation dataset

4. the average IOU values for predictions which were associated with a truth box from each

scale of the network, labelled as Ī t
i:ob j for the training dataset and Īv

i:ob j for the validation

dataset

5. the average positional loss term for each scale, labelled as L̄t
i:x,y and L̄v

i:x,y for the training

and validation datasets respectively

6. the average size loss term for each scale, labelled as L̄t
i:w,h and L̄v

i:w,h for the training and

validation datasets respectively

7. the average truth associations loss term for each scale, labelled as L̄t
i:ob j and L̄v

i:ob j for the

training and validation datasets respectively

8. the average no truth associations loss term for each scale, labelled as L̄t
i:noob j and L̄v

i:ob j for

the training and validation datasets respectively
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These metrics were computed by averaging across the predictions on all images in each minibatch

and then taking the average for all minibatches in each epoch. The minibatch size stayed constant

throughout training and validation. The metrics for the validation dataset were calculated after

training on the epoch was complete. For the training dataset, these metrics were calculated

during training on each minibatch. As minibatch SGD (described in section 6.1.3) was used

for training, these metrics represent an average value for each of the metrics over the epoch

of training. The effect of this was that the metrics for the training dataset were on average

calculated half an epoch earlier than the metrics for the validation dataset.

It is expected that the overall loss during training will be minimised. As a YOLOv3 network

has many different contributions to the loss, care needs to be taken when interpreting general

metrics, such as the overall loss. The ōi:ob j and L̄ i:ob j metrics can be used to show whether

predictions of the objectness score improve during training. Similarly the ōi:noob j and L̄ i:noob j

metrics show whether the network learns to predict low objectness scores for regions of the image

which do not contain a truth box. The Ī i:ob j, L̄ i:x,y and L̄ i:w,h metrics can be interpreted to show

whether the localisation of the predicted boxes improved during training.

7.4.1 Overall Loss
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Figure 7.2: The average loss for each epoch of training calculated on the training dataset, Lt, and
the validation dataset, Lv.
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The Lt and Lv for each epoch of training is plotted in figure 7.2. The Lt decreased monotoni-

cally over each epoch whilst Lv fluctuated above and below Lt until a minimum value occured

on epoch 11. After this point the validation loss after each epoch of training stabilised whilst Lt

appeared to asymptote towards a value of 65. The Lt remained below Lv by a consistent amount

from epochs 17-21, which indicates that the network began to overfit to the training dataset but

remained well generalised to the validation dataset.

7.4.2 Predicted Object Scores

The ōt
i:ob j and ōv

i:ob j metrics predicted for scales i = {1,2,3} are shown in figure 7.3(a). The ōt
i:ob j

and ōv
i:ob j metrics did not increase significantly after the first epoch of training for most cases.

The largest increase in ōi:ob j occured for ōv
3:ob j, where it increased from 0.83 to 0.86.

It can be seen that the oscillation of the ōv
i:ob j metrics, which was apparent over the early

epochs decreased significantly after epoch 11, when the validation loss reached a minimum. The

ōt
i:ob j value was seen to keep increasing over the last few training epochs whilst the ōv

i:ob j metrics

stayed constant for each scale, which again suggested that the network started to overfit to the

training dataset but was still well generalised to the validation dataset.

It can also be seen from figure 7.3(a) that the ōv
i:ob j metrics for scales 1 and 3 were consistently

greater than the ōt
i:ob j metrics for scales 1 and 3. This was not as prominent for scale 2 but was

still the case for the majority of epochs. It is not known why this was the case.

It was expected that the ōi:ob j terms would optimise throughout training. The general trend

of the ōt
i:ob j terms was to slightly increase over the course of training after the initial warm-up

epochs. The ōv
i:ob j terms appeared to converge to a value and stop oscillating over the later epochs.

It was theorised that due to the simplicity and sparsity of the images that the network was

able to train to its optimal performance for ōi:ob j predictions with its given hyperparameters

and training dataset within a single normal training epoch. It may have been the case that the

localisation of predicted boxes were only well optimised after epoch 11, which could account for

the decrease in volatility of the ōv
i:ob j metrics after this point.

The ōt
i:noob j and ōv

i:noob j metrics followed the expected behaviour during training more closely

as can be seen in figure 7.3(b). These metrics rapidly tended towards zero in the warm-up epochs

for both the validation and training datasets and continued to do so in the subsequent epochs

of training. For scales 2 and 3 the ōi:noob j metrics decreased to <0.01. The ō1:noob j appeared to

asymptote towards a value of 0.02. The ō1:noob j may be expected to have an increased value

compared to ō2;3:noob j as a result of each grid cell covering a greater number of pixels in the

input image and therefore containing some signal a higher proportion of the time. The network

may have learned to associate high objectness scores with non-sparsity or high pixel values,

within the scope of predictions by the grid cell. The truth boxes were assigned to the anchor boxes

which were most similarly sized as explained in section 7.3.1. However, the signal remained in

the image and may have led to predictions with high objectness scores which were guided by
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FIGURE 7.3. Comparison between the training and validation datasets of average
object scores for each epoch of training for predicted boxes with (a) and without
(b) associations to truth boxes. The average objectness scores were calculated
separately for each scale, with scales 1,2 and 3 being plotted in blue, red and green
respectively. The values calculated for the training dataset are marked by a cross
and joined by a solid line. The values calculated for the validation dataset are
marked by a dot, joined by a dashed line.
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other anchor boxes. An attempt to account for this was made in the lnoob j term, as explained in

section 6.2.2.4. This discounted the contribution of any onoob j predictions to the lnoob j term if

the predicted box had an IOU>0.33 with a truth box. This would have helped to ensure that few

predicted boxes devoid of any signal would lead to high oi:noob j predictions. However, these cases

were not excluded from the ōi:noob j metric. As a result many oi:noob j predictions were likely to

have high objectness scores. The low values of the ōi:noob j metrics despite this was reassuring

because it showed that it was likely that the network had learned to differentiate between regions

containing signal and regions without signal.

7.4.3 Prediction Localisation
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Figure 7.4: The average IOU score, Ī i:ob j, for each epoch of training calculated on the training
dataset and the validation dataset. The average IOU scores were calculated separately for
predictions from each scale, with scales 1,2 and 3 being plotted in blue, red and green respectively.
The Ī i:ob j values calculated for the training dataset are marked by a cross and joined by a solid
line. The values calculated for the validation dataset are marked by a dot, joined by a dashed
line.

The lx,y and lw,h loss terms should be minimised as the network weights were optimised

to improve predictions of the localisation of signal regions. It has already been noted that the

increased stability of the oob j predictions on the validation set after epoch 11 has no basis when

only considering ōi:ob j metrics. It was observed from figure 7.4 that the Ī t
i:ob j and Īv

i:ob j metrics
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improved monotonically for the training dataset as the network was trained. This continued

beyond epoch 11 but there was little further improvement. Once again beyond epoch 11 the Īv
i:ob j

appeared to become more stable.

After the warm-up epochs, the network was trained to optimise predictions of localisation on

only the truth boxes. The jump from the warm-up loss to normal loss resulted in the greatest

improvement in Īv
i:ob j over a single epoch for scales 1 and 2. The Īv

1:ob j metric improved from 0.3

to 0.52 and Īv
2:ob j improved from 0.27 to 0.47 during training. The localisation of predictions for

scale 3 was poorer; Īv
3:ob j increased from 0.14 to 0.18. The largest anchor box assigned to scale 3

was only 4 pixels across and 3 pixels tall in the downsampled images, which may be evidence

that the network struggled to accurately predict the localisation of small charge deposits. When

taken together, the combination of the lower values for Ī3:ob j and ōv
3:ob j metrics suggested that

scale 3 produced poorer predictions than scales 1 or 2.

