E% University of
OPEN (") ACCESS d BRISTOL

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Izquierdo Cordova, Ramon

Title:
Towards more efficient CNN models with filter distribution templates

General rights

Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy

Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

* Your contact details
« Bibliographic details for the item, including a URL
* An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Towards More Efficient CNN Models
with Filter Distribution Templates

By

RAMON IZQUIERDO CORDOVA

Department of Computer Science
UNIVERSITY OF BRISTOL

A dissertation submitted to the University of Bristol
in accordance with the requirements of the degree of
DOCTOR OF PHILOSOPHY in the Faculty of Engineering.

APRIL 2022

Word count: forty-five thousand, one hundred forty-four

ABSTRACT

architectures to solve computer vision tasks claiming improved performance with

reduced computational cost. Designing these networks remains a complex task,
relying primarily on human experience. These new architectures have been created with
important innovative elements (ReLu, dropout and batch-normalisation layers) and new
structures (residual connections, grouped convolutions). However, a particular feature
has remained unchanged: the pyramidal pattern for distributing the number of filters
in each layer, increasing filters when feature map resolutions decrease. Initially pro-
posed in 1989 in the LeNet architecture, this pyramidal design is found in classical and
state-of-the-art CNN architectures. Also, it is the starting point for the exploration space
of pruning methods and automatic model search. The reason behind this incremental
design relies on the roots of the deep learning definition aiming to learn hierarchical
levels of representation, making complex concepts in higher levels by reusing simpler
low-level ones. Because many convolutional networks are tested mainly on the ImageNet
dataset, and the pyramidal distribution is tuned to fit that dataset, it is unclear if the
pattern works well in other datasets and domains or if other distributions could yield
better performances.

Researchers in the field of Deep Learning have used convolutional neural network

This thesis introduces the concept of filter distribution templates, a small set of fil-
ter distribution patterns differing from the widely adopted pyramidal distribution for
reassigning filters in an existing convolutional network without varying the original ar-
chitecture. This research experimentally shows that models produced with templates are
superior to those using the pyramidal distribution of filters in several popular datasets
from the domains of image classification and camera pose estimation. Additionally, this
work describes and evaluates how templates can work on top of convolutional network
compression techniques to obtain higher accuracy or reduction ratio.

Further, this thesis proposes an enhanced set of templates that improve final mod-
els’ accuracy by smoothing the variation in the number of filters between layers. The new
set is provided with a fast mechanism to match a predefined FLOPs budget. Extended
experiments on image and audio classification show that models obtained with the new
templates yield higher performances with fewer resources. For example, experiments
with three popular handcrafted architectures (VGG, ResNet and MobileNetV2) and
one automatically discovered (MNASNet) trained on MNIST, CIFAR, CINIC10 and

TinyImagenet datasets show that models with these alternative distributions are more
resource-efficient reaching reductions up to 90% in parameters and 79% in memory
needs while matching or surpassing the original model accuracy.

Advantages in performance and resource requirements were also found in a repre-
sentation embeddings task, a domain where the network’s internal representation is
more important than its final output. Templates were again helpful to architectures
discovered with neural network search methods surpassing the highest accuracy model
in the NASBench-101 dataset requiring one-third of the original parameters. Finally, this
theis explored the variations in representation spaces produced by templates. Attempts
were conducted to correlate accuracy and representation spaces using CKA similarity.
However, results imply that finding the best template is challenging and requires more
exploration and analysis.

We hope this thesis illuminates new directions to neural network designers, both au-

tomated and manual, that help construct more efficient architectures and inspire the
re-think of model building assumptions in deep learning.

i1

DEDICATION AND ACKNOWLEDGEMENTS

I would like to thank my supervisor Walterio Mayol-Cuevas for his patience, dedication
and guidance during the development of my doctoral studies. Certainly, He supported
me in much more than academic issues.

Thanks to each one in the VILab who share a chat while enjoying a cup of coffee (or
cider): Abel, Angeliki, Benjamin, Bridget, Davide, Eduardo, Faegheh, Farnoosh, Hazel,
Igor, Janis, Jonny, Laurie, Miguel, Mike, Obed, Perla, Sam, Sasha, Tenshi, Toby, Vangelis,
Will, Will, Xingrui, Yanan, Yao, Young, Yuhang and Zeynel. I immensely enjoyed listening
to all sort of enriching topics.

Thanks to Osamah and Laila, Luis and Martha, Matt and Ksenia, Gustavo and
Estefania, Alexander and Dayana, Benjamin and Martha, Marek and Carmen, Nordine
and Winona, David and Bee, Simon and Fabiola, Julia, Barbara, and to all the people
who kindly welcomed us, opened their homes to us and showed us the life in each of their
cultures. That experience changed us.

Thanks to all my in-law relatives, Omega, Deyoses, Claudia and Tello, Gisela and
David, Adrian and Fabiola, for being in charge of Rocio’s concerns and needs. They
brought us peace of mind when we needed it.

I want to thank my parents for being examples of hardworking and for their tolerance
of my long absences. Thanks to my siblings for their encouragement to take this PhD.
Particular gratitude to Chela, Chevo and Perla for their support with the many tasks I
had to leave during my studies.

Infinite thanks to my precious group of R’s (Rocio, Rocio and Romilly). You continu-
ously pushed me to finish this thesis. You really helped. I hope I hadn’t stolen too much
time from you and that the memories we created during our stay in Bristol last forever.

I want to thank the National Council of Science and Technology (CONACYT México).
Its scholarship programs allow many students to access quality postgraduate courses
worldwide.

Finally, I greatly thank and recognise the People of Mexico as the true investor in
forming human scientific capital in my country. I feel committed to giving back the great
support I have received.

1il

AUTHOR’S DECLARATION

dance with the requirements of the University’s Regulations and Code

of Practice for Research Degree Programmes and that it has not been
submitted for any other academic award. Except where indicated by specific
reference in the text, the work is the candidate’s own work. Work done in
collaboration with, or with the assistance of, others, is indicated as such. Any
views expressed in the dissertation are those of the author.

I declare that the work in this dissertation was carried out in accor-

SIGNED: ... DATE:ccoiiiiiiiiii,

TABLE OF CONTENTS

Page

List of Tables xi
List of Figures xiii
Acronyms xvii
1 Introduction 1
1.1 Contributions 4

1.2 ThesisOutline 5

2 Related Work 7
2.1 Evolution of Convolutional Neural Networks 7
2.1.1 Early Neural Networks 9

2.1.2 First Convolutional Networks 9

2.1.3 Deeper,WiderandDenser. 11

2.1.4 Efficiency-Oriented Architectures 14

2.1.5 Grouped Convolutions and Attention 17

2.1.6 Recent Developments for Uniform Distribution 18

2.2 Methods for Neural Network Model Compression 20
2.2.1 Neural Network Pruning 21

2.2.2 Knowledge Distillation. 24

2.3 Neural Architecture Search 25
2.4 Conclusions e e 29

3 Filter Distribution Templates for Image Classification 31
3.1 Convolutional Neural Networks 31

3.2 Popular CNN Architectures 32

3.3 Convolutional Neural Networks and Their Default Filter Distribution .. 33

vii

TABLE OF CONTENTS

3.4 Why Not A Learned Function? 34
3.5 Filter Distribution Templates 35
3.5.1 Uniform Template 37
3.5.2 ReverseTemplate 37
3.5.3 Quadratic Template 37
3.5.4 Negative Quadratic Template 38

3.6 Model Comparison With Similar Neurons 39
3.6.1 DatasetsandModels 39
3.6.2 Implementation Details 39
3.6.3 Template Effect Over Baseline Models 39

3.7 Template Effect With Similar Resources 43
3.7.1 ParametersCount, 43
3.7.2 Memory Footprint 43
3.7.3 Inference Time 45

3.8 Conclusion e 48
4 Beyond Classification Tasks: Testing Templates in Other Domains 49
4.1 Introduction 49
4.2 Global Localisation 50
4.2.1 ModelsandDatasets, 52
4.2.2 Implementation Details 53
423 Results 53

4.3 Single Image Super-Resolution 56
4.3.1 Implementation Details 58
432 Results 59

4.4 Templates and Neural Network Pruning 62
4.4.1 Pruning Filters Based On Their Norm 62
4.4.2 Pruning Filters Based On The Importance Over The Loss Function 63
4.4.3 Reducing Filters With Filter Decomposition 64
444 ExperimentsandResults 65

4.5 Templates + MorphNet: Improving the Search of Filter Distribution ... 67
4.5.1 MorphNet Steps for Optimising the Filters Distribution 68
452 Experiments 69

4.6 Conclusion e 73
5 Templates 2.0 75

viil

TABLE OF CONTENTS

5.1 Templates Redefinition to Match Similar Resources. 75
5.1.1 Defining a New Set of Filter Distribution Templates 77
5.1.2 Similar FLOPs Optimisation 78
5.2 Templates 2.0 on Image Classification 79
5.2.1 DatasetsandModels 80
5.2.2 Implementation Details 80
5.2.3 Effects of Templates on Classical Models 81
5.2.4 Effects of Templates on Optimised Models 81
5.3 Templates 2.0 on Audio Classification 86
5.3.1 AudioDatasets 87
5.3.2 Implementation Details 87
533 Results 88
5.4 Templates 2.0 on NASBench 101 Dataset 89
5.4.1 Implementation Details 90
54.2 Results e 91
5.5 Templates 2.0 on Representation and Localisation 92
5.5.1 Geolocalisation Embedding Maps and Images 92
5.5.2 DatasetandModel 93
5.5.3 Implementation Details 94
554 Results e 95
5.6 Finding the Best Template 96
5.6.1 Embedding Space of Templates 97

5.6.2 Comparing Representation Spaces of Templates Via CKA Metric . 98
5.6.3 An Attempt to Correlate CKA Measurements with Accuracy and

Parameters. 103

5.7 Conclusion e 106

6 Conclusions 107
6.1 Findings e 107

6.2 General Advice to Future Deep Learning Practitioners 110

6.3 Future Work 111

A Appendix A 113
A.1 Filters in Tested Models with Templates2.0 113

B Appendix B 117

1X

TABLE OF CONTENTS

B.1 A Reflection on the COVID-19 Pandemic

Bibliography

L1iST OF TABLES

TABLE Page

3.1 Model performances with the original distribution and four templates evalu-
ated on CIFAR-10, CIFAR-100 and Tiny-Imagenet datasets.

3.2 Resource consumption of models when applying templates with equal of filters
evaluated on CIFAR-10dataset.

3.3 Resource consumption of models when applying templates with equal of filters

evaluated on Tiny-Imagenet dataset.

4.1 MAE for 7-Scenes dataset for the VGG19 model with its original filter distri-
bution and four templates.
4.2 MAE for 7-Scenes dataset for the PoseNet model with its original filter distri-
bution and four templates.
4.3 MAE for Cambridge Landmark dataset for the VGG19 model with its original
filter distribution and four templates.,
4.4 MAE for Cambridge Landmark dataset for the PoseNet model with its original
filter distribution and four templates.
4.5 MAE for Cambridge Landmark dataset for the MobileNet model with its
original filter distribution and four templates.
4.6 Parameters, memory, inference time and FLOPs for selected models when
applying our templates.
4.7 Performance at 4x and resource consumption of the EDSR method (VGG
backbone) using templates. e
4.8 Performance at 4x and resource consumption of the EDSR method (ResNet
backbone) using templates.
4.9 Change of performance (PSNR) with different sizes of the EDSR method
(VGG19 backbone) using templates.
4.10 Change of performance (PSNR) with different sizes of the EDSR method
(ResNet backbone) using templates

X1

54

54

55

LisT oF TABLES

4.11

4.12

4.13

4.14

4.15

4.16

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Al

A2
A3

A4

Accuracies and parameters of VGG19 with the original distribution and four
templates after being compressed using three different methods. 66
Accuracies and FLOPs of VGG19 with the original distribution and four
templates after being compressed using three different methods. 67
Accuracy of models produced by combining VGG19 + Templates + MorphNet
+ Width Multiplier compared to only using Templates + Width Multiplier. . . 70
Accuracy of models produced by combining ResNet50 + Templates + MorphNet
+ Width Multiplier compared to only using Templates + Width Multiplier. . . 70
Accuracy of models produced by combining MobileNetV1 + Templates + Mor-
phNet + Width Multiplier compared to only using Templates + Width Multiplier. 71
Best accuracy and pruning method by dataset compared to the original base
model. 73

Resource consumption on CIFAR-10 for original architectures and resulting

models after applying templates. 82
VGG19 and ResNet50 performances with the original distribution of filters
and five templates evaluated on six datasets. 84

MobileNetV2 and MnasNet performances with the original distribution of
filters and five templates evaluated on six datasets. 86
Accuracy and resource utilisation of ResNet50 with templates on GTZAN and
ESC-50 audio classification datasets. 89
Accuracy and parameters of the best model in NASBench-101 dataset and a
ResNet-like model produced with an extended search space. 92

Accuracy and resource utilisation of ResNet50 with templates on geolocalisa-

tion embedding datasets. o 95
Spearman correlation between template CKA properties and accuracy for
ResNet50 and VGG19. e 105
Spearman correlation between template CKA properties and parameters for
ResNet50 and VGG19. e 105

VGG19 with the original distribution of filters and five templates. All models
count similar number of FLOPs. 113
Original distribution of filters for MobileNet2 after applying five templates. . 114
Distribution of filters for MNASNet showing the original design and filters
from five templates. 114
Original distribution of filters for ResNet50 and five templates. 115

x11

L1iST OF FIGURES

FIGURE Page

1.1 Applying templates to an existing model with pyramidal design.

2.1 Year of introduction of well-known CNN architectures.
2.2 Layers in Fukushima’s Neocognitron.
2.3 Layers in LeNet-5 architecture.
2.4 Distribution of filters by layer in VGG architectures.
2.5 Distribution of filters by layer in GoogLeNet architecture.
2.6 Comparison of filters by layer between VGG and ResNet architectures.

2.7 Distribution of filters in a wide residual network with the original residual

2.8 Number of filters in the PyramidNet model.
2.9 Number of filters in the MobileNet base model.
2.10 Comparison of the number of filters in ResNet against ResNet and ResNeXt
architectures using SE blocks.
2.11 Comparison of an isometric neural network versus a standard pyramidal
architecture.
2.12 ConvMixer structure uses copies with the same number of filters of a simple
convolutional block.
2.13 Unstructured and structured pruning approaches.
2.14 Typical prunning pipeline to reduce a neural network model with minimal
diminishing in accuracy. e
2.15 The knowledge distillation framework is composed of teacher and student
models. e e e e
2.16 Modern framework of NASmethods.
2.17 Two different architecture search spaces for NAS methods.
2.18 Performances of models and resources consumed by NAS methods on the
CIFAR-10dataset. e

11

LisT oF FIGURES

2.19 Validation accuracy of fully trained models in NASBench-101 dataset.

3.1 Filters per layer using the proposed templates for filter redistribution in a toy
VGG stylemodel..

3.2 A toy example to show how two different templates with the same number of

filters produce a variety of effects in parameters, memory, inference time and

3.3 Average Accuracy versus Parameters in CIFAR-10 and CIFAR-100 datasets
using templates with VGG, ResNet, Inception and MobileNet.

3.4 Accuracy versus Memory Footprint in CIFAR-10 and CIFAR-100 datasets
using templates with VGG, ResNet, Inception and MobileNet.

3.5 Accuracy versus Inference Time in CIFAR-10 and CIFAR-100 datasets using
templates with VGG, ResNet, Inception and MobileNet.

4.1 The typical design of architectures for localisation.
4.2 Examples of the datasets used in the experiment.
4.3 EDSR design for super-resolution.,

4.4 A resolved image using bicubic interpolation compared with the best perform-

ing models using templates.

29

47

60

4.5 Geometric Median pruning compared with other norm-based pruning methods. 63

4.6 Gate Decorator phases for removing filters based on importance over the loss

function.
4.7 Filter Basis uses decomposition to approximate feature maps.

4.8 MorphNet steps for finding the best filter distribution matching a particular

FESOUICE. . « v v v v o e
4.9 Final filters in VGG19 architecture using Templates + MorphNet.
4.10 Final filters in ResNet50 architecture using Templates + MorphNet.