7.4.4 Contributions To The Loss

The average contributions to the loss from L̄ i:x,y, L̄ i:w,h, L̄ i:ob j and L̄ i:noob j were also investigated

to help interpret the training of the network. It was observed from figures 7.5(a) and 7.5(b) that

L̄ i:x,y and L̄ i:w,h were rapidly minimised over the warm-up epochs. This was expected because

during the warm-up epochs the predicted boxes were being guided to match the anchor boxes

placed in the centre of each grid cell. During the subsequent epochs of normal training, L̄3:x,y

did not significantly improve, indicating that the position of the predicted boxes from scale 3

had reached their maximum accuracy. Though L̄2:x,y and L̄1:x,y did continue to minimise, the

L̄v
i:x,y values stabilised after epoch 11. The L̄ i:w,h metrics were found to similarly continue to

decrease during the normal training epochs. However, L̄3:w,h continued to minimise until epoch

11 of training, unlike L̄3:x,y.

Whilst overfitting can be inferred from comparing L̄t
i:x,y and L̄v

i:x,y for a given scale, it is unfair

to directly compare the magnitude of L̄ i:x,y metrics between scales due to the imbalance in the

number of assigned truth boxes and the Ww,h scaling factor used. The same is true for the L̄ i:w,h

metrics.

The L̄ i:ob j metrics were difficult to interpret, much like the ōi:ob j metrics but followed a

consistent pattern shown in figure 7.5(c). The L̄v
i:ob j metrics were smaller than the L̄t

i:ob j metrics

for scales 1 and 3 for every epoch. After oscillating around the L̄t
2:ob j values before epoch 11, the

L̄v
2:ob j values also became smaller than the L̄t

2:ob j values for later epochs. A loss term determined

from the validation dataset is not expected to have a loss smaller than one determined from the

training dataset as this indicates that the network weights performed better on the validation

dataset than on the dataset they were trained on. That this was the case was confirmed by figure

7.3(a).

It may have been the case that there was not a significant gradient over the lob j term in

the weight parameter space of the loss. The observation that despite lob j being overwhelmingly
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the largest contribution to the loss, the network consistently improved on the Ī i:ob j metric may

suggest that the truth associations loss term indeed formed a plateau in the weight parameter

space of the loss but that the lx,y and lw,h loss terms were able to follow a gradient.

The magnitude of the L̄ i:ob j terms was significantly larger than the other loss terms likely

due to the weight of wob j = 50 applied in equation 6.26. This weight is squared in equation 6.23

used to determine lob j, the term averaged to find L̄ i:ob j. This was a basic attempt to upweight

the contribution to the loss of the obj scores from prediction with associations to truth boxes, so

that they may contribute a similar amount as the predictions which had no association with a

truth box.

It was not clear why the L̄t
i:ob j increased after the warmup epochs for all scales, rising from

the value at epoch 1 to the value at epoch 2.

The L̄t
i:noob j metrics monotonically decreased during training, showing that the predictions

which were not associated with a truth box learned to predict lower and lower objectness scores.

This was consistent with figure 7.3(b).

7.4.5 Summary of Training Metrics

The overall loss, L, provided the simplest interpretation of training. It appeared that the network

began to overfit to the training dataset but remained well generalised until training was stopped.

The ōi:ob j metric suggested that the network rapidly learned what looked like a neutrino in-

teraction and what did not using these simple, sparse images. As expected, the ōi:noob j metrics

showed that the network learned to predict low objectness scores for predictions which were not

associated with a truth box.

The improvement in the localisation of predictions was indicated by the Ī i:ob j metric and

increased steadily over the course of training up until epoch 11, where it stabilised. When this

occurred, ōv
i:ob j predictions also became more stable, suggesting that the network weights had

become near-optimal. The localisation predictions from scale 3 were consistently found to be

significantly worse than those from scale 1 or 2.

The metrics measuring the components of the loss were consistent with the ōi and Ī i:ob j

metrics. The overall impression from the L̄ i:x,y and L̄ i:w,h metrics was that the network was

rapidly able to learn to predict truth boxes of the dimensions of anchor boxes during the warm-up

epochs and was then able to progressively improve predictions of the localisation of neutrino

interactions in the images during the normal training epochs. It may have been the case that

once the localisation predictions became good enough, the predictions often contained at least

some of the neutrino signal. This could explain why the ōv
i:ob j became more consistent over later

epochs.
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FIGURE 7.5. Comparison between the training and validation datasets of the average
value the 4 contributions to the loss for each epoch of training. (a): The average
loss from the positional loss term, L̄ i:x,y. (b): The average loss from the size loss
term, L̄ i:w,h. (c): The average loss from the truth associations loss term, L̄ i:ob j. (d):
The average loss from the no truth associations loss term, L̄ i:noob j. The average
loss values were calculated separately for each scale, with scales 1,2 and 3 being
plotted in blue, red and green respectively. The values calculated for the training
dataset are marked by a cross and joined by a solid line. The values calculated for
the validation dataset are marked by a dot, joined by a dashed line.
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7.5 Performance of YOLO Network

The images from the evaluation dataset containing SN neutrinos and the background-only dataset

were passed to the network and the output predicted boxes were saved for analysis. Several

stages of processing were applied to the predicted boxes to discard poor candidates. Firstly, a

threshold on the objectness score, Tob j was applied to the predicted boxes. The sum of the pixel

values encompassed by each remaining predicted box, the SPV, was then determined. In addition

to the conventional Tob j applied in YOLOv3, a threshold on the SPV, TSPV , was then applied

to further reduce the number of predicted boxes and retain those which contained the greatest

amount of coincident activity in the detector. Finally NMS was applied to the remaining predicted

boxes. The final set of predicted boxes from the evaluation dataset were then labelled as tps and

fns according algorithm 5. As the background dataset contained no truth boxes, the remaining

predicted boxes could only be labelled as fps.

The efficiency and false positive rate of a number of combinations of Tob j, TSPV and TNMS

were studied to determine how to optimise the performance of the predicted boxes from the

network. Throughout this work a threshold of TIOU = 10−10 was used in the labelling of tps,

meaning that predicted boxes only needed to be have a minimal overlap with a truth box in

order to be labelled as a tp. It should be noted that although only a single predicted box could be

mapped to a truth box as a tp, many predicted boxes could overwise pass the thresholds applied

and the application of NMS. These were labelled as fps according to algorithm 5. The multiplicity

of these boxes did not further contribute to the calculated efficiency but did contribute to the false

positive rate. The multiplicity may, however, contribute to the performance of the SNB counting

trigger and is discussed further in section 7.6.

In this section the results from a pilot study using the entire evaluation dataset and only 3000

images from the background dataset are first presented. This was used to determine the range

of thresholds and prediction scales with which to process the full background dataset and to

characterise the properties of the predicted boxes. The performance of the selected thresholds is

then characterised for the full background dataset and the selection of thresholds to take forward

to study the performance of the SNB counting trigger is made.

7.5.1 Characterising Predicted Boxes

The properties of the predicted boxes made by the network on the evaluation dataset were first

investigated to more comprehensively determine whether the network had learned to differentiate

between signals and background and to determine a set of Tob j values for which to investigate

the network performance.

The distribution of Bob j predictions for predicted boxes with and without associated truth

boxes are shown in figure 7.6. When considering predictions from all scales of the network, as

shown in figure 7.6(a), it was clear that Bob j scores tended to be high for predictions with an
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(a) (b)

(c) (d)

FIGURE 7.6. Predicted objectness scores, Bob j, for predicted boxes with and without
truth associations for the evaluation dataset from each network scale and combined.
Predicted boxes with an associated truth box are plotted in red. Predicted boxes
without an associated truth box are plotted in blue. The two sets do not share the
same y-axis scale in order to show the contrasting distributions. (a): Predictions
from all scales. (b): Predictions from scale 1. (c): Predictions from scale 2. (d):
Predictions from scale 3.

associated truth box, with a mean value of 0.926. The vast majority of predicted boxes without an

associated truth box were given very low Bob j scores, with a mean of 0.006 but the entire range

was covered by both cases. There were peaks close to 0 and close to 1 for the predicted boxes

without an associated truth box. It is possible that these predictions in the peak close to Bob j = 1

were made by predictions local in an image to a SN neutrino signal or part of a SN neutrino

signal but not assigned to a truth box.