4.11 Comparison of individual and combined training times of templates and

5.1 Schematic distribution of filters per layer in our templates.

5.2 Impact of deleting one residual unit a time in a sharply increasing pattern

and in a smooth pattern. L

5.3 Accuracy of VGG and ResNet models after applying templates reported for

several datasets. e e

Xiv

76

77

83

LisT OF FIGURES

5.4

5.5
5.6
5.7
5.8
5.9

Parameter efficiency of MobileNetV2 and MnasNet models with templates

reported for several datasets. 85
MFCC spectrograms for some samples in the GTZAN and ESC-50 datasets. . 88
Schematics of Neural Architecture Search methods.. 90
Sample input for image-map embedded space learning. 93
Network architecture for image-map embedded space learning. 94

Percentage of runs in which the best final template, considering accuracy, was

at least in the first positions at eachepoch. 96

5.10 UMAP embeddings for the final layer of VGG19 and ResNet50 on CIFAR10.. 99
5.11 UMAP embeddings for the final layer of ResNet50 on several datasets. 100
5.12 CKA metric of VGG19 base model vs templates with tiny-imagenet dataset. . 102
5.13 CKA metric of ResNet50 base model vs templates with tiny-imagenet dataset. 103

A.1 Schematic distribution of filters per layer in templates. 114

Xv

2D

BN

CCA
CKA
CNN
CNS
CUDA

DoF

FLOPS
FLOPs

GAN
GPU

HR
HSIC

IB
ILSVRC
INN

KD

LR

ACRONYMS

Two-dimensional.
Artificial Neural Networks.
Batch Normalisation.

Canonical Correlation Analysis.
Centered Kernel Alignment.
Convolutional Neural Network.
Channel Number Search.

Compute Unified Device Architecture.
Degree of Freedom.

Floating Point Operation Per Second.

Floating Point Operations.

Generative Adversarial Network.

Graphics Processing Unit.

High-resolution.

Hilbert-Schmidt Independence Criterion.

Information Bottleneck.
ImageNet Large-Scale Visual Recognition Challenge.

Isometric Neural Networks.
Knowledge Distillation.
Low-resolution.

Mean Absolute Error.

XVil

ACRONYMS

MFCC
MLP
MSE

NAS
NLP

OBD

PCA
PSNR

RGB
RGB-D
RL

SfM
SGD

t-SNE

UMAP

Mel-Frequency Cepstral Coefficient.
Multi-layer Perceptron.

Mean Squared Error.

Neural Architecture Search.

Natural Language Processing.
Optimal Brain Damage.

Principal Component Analysis.

Peak Signal-to-Noise Ratio.

Red, Green, Blue colour model.
Red, Green, Blue and Depth Sensor.

Reinforcement Learning.

Structure from Motion.

Stochastic Gradient Descent.
t-Distributed Stochastic Neighbor Embedding.

Uniform Manifold Approximation and Projection.

XViil

CHAPTER

INTRODUCTION

odern artificial intelligence applications have become ubiquitous in our era.
When they are correctly tuned, existing systems can surpass human-level per-
formance in numerous specific tasks. This explosion of impressive achievements

has been primarily obtained thanks to the use of deep learning.

The core strength of deep learning comes from deep neural networks and their ability
to learn relevant representations of the world. Initially inspired by modelling the neurons
in a biological brain, neural networks are built by connecting artificial neurons in parallel
to conform sequential layers. How these layers and neurons are organised defines the

different deep learning network architectures.

In the deep learning field, a neural network design is currently commonly created
to solve one particular problem. For example, the VGG network was created to achieve
maximum accuracy on the ImageNet dataset in the image classification domain. Yet, it
is also common to use the resulting architecture to solve other tasks (in this work, we
will use indistinctly the terms task and domain). We are not referring here to transfer
learning, the process of taking a model trained in a dataset and then utilising it in a
different one in the same or a distinct domain after a small retraining in the new dataset.
Instead, we refers to the process of borrowing an existing untrained architecture and
minimally changing it to fit the requirements of the new dataset to eventually train it
from scratch in the new dataset. To illustrate the difference, let’s take the case of ResNet.
It was designed for ImageNet, but it has also been trained from scratch in the CIFAR-10
dataset and as a backbone of Faster R-CNN in PASCAL VOC and COCO datasets [73].

CHAPTER 1. INTRODUCTION

On the other hand, by fine-tuning a ResNet model trained on ImageNet, researchers
have used it in a diverse range of tasks such as tracking objects in video surveillance

[91], malicious software classification [166], and video object segmentation [28].

As the number of domains where deep learning is applied has increased, researchers
have proposed a vast number of neural network architectures claiming enhanced per-
formance and less computational resource consumption demands. However, conceiving
these architectures remains a complex task, relying on experience and, in some cases,
trial and error procedures. Currently, there is no full understanding of the rules that

govern model design.

Despite the advances and widespread interest in neural networks, there is still a
notable gap between theory and practice. While practitioners have made outstanding
achievements, theorists have followed behind, with studies that usually include unrealis-
tic assumptions that lead to inaccurate results in understanding deep neural networks

as they are typically used.

Convolutional Neural Network (CNN), a particular deep learning architecture, has
been notably successful in many vision tasks. However, after all the continuous progress
in CNN models, an element in their design remains almost unchanged. There is a
practice of increasing the number of filters in deeper layers, basically doubling the filters
when a pooling layer halves the resolution of the feature map. This pyramidal design is
rooted in the philosophy of deep learning, aiming to build hierarchical representations,
reusing simple concepts in lower levels to form complex higher-level ones [14, 63]. It is
generally believed that a progressive increase in the number of kernels compensates for
a possible loss of the representation caused by the spatial resolution reduction [106], as
well as improves performance by keeping a constant number of operations in each layer
[30].

This pattern was first proposed in [106] with the introduction of LeNet and can be
observed in a diverse set of models such as VGG[183], ResNet[73] and MobileNet[82].
Even models obtained from neural architecture search (NAS), such as NASNet [222],
follow this principle since many automatic model discovery methods are mainly formu-
lated to search for layers and connections. In contrast, the number of filters in each layer
remains fixed.

Techniques used by NAS are now applied to channel number search (CNS) to find
the optimal distribution of filters in a convolutional neural network [200] based on the
intuition that the incremental design could not be the best option. Approaches perform a

search process considering a set of promising values for the filter distribution that depart

2

Base Model Template New Model
C

R i

Layer @

New Model Trained
Layers: [input [] conv [[] Final g
Filters: Untrained Trained @—'
Figure 1.1: The pyramidal pattern of increasing filters per layer is widely adopted in
convolutional models (left). We propose to apply a small set of templates to an existing
model to change its filter distribution (center). After being trained from scratch (right),

resulting models are competitive in accuracy compared to the original model, however,
they require less computational resources.

H =

Filters

@
00000

from the original ones of a base pattern, generally the incremental one. Being based
on NAS, the main limitation for widely using these CNS algorithms resides in the high
computational cost implied in the exploration of the search space, which requires training
and evaluating a vast number of candidate models before finding a good distribution of
filters.

To overcome the limitation of CNS methods that incur high computational costs, this
work is based on the idea that exploration should be performed in a few simple and
radically different distributions to the pyramidal pattern instead of exploring individual
widths in each layer. This work introduces a small set of these predefined distributions,
called templates, intuitively created firstly by using highly diverse patterns defined
by quadratic functions. Later, they are improved by using simple linear equations or
combinations of them that can be easily implemented in most of the existing CNN

classical and state-of-the-art models.

As depicted in Figure 1.1, to use a template, the method takes a base model and rede-
fines its filter distribution with the pattern provided while keeping the rest of the model
unchanged. The process preserves the number and types of layers, including pooling ones.
Therefore feature map resolutions at each level are those of the original model. Once

trained, the new model requires similar floating point operations (FLOPs), produces

3

CHAPTER 1. INTRODUCTION

better or at least competitive accuracy, and consumes less of other resources. Unfortu-
nately, this research has not found a way of uncovering the most appropriate template
that could work with each task. Nonetheless, being the set of templates small enough,
a simple sequential search is still fairly competitive in time compared to automatic
methods. Moreover, experiments show an emerging pattern in which some templates
present favourable features according to the requirements of the task to be performed.
Experimental evidence shows that simple changes to the pyramidal distribution of
filters in some CNN models improve accuracy while reducing the number of parameters or
memory footprint. Experiments also highlight that tested models, although significantly
changed in their original filter design, present high resiliency in accuracy, a phenomenon
that requires further research and explanation. If resilience is a general condition for
all neural networks, the deep learning community will benefit in practicability, allowing
practitioners to freely choose an appropriate number of channels according to their
priorities in resource consumption without sacrificing the performance of the network

significantly.

1.1 Contributions

The conventional wisdom in deep learning is that increasing the filters in deeper layers
of neural networks increases the diversity of high-level attributes leading to a better
generalisation [70, 106].

This thesis offers the following main contributions:

¢ Chapter 3 challenges the widely adopted idea of incrementally allocating filters
in a convolutional neural network by adopting a small set of entirely different
patterns called templates for redistributing filters without varying the rest of the

original architecture.

¢ Chapter 4 explores the scope to which the use of templates can be beneficial to
convolutional neural networks and compares resulting models from other filter

number manipulation techniques such as compression methods.

* Chapter 5 proposes a linear-segment definition based on additive filter changes
from the PyramidNet design to develop a new set of improved templates that
matches a FLOPs budget.

1.2. THESIS OUTLINE

1.2 Thesis Outline

Chapter 2 examines the development of convolutional neural networks from their first
conception, including models that won the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [170]. This chapter outlines the primary improvements of listed
models and shows that the ImageNet dataset has influenced architectures to follow a
pyramidal filter distribution with no other argument than empirical results of improved
accuracy. Other strategies for optimising models that impact the distribution of filters,
such as pruning, distillation and neural architecture search, are also discussed.

Chapter 3 introduces the concept of templates to examine whether the standard
pyramidal configuration of filters in most known CNN models is beneficial to the task
of image classification. Experiments in this chapter compare the accuracy of models
by redistributing an equal number of filters in all templates without controlling the
redistribution effects on resources. Additionally, the chapter presents a resource matching
experiment showing the higher efficiency of templates in resource usage.

Chapter 4 explores the tasks of global localisation and super-resolution using tem-
plates with some classical CNN architectures to determine the scope in which a different
distribution of filters produces enhanced models. The chapter compares the reduction
effects of templates with three different pruning techniques and evaluated the templates
functioning in a serial pipeline with MorphNet, a CNS method.

Chapter 5 redefines the set of templates adopting linear segments to form the pat-
terns for the filter distributions. The new templates definition, inspired by the additive
PyramidNet pattern, produces higher accuracies and allows to match a predefined budget
of FLOPs. Templates are tested in an expanded group of domains where the performance
of models depends more on the internal representation than the final outputs. Templates
are also evaluated in the NASBench-101 dataset illustrating the importance of exploring
different distributions of filters.

Further, chapter 5 presents a study to find differences in the internal representations
of each template and then, relate the best performing template with features provided
for the CKA similitude metric.

Chapter 6 summarises the research presented in this thesis, outlines our main
findings and puts them into perspective concerning their implications for the neural

network designer community.

CHAPTER

RELATED WORK

his chapter revisits the evolution of convolutional neural networks since their

first appearance. We particularly mention models that have been successful in

the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [170]. We
describe their main innovations and show that one feature has been barely investigated
in convolutional network models: the pattern design for distributing filters and how it
influences the efficiency of models. This pattern comes from the earlier architectures
and has been adopted in most subsequent models. Just a handful of architectures, all of
them recently created, have been built using a different distribution. The pattern has
been so widely accepted that even in most automatic discovery methods, this feature is
not considered in the exploration space, but it is just adopted as the default distribution.
This chapter also revisits other techniques conceived to optimise models that affect the
distribution of filters like pruning and distillation. We enumerate them in this chapter

as well as methods for automatic discovery of models.

2.1 Evolution of Convolutional Neural Networks

Although the evolution of neural networks has been described in numerous articles
[6, 7, 115, 161, 171, 179], we go again through the different models having a glimpse
on features extrinsic to network architectures such as activation and loss functions,
parameter optimisation or regularisation. Additionally, we focus on architectural inno-

vations, such as multi path modules, deeper layers, residual connections and grouped

7

CHAPTER 2. RELATED WORK

Uniform Pyramidal Diverse Uniform
Pattern Pattern Patterns Pattern

Neocognitron AlexNet ResNet NASNet Filter Templates ConvMixer
(1980) (2012) (2015) (2018) (2019) (2022)

LeNet-5 VGG Inception MobileNet ~ MNASNet Isometric NN ViT

(1998) (2014) (2014) (2017) (2019) (2019) (2021)
Pyramidal Uniform
Pattern Pattern

Figure 2.1: Year of introduction of well-known CNN architectures cited in this section
showing used patterns of filter distribution. Our work is shown in bold.

convolutions, like the work in [94] but emphasise designers’ decisions on the distribution
of the number of filters within the layers. This characteristic is significant in our work,
and we will show later that from the first successful CNN architecture, almost all subse-
quent convolutional models have been using an increasing pattern for the distribution of
neurons. As far as we know, there is no other justification for keeping this incremental

distribution than “to keep the richness of the representation” [106].

Since LeNet’s emergence in 1998, there has been a massive expansion of research
around the pyramidal distribution. It has been taken for granted that the design is
optimal for all models and datasets, at least in the computer vision domain. Recently,
researchers are looking back building new architectures using a different pattern to the
pyramidal design [46, 174, 192]; however, they are only exploring the uniform pattern.
This work calls for extending the search to other different exploration spaces for filter
distributions, and it shows that some of these new distributions can produce more
efficient models (See Figure 2.1).

2.1. EVOLUTION OF CONVOLUTIONAL NEURAL NETWORKS

The neural network proposed here has been simulated
on a digital computer. In the computer simulation, we
consider a seven layered network: Uy—» Uy - U = Uy,
—Ugy—»Ugy— Uy That is, the network has three
stages of modular structures preceded by an input layer.
The number of cell-planes K, in each layer is 24 for all
the layers except U, The numbers of excitatory cells in
these seven layers are: 16x 16 in U,, 16 % 16x24 in
Ug. 1010 24in U, B8 x 24 in Ug,, 6x 6x 24 in
[,‘: 2 2x2x241n E-'“,_ and 24 in U_ . In the last layer
U, cach of the 24 cell-planes contains only one
excitatory cell (i.e. C-cell).

Figure 2.2: Layers in Fukushima’s Neocognitron with the description of a uniform pattern
for filters’ distribution. Image and text from [56].

2.1.1 Early Neural Networks

Origins of artificial neural networks (ANN) go back to several decades ago with the work
published in the forties by McCulloch and Pitts, describing a mathematical model for
the behaviour of nets of biological neurons [131]. Among the model’s limitations were
the lack of a learning procedure and the use of binary data. A more complete neuron
model was introduced in the Perceptron [167]. It works as a binary classifier firing the
neuron when a weighted sum of the inputs exceeds a predefined threshold. The single-
layer model incorporated an algorithm for learning, and it was not limited to processing
binary inputs; however, it was found the Perceptron was capable of solving only linearly
separable functions [135]. Ivakhnenko and Lapa published the first functional networks
with multiple layers, later known as multilayer perceptron (MLP), in 1965 [177]. Still,
only until the work of Rumelhart, Hinton and Williams in 1986, it was shown neural
networks could find solutions for non-linear classification problems. Using backprop-
agation as a learning technique, these multilayer networks can produce meaningful
internal representations in intermediate layers [169]. The first model resembling modern
convolutional networks was Fukushima’s Neocognitron, published in 1980 (see Figure
2.2). This model has the ability to be invariant to changes in position or tiny distortions

in shape in stimulus patterns [56].

2.1.2 First Convolutional Networks

The architecture of the Neocognitron carries a hierarchical multilayered structure in

which the neurons in deeper layers respond to more complex features of the input pattern.

9

CHAPTER 2. RELATED WORK

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 :

32x32 S2: f. maps

6@14x14

C5: layer F6: la OUTPUT
: layer
120 84 10

o
e

I
‘ Full contection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Figure 2.3: Layers in LeNet-5 architecture. Image from [106].

The paper outlines that the number of cells in each layer decreases with the layer’s
depth. Nevertheless, the experimental section depicts a similar number of neurons in
each intermediate layer (24 to be specific). The first successful application of a CNN was
presented in a handwritten zip code recognition system [105]. The authors trained a
convolutional network, alternating convolutions with subsampling layers and stacking a
couple of fully connected layers at the end. This model is the first constructed with the
increasing pyramidal pattern, and it was named LeNet-5 (Figure 2.3). It presents all the
essential elements of current CNNSs. Its design has a set of three convolutional layers (6,

16 and 120 neurons) and two fully connected layers (84 and 10 neurons).

AlexNet [100] builds on LeNet-5 design and introduces several improvements, still
in use in many current CNNs, that had been developed separately: ReLu for activation
functions [143], max-pooling layers for subsampling [160], dropout for regularisation
[79] and training process performed in GPU [185]. This last feature exploits the highly
parallelisable nature of neural network operations, drastically reducing the training
time. Its design consists of eight layers arranged in an almost pyramidal distribution (96,
256, 384, 384 and 256 units in convolutional layers). This model was the winner of the
ImageNet Large-Scale Visual Recognition Challenge [170] in 2012, beating handcrafted
feature encoding methods by a considerable margin.

One crucial work that redefined the shape of AlexNet filters distribution to be the
most widely used distribution is the one presenting ZFNet model [214]. The paper
experimentally shows that using small 3x3 filters and changing the number of filters
to 512, 1024 and 512 in the last convolutional layers decrease the validation error on
ImageNet by three percentage points.

The most recent models resembling LeNet-5 are the family of VGG architectures
[183]. The authors adopted the distribution of filters proposed by Zeyler and Fergus [214]
and tested different architectures by changing the depth. Filters were assigned following

10

2.1. EVOLUTION OF CONVOLUTIONAL NEURAL NETWORKS

ConvNet Configuration
A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)
conv3-64 conv3-64 conv3-bd conv3-64 conv3-b4 conv3-od
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | comv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128
maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | comv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | comv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256
maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | comv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | comv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512
maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | comv3-512 | conv3-512
conv3-512 | conw3-512 | conv3-512 | conw3-512 conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512
maxpool
FC-4096
FC-4096
FC-1000
soft-max

Figure 2.4: Distribution of filters by layer in VGG architectures. Image from [183].

the incremental pattern 64, 128, 256, 512, 512. To cope with the different depths, they
grouped convolutional layers in five blocks, as the number of layers in AlexNet, for each
particular architecture and assigned the same number of filters within the block (see
Figure 2.4).

2.1.3 Deeper, Wider and Denser

Although layers within blocks in VGG has nothing in particular other than the same
number of filters, designers realised this strategy allowed easier development of new and
deeper models. It is more flexible to design a small structure and then repetitively stack
it to form a complete network [119]. The GoogLeNet [187] model was built using identical
Inception modules. The authors state that the network topology tries to approximate
locally sparse structures with dense elements to avoid increasing computational resource
utilisation while conveniently exploring different-sized patches. With the increase in

depth, GoogleNet faced the problem of vanishing gradients [80]. The solution was to add

11

CHAPTER 2. RELATED WORK

type l P a;:-:;:.ef 0::::'“ ‘ depth ‘ #1x1 ij:ﬂ: #3x3 iz;: #5%5 ‘ l[:::'.ll ‘ params ops ‘
convolution TxT/2 112x112x64 1 27K 34M
max pool 3x3/2 56 x 56 x G4 0

convolution 3x3/1 56 x56x 192 2 64 192 112K 360M
max pool ax3/2 28 x28x 192 0

inception (3a) 28 % 28x 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 % 28x 480 2 128 128 192 32 96 64 3B0K 304M
max pool 3x3/2 14 %14 x 480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K T3M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K H8M
inception (4¢) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x 528 2 112 144 288 32 64 64 SBOK 119M
inception (4e) 14 x 14 x 832 2 256 160 320 32 128 128 840K 170M
max pool ax3/2 TxTx832 0

inception (5a) TxTx832 2 256 160 320 32 128 128 1072K 54M
inception (5b) TxTx1024 2 384 192 384 48 128 128 1388K TIM
avg pool T=xT/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x 1000 1 1000K IM
softmax 1x1x 1000 0

Figure 2.5: Distribution of filters by layer in GoogLeNet architecture. Image from [187].

auxiliary outputs to translate gradient signals to lower parts of the architecture. We can
observe in Figure 2.5 that the pyramidal distribution of filters remains.

Following this block-style design emerged ResNet architectures [73] with a formu-
lation that enables very deep networks to be more easily trained. Their blocks are
constructed with residual connections that help reduce the degradation problem, leading
to poorer performance when stacking numerous layers in a neural network model [61].
In Figure 2.6, we can infer that the authors used the same filter distribution adopted in
VGG.

Another family of models with a solution for diminishing gradients is FractalNets
[102]. The authors argue that residual connections are not necessary, and they proposed
drop-path regularisation, which randomly enables a single column subnetwork to be
trained at once. They also declare in the FractelNet paper: “we set the number of filter
channels within blocks 1 through 5 as (64, 128, 256, 512, 512), mostly matching the
convention of doubling the number of channels after halving spatial resolution”.

After ResNet, based on the idea that deeper models are better models [194], re-
searchers started training networks up to more than one thousand layers [74, 85].
Although they utilised varied strategies for enabling convergence, such as an adaptive
rectifier and a robust initialisation method [72], very soon they realised that the cost
of slightly improving performance came at the expense of meaningfully increasing the

number of layers. Very deep models still suffered from diminishing gradients and a very

12

2.1. EVOLUTION OF CONVOLUTIONAL NEURAL NETWORKS

VGG-19 34-layer plain 34-layer residual

image image image
ooy [acmer]
size: 224 33 conv, 64

3 conw, 64

st poal, /2
saelid 34 cow, 128
[»acomus | [mrconv ez | [mreomen |
¥ v ¥
st pool, /2 posl, 12 pod, /2
a6 + *
[saconw2se | [sacomwes | [3scomer |
¥ 2
[sacomzs | [acwme] 3ndcony, 64
¥ 2
[Howm) [mems] [Seome
¥ 2
[sacom2e | [Mm*nv.bd] [amconven
[oeme] [Howe
¥ ¥
[atcomes | [scow.s
Y
pool, /2 [(33com. 872 | [(Scomwsn | o
output Y
e [aconsn | [(amiz] [Saeomwis | 7
[seemin | [amcom iz] [awwin]
L 2
[sewmin | [igcom] [owin]
¥
[eewiz] [eomiz] []
[3ocom 1] []
| [[Ceowin |
| (|
¥
b} pm*sz [GBew s | [-
[3acom,5m2 | [36com256 | [
¥
[awmwsz | [[x3mm.25%6 | [
¥ ¥
[3dconvs2 | [33com, 256
¥ ¥
[3acm,s2] [[xsmm.25%6 |

[3scom 256 |

33 conw, 256

[x3com,256 |

33 conw, 756
343 comw, 256
¥
[3scom 256 |

pocl, /2 3x3cony, 512, /2 3 canv, 512,12 T

output
sae 7

¥ Y
[3ocomsn_] [sawmin i
e~
[3awmsn | [Cacomsz]
¥
[38wz | [Scow.sz |
¥
[[3acomsz]
¥
33 comv, 512
output
pror 124096 a\&*pool avg:aol
[fe 2098] [11000] [fe 1000

Figure 2.6: Comparison of filters by layer between VGG and ResNet architectures. Image
from [73].

long time to train.

A natural alternative to keeping increases in depth was to scale models in width [11].
WideResNets [213] are constructed using residual modules in networks from 16 to 52
layers, proportionally scaling the number of filters from 2X to 12X. Being shallow, wide
residual networks are faster than deeper networks, but on the other hand, they count
more parameters and therefore are prone to overfitting. For this reason, the authors
added dropout layers within residual modules to work as regularisers. Similar to previous
architectures, the WideResNet base model adopts an increasing distribution of filters, as

shown in Figure 2.7.

Motivated by the success of residual connections, designers created DenseNet [84].

13

CHAPTER 2. RELATED WORK

group name | output size | block type = B(3,3)

convl 32x32 - [3x3.16]
3x3, 16xk

conv2 32x32 _ 3%3. 16xk _ N
: [3x3,32xk |

conv3 1616 _ 3%3, 32xk _ N
[3x3, 64xk |

conv4 8x8 3%3. 64 xk N
avg-pool 1x1 i [8x8]

Figure 2.7: Distribution of filters (16, 16, 32 and 64) in a Wide Residual Network with
the original residual block. Image from [213].

The architecture leverages feature reuse by adding short paths to every previous layer
inside a block. Because of these dense connections, the model has a low number of
parameters but at the cost of high memory utilisation and increasing FLOPs. Feature
maps in previous layers must reside in memory to be concatenated and processed again
along with the new features. The computational burden restrained the authors from
increasing the number of new filters in each block to only twelve. The DenseNet block
has a constant number of new filters in each layer, but the resulting number of feature
maps in the global design still resembles an increasing distribution.

Since the first CNN models, the incremental distribution of filters has followed the
shape of a stepped pyramid. The "steps" are found in the downsampling layers, where
the feature map resolution decreases by the pooling operation, and the number of filters
increases, doubling the previous ones. The work presented in [198] unveils a particular
behaviour in residual networks: removing blocks from the architecture at test time
have little impact on the final accuracy. This is because the residual connections make
the remaining subnetwork act as if it has been trained isolatedly, and then the final
model performs as an ensemble of subnetworks. The only block removals considerably
hurting the accuracy are those that happen in the sections next to the downsampling
layers. PyramidNet designers build on this outcome and hypothesise that a more reliable
ensemble distributes the damage in all the blocks [70]. They propose to smoothly increase

the number of filters in each layer within the block as shown in Figure 2.8.

2.1.4 Efficiency-Oriented Architectures

Once designers found hardware limitations for training and running deeper and wider

networks, they looked for solutions to reduce computational resource consumption of

14

2.1. EVOLUTION OF CONVOLUTIONAL NEURAL NETWORKS

s

| Output

Figure 2.8: Number of filters in additive PyramidNet (red) and multiplicative PyramidNet
(blue). In both cases filters are smoothly distributed along layers. Better experimental
results were obtained with the additive distribution. Image from [70].

models instead of exclusively improving accuracy. One of the first models to show a
dramatic reduction of resource demands was SqueezeNet [86]. Using a module known
as Fire block, the model can reach AlexNet comparable accuracy with a much smaller
number of parameters. The reduction is achieved by reducing channels entering the
3x3 convolutions within the Fire block with a few 1x1 filters. The authors present an
extensive description of the exploration space for the hyperparameters defining the
architecture; however, filters in each layer are kept with the incremental distribution
without further explanation.

The GoogLeNet model suffered several refinements leading to better accuracy and
more computational efficiency. Firstly by adding batch normalisation layers [87]; sec-
ondly, by decomposing 5x5 convolutions with two cheaper sequential 3x3 ones; lastly, by
factorising nxn convolutions in nx1 followed by 1xn convolutions [188].

The author in [29] took inspiration from Inception modules and combined them with
the concepts described in [89, 182] of factorising convolutions to reduce computational
demands. This type of convolution, called depthwise separable convolutions, can signifi-
cantly reduce the number of operations performed in a neural network while keeping
similar accuracy. The rationale behind this idea is that the information contained in the
channels can be disentangled from spatial information. The distribution of filters in this
new model, named Xception, remains similar to the GoogLeNet model.

Almost concurrently with the appearance of Xception, a family of models called

MobileNets were proposed aiming to run efficiently in constrained environments [82].

15

CHAPTER 2. RELATED WORK

Type / Stride Filter Shape Input Size

Conv /52 3% 3 =3 =32 224 % 224 % 3
Conv dw /sl 3 3= 32 dw 112 = 112 = 32
Conv /sl Ix1x32 =064 112 = 112 = 32
Conv dw /52 3% 3= 64 dw 112 = 112 = 64
Conv /sl s 1 =G4 = 128 56 = 50 = 64
Conv dw /sl 3% 3 = 128 dw 56 = 56 = 128
Conv /sl 1= 1= 128 x 128 56 = 56 = 128
Conv dw /[s2 3% 3 = 128 dw 56 = HO = 128
Conv /sl I =1 =128 x 256 28 % 28 x 128
Conv dw /sl 3= 3 = 256 dw 28 = 28 = 256
Conv /sl I = 1 % 256 x 256 28 x 28 x 256
Conv dw /52 3= 3 = 256 dw 28 = 28 = 256
Conv /sl =1 =256 x 512 14 = 14 = 256
. Convdw /sl | 3x3x512dw 14 = 14 = 512
‘MCOHVISI Ix 1 x512x512 14 = 14 = 512
Conv dw /52 3% 3= 512 dw 14 = 14 = 512
Conv /sl 1 x1x512x1024 TxTx512
Conv dw /52 3% 3« 1024 dw TxTx 1024
Conv /sl I 1= 1024 x 1024 | 7= 7= 1024
Avg Pool /sl Pool 7 = 7 T T 1024
FC /sl 1024 = 1000 1x1=x1024
Softmax /sl Classifier 1w 1= 1000

Figure 2.9: Number of filters in the MobileNet base model. Designers can fit variate
computational budgets using the architecture with a width multiplier. Image from [82].

MobileNet designers extensively used depthwise separable convolutions composed of 3x3
depthwise convolution filters performed in each input channel, followed by pointwise

convolutions made of 1x1 convolutions.

Additionally, designers introduced two extra parameters to control the model’s ca-
pacity: the width and resolution multipliers. These hyperparameters provide a flexible
design that allows the use of MobileNets in a broad range of applications. We emphasise
that the width multiplier proportionally increases or decreases the number of filters
but follows the base pyramidal distribution shown in Figure 2.9. Similar to GoogLeNet,
MobileNet architecture has been refined to reach higher accuracy with fewer resources
[175]. MobileNet V2 authors introduced the inverted bottleneck module, which on one
side, alleviates the loss of information caused by embedding the representation manifold
into a lower subspace with a non-linear transformation. On the other side, it incorporates
residual connections between the bottlenecks keeping expansion layers in the middle of

the module and saving computational costs.

16

2.1. EVOLUTION OF CONVOLUTIONAL NEURAL NETWORKS

2.1.5 Grouped Convolutions and Attention

The strategy of the Inception module of splitting the input, processing it in separate
branches with different filter sizes, and then merging all the branches again is the
inspiration for a new type of architecture. The first of them is the ResNeXt model [205],
second place of ILSVRC 2016. The authors built a multipath structure taking parallel
ResNet blocks that split the input and merged the output at the end. Instead of having
specialised filter dimensions, the ResNeXt block uses similar 1x1 and 3x3 filters in all the
paths. The number of paths (known as cardinality) is a new hyperparameter that adjusts
the size and, therefore, the accuracy of the network. The macrostructure of ResNeXt
is similar to the ResNet model but proportionally counts much more filters. However,
the number of parameters and FLOPs are equivalent due to the implementation of

multibranch modules as grouped convolutions.

These grouped convolutions, combined with depthwise convolutions, are also present
in ShuffleNet, a model designed to be small and efficient [217]. The authors exploit the
assumption from [216] that keeping channel information separated in each group (or
branch) could limit the network’s performance and that randomly shuffling channels
could reduce the effect. Similarly, they proposed to mix the channels between groups. In
this way, all grouped convolutions can access information contained in the rest of the
branches without increasing computational requirements. However, the idea of doubling

the number of channels every time the feature map size is reduced still rules this design.

The concept of attention has been studied in several works [18, 88]. It is a mechanism
that enables dynamically weighting features produced for convolution layers depending
on the input being processed to select the more important ones for the task. Some of the
works building effective attention mechanisms are found in dasNet [184], stacked hour-
glass networks [144], and residual attention networks [199]. But it was the SENet model
which won the ILSVRC 2017 using attention. The authors of SENet modified existing
block-based architectures such as ResNet and Inception by adding an attention structure
called squeeze and excitation block (a.k.a SE block) [83]. The SE block first captures
global spatial information into a channel embedding. Then it learns the importance of
each channel using a pair of fully connected layers with a non-linear transformation. The
output of the original ResNet or Inception block is scaled according to the importance
learned by the SE block. The distribution of filters in the final model is not affected by
the modifications of the SE block, as reflected in Figure 2.10.