The distribution of Bob j scores was found to be similar across all scales, as can be seen from

figures 7.6(b) to 7.6(c). The proportion of Bob j scores for predictions without an associated truth
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(a) (b)

(c) (d)

FIGURE 7.7. Maximum IOU with a truth box, BIOU , for predicted boxes with and
without truth associations for the evaluation dataset from each network scale
and combined. Predicted boxes with an associated truth box are plotted in red.
Predicted boxes without an associated truth box are plotted in blue. (a): Predictions
from all scales. (b): Predictions from scale 1. (c): Predictions from scale 2. (d):
Predictions from scale 3.

box consistently appeared to reach a minimum around Tob j = 0.8 before increasing again. Below

Tob j = 0.8 the distribution of Bob j scores for predictions with an associated truth box was roughly

uniform. It appeared that predictions from scale 3 of the network were less able to differentiate

between signal and background, with the predictions associated with a truth box having a mean

Bob j of 0.873 compared to 0.925 and 0.965 for scales 1 and 2.

It was clear from figure 7.7(a) that the IOU scores from predictions with an associated truth

box were successfully predicting the localisation of the SN neutrino signals to some extent, with a

mean IOU of 0.411. It was clear that whilst the majority of predicted boxes without an associated

truth box did not overlap truth boxes, with the mean IOU being 0.006. However, IOU scores
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up to 0.88 were found, indicating that some predictions which were not associated with a truth

box were still successfully predicting boxes with a large overlap with truth boxes. Therefore it is

likely that the network weights were able to somewhat generalise good predictions of localisation

across different anchor boxes and potentially scales of the network.

There was a clear peak in the distribution of IOU scores for predicted boxes which were

associated with a truth box from scale 1 around the mean IOU of 0.531 for these boxes as shown

in figure 7.7(b). A similar case was found for scale 2, as shown in figure 7.7(c). However, for scale

3, this distribution more closely followed the distribution of IOU scores for predicted boxes which

did not have an associated truth box. This suggested that the localisation of predicted boxes for

predictions from scale 3 tended to be poorer than for the other scales.

In summary, it was clear that predicted boxes with an associated truth box predicted higher

Bob j and IOU scores than predicted boxes without associated truth boxes. Whilst it was clear

that the vast majority of predicted boxes without an associated truth box had low Bob j and

IOU scores, there were indications that some of these predictions had larger Bob j scores than

were typical. IOUs with truth boxes also covered a similar range to predicted boxes with truth

associations, suggesting that at least some of these predicted boxes were well localised and that

the network was able to generalise over scales when making localisation predictions. Predictions

of localisation from scale 3 were poorer than from scales 1 or 2.

The rate of predicted boxes with Bob j scores from the background only dataset used in the

pilot study is presented in figure 7.8. The distribution was similar to the Bob j distribution for

predicted boxes with no associated truth box in figure 7.6(a), with the lowest rate of predictions

found to occur close to Bob j = 0.8. The vast majority of the rate for all Bob j bins was found to be

from scale 3. However, even without the predictions from scale 3 and the use of a high object score

threshold of 0.98 the rate of predicted boxes from background sources would only be reduced to

10 kHz per FD module.

7.5.2 Threshold Exploration

A set of Tob j, TSPV and TNMS thresholds were selected to perform a grid search and determine

the optimal combinations to maximise the efficiency and minimise the FPR. This pilot study

was also used to investigate the impact of only using predictions from scales 1 and 2. The set of

objectness score thresholds was:

(7.4) Tob j = {0.8,0.85,0.9,0.99,0.999,0.9999},

with the SPV thresholds

(7.5) TSPV = {−1,1,1000,2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000}

and NMS thresholds

(7.6) TNMS = {0.1,0.2,0.3,0.4,0.5,0.66,0.75}.
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Figure 7.8: Distribution of rates (Hz per FD module) of predicted boxes from the background-only
dataset as a function of predicted Bob j score. The rate from all predicted boxes is plotted in blue,
from scale 3 in red, from scale 2 in green and from scale 1 in purple. 95% confidence error bars on
the rate are too small to be visible for all scales except scale 1 only.

The loosest NMS threshold of TNMS = 0.75 was used to characterise the impact of the SPV

on the FPR. The FPR as a function of the TSPV is plotted in figure 7.9(a). This pilot study used

3000 images from the background only dataset. The FPR which corresponded to a single fp

prediction was 14.8 Hz per FD module. No predicted boxes had a SPV value of 5000 or larger in

the pilot background-only dataset. However, it was clear that using a TSPV was highly effective at

reducing the FPR. The FPR for the loosest Tob j, 0.8, was reduced from 6.0×105 Hz/FD module to

zero, whilst the tightest Tob j, 0.9999, was reduced from 2.6×103 Hz/FD module to zero. The use

of TSPV = 1 (discarding predicted boxes which did not contain any non-zero pixels) reduced the

FPR to 2.2×105 Hz/FD module for Tob j = 0.8. Further limiting Tob j to 0.9999 reduced the FPR to

1.5×103 Hz/FD module. The large FPR which resulted with the use of high Tob j thresholds shows

that there was still much scope for improvement in the training of the network. For predicted

boxes resulting from the background only dataset, even when the predicted Bob j was high, the

network was locating predicted boxes in empty regions of the image a high proportion of the time.

The impact of the TNMS threshold was also investigated. Figure 7.9(b) shows how TNMS
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decreased the FPR after no TSPV was applied. For Tob j = 0.9999, the FPR was only decreased

from 2.6×103 Hz/FD module to 2.3×103 Hz/FD module when TNMS was reduced from 0.75 to 0.1.

It was more successful for Tob j = 0.8 where the FPR was reduced from 6.0×105 Hz/FD module to

4.1×105 Hz/FD module.
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FIGURE 7.9. Exploration of thresholds and the resulting FPR and ϵ (pilot study).
All error bars represent 95% confidence limits. (a): FPR for TNMS = 0.75. (b):
FPR without the application of a TSPV . (c): ϵ for TSPV = 4000. (d): ϵ without the
application of a TSPV .

As the FPR was least affected by variations in TNMS, the response of the efficiency to TNMS

variations was characterised next. Figures 7.9(c) and 7.9(d) show how the efficiency decreased as

TNMS was decreased when using TSPV = 4000 and no TSPV threshold respectively. For both cases

the efficiency appeared to asymptote towards a maximum value as the Tob j decreased across

the entire range of TNMS thresholds used. However, by increasing Tob j from 0.8 to 0.9999, the

efficiency using TNMS = 0.75 and no TSPV dropped from 0.972 to 0.740. When using TSPV = 4000
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the drop was from 0.863 to 0.560.

The efficiency was observed in figure 7.9(c) to consistently drop by around 0.1 over the range

of TNMS thresholds where TSPV = 4000 was used. A similar drop was observed in figure 7.9(d)

for Tob j = 0.9999 but was less pronounced the higher the maximum efficiency was for other Tob j

thresholds.

The efficiency was not observed to increase by more than 2% between TNMS = 0.5 and

TNMS = 0.75 for any Tob j, appearing to have tended towards a maximum value. As TNMS was

significantly less effective at decreasing the FPR than Tob j, the efficiency was plotted against the

FPR for TNMS = 0.75 in figure 7.10(a). The resulting curve more clearly visualises the trade-off

between reduced efficiency and reduced FPR when increasing the Tob j and TSPV thresholds. The

colors represent the different Tob j thresholds and the different points represent the different

TSPV thresholds used. The efficiency and FPR determined for all TSPV thresholds up to 12000

were plotted and the points plotted for each Tob j are joined by a line. A logarithmic scale was

used on the FPR axis. The highest efficiency at which no false positives were found in the pilot

study is reported in table 7.3.