17

CHAPTER 2. RELATED WORK

Output size ResNet-50 | SE-ResNet-50 SE-ResNeXt-50 (32 x 4d)
112 % 112 conv, 7 x 7, 64, stride 2
. . max pool, 3 x 3, stride 2
56 x 5€
0o Feonv. 1 x 1. 64 conv,l x 1,64 conv, 1 x 1,128
B -| conv,3 x 3,64) conv,3 x 3,128 C =32)
conv,3 x 3,64 | x3 e | X3 _ x 3
conv. 1 x 1 2")f1'J conv, 1 x 1,256 conv, 1 x 1,256
o o | fe, [16, 256] 1 Lfe, (16, 256]
i [conv, 1 x 1,128] [conv, 1 x 1,256
conv,l x 1,128 oo e e 4 amp B
98 % 28 conv. 3 x 3.198 | x 4 conv, 3 x '} 1.28 v 4 conv, 3 X *) ?ub =32 w4
1% 1512 conv,l x 1,512 conv,1 x 1,512
conv, 5 ;
- | fe, [32,512] Lfe, [32,512]
U [conv, 1 x 1,256] [conv, 1 x 1,512
_ conv, 1 x 1,256 i conv, 3 x 3,256 i conv,3 x 3,512 C =32
14 > 14 conv, 3 x 3,256 6 x 6 x 6
onv. 1 x 1. 1024 conv, 1 x 1, 1024 conv, 1 x 1, 1024
LOORY, & % % L fe, [64, 1024] | fe. [64, 1024]
- [conv, 1 x 1,512 T [conv, 1 x 1,1024
onv, 1 x 1,512 '
conv, © x 1,0) conv, 3 % 3,512) conv,3 % 3,1024 € =32| .
Tx7 conv,3 x 3,512 | x3 x 3) x 3
conv. 1 % 1. 2048 conv, 1 x 1,2048 conv, 1 x 1, 2048
- ' ’ Lfc, [128,2048] | | fe, [128,2048)
1x1 global average pool, 1000-d fe, softmax

Figure 2.10: Comparison of the number of filters in ResNet against ResNet and ResNeXt
architectures using SE blocks. SE enabled models are identified by the SE prefix. Image
from [83].

2.1.6 Recent Developments for Uniform Distribution

Since the start of this Thesis, there have been other works related to revisiting the
uniform distribution. We cite in this section state-of-the-art networks created with this
distribution of filters. They underline that, by not necessarily following the pyramidal
pattern, it is possible to achieve higher performance and structure simplicity, making
them easier to implement. We note that the first recent network successful with the
uniform distribution was published the same year our filter templates were publicly
presented.

In 2019, the first work was introduced following the neocognitron filter distribution.
The authors call the new type of networks Isometric Neural Networks (INN) [174]. The
research behind INN is not focused on the distribution of filters. Instead, the paper
argues that the significance of the internal resolution of hidden layers (internal feature
map resolutions) is more crucial than the resolution of the input image on the final
performance of the network. Based on the findings, the authors of INN propose a fixed
internal resolution across the architecture. Consequently, they keep a constant number
of filters in each layer (see Figure 2.11). As a result, INN not only performs higher than
MobileNets, but they count fewer parameters and memory footprint.

Based on the attention mechanism, the Transformer architecture appeared in the
natural language processing (NLP) domain. It was created to address the problem

of lack of parallelisation, and the subsequent slow training procedure, produced for

18

2.1. EVOLUTION OF CONVOLUTIONAL NEURAL NETWORKS

Figure 2.11: Comparison of an isometric neural network (left) versus a standard pyrami-
dal architecture (right). Blue blocks schematise the resolution and number of feature
maps. Image from [174].

recurrences in existing networks [197]. Although attention is used in several computer
vision-based models, it is combined with convolutional networks. The Vision Transformer
(ViT) has been adapted to work with patches of images instead of tokens (words) [46].
Like the tokens in the NLP transformer, the patches are encoded with a linear learnable
embedding. The authors removed the convolutional structure entirely and utilised the
attention mechanism proposed in the original transformer. Its performance beats CNN
based architectures when trained in massive datasets and then fine-tuned to ImageNet.
The ViT network is composed of constant size transformer encoders keeping equal
resolution throughout all layers in a uniform pattern.

The use of image patches at the input of ViT networks raised the question of whether
their success originated from the transformer encoder or from the use of patches. Re-
searchers proposed using patches (previously embedded as in ViT) as inputs of a convo-
lutional network called Convolutional Mixer (ConvMixer) to answer the question [192].
Instead of using the classical pyramidal pattern for assigning filters in each layer, the
authors of ConvMixer copied the uniform resolution and number of channels from the
ViT network (see Figure 2.12). The resulting very simple architecture outperforms the

accuracies of ViT and ResNet on ImageNet using similar parameters.

19

CHAPTER 2. RELATED WORK

_ ConvMixer Layer —
Residual connection
[=>]
= £
s] 3| (B
2 AR
g B % 8 %)
& £ 85 E 28 E E 508
£ o [e} =5 =) 5] 25 o 5} o o 5]
:Cg —)'d—)-%-b £E3 > 2 -EE > O Z— EARES
© olle az||lo||8 S5 | |0 |8 T |3
o |] 30 © o o © o w
o (&) m (&) o (%
exnxn hxn/pxn/p ==

x depth

Figure 2.12: ConvMixer structure uses copies with the same number of filters of a simple
convolutional block. Image from [192].

2.2 Methods for Neural Network Model Compression

In the previous section, we listed the advances in convolutional neural networks. De-
spite new improvements having brought more powerful models, they were achieved at
the cost of increasing models’ computational complexity [94]. Many of these networks,
especially the best-performing ones, necessitate massive amounts of computing and mem-
ory. These restrictions not only raise infrastructure costs but also complicate network

implementation in resource-constrained contexts like mobile devices [138].

The necessity of finding a way to reduce these high demanding networks encouraged
the development of techniques to compress models without decreasing their performance.
Theoretical findings state that a smaller system shows better generalisation performance
[17]. Neural models are over-parameterised [40, 176]. Then, it is considered they are
amenable to be reduced in size and, therefore, in resource requirements [39] always that

the network dimension surpasses a certain minimum threshold [13].

Compressing a neural network allows multiple advantages. The final model is usually
faster to train, with less latency and reduced memory needs. These features enable it to
be deployed in low-energy devices used in mobile applications. Moreover, implementing
numerous compressed models in big data centres can help significantly reduce the total

energy consumption [116].

We revisit in this section two important compression methods for neural networks
related to our work: network pruning and knowledge distillation. Although templates
are not purposely designed like a model compression technique, many reach comparable

resource demand reductions.

20

2.2. METHODS FOR NEURAL NETWORK MODEL COMPRESSION

x‘\-m_

Pruning neurons \

Figure 2.13: Unstructured and structured pruning approaches. The original model (left)
is reduced by eliminating some of the weights (top right) or complete neurons (bottom
right). Image from [25].

2.2.1 Neural Network Pruning

The purpose of pruning methods is to achieve a reduction of unnecessary elements in
neural network models such as connections, filters, or layers [16, 206]. Early pruning
works were focused on reducing the number of connections (parameters) [107, 142, 163].
The methods are known as unstructured pruning, and although they have shown to
be successful [47, 126, 139], the resulting networks are difficult to implement due to
their sparsity, requiring special hardware and libraries [71]. Recent studies claim that
the levels of compression achieved by these methods are not reachable by training the

reduced model from scratch [57].

On the other hand, structured pruning, which prunes at the levels of channels, layers
or even blocks, produces dense models that harvest the characteristics of actual GPU
devices. Figure 2.13 schematise the difference between the two approaches. Among all
the levels of structured pruning, the most popular is carried out by removing complete
neurons [75, 76, 104, 128, 208] using some heuristic. Thus, the final model ends up
with a different distribution of filters. We interpret this definition as if it is implicitly
assumed in pruning methods that the original distribution of filters is not optimal for
the architecture being reduced. Pruning methods assume there exists one distribution
that uses fewer filters but is still capable of reaching similar or even superior accuracy.
In that sense, our work is related to neural network pruning because we explore some

radically different distributions of filters for existing models.

21

CHAPTER 2. RELATED WORK

We describe below the three main beliefs that have been under discussion in the last

years regarding the importance of trained weights in a neural network:

1. Final weights are important, and then, neural networks can be reduced after/during

training by cutting less relevant elements.

2. Initial and final weights are important, therefore, neural networks can be reduced
after/during training by removing less relevant elements and then training the

subnetwork again from the original initialisation.

3. Only structure is essential, so neural networks can be reduced before training by

removing less relevant elements out of budget.

2.2.1.1 Pruning Based on Final Weights

Like the earliest pruning methods, the first group of works relies on the final weights of
the model. The network has to be fully trained, and then, metrics about the importance
of each element are used to decide whether to delete any of them. By far, this is the
predominant belief [10, 163], and it was adopted since the Optimal Brain Damage (OBD)
work [107]. It is commonly acknowledged that trained weights with high values are more
critical than those with low values. Furthermore, it is possible to group weights using
the /1 —norm to remove complete filters [110]. This removal of weights with zero or
nearly zero values is the purpose of norm-based pruning algorithms. This means that the
distribution of weight magnitudes should be sufficiently wide to include enough weights
near zero to produce a small network. In some cases, however, this doesn’t happen,
making pruning based on a threshold problematic [75].

Pruning the final weights eliminates network redundancies while lowering the num-
ber of calculations without compromising accuracy. However, because the criterion to
select elements to remove is not always precise, certain critical elements may be left out,
resulting in a reduction in accuracy. To compensate for the loss of precision, the model
has to be retrained for some epochs using lower learning rates than in regular training

in a process known as fine-tuning [165] (see Figure 2.14).

2.2.1.2 Pruning Based on Initial and Final Weights

The idea of retaining initial weights was first introduced in the lottery ticket paper [51].
The authors hypothesise the existence of particular subnetworks (a.k.a. winning tickets)

hidden in an entire network model with such characteristics that, when trained isolated,

22

2.2. METHODS FOR NEURAL NETWORK MODEL COMPRESSION

Network

b ¥

(Evaluate importance)
of neurons <::\\
v

\—}
- ™
Remove the least
important neuron
i T
Fine-tuning
L)
y Yes
Continue pruning? ://
y

<+ no

Stop pruning

Figure 2.14: Typical prunning pipeline to reduce a neural network model with minimal
diminishing in accuracy. Image from [140].

they can compete in accuracy with the original network. To be able to discover these
winning tickets, the whole network is fully trained from random initialisation. Next,
the network is pruned with some existing pruning methods. Then, the remaining model
needs to be initialised to their original random weights and be retrained. Experiments
indicate that dense, randomly initialised sub-networks may be trained effectively and

with the same training iterations as the original network.

According to a follow-up study [220], the winning tickets perform better than ran-
domly on some datasets even without any training. In light of this, they propose a
technique for locating a good subnetwork inside a randomly initialised network with

high accuracy.

There have been several improvements over the original lottery ticket paper extend-
ing the hypothesis with a new conjecture[129] to find winning tickets without training
[159] or providing more efficient methods for winning tickets discovery at early training
stages [52]. In addition, some authors have tested the lottery ticket hypothesis in new
architectures [26] and tasks [59].

23

CHAPTER 2. RELATED WORK

2.2,1.3 Pruning Based On Structure

These methods challenge two central assumptions in the field of neural network pruning
[124]. The first one assumes that starting with a large network is necessary because it
provides high accuracy. Then because of the over-parameterisation of the model, one can
remove redundant weights safely with negligible reductions in performance. The second
assumption is that after completing the model training, the final weights are relevant
for selecting the portions of the network that should be pruned.

Experimental evidence of the superior performance of large models over pruned
models trained from scratch has been presented in several works [110, 212] however,
authors of [124] claim that superiority is not undoubtedly true for structured pruning
methods. They found that a small model randomly initialised can perform similar or
better than the original model from which the small model was obtained. Therefore,
the model can be reduced directly to the required target size and trained from scratch.
This finding suggests that the reduced architecture may be more relevant for these
pruning strategies than the conserved weights. The approach presented in our research
about templates relies on the previous result. We claim that we can change the filter
distributions in a model straight away without doing any pretraining and still obtain

competitive accuracies.

2.2.2 Knowledge Distillation

While neural network compression is performed in pruning by removing less important
elements, knowledge distillation (KD) methods follow a different approach of replacing
the complete neural network (Teacher) with a smaller one (Student) [78] (see Figure
2.15). KD methods are based on the same premise used in pruning methods that models
are over-parameterised and therefore amenable to be reduced. However, KD methods
rely on a second assumption with a broad application than neural networks: it is easier
to train a small model not on the original data but in the mapping function the big model
has learned [22].

Although the first work focused on obtaining a small model from a pretrained cum-
bersome model [78, 112], recent works have proposed to perform the training process
of the teacher and the student concurrently [8, 203]. Furthermore, KD techniques are
not restricted to distil knowledge from a single big model but multiple ones combined
in an ensemble. Training the student network requires not the original labels of the

data but the processed labels from the ensemble (soft labels). The standard approach to

24

2.3. NEURAL ARCHITECTURE SEARCH

Teacher Model

Transfer

-

-—— -

Figure 2.15: The knowledge distillation framework is composed of teacher and student
models. Image from [65].

combining multiple teacher models is averaging the outputs [23, 130]. Some other works
have proposed to combine the output distributions [54, 145].

The area of Knowledge distillation continues to be very active [4] with applications
in numerous domains such as image classification [168], semantic segmentation [122],
medical data mining [134] or video captioning [148]. Currently, several efforts are made

to have a theoretical understanding of the distillation process [5, 150, 153].

2.3 Neural Architecture Search

The process of designing a neural network is a task mainly based on experience and
experimentation that consumes a lot of time and computational resources. With the
increase in the use of neural networks, particularly convolutional networks for computer
vision problems, a mechanism to automatically find the best architecture has become a
requirement in the field of Deep Learning. Some works were published several years ago
[101, 155] trying to solve the topic of automatic architecture generation, but they did not
provide competitive results compared to handcrafted architectures. Modern algorithms
for neural architecture search (NAS) have rapidly reduced the gap, and recently [221],
they are capable of producing some of the highest performing models with minimal
human interaction [49].

Some approaches to NAS design are reported in [113]. The authors propose a classi-

fication of methods based on three elements: search space, search strategy and perfor-

25

CHAPTER 2. RELATED WORK

Search Space
Performance
Candidate Evaluation | Select Optimal Evaluation
Controller » . ‘ > . —
Architecture Strategy Architecture

Training & Rank

Figure 2.16: Modern framework of NAS methods. Image from [164].

mance estimation strategy. These aspects remain present in modern frameworks of NAS
as depicted in Figure 2.16.

Generally speaking, methods for automatic architecture discovery operate similarly.
A search strategy chooses an network from a predefined search space using a controller.
Next, the candidate architecture is passed to a evaluation strategy, which reports back
the true or estimated performance of the sample to the search strategy. Knowing the
network’s performance, the controller iteratively enhances its ability to sample selection.
At the final step, the NAS framework fully trains the best models choosing the highest
performing one.

One of the biggest challenges in automatic architecture design is that the search
space for CNN architectures is infinite. A frequent solution is to take a subset of the
possible values of the elements of the architecture, such as types of layers, number of
filters and interconnections. Even so, the problem is still complex [31, 50, 81] and many
approaches have decided to borrow previously published search spaces [120, 189] (see
Figure 2.17 for some examples of search space). Interestingly, the search space for most
NAS methods is restricted to different sets of layers and their connections. However, the
distribution of the number of filters in each layer follows an incremental pattern similar
to the ones found in the models described in section 2.1.

The exceptions to the rule are the new methods for channel number search (CNS)
designed to automatically find the best number of filters for each layer in a neural
network [64, 109]. CNS methods usually reduce the computational burden caused for
the exploration of the search space by parameter sharing [15, 44, 200, 209]. However,
most of the architectures used as base models to initialise the automatic search in CNS
methods share the practice of increasing filters resembling LeNet design[106].

The network architecture construction process iteratively adds simple blocks based

on the experience of the controller acquired by training [120], by analytical methods

26

2.3. NEURAL ARCHITECTURE SEARCH

input input

output output

Figure 2.17: Two different architecture search spaces for NAS methods. A network
structure is built following a sequential design (left) or a more complex pattern (right).
Image from [49].

[36] or by the use of genetic algorithms [123, 127]. Another approach that reduces the
exploration time dramatically is to have a graph defining all networks in the search
space. Then, the edges of the graph defining this super network with shared weights
are reduced by a controller [152], or with stochastic gradient descent [121] alternatively

while training the model’s weights.

The weight sharing paradigm presented in [121] is leading most of the current NAS
techniques [204]. The method uses a relaxation condition to transform the selection
of layers in the architecture into a continuous space using a softmax function. The
relaxation allows performing a simultaneous search of weights and architecture using
gradient descent. The method converges after one day of GPU time, surpassing the
time-consuming previous methods. Most of them with computational demands for the

search process normally in the order of thousands of GPU days (see Figure 2.18).

Initially, a dataset was absent with examples of the best architectures for a particular

27

CHAPTER 2. RELATED WORK

Architecture Test Error Params Search Cost Search
(%) (M) (GPU days) Method
AmoebaNet-A (Real et al., 2019) 3.34(0.06) 3.2 3150 evolution
PNAS (Liu et al., 2018a)* 3.41(0.09) 3.2 225 SMBO
ENAS (Pham et al., 2018) 2.89 46 0.5 RL
NASNet-A (Zophet al., 2018) 2.65 33 2000 RL
DARTS (1st) (Liu et al., 2018b) 3.00(0.14) 3.3 0.4 gradient
DARTS (2nd) (Liu et al., 2018b) 2.76(0.09) 3.3 1.0 gradient
SNAS (Xie et al., 2018) 2.85(0.02) 2.8 1.5 gradient
GDAS (Dong & Yang, 2019) 2.82 25 0.17 gradient
BayesNAS (Zhou et al., 2019) 2.81(0.04) 34 0.2 gradient
ProxylessNAS (Cai et al., 2018)" 2.08 5.7 4.0 gradient
P-DARTS (Chen et al., 2019) 2.50 34 0.3 gradient
PC-DARTS (Xu et al., 2019) 2.57(0.07) 3.6 0.1 gradient
SDARTS-ADV (Chen & Hsieh, 2020) 2.61(0.02) 3.3 1.3 gradient
TE-NAS (ours) 2.63(0.064) 3.8 0.05% training-free

* No cutout augmentation.
' Different space: PyramidNet (Han et al., 2017) as the backbone.
 Recorded on a single GTX 1080Ti GPU.

Figure 2.18: Performances of models and resources consumed by NAS methods on the
CIFAR-10 dataset. Image from [27].

problem to feed the controller network to acquire experience in designing and selecting.
Therefore, one popular alternative for training was reinforcement learning (RL) [12].
But the evaluation process of the predicted architecture is carried on a standard manner
by training it with a large number of iterations, and it can only generate classical
architectures composed of sequential layers of convolutional, pooling and fully connected
blocks.

Researchers have proposed several improvements to build better controllers. In [21]
they present a mechanism to rank a group of CNN architectures by generating initial
weights with an auxiliary network. Those weights provide enough information to accu-
rately sort the architectures based on the validation performance of each configuration
with a few iterations. Recently several works released datasets to facilitate the evalua-
tion of controllers. In particular, the NASBench-101 dataset [207] contains the validation
accuracy of all the fully trained models from the typical search space for NAS (see Figure
2.19). New datasets have been extended to wider search spaces but use a surrogate

model to approximate the true validation accuracies [45, 181].

28

2.4. CONCLUSIONS

095}
"y
® 090}
3
o
=
e
S
w 085}
=
©
=
c i g
-
£ 080} . A resnet

| % inception
o inception neighbors
0.75 : : ' ’ '
0 20 40 60 80 100

training time (minutes)

Figure 2.19: Validation accuracy of fully trained models in NASBench-101 dataset. Every
blue point represents a trained model. Image from [207].

2.4 Conclusions

Since their early origins, this chapter revisited convolutional neural network architec-
tures, starting with the neocognitron. It showed that the distribution of filters began
with a uniform pattern but switched to a pyramidal pattern since the LeNet introduction
in 1989. Since then, the pyramidal design has been predominant in almost all neural
networks, including classical and resource-optimised ones. Methods that modify the
number of filters, such as pruning, neural architecture search, and channel number
search, also initiate their exploration from models following the pyramidal design. We
argue that researchers keep using the pyramidal design because models are mainly
tested on the ImageNet dataset. Therefore, the hyperparameters defining their structure
(including filter distribution) are overfitting ImageNet.

It is clear there are contributions to be made in terms of questioning if the architec-
tures that have been designed for ImageNet are applicable everywhere. The existence
of dataset-dependent architecture requires fasters ways to find networks performing

well in each case. Authors of new architectures such as the isometric neural networks,

29

CHAPTER 2. RELATED WORK

the vision transformer, and the convolutional mixer have looked back and adopted the
uniform distribution again. We aim to open the search for other filter distributions to

benefit the deep learning community by obtaining more efficient models.

30

CHAPTER

FILTER DISTRIBUTION TEMPLATES FOR IMAGE
CLASSIFICATION

his chapter challenges the widely used design of increasing filters in neural
convolutional models by applying a small subset of diverse filter distributions,
called templates, to existing neural network designs. Experimental evidence
shows that simple changes to the pyramidal distribution of filters in convolutional
network models lead to improvements in accuracy, number of parameters or memory
footprint. We highlight that many recent models, which have had a more detailed tuning
in the filter distribution, present resiliency in accuracy to filter distribution changes,
which requires further research and explanation.
Experiments in this chapter use an equal number of filters in all templates without
constraining the redistribution effects. We extend these experiments in chapter 5 where
templates are evaluated with more rigorous experiments keeping FLOPs to similar

values as in the original model and then comparing resource consumption.

3.1 Convolutional Neural Networks

A CNN consists of a set of layers. The first (input) layer is the one that directly takes
an image for further processing through the following multiple hidden layers, typically
including convolutional layers, pooling layers, fully connected layers and normalisation

layers. Finally, the final layer (output) produces a prediction relative to the sample

31

CHAPTER 3. FILTER DISTRIBUTION TEMPLATES FOR IMAGE CLASSIFICATION

introduced in the input layer.

Each convolutional layer L™ in a network of n layers apply M filters (we will use the
terms filters, kernels and neurons similarly) through overlapping regions of the input
image. Its functionality is defined by the number of input and output feature maps, filter
sizes, and skipping factors (strides). A convolutional layer produces M equal-size feature
maps with resolution (M,,M,). All filters of size (K,,K,) are convolved over the input
image using steps S, and S, pixels in x and y directions. The M output map resolutions

(M, M7) for each layer are defined by the number and size of the filters in the equations:

Mn—l_Kn
M;=———""+1
S%
Mn—l_Kn
Mt =—2 Y41
S

Each feature map created in layer L1 is processed as input by layer L" producing
M"™ 1 output feature maps. Filters convolving different sections of an input feature map
share their weights but have different receptive fields [32].

Pooling layers combine the outputs of neuron clusters at one layer into a single
neuron in the next layer using one sample (e.g. the maximum or the average value) from
each cluster. Samples are taken from non-overlapping sections (patches) of P, x P, pixels.
The benefit of pooling layers is to allow position invariance over wide local areas and
reduce the processing of high resolution feature maps by a factor of P, x P, [19].

Fully connected layers have all their neurons connected to all activations in the
previous layer, as seen in regular Neural Networks. This type of layer usually forms the
last layers in a CNN architecture. As they are in charge of producing the final prediction,
changing their size and activation function gives the CNN the flexibility to work in
different tasks. Traditionally, a CNN ends with a Softmax activation function [20] for
classification tasks, while a ReLu activation [2] is used in regression problems. Changing
the last layer according to the required output is a way to build a task-dependent map

using deep networks.

3.2 Popular CNN Architectures

The state-of-the-art networks evaluated represent some of the highest performing CNNs

on the ImageNet challenge in the previous years[170]. They have been primarily tested

32

3.3. CONVOLUTIONAL NEURAL NETWORKS AND THEIR DEFAULT FILTER
DISTRIBUTION

on classification tasks and also have demonstrated a solid ability to generalise to im-
ages outside the ImageNet dataset by transfer learning. Therefore, they are expected
to perform well in regression tasks, as PoseNet is based on the GoogleNet network.
Additionally, we present some state-of-the-art models designed to maintain a low number
of parameters. We merely describe those architectures since we are not interested in the
architectures themselves. We used them only as a map representation and as a tool for
visual features exploration.

The VGG network architecture [183] is recognised for its simplicity (see Figure 2.4).
It is composed of sequential convolutional layers followed by max-pooling reduction
layers. Finally, two fully-connected layers and a softmax classifier manage the final
classification. The main disadvantage of these networks is the size of their parameters,
being the biggest of all the architectures evaluated.

PoseNet [93] is also an adaptation of GoogleNet to be used as a regressor (see Figure
2.5). The intermediate classifiers are discarded at test time, and the softmax classifiers
are replaced with regressors. The authors placed a fully connected layer before the final
regressor acting as a localisation feature vector.

Authors of ResNet [73] succeed on the problem of training very deep CNNs by
reformulating the assumption that the network blocks are modelling a function closer
to an identity mapping than to a zero mapping. Therefore, it should be easier to find
differences with reference to an identity rather than a zero mapping. This assumption is
carried out by adding additional references at the end of building blocks (see Figure 2.6).

The MobileNet network [82] is built on depthwise separable convolutions except for
the first layer, which is a full convolution. All layers are followed by a batch normalisation
layer and a relu nonlinearity except the final fully connected layer, which consists of a

softmax layer for classification.

3.3 Convolutional Neural Networks and Their
Default Filter Distribution

An important consideration to create a convolutional neural network (CNN) model is the
number of filters required at every layer. The Neocognitron implementation, for example,
keeps an equal number of filters for each layer in the model [56]. A very common practice
has been to use a bipyramidal architecture. The number of filters across the different
layers is usually increased as the size of the feature maps decreases. This pattern was

first proposed in [106] with the introduction of LeNet and can be observed in a diverse

33

CHAPTER 3. FILTER DISTRIBUTION TEMPLATES FOR IMAGE CLASSIFICATION

o
0
(X XXX X
00

Filters

-’_’J_ § -I—\—_
_— 2

E A E g

Base Uniform Reverse-Base

Layers Layers Layers

®
H H
()
HOHH o
(J (J 8
B LY oI
Quadratic Layers Negative-Quadratic Layers
Layers: @ input [| conv [[] Final Filters: Untrained Trained

Figure 3.1: Filters per layer using the proposed templates for filter redistribution in a toy
VGG style model. Base distribution, which is the original distribution, shows the common
design of growing the filters when resolution of feature maps decreases in deeper layers.
Although the total number of filters is kept constant after templates, changes in filter
distribution induce different effects in performance and resource consumption.

set of models such as VGG[183], ResNet[73] and MobileNet[82]. Even models obtained
from automatic model discovery, like NASNet [222], follow this principle since neural
architecture search methods are mainly formulated to search for layers and connections.
In contrast, the number of filters in each layer remains fixed. The motivation behind this
progressive increase in the number of kernels is to compensate for a possible loss of the
representation caused by the spatial resolution reduction [106]. In practice, it improves
performance by keeping a constant number of operations in each layer [30]. It remains
unknown if this pyramidal distribution of filters is also beneficial to different aspects of

model performances other than the number of operations.

3.4 Why Not A Learned Function?

We have mentioned in section 2.3 that the main disadvantage of NAS and CNS methods
is the high computational cost (some in the order of thousands GPU days) produced

for searching the space of possible solutions, not taking into account such space is

34

3.5. FILTER DISTRIBUTION TEMPLATES

incomplete and chosen based on experience. Trying to learn the function defining the
filter distribution could face identical drawbacks caused by searching any arbitrary
function. One solution is to reduce the set of possible functions (e.g. by searching only
linear functions). We go further by reducing the number of points that the searched
function should fit and constraining the number of FLOPs that the model with the new
distribution should count. However, the remaining space is still big enough to require a
considerable computational budget. Alternatively, we propose a small set of different but
straightforward distributions that can be exhaustively evaluated.

While our templates are heuristically chosen, they open avenues for insight and al-
ternatives for designing models. While searching the entire space may sound intractable,
the small number of proposed templates offer a fast and iteration-less alternative to

architecture search or optimisation, which can deliver better performance straight away.

3.5 Filter Distribution Templates

While most of the neural network architectures show an incremental distribution of
filters, recent pruning methods such as [64, 104], have yielded different filter distribution
patterns emerging when reducing models like VGG that defy the notion of pyramidal
design as the best distribution for a model. These results are a motivational insight
into what other distributions can and should be considered when designing models. On
one side, the combinatorial space of distributions makes this a challenging exploration.
On the other, however, it emphasises the need to pursue such exploration if resulting
networks can make gains in accuracy and overall performance.

In this work, rather than attempting to find the optimal filter distribution with
expensive automatic pruning or growing techniques, we propose first adjusting the filters
of a convolutional network model via a small number of pre-defined templates. These
templates, such as those depicted in Figure 3.1, are inspired by existing models that have
already been found to perform well and thus candidates that could be beneficial for model
performance improvement beyond the number of operations. In addition, performance
criteria such as accuracy, memory footprint and inference time are arguably as important
as the number of operations required.

In particular, we adopt as one template a distribution with a fixed number of filters as
with the original neocognitron design, but also other templates inspired by the patterns
discovered in [64]. Some of the proposed distributions can be found in different blocks

from the resulting ResNet101 model: 1) filters agglomerate in the centre, and 2) filters

35

CHAPTER 3. FILTER DISTRIBUTION TEMPLATES FOR IMAGE CLASSIFICATION

Base
Template

-

-
-

Uniform
Template

11 11

Figure 3.2: A toy example to show how two different templates with the same number of
filters produce a variety of effects in parameters, memory, inference time and FLOPs.
Layers (rectangles) contain, in total, an equal number of filters (circles) for both templates.
Lines between filters represent parameters. Red squares are by-channel feature maps
that reside in memory jointly with parameters. Flops are produced by shifting filters
along with feature maps. Inference time is affected by flops and number of transfers,
indicated by blue arrows and limited to two simultaneously, between memory and
GPU modules. The diagram assumes filters of equal sizes and pooling between layers.
Differences are scaled up in real models, counting thousand of filters.

are reduced in the centre of the block. In [104, 208] it is also shown a pattern with more
filters in the centre of a VGG model. We define the templates we use in this work based
on these observations.

Different distributions with the same number of filters can lead to different para-
meters (e.g. weights) and different memory or computational requirements (e.g. GPU
modules). In the toy example in Figure 3.2, both models have the same number of filters,
whereas the one on the right has fewer parameters and fewer compute requirements at
the cost of more memory footprint. This example highlights the compromises that filter
distributions can offer for the design and operation of network models.

We define a convolutional neural network base model as a set of numbered layers
L=1,...,D+1, each with f; filters in layer [€ {1,...,D}. D + 1 is the final classification

36

3.5. FILTER DISTRIBUTION TEMPLATES

layer. The total number of filters that can be redistributed is given by

D
(3.1) F=)f.
I=1

We want to test if the common heuristic of distributing F' having f;.1 = 2f; each time
the feature map is halved, is advantageous to the model over other distributions of F
when evaluating performance, memory footprint and inference time.

The number of filters in the final layer D + 1 depends on the task and remains the
same for all the templates. Therefore, it is not taken into account for computing the
number of filters to redistribute. For architectures composed of blocks (e.g. Inception) we
consider blocks as single layers and keep the number of filters within a block the same.
As a result, a final Inception module marked with f; filters is set to that number of filters

in each layer inside the module.

3.5.1 Uniform Template

The most simple distribution to evaluate is, as the original Neocognitron, a uniform
distribution of filters. Computing the number of filters in an uniform distribution is

straightforward, the new number in each layer is given by

(3.2) f,=F/D vle{l,..D}.

3.5.2 Reverse Template

Another straightforward transformation for the filter distribution adopted in this work
is reversing the number of filters in every layer. Our final model with this template is
defined by the filters

(3.3) fl/:fD—l‘f‘lle{l""’D}'

3.5.3 Quadratic Template

This distribution is characterised by a quadratic equation fl’ =al?+ bl + ¢ and conse-
quently, has a parabolic shape with the vertex in the middle layer. We set this layer to

the minimal number of filters in the base model

(3.4) Fmin=min(f)) 1e{l,..,D}

37

CHAPTER 3. FILTER DISTRIBUTION TEMPLATES FOR IMAGE CLASSIFICATION

so, the new number of filters in the middle layer is described by

(3.5) f[,)/z = fmin-

Also, we find the maximum value in both the initial and final convolutional layers,
thus

(3.6) fi="1p-

To compute the new number of filters in each layer we solve the system of three linear

equations given by a) the restriction of the total number of filters in equation 3.1

D
(3.7) Y () Zal2+bl+c =F,

that can be reduced to
3 2 2
(1L+ll+l—))a+(D—+l—))b+Dc:F,
3 2 6 2 2
b) the equation 3.5 produced by the value in the vertex

(3.8)

D\ D
3.9) f]f)/zz(_) a+_b+czfmin
2 2
and c) the equality from the maximum values in equation 3.6, which reduces to

(3.10) (D?-1a+D-1)b=0.