Table 7.3: Efficiency, ϵ, for Tob j thresholds when no false positives were found for the pilot study
background dataset of 3000 images using TNMS = 0.75. Efficiency values determined using
predicted boxes from all scales is denoted by ϵ123 and from predicted boxes from scales 1 and 2 by
ϵ12. Efficiency values quoted with 95% certainty error bars.

Tob j ϵ123 ϵ12
0.9999 0.538+0.014−0.014 0.529+0.014−0.014
0.999 0.733+0.012−0.012 0.722+0.013−0.013
0.99 0.802+0.011−0.011 0.796+0.011−0.012
0.9 0.830+0.010−0.011 0.827+0.011−0.011
0.85 0.833+0.010−0.011 0.830+0.010−0.011
0.8 0.835+0.010−0.011 0.833+0.010−0.011

The FPR could be reduced several orders of magnitude by increasing the SPV threshold.

Whilst the precision of the FPR which could be probed in this pilot study was only 14.8 Hz/FD

module it was possible to probe this precision and still achieve a efficiency greater than 0.8 for

Tob j ≤ 0.99. For these Tob j thresholds the FPR was reduced by more than 4 orders of magnitude,

whilst for Tob j = 0.999 and Tob j = 0.9999, the FPR was reduced by 3 and 2 orders of magnitude

respectively. The significance of the use of a TSPV instead of a TNMS can be seen by contrasting

figure 7.10(a) with figure 7.10(b), where no TSPV was applied before the application of NMS.

The reduction in efficiency that resulted from the application of TNMS thresholds was smaller

than from the application of TSPV thresholds but the reduction in FPR was comparatively

insignificant.

Due to the high rate of predictions with high Bob j scores observed in figure 7.8 from scale

3 compared to scales 1 and 2, the performance of the network using only predictions from
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FIGURE 7.10. ϵ as a function of FPR comparing the use of predicted boxes from all
scales and only scales 1 and 2 with the pilot study dataset. The error bars show
95% confidence regions. (a): Using TNMS = 0.75 for predicted boxes from all scales.
(b): Predicted boxes from all scales without the application of a TSPV . (c): Using
TNMS = 0.75 for predicted boxes from scales 1 and 2. (d): Predicted boxes from
scales 1 and 2 without the application of a TSPV .

scales 1 and 2 was also investigated using the predicted boxes from the pilot study. The results

are presented in figures 7.10(c) and 7.10(d) which use TNMS = 0.75 and no TSPV threshold

respectively. These were compared to the respective figures, 7.10(a) and 7.10(b) which were found

using predicted boxes from all scales of the network. It was found that when setting TNMS = 0.75,

discarding predicted boxes from scale 3 had little impact on the FPR for larger TSPV thresholds.

This can be seen in table 7.3, where ϵ1,2 values are within 1% of their ϵ123 counterparts. However,

for TSPV = 1 or no TSPV threshold the FPR was reduced by an order of magnitude when only

using predicted boxes from scales 1 and 2. This was also observed by comparing figure 7.10(d)

to figure 7.10(b) where the reduction in FPR by an order of magnitude through the use of only
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FIGURE 7.11. ϵ, FPR and ϵ as a function of FPR curves for full background dataset
using TNMS = 0.75 and scales 1 and 2. The error bars show 95% confidence limits.
(a): ϵ for TNMS = 0.75 for predictions from scales 1 and 2. (b): FPR for TNMS = 0.75
for predictions from scales 1 and 2 using the large background dataset. (c): ϵ as a
function of FPR for TNMS = 0.75 for predictions from scales 1 and 2 using the large
background dataset.

scales 1 and 2 was observed when no TSPV was applied for all TNMS thresholds.

7.5.2.1 Summary of Pilot Study

In summary, introducing a SPV threshold was found to be highly effective at reducing the FPR.

The application of TSPV = 1 was able halve the FPR, whilst TSPV = 5000 discarded all the boxes

predicted on the background-only dataset. The TNMS was found to have comparatively little

effect on the FPR but reducing TNMS was found to lower the efficiency. Application of Tob j was

able to reduce the FPR by orders of magnitude but reducing it by more than 3 orders of magnitude
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lowered the efficiency below 0.8. Dropping all predicted boxes from scale 3 was found to lower the

efficiency by less than 1% whilst reducing the FPR by up to an order of magnitude.

Performance studies using the full 36,000 image background-only dataset allow a more precise

determination of the FPR. The set of thresholds used to explore the performance of the network

on this dataset were chosen based on the pilot study. The TSPV had by far the largest impact

on the FPR whilst preserving most of the efficiency, whilst smaller TNMS and Tob j values had a

poorer trade-off in performance. Therefore, the set of 16 combinations of thresholds for which to

study the performance of the full background-only dataset around was chosen to be centred on a

high TSPV and loose TNMS and Tob j. Each of these thresholds was then scanned individually to

determine to whether other combinations were able to improve the performance. As a result of

the efficiency of the network being so similar after dropping predicted boxes from scale 3, it was

decided to discard those from scale 3 and only use those from scales 1 and 2.

7.5.3 Performance of YOLOv3 Network Using Full Background Dataset

The efficiency on the evaluation dataset and the FPR from the background-only dataset as a

function of SPV are shown in figure 7.11 using TNMS = 0.75. This background dataset of 36000

images had a precision of 1.23 Hz/FD module for each fp found. No fps were found with SPV

values greater than 9000.

As can be seen in figures 7.11(a) and 7.11(b), the SPV only reduced the efficiency by a

maximum of 25% when TSPV = 9000 was applied but reduced the FPRs from 6.0×104Hz/FD

module to <1.23Hz/FD module.

The ϵ as a function of FPR curve for the full background-only dataset is shown in figure

7.11(c) for TNMS = 0.75 and different TSPV thresholds. It was clear that simply using high TSPV

thresholds whilst keeping TNMS and Tob j thresholds very loose remained the most effective way

to preserve a high efficiency whilst minimising the FPR. The 16 different combinations of Tob j,

TSPV and TNMS were chosen to be centred around Tob j = 0.8, TSPV = 9000 and TNMS = 0.75.

This combination used loose Tob j and TNMS and the lowest TSPV which resulted in no fps. It was

found that this combination resulted in the optimal efficiency of ϵ12 = 0.713. The efficiency, ϵ, and

FPR, µFPR , of the other combinations are reported in the fourth and fifth columns of table 7.4.

7.6 Impact of YOLO-based Supernova Neutrino Identification on
Supernova Burst Trigger Performance

In the previous section only the efficiency of predicting at least 1 box which overlapped with the

truth box was studied. Whilst the SNB trigger relies on the YOLOv3 network to be able to make

predictions with a high efficiency, it also benefits from retaining multiple predicted boxes per

neutrino interaction. This is because the SNB trigger simply counts the number of predicted

boxes within a period of time and triggers when a threshold has been reached. The baseline
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SNB trigger studied in section 5.4 counted the number of TCs instead of the number of predicted

boxes.

The signal required by the toy MC to determine the SNB trigger efficiency, ϵSNB was the

energy spectrum of N̂E, the average number of predicted boxes per neutrino interaction. This is

known as the ‘predicted boxes signal’.

The SNB trigger efficiency for a FPR of less than 1 per month was studied for the 16

permutations of TSPV , TNMS and Tob j set out in table 7.4. For each permutation the µFPR was

used to determine the lowest threshold on the number of predicted boxes which led to a FPR of

less than 1 per month. This threshold was then used to determine the SNB trigger efficiency, ϵSNB

for that permutation. A number of these permutations found no fps from the 36,000 background

images dataset. In these cases a lower limit on ϵSNB was determined by using the precision of the

dataset, µFPR = 1.23 Hz/FD, as an upper limit on µFPR (this is the µFPR corresponding to 1 fp).

In this section the derivation of the energy spectrum of the average number of predicted boxes

is explained. This will be referred to as the ‘signal’. Following this, the computed efficiencies of

the SNB trigger for each of the threshold permutations is reported.