3.5.4 Negative Quadratic Template

It is a parabola with the vertex in a maximum, that is, a negative quadratic curve. The
equation is the same as the previous template, but the constraints change. Instead of
defining a value in the vertex, fl’ at the initial and final convolutional layers are set to

the minimal number of filters in the base model
(3.11) fl’ = fmin [€{1,D}.

The number of filters in each layer is computed again with a system of equations
specified by the restriction of the total number of filters as in the quadratic template
(equation 3.8), and the two points already known in the first and last convolutional layers
(equation 3.11) defined by

(3.12) a+b+c=Ffmin
and
(3.13) D%2a+Db+c = fin.

38

3.6. MODEL COMPARISON WITH SIMILAR NEURONS

3.6 Model Comparison With Similar Neurons

This section investigates the effects of applying different templates to the distribution of
kernels in convolutional neural network models (VGG, ResNet, Inception and MobileNet).
We compare models based on size, memory, and speed in three popular datasets for
classification tasks with models produced from the same architectures with the same

number of neurons.

3.6.1 Datasets and Models

We trained over three datasets traditionally used for convolutional network evaluation:
CIFAR-10, CIFAR-100 [99] and Tiny-Imagenet [103]. The first two datasets contain
sets of 50,000 and 10,000 colour images for train and validation, respectively, with a
resolution of 32x32. Tiny-Imagenet is a reduced version of the original Imagenet dataset
with only 200 classes and images with 64 x 64 pixels resolution.

We evaluate some of the most popular CNN models: VGG [183], ResNet [73], Inception
[187] and MobileNet [82]; which represent some of the highest performing CNNs on the

ImageNet challenge in previous years [170].

3.6.2 Implementation Details

Experiments have models fed with images with the standard augmentation techniques
of padding, random cropping and horizontal flipping. Our experiments were run in an
NVidia Titan X Pascal 12GB GPU adjusting the batch size to 128. All convolutional mod-
els, with and without templates, were trained for 160 epochs using the same conditions.
Therefore, there is some margin for improving accuracy for each distribution by perform-
ing individual hyperparameter [111, 137]. We used stochastic gradient descent (SGD)
with weight decay of le-4, momentum of 0.9 and a scheduled learning rate starting in
0.1 for the first 80 epochs, 0.01 for the successive 40 epochs, and 0.001 for the remaining

epochs.

3.6.3 Template Effect Over Baseline Models

We conducted an experiment to test our proposed templates on the selected architectures.
Table 3.1 shows VGG, Inception and MobileNet accuracies improving in all datasets
when templates are applied. Being complex architectures, ResNet and Inception present

the highest accuracy in general. A surprising finding is that in both models difference

39

CHAPTER 3. FILTER DISTRIBUTION TEMPLATES FOR IMAGE CLASSIFICATION

Table 3.1: Model performances with the original distribution and four templates with the
same number of filters evaluated on CIFAR-10, CIFAR-100 and Tiny-Imagenet datasets.
After filter redistribution models surpass the base accuracy. Results show average of
three repetitions.

Redistribution Templates
Model Base RevBase | Unif | Quad | NegQuad
CIFAR-10
VGG-19 93.52 £ 0.2029 | 94.40 £ 0.1609 | 94.24 +£ 0.3080 | 94.18 £ 0.1501 | 94.21+ 0.1096
ResNet-50 | 94.70 £ 0.0907 | 95.17 £0.2828 | 95.08 + 0.2042 | 94.41 + 0.0424 | 95.23 £ 0.2514
Inception 94.84 +0.2787 | 94.60 +£0.3089 | 94.82 +0.2300 | 94.86 £+ 0.3031 | 94.77 £ 0.2145
MobileNet | 89.52 + 3.2479 | 91.35 + 3.5317 | 91.28 +3.1284 | 89.98 + 2.9819 | 91.04 * 3.2207
CIFAR-100
VGG-19 71.92 £ 0.5519 | 74.65 £ 0.4091 | 74.03 £ 0.8072 | 73.55 £ 0.5100 | 74.05 £ 0.6091
ResNet-50 | 77.09 = 1.2008 | 74.80 £ 0.2969 | 76.65 £ 1.2796 | 75.71 £ 0.4808 | 76.76 £ 0.7595
Inception 78.03 £0.7239 | 77.78 £ 0.8005 | 78.12 + 0.4454 | 77.67 £ 0.8310 | 76.65 +0.1184
MobileNet | 65.08 £ 3.7613 | 66.39 + 7.7449 | 68.71 £ 5.2817 | 63.89 + 3.8005 | 67.05 + 7.5938
Tiny-Imagenet
VGG-19 54.62 + 1.5897 | 57.73 £0.7783 | 56.68 +£1.2042 | 54.73 + 0.9091 | 59.50 * 1.4912
ResNet-50 | 61.52 + 0.9634 | 53.67 +5.6167 | 60.97 £ 0.5379 | 59.77 £ 0.7864 | 60.12 £ 0.7239
Inception 54.80 £ 0.9814 | 55.24 £0.7143 | 55.78 £ 0.4315 | 54.97 £ 0.0500 | 55.87 £+ 0.4935
MobileNet | 56.29 + 2.0687 | 51.40 £ 0.5246 | 58.11 £ 2.0120 | 53.37 £ 1.1472 | 55.76 £ 2.4712

in accuracy between templates is less than 2.3% despite the drastic modifications that
models are suffering after the change of filter distribution. Models that share a sequen-
tial classical architecture, such as VGG and MobileNet, show a better improvement
when using templates in Tiny-Imagenet. A remarkable accuracy improvement of 4.88
percentage points is achieved in VGG.

When analysing resource consumption (Table 3.2), we find models are affected differ-
ently with each template and model. Reverse-Base, Uniform and Quadratic templates
show some reductions in the number of parameters, while Negative Quadratic template
reduces the memory usage. Inference Time is affected negatively for most of the tem-
plates. This is an expected result as original models are designed to perform well in
the GPU. Inception model shows an improvement in speed with reductions of 14% over
inference time with respect to the base model while maintaining comparable accuracy.
ResNet can reduce inference time by 49% at the cost of having slightly less accuracy
than the base model.

40

3.6. MODEL COMPARISON WITH SIMILAR NEURONS

Table 3.2: Resource consumption of selected models when applying our templates keep-
ing the same number of filters evaluated on CIFAR-10 dataset. Models are normally
optimised to fast GPU operation, therefore the original base distribution has a good
effect in speed but the redistribution of filters induced by our templates makes models
capabilities improve on the other metrics. Memory footprint reported by CUDA.

Redistribution Templates
Resource Model Base | Reverse Base | Uniform | Quadratic | Neg Quad
VGG-19 20.0 20.0 16.0 15.8 20.0
Parameters | ResNet-50 | 23.5 23.1 12.9 19.0 33.0
(Millions) Inception 6.2 6.7 6.2 7.2 7.0
MobileNet | 3.2 2.2 2.2 3.2 2.4
Memory VGG-19 1.3 2.6 4.4 2.0 14
Footprint ResNet-50 | 3.1 11.5 4.1 7.9 3.0
(GB/batch) | Inception 1.5 3.1 1.7 2.2 1.6
MobileNet | 2.5 5.1 1.5 6.0 1.0
Inference VGG-19 3.0 8.2 5.3 7.5 7.3
Time ResNet-50 | 46.4 61.0 234 59.0 47.6
(ms/batch) | Inception | 28.5 54.9 34.3 25.2 24.3
MobileNet | 3.8 6.8 4.3 7.4 4.9
FLOPs VGG-19 399 4296 2006 3060 1058
(Millions) ResNet-50 | 1304 16326 3515 9710 4741
Inception | 1544 3734 2263 3469 2093
MobileNet | 47 760 277 797 132

41

CHAPTER 3. FILTER DISTRIBUTION TEMPLATES FOR IMAGE CLASSIFICATION

Table 3.3: Resource consumption of selected models when applying our templates keeping
the same number of filters evaluated on Tiny-Imagenet dataset. Best improvements on
metrics differ from those obtained on CIFAR-10 suggesting there is not universal best
template. Memory footprint reported by CUDA.

Redistribution Templates
Resource Model Base | Reverse Base | Uniform | Quadratic | Neg Quad
VGG-19 25.0 20.6 19.3 20.7 20.6
Parameters | ResNet-50 | 23.9 23.1 13.0 19.3 33.0
(Millions) Inception | 19.2 10.0 12.7 18.7 10.1
MobileNet | 3.4 2.4 2.4 3.3 2.6
Memory VGG-19 1.5 10.0 4.8 6.8 3.8
Footprint ResNet-50 | 5.0 10.1 9.6 7.5 9.8
(GB/batch) | Inception 5.8 10.8 6.7 8.6 5.9
MobileNet | 2.5 5.1 59 4.8 1.9
Inference VGG-19 4.9 4.1 4.2 4.6 3.5
Time ResNet-50 | 13.3 12.8 12.8 11.0 29.9
(ms/batch) | Inception | 24.0 214 28.3 18.3 314
MobileNet | 5.8 6.7 9.7 7.3 5.3
FLOPs VGG-19 1716 17215 8112 12360 4265
(Millions) ResNet-50 | 335 4157 908 2489 1195
Inception | 1568 3837 2279 3497 2100
MobileNet | 51 886 324 913 136

42

3.7. TEMPLATE EFFECT WITH SIMILAR RESOURCES

3.7 Template Effect With Similar Resources

It can be argued that models obtained with templates make use of more resources such
as memory or number of operations in the GPU (reflected in the low inference speed).
So, we formulated a second experiment that makes proportional changes in the models
after applying the templates. We reduce the models and increase them to observe if the
actual total number of filters is adequate for the task the model is performing or if the
model accuracy could improve by adding more filters. Thus, we create curves for each
template performing proportional reductions using a width multiplier with values of 1.6,
1.3, 1.0, 0.8, 0.5, 0.25, 0.1 and 0.05. These curves of reduction allow comparison under
the same amount of resources and compare the use of resources under the same accuracy.
The experiment also shows the level of reduction that our models can tolerate without a
significant loss in accuracy for the evaluated datasets.

We add dashed lines to every plot to be used as a reference for the model with the
original distribution and no reductions, which is the point where both vertical and
horizontal dashed lines cross. In general, any arbitrary vertical line in the plot compares
accuracy between models with the number of resources (parameters, memory or speed).
On the other side, any arbitrary horizontal line compares the resources taken for each

model under each template to produce similar accuracy.

3.7.1 Parameters Count

Evaluating a model’s performance using accuracy and parameters is, by far, the default
approach. We show models performances with these metrics in Figure 3.3. VGG and
MobileNet models improve accuracy almost with any template in CIFAR-10 and CIFAR-
100. By using reductions with width multipliers, the original accuracy can be reached
with less than 25% of the original parameters in the two models. ResNet shows less
improvement when compared with networks with similar resources, yet templates can
reduce the model further before accuracy drops. Inception behaviour considering the
same resources remains similar no matter the template used. In general, for this test,

the uniform template seems to get the best parameter efficiency for all the models.

3.7.2 Memory Footprint

Results in Table 3.2 have shown that comparing parameters is not the best option for

practical implementations. Models with a small number of parameters are not necessarily

43

CHAPTER 3. FILTER DISTRIBUTION TEMPLATES FOR IMAGE CLASSIFICATION

VGG_19 CIFAR10

RESNET_50 CIFAR10

INCEPTION CIFAR10

96

©
IS

96

f——

©
IS

oy oy
s s
=3 =3
3 3
< <
92 92
— Base . — Base | .
— Negative-Quadratic — Negative-Quadratic
— Quadratic — Quadratic
— Reverse-Base — Reverse-Base
90 Uniform EY Uniform
0 10 20 30 40 50 0 20 40 60 80
Parameters (millions) Parameters (millions)
MOBILENET CIFAR10 VGG_19 CIFAR100
80
95
75 //
9 —
3 oy —
g g
3 =3
8 3
< <
a5 70
— Base . — Base .
— Negative-Quadratic — Negative—Quadratic
— Quadratic — Quadratic
— Reverse-Base — Reverse-Base
80 Uniform 65 Uniform
0 2 4 6 8 0 10 20 30 40 50
Parameters (millions) Parameters (millions)
INCEPTION CIFAR100 MOBILENET CIFAR100
80 80
N
= %—
70
75
oy oy
© o]
=1 =1
3 3
£ g60
70
— Base — Base
— Negative-Quadratic 50 — Negative-Quadratic
— Quadratic — Quadratic
— Reverse-Base — Reverse-Base
65 Uniform Uniform

o

5 10
Parameters (millions)

6
Parameters (millions)

Accuracy

Accuracy

%
\
— Base | .
— Negative-Quadratic
— Quadratic
— Reverse-Base
Uniform
0 5 15

10
Parameters (millions)

RESNET_50 CIFAR100

0 20

e
o I

— Base
— Negative—Quadratic
— Quadratic
— Reverse-Base
Uniform
40 60 80
Parameters (millions)

Figure 3.3: Average Accuracy versus Parameters in CIFAR-10 and CIFAR-100 datasets
using templates with VGG, ResNet, Inception and MobileNet. Curves are created by
changing models using width multiplier scaling. An arbitrary vertical line in the plot
compares templates effects using the same amount of parameters. An arbitrary horizon-
tal line compares parameters for reaching the same accuracy. Shadows cover maximum
and minimum of three repetitions. Dashed lines indicate base model accuracy and

parameters.

44

3.7. TEMPLATE EFFECT WITH SIMILAR RESOURCES

related with a small memory footprint or greater speed, and more results are presented
in Figure 3.4. We observe again that templates enhance VGG and MobileNet accuracy.
More than 50% of memory consumption can be reduced in both models while producing
the same accuracy. With this metric, ResNet and Inception improve slightly in CIFAR-10
with the Negative-Quadratic template but perform lower with the rest of the templates.
We attribute the lower memory efficiency the fact that in all the templates except
Negative-Quadratic, the number of filters is increased in the initial layers. At these
layers, the size of feature maps produced for each filter is more significant and, therefore,

more memory costly.

3.7.3 Inference Time

One final comparison also crucial for practical issues is inference time. Our experiments
show the patter of improvement for VGG and MobileNet and degradation of inference
time when adopting templates in ResNet and Inception (See Figure 3.5 in Appendix). In
particular, Inception shows an improvement with the Negative-Quadratic template in
CIFAR-10.

Looking at results in inference time, it seems unpromising to use templates. However,
we can take a different perspective. It is possible to obtain models with better accuracy
by sacrificing inference speed. This could be an undesirable decision, but in practice, it is
frequently chosen. It is clearly reflected in the inference time between different original
models. For example, by using ResNet the accuracy improves compared to the obtained
by VGG in the two datasets tested, but at the cost of increasing the time for inference. On
the contrary, looking for speed, enhancement MobileNet has sacrificed accuracy. In this
sense, our templates are still competitive compared to searching for a totally different

model to improve accuracy.

45

CHAPTER 3. FILTER DISTRIBUTION TEMPLATES FOR IMAGE CLASSIFICATION

VGG_19 CIFAR10 RESNET_50 CIFAR10 INCEPTION CIFAR10
9 9% %
=\ e
94 94 %
oy oy oy
s s s
=3 =3 =3
3 3 3
< < <
92 92 92
— Base . — Base | . — Base | .
— Negative-Quadratic — Negative-Quadratic — Negative-Quadratic
— Quadratic — Quadratic — Quadratic
— Reverse-Base — Reverse-Base — Reverse-Base
90 Uniform EY Uniform %0 Uniform
25 5.0 75 10.0 0 3 6 9 12 0 2 4 6
Memory footprint (Gb) Memory footprint (Gb) Memory footprint (Gb)
MOBILENET CIFAR10 VGG_19 CIFAR100 RESNET_50 CIFAR100
80 80
95 /\
75 75
9
> > >
g g g
3 =3 =3
8 3 8
< < <
85 70 / 70
— Base . — Base . — Base .
— Negative-Quadratic — Negative—Quadratic — Negative—Quadratic
— Quadratic — Quadratic — Quadratic
— Reverse-Base — Reverse-Base — Reverse-Base
80 Uniform 65 Uniform 65 Uniform
0 2 4 6 8 0.0 25 5.0 75 10.0 0 3 6 9 12
Memory footprint (Gb) Memory footprint (Gb) Memory footprint (Gb)
INCEPTION CIFAR100 MOBILENET CIFAR100
80 ﬁ\/ 80
70
75
> >
3 8
3 3
£ K60
70
— Base — Base
— Negative-Quadratic 50 — Negative-Quadratic
— Quadratic — Quadratic
— Reverse-Base — Reverse-Base
65 Uniform Uniform

2 4 6 2 6
Memory footprint (Gb) Memory footprint (Gb)

Figure 3.4: Accuracy versus Memory Footprint in CIFAR-10 and CIFAR-100 datasets
using templates with VGG, ResNet, Inception and MobileNet. Curves are created by
reducing models using width multiplier scaling. An arbitrary vertical line in the plot
compares templates effects in accuracy using the same amount of memory. An arbitrary
horizontal line compares memory consumption for reaching the same accuracy. Shadows
cover maximum and minimum accuracy of three repetitions. Dashed lines indicate base

model accuracy and memory footprint.

46

3.7. TEMPLATE EFFECT WITH SIMILAR RESOURCES

VGG_19 CIFAR10 RESNET_50 CIFAR10 INCEPTION CIFAR10
% % 96
—
94 % 94
> > >
g g g
=3 3 =3
3] 3
< < <
92 92 92
— Base — Base — Base
— Negative—Quadratic — Negative—Quadratic — Negative-Quadratic
— Quadratic — Quadratic — Quadratic
— Reverse-Base — Reverse-Base — Reverse-Base
EY — Uniform £y — Uniform 90 — Uniform
0.000 0.025 0.050 0.075 0.100 0.125 0.05 0.10 0.1 0.025 0.050 0.075 0.100
Inference Time (seconds/batch) Inference Time (seconds/batch) Inference Time (seconds/batch)
MOBILENET CIFAR10 VGG_19 CIFAR100 RESNET_50 CIFAR100
80 80
95
75 75
EY
oy 3 oy
o] © ©
5 5 5
8 8 8
< < <
5 70 70
— Base . — Base . — Base .
— Negative—Quadratic — Negative—Quadratic — Negative—Quadratic
— Quadratic — Quadratic — Quadratic
— Reverse-Base — Reverse-Base — Reverse-Base
80 — Uniform 65 — Uniform 65] | — Uniform
0.02 0.04 0.06 0.000 0.025 0.050 0.075 0.100 0.12 0.05 0.10
Inference Time (seconds/batch) Inference Time (seconds/batch) Inference Time (seconds/batch)
INCEPTION CIFAR100 MOBILENET CIFAR100
80 80
70
75
oy oy L/
o] ©
g 3
£ K60
70
— Base | . — Base .
— Negative-Quadratic 50 — Negative-Quadratic
— Quadratic — Quadratic
— Reverse-Base — Reverse-Base
65 — Uniform — Uniform
0.025 0.050 0.075 0.01 0.02 0.03 0.04 0.05
Inference Time (seconds/batch) Inference Time (seconds/batch)

Figure 3.5: Accuracy versus Inference Time in CIFAR-10 and CIFAR-100 datasets using
templates with VGG, ResNet, Inception and MobileNet. Curves are created by reducing
models using width multiplier scaling. An arbitrary vertical line in the plot compares
templates effects in accuracy between models with same inference speed. An arbitrary
horizontal line compares inference time of models with the same accuracy. Grey errors
bands denote maximum and minimum of three repetitions.

47

CHAPTER 3. FILTER DISTRIBUTION TEMPLATES FOR IMAGE CLASSIFICATION

3.8 Conclusion

The most common design of convolutional neural networks when choosing the distri-
bution of the number of filters is to start with a few and then increase the number in
deeper layers. We challenged this design by evaluating some architectures with vari-
ous distributions on the CIFAR and Tiny-Imagenet datasets. Our results suggest that
this pyramidal distribution is not necessarily the best option for obtaining the highest
accuracy or parameter efficiency.

Our experiments show that models with the same number of filters but different
distributions produced by our templates improve accuracy by up to 4.8 points for some
model-task pairs. Moreover, in terms of resource consumption, templates can obtain
a competitive accuracy compared to the original models using fewer resources with
up to 56% fewer parameters and a memory footprint up to 60% smaller. Results also
reveal an interesting behaviour in evaluated models: a strong resilience to changes in
filter distribution. After modifying models with templates, variation in accuracy for all
models is less than 5% despite the considerable modifications in filter distributions and,
therefore, in the original filter design.

It is important to notice that a reduced number of parameters does not correspond to
low consumption of memory, not even a small inference time. Some of the causes are the
difference in feature map resolution for filters in different layers, the need to keep early
feature maps in memory for late layers and the restrictions for improving parallelisation

in the computational graph of the model.

48

CHAPTER

BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES
IN OTHER DOMAINS

mage Classification experiments in the previous chapter showed the advantage of

templates to find models with better accuracy by redistributing the same neurons

or filters in unexplored manners. The changes produce new models with different
resource demands than the original models. Compared with similar resources, these
new distributions, called templates, are more effective than the standard incremental
distribution present in most neural network models.

This chapter examines whether neural network models in other domains are amenable
to being improved by using the templates. Previous results showed that templates help
reduce parameters in final models. Therefore the chapter compares templates against
pruning methods. Furthermore, it describes and evaluates how templates can be used

jointly with CN'S methods such as MorphNet, to produce more efficient models.

4.1 Introduction

We have found in chapter 3 that template resulting CNNs are more advantageous
than the original models from which they were obtained, particularly for the task of
image classification. We designed experiments in this chapter to explore the scope where
templates can help to improve existing models. We tested the templates using images as

input in two new domains. Firstly, we evaluated templates in a regression task, which is

49

CHAPTER 4. BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES IN OTHER
DOMAINS

generally considered more difficult than classification. Secondly, we evaluated templates
in image super-resolution. Many models in the latter task possess a very particular
feature: they do not contain subsampling layers. Therefore the feature maps remain of
the same resolution along with the architecture, and then the effects of redistributing
templates can differ from other domains.

The proposed distributions in chapter 3 also showed reductions in parameters and
memory usage. We argue that using templates can be seen as a tool for obtaining better
performances. On the other hand, they can also be thought of as a tool to reduce the
resource consumption of models. With this in mind, we compared the accuracy and
resources of models obtained from templates with models obtained from three popular
pruning methods. Nonetheless, our primary goal is to see if pruning methods converge to
the same results starting from different distributions. We also showed that the templates
could work jointly with pruning methods to benefit further. Finally, we presented in this
chapter an evaluation of the templates working with MorphNet, a method searching for
the best number of filters of an existing architecture.

We investigated the effects of applying different templates to the distribution of
filters in some well known convolutional neural network models (VGG, PoseNet and
MobileNetV1) for the mentioned domains. Where possible, the resulting models produced
with templates have similar FLOPs to the original model from which they were obtained.
This constraint facilitates further comparison of models on the basis of size, memory and

speed.

4.2 Global Localisation

Classification is the task where a predictive model approximates a mapping function
taking input values to predict discrete output values. Classification algorithms can
process any type of input variables, either categorical or numeric, but the examples must
be allocated into one of two or more classes. Regression tasks differ from classification
tasks in the type of output variables. Instead of predicting a discrete class, a model
performing regression predicts continuous values.

Neural networks have been used in both classification and regression tasks. However,
it is believed that neural network models perform better in classification than in regres-
sion tasks for some types of domains [151], possibly because regression tasks require a
more accurate prediction of output values.

Among many regression problems, one that has attracted plenty of attention is

50

4.2. GLOBAL LOCALISATION

Visual Pose Regressor
Encoder

~f— &
@@_' —0— %8

Feature Map

Position Rotation

Figure 4.1: The typical design of architectures for localisation. The pattern was first
presented in PoseNet. Image from [24].

localisation. For decades, localisation has been studied, and a range of complicated hand-
designed models and algorithms have been devised [190]. The task’s purpose is to provide
an agent with its position (a continuous value) within the surrounding environment by
perceiving scenes with sensors such as a camera.

Recently, researchers have been adopting data-driven methods to directly compute
the camera’s position by using only the input image. The first implementation of a neural
network in global localisation was presented in the PoseNet paper [93].

Since then, researchers have proposed several improvements such as modelling uncer-
tainty [92] and inducing temporal [33] and spatial coherence [77] but normally following
a similar architectural design shown in Figure 4.1. The idea of PoseNet borrowing a
model from classification and then modifying the last layers to produce the desired
localisation values has been the trend in many of the subsequent works [24].

A singular model derived from PoseNet is the hourglass architecture [133]. It consists
of a two-section network that first encodes coarse information and then extracts fine-
grained details. The network structure follows an increasing number of filters in the
first half of layers and then a decreasing pattern in the other half, resembling one of our
templates.

The neural networks used in localisation tasks create an implicit map during training.
They are fed with the camera pose and the image captured in that position creating
a hidden representation of the world. We decided to test the templates in this task
to show if this implicit representation is significatively different when we change the
distribution of the filters. In the experiments with classification, we found that the
models are affected differently by each template in their parameter count. If we take

the parameters as the place the implicit map is stored, one could expect that templates

51

CHAPTER 4. BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES IN OTHER
DOMAINS

Figure 4.2: Examples of the datasets used in the experiment. The first row corresponds
to samples from 7-Scenes dataset. The second row shows examples taken from the
Cambridge Landmarks dataset. The second dataset presents much more variations in
spatial dimension and illumination conditions.

producing networks with fewer parameters are less capable of performing well in this
localisation task. However, some works on map compression have shown that reductions
in the size of neural networks do not significantly affect the localisation error [35]. As
if the network was capable of automatically removing the less useful visual features to

build the map as made in hand-crafted descriptor approaches [34].

4.2.1 Models and Datasets

We create an experiment using three classical neural networks with several templates.
We took the PoseNet network as the first option. It was originally trained end-to-end
to compute the 6-DoF camera pose from a single RGB image. The architecture is based
mainly on GoogleNet [187]. Still, it changes the last softmax layer with a fully connected
layer to output the global pose, consisting of position and orientation vector. We chose
VGG and MobileNet as the second and third models to be tested, adapting the last layer

in the same fashion as in PoseNet.

All CNNs were trained over three 2D image datasets traditionally used for visual
metric localisation evaluation: the 7-scenes dataset[60] composed by small indoor settings
with very few illumination condition variations; and the Cambridge Landmarks[93] with
large scale outdoor scenes under varied lighting conditions (see samples in Figure 4.2).
This selection provides our experiment with diverse environments and differences in the
number and density of samples. The 7-scenes dataset contains scenes with between 500
and 1000 frames recorded from a Kinect RGB-D camera using a resolution of 640x480
pixels. The Cambridge Landmark dataset consists of outdoor urban scenes populated
with people and vehicles. Both datasets generated the camera pose with structure from
motion (SfM) methods [178].

52

4.2. GLOBAL LOCALISATION

4.2.2 Implementation Details

In principle, PoseNet produces a 6-dimensional pose, but given that the orientation
is provided in quaternions, the final pose requires a 7-element vector. A drawback in
PoseNet is that the authors introduced a new hyperparameter f to tune the relevance of

both orientation (q) and position (x) within the loss function given by

loss(I)=|x—xl|lg+ B

. q ”
q__
lall

In this section experiments, we decided only to predict the position to avoid tuning
the parameter, which could have different optimal values depending on the template to
be applied.

Our experiments in localisation follow a similar procedure to the classification exper-
iments. They run in an NVidia Titan X Pascal 12GB GPU adjusting the batch size to
16. With and without templates, all models were trained for 160 epochs using stochastic
gradient descent with weight decay of 1e-4, momentum of 0.9 and a learning rate of 0.1.
Localisation entirely relies upon the camera viewpoint, so augmentation was limited to
colour space transformations.

Our implementation is comparable to that in PoseNet with random initialisation,
which is lower than that using ImageNet and Places pretraining. Moreover, we used the
whole training set instead of fractions of the data like in the PoseNet paper because we

performed from scratch training.

4.2.3 Results

These experiments evaluate models using the mean absolute error (MAE). According to
the authors of 7-Scenes and Cambridge Landmarks datasets, the units for the camera
pose are given in metres. We present in Table 4.1 the results of evaluating VGG19 on the
7-Scenes datasets. We observe that in more than half of the scenes tested, the original
distribution gets the lower error while the negative-quadratic template obtains the lower
error in two cases. The difference between the best and the second model is less than
10% of the best value. The PoseNet architecture obtains lower errors (Table 4.2 compared
to those of VGG19. Besides, the templates produce the best models for five of the seven
scenes, mainly made with the negative-quadratic distribution.

For the Cambridge Landmark dataset, templates produce a similar pattern with
VGG19 and PoseNet models but with bigger improvements. For VGG19, Table 4.3 shows

that the base incremental distribution of filters is better in only three scenes while

53

CHAPTER 4. BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES IN OTHER
DOMAINS

Table 4.1: MAE for 7-Scenes dataset for the VGG19 model with its original filter distri-
bution and four templates. Table shows one-repetition results.

7-Scenes (VGG19) Redistribution Templates

Scene Base | Reverse Base | Uniform | Quadratic | Neg Quad
chess 0.2517 0.2941 0.2936 0.2719 0.2773
fire 0.3672 0.4406 0.3958 0.4153 0.4057
heads 0.2178 0.2608 0.2190 0.3383 0.2013
office 0.3522 0.3821 0.3681 0.3572 0.3652
pumpkin 0.4423 0.5036 0.4472 0.4589 0.4220
redkitchen | 0.4303 0.5131 0.5078 0.4859 0.4733
stairs 0.4181 0.4852 0.4038 0.4632 0.4295

Table 4.2: MAE for 7-Scenes dataset for the PoseNet model with its original filter
distribution and four templates. Table shows one-repetition results.

7-Scenes (PoseNet) Redistribution Templates

Scene Base | Reverse Base | Uniform | Quadratic | Neg Quad
chess 0.1868 0.2185 0.1979 0.1916 0.1975
fire 0.3120 0.3672 0.3179 0.3293 0.3117
heads 0.1986 0.2608 0.2056 0.1937 0.1810
office 0.3256 0.3471 0.3218 0.3220 0.3135
pumpkin 0.3202 0.3373 0.3086 0.3069 0.3247
redkitchen | 0.3780 0.4587 0.3792 0.3884 0.3746
stairs 0.3741 0.4711 0.3822 0.4236 0.3787

for PoseNet (Table 4.4), the base model only performs better in one scene. Again, the

negative-quadratic distribution seems like the best suited for the dataset.

Localisation is expected to be performed for a mobile agent. While the original
PoseNet is considered a more efficient architecture than VGG, it is clear that its resource
consumption is enough to surpass the capacity of a mobile system. We extend our experi-
ment with the Cambridge Landmarks dataset to include MobileNet, a more appropriate
model for mobile applications optimised to that end. MobileNet performance is shown in
Table 4.5. The model obtains higher error than the performance-oriented PoseNet and
VGG. The differences in the three models’ results are compatible with the reported in
the literature for other datasets such as ImageNet. For MobileNet, the most successful

model is found with the uniform template with the lowest error for four out of six scenes.

Comparing performances among models gives a partial perspective of the model’s
capacity. For this reason, we also show in Table 4.6 the resources required for the
templates with the VGG19, PoseNet and MobileNet models. We found that, while memory,

54

4.2. GLOBAL LOCALISATION

Table 4.3: MAE for Cambridge Landmark dataset for the VGG19 model with its original
filter distribution and four templates. Table shows one-repetition results.

Cambridge Landmarks (VGG19) Redistribution Templates

Scene Base Reverse Base | Uniform | Quadratic | Neg Quad
KingsCollege 8.0613 7.5204 8.3575 8.8226 7.6481
OldHospital 5.2201 5.8798 5.4487 5.9931 5.5314
ShopFacade 2.8282 2.9202 4.3013 3.7109 3.3459
StMarysChurch 7.0244 8.5696 7.9538 8.4453 7.4600
Street 80.8015 83.3418 85.8898 | 86.5996 77.5769
GreatCourt 24.8433 25.5597 26.2833 | 24.6635 26.6305

Table 4.4: MAE for Cambridge Landmark dataset for the PoseNet model with its original
filter distribution and four templates. Table shows one-repetition results.