Table 7.4: Efficiencies, (ϵ) and false positive rates (µFPR) for the Tob j, TNMS and TSPV working
points selected for evaluation of the performance a SNB trigger using YOLOv3-derived clusters.
The threshold permutations for which no fps were found are denoted with an asterisk. The
threshold on the number of predicted boxes to achieve <1/month FPR for a SNB, TSNB is also
reported as well as the SNB trigger efficiency for SNB at the far edge of the galaxy and in the
LMC. The reported errors are 95% confidence values.

Tob j TNMS TSPV ϵ (%) µFPR (Hz/FD) TSNB 30kpc ϵSNB (%) 50kpc ϵSNB (%)
Rules-based ≤ 0.367∗ 15 35.9+0.9−1.0 1.4+0.2−0.2

0.8 0.75 5000 83.3+1.1−1.1 60.49+17.28−16.05 712 80.7+0.7−0.8 3.6+0.3−0.3
0.8 0.75 6000 80.4+1.1−1.1 25.93+11.11−9.88. 333 96.9+0.3−0.3 12.7+0.7−0.7
0.8 0.75 7000 77.5+1.2−1.2 8.64+7.41−6.17 132 99.9+0.1−0.1 43.3+1.0−1.0
0.8 0.75 8000 74.7+1.2−1.2 4.94+4.94.−3.70 83 100+0.0−0.1 64.6+0.9−0.9
0.8 0.75 9000 71.3+1.3−1.3 ≤ 1.23∗ 31 100+0.0−0.0 92.5+0.5−0.5

0.85 0.75 9000 71.2+1.3−1.3 ≤ 1.23∗ 31 100+0.0−0.0 91.0+0.5−0.6
0.9 0.75 9000 70.8+1.3−1.3 ≤ 1.23∗ 31 100+0.0−0.0 88.9+0.6−0.6

0.99 0.75 9000 67.8+1.3−1.3 ≤ 1.23∗ 31 100+0.0−0.1 66.9+1.1−1.0
0.999 0.75 9000 61.0+1.4−1.4 ≤ 1.23∗ 31 98.7+0.2−0.2 28.6+1.1−0.9
0.9999 0.75 9000 45.0+1.4−1.4 ≤ 1.23∗ 31 58.6+0.9−0.8 2.1+0.3−0.3

0.8 0.66 9000 71.2+1.3−1.2 ≤ 1.23∗ 31 100+0.0−0.0 92.0+0.4−0.6
0.8 0.5 9000 70.8+1.3−1.3 ≤ 1.23∗ 31 100+0.0−0.0 90.2+0.5−0.4
0.8 0.4 9000 70.0+1.3−1.3 ≤ 1.23∗ 31 100+0.0−0.0 81.0+0.7−0.8
0.8 0.3 9000 68.0+1.3−1.3 ≤ 1.23∗ 31 99.9+0.0−0.1 57.1+0.9−0.9
0.8 0.2 9000 65.4+1.3−1.4 ≤ 1.23∗ 31 99.2+0.2−0.2 32.0+0.9−1.0
0.8 0.1 9000 61.0+1.4−1.4 ≤ 1.23∗ 31 94.3+0.5−0.5 13.6+0.7−0.7
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7.6.1 Predicted Boxes Signal

To determine the average number of predicted boxes per neutrino interaction, N̂E, as a function

of neutrino energy, Eν, the predicted boxes needed to be associated with a Eν value. The efficiency

for each threshold permutation depended only on whether a single tp was assigned to each truth

box. A maximum of 1 predicted box was assigned to each truth box.

Whilst it is possible to assign an Eν to a tp from the truth box it was matched to, there may

remain predicted boxes which were assigned as fp in this classification scheme but result from

the presence of a neutrino interaction. In addition, a particular neutrino interaction may lead to

truth boxes on multiple images.

There were up to 3 neutrino interactions per image in the evaluation dataset. In order to

find N̂E for each energy bin, a subset of images from the evaluation dataset was selected. To

allow each predicted box to be associated with a particular Eν, all neutrinos which had truth

boxes on the same image as another neutrino were discarded from the dataset. This allowed the

remaining images to possess only a single truth box and therefore each could be associated with

a particular neutrino and Eν. The evaluation dataset contained 3032 images, with 2726 unique

neutrino interactions. After discarding any neutrinos which had truth boxes on the same image

as another neutrino, 1272 neutrino interactions and 1351 images remained which were used to

derive N̂E in each energy bin.

The total number of predicted boxes which survived the Tob j, TSPV and application of NMS in

each ‘single-neutrino image’ may have included predicted boxes which resulted from background

sources in addition to those which resulted from a neutrino interaction. The total number of

images corresponding to each energy bin allowed the average number of predicted boxes due to

background sources for that bin, N̂bkg, to be estimated from µFPR for each threshold permutation.

The Eν values were binned and for the neutrinos in each Eν bin the total number of fps and

tps was summed. The number of APAs (images) with truth boxes, in each Eν bin was used to

determine N̂bkg in that bin. The N̂E was then determined via:

(7.7) N̂E =
∑n

i=1(N tp
i +N f p

i )− N̂bkg

n
,

where n is the number of neutrinos in the energy bin and N tp
i and N f p

i are the number of tps

and fps for neutrino i.

The excess of fps is shown for the use of thresholds Tob j = 0.8 and TNMS = 0.75 in figures

7.12(a) and 7.12(b), where TSPV = 1 and TSPV = 9000 were applied. The respective background

rates of µFPR = 4.27×104 Hz/FD and µFPR = 1.23 Hz/FD module were found to lead to N̂bkg

values far below the N f p in each Eν bin, with this becoming increasingly proportionally more

severe as µFPR decreased.

The N̂E as a function of Eν for these two configurations are shown in figures 7.12(c) and

7.12(d), where it can be observed that N̂E was much greater than determined for the rules-based
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FIGURE 7.12. The number of fps found in each energy bin, from the evaluation dataset,
N f p, plotted with the expected number from the background-only dataset, N̂bkg.
The resulting signal, N̂E, determined from equation 7.7, is also plotted. These plots
all used thresholds of Tob j = 0.8 and TNMS = 0.75 and used predictions from scales
1 and 2. The energy bin widths are denoted by the horizontal error bars and the
grey shaded region quotes the 95% confidence limits on the y-axes. (a): N f p and
N̂bkg for TSPV = 1. (b): N f p and N̂bkg for TSPV = 9000 (where µFPR = 1.23 Hz/FD
was used). (c): N̂E for TSPV = 1. (d): N̂E for TSPV = 9000 (where µFPR = 1.23 Hz/FD
was used).

algorithm (figure 5.8). The low statistics used to create these plots limited the strength of the

conclusions which could be drawn from them but there were indications that increasing TSPV

resulted in lower N̂E values for low Eν bins when compared to the average N̂E over higher Eν

bins.

To summarise the predicted boxes signal, increased multiplicity of predicted boxes in a

single image could be interpreted as an increased probability of 1 or more neutrino interactions,

particularly after the use of a high SPV threshold. As these predictions remained after NMS it
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was evident that the network did not learn to predict localization of a neutrino signal perfectly.

However, the use of multiple predictions provides a tool to enhance the number of predicted boxes

which may be counted in a SNB counting trigger despite the removal of the predictions with the

highest IOU with each other.

7.6.2 SNB Trigger Performance

The N̂E as a function of Eν plots and µFPR values from table 7.4 were used as inputs to the SNB

counting trigger, with the other parameters used being the same as stated in section 5.4.1. Two

months of background was simulated and used to determine TSNB, the threshold on the number

of predicted boxes at which a SNB trigger with a FPR of less than once per month would be

issued.

The impact of varying the Tob j, TNMS and TSPV thresholds on the efficiency of the SNB

trigger when it was limited to a maximum FPR of once per month was studied. The results

for the SNB trigger when using rules-based clustering were compared to determine whether

the SNB trigger performance was improved through the use of YOLOv3-derived clusters (ie:

predicted boxes). The errors reported are statistical and for the 95% confidence level throughout

this section.

The impact of changing Tob j, TNMS and TSPV is shown in figures 7.13(a), 7.13(b) and 7.13(c)

respectively. It was apparent that the SNB counting trigger had a greater ϵSNB when using

ML-based clustering than rules-based clustering for all of the threshold permutations plotted.

The LMC is located at 49.6 kpc, the solar system is 8.2 kpc from the centre of the Milky

Way galaxy and the distribution of expected supernovae as a function of galactocentric distance

falls to near zero beyond 18 kpc as stated in the introduction to chapter 5. The efficiency of the

rules-based SNB trigger was 100% to distances up to 15 kpc, dropped to 97.7+0.3−0.3% at 20 kpc and

to 71.3+0.9−0.9% at 25 kpc, around the distance that the SNB distribution is expected to be near-zero

on the opposite side of the galaxy. For the vast majority of the threshold permutations for the

SNB trigger which used ML-derived clusters, ϵSNB at 25 kpc is 100%. The efficiencies at 30 kpc

and 50 kpc are reported in table 7.4 illustrating which permutations have the worst and best

ϵSNB up to the LMC. Beyond the LMC the nearest galaxy, M31 (Andromeda), is 744±33 kpc away

[165], which has ϵSNB = 0 for all the permutations due to the negligible neutrino flux.

The poorest ϵSNB from the ML-derived clusters was found to result from the use of a very high

Tob j or the use of a low TSPV . When scanning ϵSNB for different values of Tob j, the upper limit of

µFPR =1.23 Hz/FD was used for each, leading to the same TSNB = 31 value being required to issue

a trigger command. The same was true when scanning different TNMS values. These threshold

permutations therefore led to lower limits on ϵSNB whose differences for each permutation

depended on the predicted boxes signal and statistical uncertainties only. As can be observed

in table 7.4, the statistical uncertainties are small, usually less than 1%. The ϵSNB at different

SNB distances are plotted for a scan over Tob j values in figure 7.13(a), where ϵSNB was found
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FIGURE 7.13. Efficiency, ϵSNB, for a FPR of <1/month as a function of SNB distance
using predicted boxes from YOLOv3. Predicted boxes from scale 3 were discarded.
In each case, the performance of the rules-based SNB trigger is plotted in green
and the performance of Tob j = 0.8, TNMS = 0.75 and TSPV = 9000 is plotted in blue.
95% confidence error bars are plotted but appear negligible. (a): ϵSNB scanning
across Tob j for TNMS = 0.75 and TSPV = 9000. (b): ϵSNB scanning across TNMS
for Tob j = 0.8 and TSPV = 9000. (c): ϵSNB scanning across TSPV for Tob j = 0.8 and
TNMS = 0.75. 134
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to be similar for Tob j = 0.8 to Tob j = 0.9 but significantly declines for Tob j ≥ 0.99. Figure 7.13(b)

similarly plots the ϵSNB for a scan over the TNMS values. In this case, ϵSNB is similar for

TNMS ≤ 0.5 but declines as TNMS decreases. These figures suggest that the values of Tob j = 0.8

and TNMS = 0.75 provide reasonable thresholds as it is clear that loosening them further would

result in diminishing returns.

When scanning different TSPV values, the µFPR also varied. Decreasing TSPV from 9000 to

8000 increased µFPR by at least a factor of 4. This resulted in a drop of ϵSNB from a lower limit of

92.5+0.5−0.5% for TSPV = 9000 to 64.6+0.9−0.9% at the LMC. The ϵSNB for a range of SNB distances over

a scan of TSPV values is shown in figure 7.13(c). The ϵSNB was found to be clearly optimal for

TSPV = 9000, which corresponds to the lowest µFPR . This suggests that ϵSNB is best optimised

by reducing µFPR .

When comparing ϵSNB between rules-based clustering and ML-derived clusters it should

be remembered that the ϵSNB determined for the rules-based clustering was also a lower limit.

Although it was derived from the same SN neutrino dataset, the rules-based algorithm did not

require a large part of the dataset to be set aside for training purposes. This led to an upper

limit of µFPR = 0.367Hz as explained in section 5.4. The cluster signal energy spectrum was

significantly lower for the rules-based clustering, as can be observed by comparing figures 5.8

and 7.12(d). The increased predicted boxes signal per neutrino interaction appeared to allow

the YOLOv3-based SNB trigger to reach greater ϵSNB than the rules-based algorithm despite

TSNB = 31 being required for the YOLOv3-based SNB trigger and only TSNB = 15 being required

for the rules-based SNB trigger.

In summary, upper limits on µFPR determined from the precision of the rules-based and

evaluation datasets were used to determine lower limits on ϵSNB. It was found that whilst for

the rules-based SNB trigger the efficiency at the far side of the galaxy (25kpc), ϵSNB ≥ 0.71 and

ϵSNB ≥ 0.01 at the LMC. However, for the YOLOv3-based SNB trigger it was found that ϵSNB = 1

at the far side of the galaxy and ϵSNB ≥ 0.92 at the LMC.

7.7 Open Ended Future Work

The work presented in this chapter has shown that a YOLO-based approach to SNB triggering

has the potential to perform comparably or better than the rules-based algorithm. However, there

remains a large amount of work to be done in order show that a YOLO-based approach can be

implemented successfully and keep up with processing in the DUNE DAQ system.

In this section suggested next steps for the study of the use of a YOLO network are briefly

outlined, starting with further studies which could be done on the current implementation

without changing the network architecture, followed by possible approaches to simplify the

architecture (resulting in faster throughput) and limit the number of images which the network

needs to process (relaxing throughput constraints). Other techniques which may be used to speed
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up the computational processing or improve the training of the network are also discussed.

7.7.1 Further Studies Using Existing Architecture

In section 7.4 it was shown that Lob j did not minimise over multiple epochs of training, potentially

due to the weighting applied. It would clearly be advantageous to study the optimisation of wob j

to better understand this.

The existing training could also be improved through weight regularisation, which can reduce

overfitting. This has the effect of smoothing the response of the network by making it more

linear. Depending on the method of weight regularisation, the weights can either be minimised

or sparsified.

Another area which may allow for optimisation is in the creation and downsampling of the

images. The images are currently composed of collection channels from both sides of an APA.

It would make sense to train the network using images created from the channels on only one

side of an APA and re-evaluate the performance. Further to this, it may be useful to generate

and downsample images to preserve a 1:1 aspect ratio to determine whether this improves the

generalisation of the network. In addition, several different choices for the size of the initial

image could be made along with suitable downsampling factors along each axis to preserve a 1:1

aspect ratio to determine if the efficiency of the YOLOv3 network can be improved.

Each selection of initial image size would require the inference speed of the network to be

able to keep up with a different rate. For the images studied in this chapter, the scope was APA

for 1 drift time (2.246 ms). If all images produced by the APA were processed on a single GPU,

the inference rate would be required to be 456 FPS rather than the inference rate of around

34 FPS (from table 7.1) on a GPU. As the majority of the performance increase of the network

appeared to occur through the application of SPV thresholds, it would be good to study if SPV

over an entire downsampled image could be used discard the majority of background-only images

whilst preserving the efficiency of the network.

There is also the option to introduce other interaction types such as solar neutrinos or the

high energy beam neutrinos. The network currently is only trained to differentiate the low energy

SN neutrino interactions from backgrounds there is no reason why it could not be extended to

other sources and used to classify signals as high or low energy.

7.7.2 Network Architecture Optimisation

Regardless of studies to reduce the required FPS of YOLOv3, the inference and a subsequent

optimised application of thresholding and NMS remain to be benchmarked.

Discarding predictions from scale 3 of the network was found to be advantageous. This scale

makes 10800 out of the total 14,175 predictions and a significant part of the network architecture

after the Darknet-53 feature extractor. It would be useful to determine the performance and

inference speed of the network after removing scale 3 from the architecture. Additionally, the
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Darknet-53 feature extractor used in YOLOv3 is significantly more complex than the Darknet-19

used in YOLOv2. It would be useful to determine the performance of the network using a simpler

feature extractor to determine whether it actually helps for these very sparse images.

Once an architecture has been chosen by balancing the efficiency against the inference speed,

the network architecture may be further simplified by pruning. This is the removal of any network

weights which are close to zero and may be particularly effective when using L1 regularisation in

the loss.

Another potential technique for speeding up inference for sparse image data is the use of

submanifold sparse convolutional networks (SSCNs) [166], which have been used to achieve

efficiencies of >93% when classifying Michel electrons in LArTPC volumes [167]. This work

showed that for images constructed from raw ADC information the memory and inference times

were reduced by factors of 93 and 3.1 respectively through sparse convolutions. As the images

constructed from TP information are even more sparse, the benefits are likely to be even greater.

7.7.3 Network Implementation

As discussed in section 7.1.1, potential locations for this network may be in the HLF, a GPU added

to DAQ RUs or within any spare FPGA resources in the DAQ RUs. The best approach depends

on investigations suggested in section 7.7.2, as the RAM constraints on FPGAs require networks

to be small or heavily optimised and use limited floating point precision. Simple approaches such

as applying a SPV or similar threshold on images in order to decide whether to pass them to the

network should be investigated first as they may decrease any required speed-up significantly.

7.7.4 Additional Network Arguments

Whilst the current network has 3 color channels, all were filled with the same pixel values in

these studies. The induction wires are wrapped on an APA to cross each collection wire once and

provide information which helps in reconstructing the location of TPs in the 3D TPC volume.

Similarly to previous LArTPC studies such as [146] and [150], induction channel information

and TPG in the UD could be studied and provided to the network to provide more context for the

network to improve its localisation predictions.

7.8 Conclusion

In conclusion, it has been shown that the use of a YOLOv3 network to identify neutrino inter-

actions was able to achieve SNB trigger efficiencies of 100% at the far side of the galaxy and

92% at the LMC using thresholds of Tob j = 0.8, TSPV = 9000 and TNMS = 0.75. Due to limits on

statistics, these were taken to be lower estimates of the efficiency. These results improved upon

the SNB trigger efficiencies determined for the rules-based SNB trigger of 71% at the far side of
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the galaxy and 1% at the LMC although these were also statistics-limited lower bounds for the

efficiency.

Images were prepared on a per-APA basis over a single drift window in the detector, providing

scope for this algorithm to be applied within a DAQ RU or the HLF. The hyperparameters were

not significantly explored, except for the anchor boxes which were derived from the truth boxes in

the dataset. The network appeared to undergo training successfully, minimising the overall loss

until there were indications of a small amount of overfitting. Whilst the average IOU of predicted

boxes with truth associations increased over the epochs of training, the average objectness score

of these boxes did not but remained high. An explanation for this was not found and is a candidate

for future work.

The impact of different choices of Tob j, TSPV and TNMS thresholds on the efficiency of

neutrino interaction signals and false positive rates was characterised with a pilot study, finding

that the TNMS had the least ability to decrease the false positive rate, whilst TSPV was the most

significant threshold for this, decreasing it by orders of magnitude with moderate impact on the

efficiency.

The vast majority of predictions made by the network were from scale 3. For the pilot study

dataset it was determined that discarding the predictions from scale 3 had a negligible impact on

the efficiency, whilst being able to decrease the false positive rate by another order of magnitude.

A number of threshold permutations were selected based around Tob j = 0.8, TSPV = 9000 and

TNMS = 0.75, which was determined to have the highest efficiency for the lowest false positive

rate. The effect of varying each of the different thresholds on the efficiency of the SNB trigger was

investigated and the identified set of thresholds was indeed found to have the best performance.

The improved performance over the rules-based algorithm was theorised to likely have been a

result of the ability of the YOLOv3 approach to propose and retain multiple predicted boxes for

the signal from a given neutrino interaction.

These results showed that a YOLOv3-based SNB trigger using TPs generated from FPGA-

based TPG could be used to trigger on SNB events within the galaxy with 100% efficiency,

satisfying the requirement that any SNB with 60 neutrino interactions or more will be detected

with >95% efficiency.
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Neutrino oscillations are a crucial area of study for physics beyond the standard model.

They may provide evidence for solutions of the baryon asymmetry problem but neutrino

mixing parameters have not yet been precisely determined. The neutrino signal from a

core collapse SNB in the Milky Way should be observable using the DUNE detector and is the

only signal capable of studying the internal mechanisms of this process.

DUNE will have constraints on the amount of data it can record and store to disk. In order

to select which data to store for further processing it will require a set of triggering algorithms,

with each corresponding to particular phenomena. These triggering algorithms are required to

reduce the data collection rate from 1.2 TBs−1 per FD module to a 30 PB per year set of useful

physics events. The approach which will be used in the DUNE SP FD module(s) will utilise FPGA

resources to process the input data into TPs which will be combined in the subsequent stages of

triggers and used to form trigger decisions.

The first goal of the work presented in this thesis was to demonstrate the validation of the

FPGA-based TPG in the front-end DAQ and the second goal was to determine its performance

when utilised as the first stage of a SNB trigger algorithm. The third goal was to explore whether

a machine learning approach could be utilised to improve the SNB trigger performance.

To faciliate the development and testing of firmware which implements TPG in FPGA logic,

validation tools with a bitwise precision were written. The validation studies presented in this

thesis culminated in looking for remaining bugs in the TPs generated when the FPGA-based

TPG was implemented in ProtoDUNE, allowing LArTPC data from an active detector to be

explored. Comparing the TPs generated by the firmware implemented in ProtoDUNE and the

TPs generated from the bitwise emulation, it was found that 51.8% were a perfect match. A small

number of characteristic bugs were identified and feedback was provided to the TPG firmware
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developers who were able to reproduce most of them and implement fixes.

The technical requirements for the SNB trigger implemented in the DUNE FD were that it

should be able to trigger on a SNB which results in at least 60 interactions with a visible energy

of >10 MeV. Sixty neutrino interactions are expected to occur in a single SP FD module at a

distance of 20 kpc in the case of a 11.2m⊙ progenitor star. Using detected ionisation in the TPC

module a baseline SNB trigger algorithm was determined to have an efficiency of 97.7+0.2−0.3% at 20

kpc. This was achieved without restricting the true neutrino energies to be larger than 10 MeV,

and achieved the technical requirements set out for the DUNE SNB trigger. The thresholds used

to generate TPs in this algorithm were set so that the data rate of TPs generated per year was

limited to 2 PB, fulfilling the requirement to save all TPs to disk.

Further studies have been completed to explore how the performance of a SNB trigger may

be further improved through the use of a ML algorithm. A bounding box proposal network,

YOLOv3, was used. It replaced the clustering stage of the baseline SNB trigger. Thresholds on

objectness scores, summed pixel values and on the intersection-over-union during application

of non-maximum suppression were applied to the predicted boxes during post-processing. This

parameter space was explored and the optimal combination was found to result in a SNB trigger

efficiency of 100% up to the far side of the Milky Way galaxy and remained at 92.5+0.5−0.5% in the

LMC.

There were some limitations to the studies performed and there are improvements which could

be made. The SNB triggering studies presented used only a single core collapse SN model and

could be repeated for a range of different SNB candidates to ensure that the trigger generalises

well. Also, it is noted that the efficiencies gained from both the baseline and ML SNB trigger

approaches are expected to be lower estimates. In the case of the baseline TPG no false positive

TCs were found in the dataset of 30,000 neutrino interactions due to limitations on the statistics

of these studies. The studies could be repeated with larger statistics to more precisely determine

the efficiency and false positive rates.

In conclusion, this work has enabled the improvement of the FPGA-based TPG; has demon-

strated a baseline SNB trigger which meets the DUNE requirements and has successfully

explored the application of a ML approach to further optimise the SNB trigger performance.
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This appendix includes the algorithms used in this work which are not otherwise fully

described.

A.1 Clustering Algorithm

To identify local regions of charge deposition which span one or more wires, the TPs are clustered

together into TCs. TPs are ordered by wire number (adjacent wires across the APA) and the TPs

which are within a wire tolerance, tW , are formed into a protocluster. The TPs in this protocluster

are ordered by their HS. The TPs in the protocluster which are within a tick tolerance, tT , are

grouped together into a TC. If any thresholds on TPs properties were set, TPs which fail them

are discarded from the TC. If any thresholds on TCs properties are set, TCs which fail them are

discarded. The full algorithm is described in algorithm 1.

A.2 Noise Simulation

This algorithm was implemented in LArSoft [119] by David Adams and was used as the standard

model to generate a random noise spectrum which was sampled from to add noise the signals on

APA wires.

The noise was generated using an exponential distribution in the frequency domain, with the

value in each frequency bin of the noise distribution, Ni being determined by equation A.1:

(A.1) Ni = Ae−
f i
λd

with an amplitude, A, of 3.16 ADC counts and a noise damping parameter λd = 2 kHz−1. f i is the

value of the frequency in bin i. A low frequency cut-off value, f low was set to be 7.5 Hz. This was
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Algorithm 1 Clustering algorithm to form TCs
Require: TPs collected in the detector module over a period of time
Require: A wire tolerance, tW , to group TPs over
Require: A tick tolerance, tT , to group TPs in protoclusters over
Require: Thresholds on TP properties
Require: Thresholds on TC properties
Ensure: TPs are channel ordered

for TP in channel ordered list do
if adjacent TP(s) within tW of each other then Create protocluster from TPs

Ensure: TPs in protocluster are time-ordered
for TP in time ordered list do

if adjacent TP(s) within tT of each other then
Group TPs into a TC
if Thresholds on TP properties applied then

Discard TPs which do not pass threshold
end if
if Thresholds on TC properties applied then

Discard TC if it does not pass thresholds
end if

end if
end for
Remove TPs within tW of each other

end if
end for

used to filter out low frequency noise. 10% of the noise in the bin was also randomized. Both of

these steps were applied in each frequency bin as follows in equation A.2:

(A.2) Ni = Ni ×F × (0.9+0.2× rnd),

where rnd is a random number between 0 and 1 drawn from a uniform distribution. F is a term

to filter out low frequency noise given by:

(A.3) F = 1

1+ exp
(
−2

( i− f low
bw

))
where bw, the frequency bin width, is given by 1/(ntick × rs), with ntick being the number of

ticks used in the subsequent fast Fourier transform (FFT) and rs being the sampling rate of the

detector. Each bin of the noise distribution in the frequency spectrum was then given a random

phase before the time spectrum was determined through the application of an inverse FFT.

A.3 Minibatch SGD

For an ANN with inputs x, weights w, targets t, a minibatch can be used to increment the

weights through the application of the SGD:
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A.4. ADAM OPTIMISER

Algorithm 2 Minibatch stochastic gradient descent
Require: Learning rate ϵ
Require: Initial weights w
Require: Stopping criterion

k ← 1
while stopping criterion is not met do

Randomly sample minibatch of m input-target pairs
Compute the gradient estimate: ĝ ← 1

m∇w
∑

i L( f (x,w), t)
Update the weights: w← w−ϵĝ
k ← k+1

end while

Any stopping condition can be defined; common examples include a number of minibatches, a

convergence of the loss or a training time.

A.4 Adam Optimiser

Adam is a widely used variant of SGD which allows a network to maintain a momentum in

a given direction in the loss parameter space via a velocity term, v. The number of previous

iterations which are taken into account depends on exponential decay rates, ρ1 and ρ2.

Algorithm 3 Adam optimiser
Require: Step size ϵ
Require: Exponential decay rates for momentum estimate ρ1 and ρ2 which are in the range

[0,1)
Require: A small constant δ, used for numerical stability
Require: Initial parameters w

Initialise the moment variables s= 0 and r = 0
Initialise a time step t = 0
while stopping criterion is not met do

Randomly sample minibatch of m input-target pairs
Compute the gradient estimate: ĝ ← 1

m∇w
∑

i L( f (x,w), t)
t ← t+1
Update the biased first moment estimate: s← ρ1s+ (1−ρ1)g
Update the biased second moment estimate: r ← ρ1r+ (1−ρ2)g⊙ g
Correct for bias in the first moment: ŝ← s

1−ρt
1

Correct for bias in the second moment: r̂ ← r
1−ρt

2

Determine the update to apply from: ∆w=−ϵ ŝp
r̂ +δ

Apply the update to the parameters: w← w+∆w
end while
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APPENDIX A. APPENDIX A

A.5 Non-maximal Suppression

For an array of bounding boxes, the non-maximal suppression algorithm can be used to remove

boxes which overlap by more than a given threshold, TNMS and preferentially retain those with

the highest object scores.

Algorithm 4 NMS algorithm for discarding overlapping predicted boxes
Require: Array of predicted bounding boxes, B for an image, reverse ordered by objectness score
Require: An IOU threshold, TNMS

while There is 1 or more predicted boxes remaining in the array do
Step 1: Select the first bounding box, Bhigh, in the array, with the highest object score.
Remove it from the array. Place it into an array of kept bounding boxes.

Step 2: Compute IOU value of Bhigh with Bi in the array.
if IOU i ≥ TNMS then

Discard Bi from the array of bounding boxes
end if

end while

A.6 Assigning Predicted Boxes To Truth Boxes

Predicted boxes may be assigned to be tps, fps or fns. Each truth box may be assigned to only a

single predicted box and vice versa. Algorithm 5 shows how truth boxes and predicted boxes are

assigned to each other.

A.7 k-median Clustering For Anchor Boxes

Anchor boxes are derived through a k-median clustering algorithm. The number of clusters, Nc,

which will be determined from the application of k-median clustering must be specified as an

input to the algorithm.

As explained in section 7.3.1 and shown in figure 7.1, each ‘cluster’ derived through the

k-median clustering algorithm corresponded an anchor box of a given pixel width and height.

The k-median clustering algorithm for determining the optimal anchor boxes in full is set out in

algorithm 6.
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Algorithm 5 Assigning predicted boxes as tp or fp and truth boxes as fn
Require: Array of predicted bounding boxes B for an image, reverse ordered by objectness score

after application of Tob j and any other pre-NMS thresholds.
Require: Array of truth boxes B̂ for an image
Require: TIOU , an IOU threshold required to label a B as a tp

i ← 0
for Bi do

Compute IOU with all B̂ boxes for Bi
Arrange array of B̂ in reverse IOU order
j ← 0
for B̂ j do

if B̂ j previously assigned to a B then
j ← j+1
Continue

else
if Bi has IOU > TIOU with B̂ j then

Assign Bi and B̂ j to each other
Assign Bi as a tp
Exit loop over j

end if
end if
j ← j+1

end for
if Bi has IOU ≤ TIOU with all B̂ or all B̂ j already assigned to a B then

Label Bi as a fp
end if
i ← i+1

end for
if there are any remaining B̂ j not assigned to a B then

Label remaining B̂ j as fn.
end if

Algorithm 6 k-median clustering algorithm to determine optimal anchor boxes
Require: A list of truth boxes
Require: A number of anchor boxes, Nc ← 9 to determine

Step 1: Initialise Nc anchor boxes with widths (w) and heights (h) which are a random
proportion of the image size
Step 2: Determine the IOU, I of each truth box with each anchor box
Step 3: Assign each truth box to the anchor box which it has the greatest IOU with
Step 4: Determine the median w and h values of the truth boxes assigned to each anchor box
and assign these values to be the dimensions of the anchor boxes used for the next iteration
Step 5: Repeat steps 2, 3 and 4 until no anchor box w or h changes after the application of
steps 2,3 and 4
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