Cambridge Landmarks (PoseNet) Redistribution Templates

Scene Base Reverse Base | Uniform | Quadratic | Neg Quad
KingsCollege 6.8787 9.1456 6.0554 6.2638 5.4428
OldHospital 5.0916 6.3190 4.6366 4.6476 4.8044
ShopFacade 3.2472 3.3165 2.9183 3.1887 2.7564
StMarysChurch 8.1209 11.1730 7.9718 8.6005 7.9059
Street 72.0053 131.9090 71.8444 | 78.5514 71.2381
GreatCourt 23.9980 25.2407 25.6946 | 24.6157 25.0797

Table 4.5: MAE for Cambridge Landmark dataset for the MobileNet model with its
original filter distribution and four templates. Table shows one-repetition results.

Cambridge Landmarks (MobileNet) Redistribution Templates

Scene Base Reverse Base | Uniform | Quadratic | Neg Quad
KingsCollege 11.2847 12.4568 10.2853 | 13.5246 12.4949
OldHospital 7.7933 14.6661 8.5886 13.0720 9.2989
ShopFacade 5.2755 7.5576 5.6626 6.7993 6.1695
StMarysChurch 12.3526 15.3554 13.3396 | 16.4533 13.3917
Street 99.4402 100.3203 97.9171 | 108.3730 | 101.9091
GreatCourt 27.1893 28.5328 25.7820 | 28.8231 26.7306

55

CHAPTER 4. BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES IN OTHER
DOMAINS

Table 4.6: Parameters, memory, inference time and FLOPs for selected models when
applying our templates keeping the same number of filters in localisation tasks.

Redistribution Templates

Resource Model Base | Reverse Base | Uniform | Quadratic | Neg Quad
Parameters | VGG19 20.33 1.80 3.30 2.02 7.19
(Millions) PoseNet 6.16 3.28 4.99 3.48 6.29

MobileNet | 3.21 0.12 0.33 0.17 0.80
Memory VGG19 0.44 0.53 0.55 0.54 0.43
Footprint PoseNet 5.02 5.57 5.08 4.77 4.62
(GB/batch) | MobileNet | 0.11 0.16 0.15 0.15 0.12
Inference VGG19 0.053 0.068 0.065 0.056 0.057
Time PoseNet 0.614 0.763 0.613 0.612 0.614
(ms/batch) | MobileNet | 0.012 0.025 0.023 0.025 0.017
FLOPs VGG19 19.55 18.99 19.86 18.45 18.63
(Gigas) PoseNet 99.88 92.29 99.92 95.13 98.23

MobileNet | 0.57 0.54 0.54 0.56 0.53

inference time and FLOPs remains similar with all templates, using these different
distributions reduce original parameters significatively for all models. Furthermore,
the reduction allows storing a modified PoseNet model (reverse template), with lower

prediction error on average, in the same space of an original MobileNet.

4.3 Single Image Super-Resolution

The technique of recovering high-resolution (HR) images from low-resolution (LR) photos
is known as image super-resolution (SR) [201]. It is a subset of image processing tech-
niques used in computer vision and image processing with a vast scope of applications,
including enhancing medical, satellite, surveillance, and astronomical imaging.

The super-resolution task is particularly interesting for our work because of its
differences in architecture design. Firstly, models in SR do not reduce the size of the
feature maps in deeper stages of the architecture, but they keep the same size. Secondly,
most models observe not the incremental design found in almost all computer vision
tasks but one that follows a uniform distribution, keeping constant the number of filters
for all layers.

The first work proposing to use a CNN to produce high-resolution images from low-
resolution ones is presented in [43]. The model named Super-Resolution Convolutional
Neural Network (SRCNN) is a shallow network with two layers using double of filters

56

4.3. SINGLE IMAGE SUPER-RESOLUTION

in the first (64) than in the second layer (32). The distribution is contrary to what is
the typical neural network building pattern in other computer vision tasks consisting of
doubling filters in deeper layers. The justification behind this selection on the number
of filters relies on the analogy of sparse-coding based SR methods and SRCNN, so the
authors assume the model will "rely more on the central part of the high resolution
patch" [43] like typically happens in sparse-coding HR reconstruction. SRCNN uses large
filter size of up to 9x9.

VDSR is a deep model following SRCNN and inspired by the VGG architecture [95].
The network requires a preprocessing step to grow the LR image to the desired final
resolution using a classical interpolation technique. The model is composed of 20 layers
of 64 channels produced by 3x3 filters. This is the first architecture adopting a constant
number of filters in super-resolution which later became the standard distribution for
model design in this task. The authors realised that a deeper network produced a higher
performance, but it was more challenging to train, taking longer training time and failing
to converge. Their solution was to add a residual connection from the first to the final

layer.

Other approaches propose using a generative adversarial network (GAN) framework
for image super-resolution [108]. The trained generative network keeps the uniform
distribution of filter of VSDR but changes VGG layers for residual modules [73]. The
resulting network, called SRResNet, preserves high-frequency details producing percep-

tually satisfactory images at 4x resolution.

The EDSR model builds on SRResNet by transforming the multiple residual blocks
[118]. The proposed block in EDSR does not include batch normalisation layers, resulting
in improved performance and reduced memory consumption. Previous models were
capable of resolving HR images at several scales (2x, 3x and 4x) but creating independent
networks for each particular scale. The EDSR paper presents an extension of the network
that takes advantage of the inter-scale correlation training. The authors propose a
network with a single backbone sharing weights that connect with several branches

producing each scale as described in Figure 4.3.

We decide to take the EDSR architecture to test our templates in the super-resolution
task for several reasons: 1) it is one of the state-of-the-art models in SR, 2) its design is
modular and easily adaptable to templates, 3) the backbone is built with the well known
residual modules already in use in this work but it can fit other architectures, and 4) its

training code is publicly available.

57

CHAPTER 4. BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES IN OTHER

DOMAINS
Ll €

7 |
Figure 4.3: EDSR design for super-resolution. Residual modules count equal number

of filters. The final branch depends on the HR scale of the final image but they can be
combined to produce a multi-scale network. Image from [118].

-

ResBlock

3 ResBlock

/

4.3.1 Implementation Details

We used the code for training and evaluation of the models provided by [118]. We changed
the number of filters in the EDSR backbone according to the definitions of the templates
in section 3.5. Additionally, we tested a VGG-like backbone comparable to the VDSR
architecture.

For evaluation, we use the popular DIV2K benchmark dataset [3] consisting of a
set of 800 images for training, 100 for validation, and 100 for testing. As in previous
works, we present performances on the validation dataset, given the test set is not
available. Models in SR are typically trained with the mean squared error (MSE) as the
loss function. However, they are evaluated with peak signal-to-noise ratio (PSNR) given

by the equation

MAX?
PSNR = 10-log10

MSE

MAX7 is the maximum value for a pixel, usually 255. MSE is computed with pixel-
by-pixel differences between the resolved and the ground-truth images. Although other
metrics have been proposed considering the perceptual quality of the images [90], PSNR
is still the most popular in the field of SR.

In the experiment, we do not follow the common practice in SR of only processing the

image’s luminance channel (Y channel in YCbCr colour space) and computing the rest of

58

4.3. SINGLE IMAGE SUPER-RESOLUTION

Table 4.7: Performance at 4x and resource consumption of the EDSR method (VGG
backbone) using templates tested on the DIV2K dataset. Table shows one-repetition
results. *Unlike other tasks, original base template for super resolution uses an uniform
distribution.

DIV2K (EDSR-VGG19) Redistribution Templates

Metric Base* | Increasing | Reverse | Quadratic | Neg Quad
PNSR 28.623 28.516 28.404 28.720 28.495
Best epoch 191 172 151 199 171
Parameters (Millions) | 21.5 25.9 24.9 21.6 24.8
Memory (GB) 7.36 7.71 7.18 7.16 7.70
GFLOPs 264.5 305.3 295.8 266.0 295.3
Inference time (ms) 8.11 8.98 8.71 8.32 8.82
File size (MB) 86.1 103.8 99.7 86.8 99.5

the channels with bicubic interpolation. Instead, we produce the full RGB channels with
the network and evaluate PSNR in all of them.

For training, we use the default configuration of the EDSR paper with a 4x scale and
a patch size of 192x192 for 300 epochs. We use an Adam optimiser with a learning rate
of 0.0001.

4.3.2 Results

We developed two experiments for the task of SR. The first one tests two architectures,
VGG and ResNet, as backbones of the EDSR framework using the different templates.
The second experiment explores reductions in the number of filters using a width
multiplier to find if the models are amenable to being compressed without significant
loss in quality.

EDSR performance using VGG as backbone is presented in Table 4.7. The quadratic
template shows benefits in the quality of the images evaluated with PSNR and lower
memory footprint compared with the base model following a uniform distribution. More-
over, the models produced by templates seem to converge earlier.

The same results are found with the ResNet backbone shown in Table 4.8. The
performances are higher compared to the VGG backbone which explains some of the
improvements from VDSR to EDSR papers. The negative-quadratic template gives the
best performance in this case, but this result is expected as the negative-quadratic
template counts twice the parameters of the original distribution.

We show a resolved sample using VGG and ResNet backbones in Figure 4.4. It can be

59

CHAPTER 4. BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES IN OTHER
DOMAINS

Bicubic VGG19 Quadratic ResNet Neg-Quad 4X HR
(26.912) (28.720) (29.714) (Ground Truth)

Figure 4.4: A resolved image using bicubic interpolation compared with the best perform-
ing models using templates with VGG and ResNet backbones in EDSR.

Table 4.8: Performance at 4x and resource consumption of the EDSR method (ResNet
backbone) using templates tested on the DIV2K dataset. Table shows one-repetition
results. *Unlike other tasks, original base template for super resolution uses an uniform
distribution.

DIV2K (EDSR-ResNet) Redistribution Templates

Metric Base* | Increasing | Reverse | Quadratic | Neg Quad
PNSR 29.709 29.712 29.669 29.693 29.714
Best epoch 299 296 270 271 285
Parameters (Millions) | 16.4 26.3 26.8 22.3 35.9
Memory (GB) 4.86 5.44 5.53 4.60 6.97
GFLOPs 217.9 308.6 313.8 272.1 397.2
Inference time (ms) 8.02 9.84 9.89 8.89 12.73
File size (MB) 65.9 105.2 107.5 89.4 143.7

appreciated a significant difference between the classical method of bicubic interpolation
and deep learning methods. However, no big gainings are obtained between different
neural network models.

It has been found empirically in [43] that increasing the wide of the network leads
to an increase in performance. The improvement, however, is small. Using a 4x width
multiplier, the network improves in 0.34 points of PSNR. We show in tables 4.9 and 4.10
that the same effect happens in the opposite direction. We reduced VGG and ResNet
backbones to 0.5x and 0.25x to find if there is a significant loss. We found that by using
one quarter of the filters, the quadratic template reduces its performance by 0.38 points
for the VGG backbone.

The loss using the negative-quadratic template with the ResNet backbone is lower:
only 0.22 points of PSNR. Edge devices could benefit from this level of compression by

60

4.3. SINGLE IMAGE SUPER-RESOLUTION

Table 4.9: Change of performance (PSNR) with different sizes of the EDSR method
(VGG19 backbone) using templates tested on the DIV2K dataset. Models are reduced by
using width multipliers. Table shows one-repetition results. *Unlike other tasks, original
base template for super resolution uses an uniform distribution.

DIV2K (EDSR-VGG19) Redistribution Templates

Width multiplier | Base* | Increasing | Reverse | Quadratic | Neg Quad
1.00 28.623 28.516 28.404 28.720 28.495
0.50 28.464 28.540 28.088 28.484 28.329
0.25 28.291 28.249 27.874 28.340 28.089

Table 4.10: Change of performance (PSNR) with different sizes of the EDSR method
(ResNet backbone) using templates tested on the DIV2K dataset. Models are reduced by
using width multipliers. Table shows one-repetition results. *Unlike other tasks, original
base template for super resolution uses an uniform distribution.

DIV2K (EDSR-ResNet) Redistribution Templates

Width multiplier | Base* | Increasing | Reverse | Quadratic | Neg Quad
1.00 29.709 29.712 29.669 29.693 29.714
0.50 29.539 29.580 29.539 29.479 29.610
0.25 29.416 29.449 29.394 29.339 29.497

receiving low-resolution images and producing high-resolution ones on the user side,

with savings in the communication channel and the processing capacity of the device.

The experimental results show that models with the already in-use uniform distribu-
tion are more efficient in resource consumption for most metrics, including parameters,
inference time and FLOPs. However, the quadratic template offers models with a smaller
memory footprint. For VGG and ResNet backbones, templates produce models with
more resource requirements in general. This disagrees with the reductions found in
the classification and localisation tasks described before. This can be explained by the
architectural design of the networks in the SR task that does not reduce the feature
maps in the whole architecture. Templates indeed increase the total number of filters
thus requiring more parameters and FLOPs. We found in this experiment that the
incremental filter distribution is not the best option for the SR task. Yet variations in the
performances and the resource demands are minimal across the templates. We believe

this is intriguing, considering the drastic changes in filter distributions.

61

CHAPTER 4. BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES IN OTHER
DOMAINS

4.4 Templates and Neural Network Pruning

As we have shown in this and previous chapters, templates exhibit an ability to produce
networks with reduced resource demands such as parameters in classification and
localisation tasks. The reduction is conducted by simply redistributing the number of
filters in an existing network before any training. The resource network reduction is
analogous to that achieved by neural network pruning methods cited in section 2.2.1, so
a required comparison has to be done. In this section, we compare the models resulting
from templates against three different techniques for neural network pruning. The first
two methods prune filters by evaluating their importance with different approaches. The
first one, called Filter Pruning via Geometric Median (FPGM) remove filters close to the
geometric median. The second one, known as Gate Decorator, uses Taylor expansions to
evaluate the importance of filters on the loss function. The last one of the three methods
resembles more a knowledge distillation [78] technique but at the level of layers. It tries
to perform filter decomposition to reduce the number of parameters and FLOPs.

One common feature of these three methods is that they all fall in the category of
methods where learning occurs late or after training. We consider the utilisation of the
proposed templates as a pruning-at-initialisation method [53]. Templates do not evaluate
the magnitude of weights nor their repercussions in the loss function. We agree with
[124] that a simple reduction (or as in templates, a change) of filters and then training
from scratch with randomly initialised weights is enough to compress a model without a

noticeable decrease in performance.

4.4.1 Pruning Filters Based On Their Norm

Pruning weights with the smallest absolute magnitude is an obvious and surprisingly
efficient criterion. This heuristic is widely applied in pruning methods doing structured
and unstructured pruning. The common belief is that weights or filters with smaller
norms are less critical for the network and then can be safely removed. The problem with
that approach is that the remaining weights can not be used to reconstruct the values of
those pruned, which might represent subtle features for the performing task.

Geometric Median [75] considers, unlike other methods, removing filters with values
not close to zeroes but near to the geometric median of the set of filters in every layer. By
pruning these filters, the remaining ones can represent the ones missing. As a result,
reducing such filters doesn’t significantly impact model performance.

Computing the geometric median is challenging. There is no algorithm nor explicit

62

4.4. TEMPLATES AND NEURAL NETWORK PRUNING

@ Filter Space el
&= Large norm —
7 Medium norm Previous i
method |
Small norm !
} . R
| A
= i Pruning .
I ' | [
. (5 —
' I
I
_________ - I
R Geom ‘
Filters before pruning method | - &1

Figure 4.5: Instead of removing filters with norm close to zero, FPGM prunes filters close
to the geometric media and therefore, keeping those with more diversity and able to
represent the ones missing. Image from [75].

formula to produce exact results, but approximations can be computed iteratively with
certain error margins depending on the running time. The authors of FPGM use a simple
trick of reducing the search space to the list of filters in each layer. In this way, they find
which filter minimises the sum of the distances to the rest of the filters. Once sorted, the

set of distances is used to select the filters to be pruned.

4.4.2 Pruning Filters Based On The Importance Over The Loss

Function

Another widespread criterion to reduce the number of filters in a model is to compute
the effects of the filters on the loss function. Using a Taylor decomposition has been the
standard approach to compute the importance of a filter. During the backpropagation
step, the method evaluates the influence of a particular parameter when it is eliminated
from the loss.

Gate Decorator [208] solves the problem of importance filter ranking by using the
approach mentioned above and removing the less essential filters iteratively until the
pruning effect reaches a certain amount of FLOPs in the reduced model. The method
typically modifies the batch normalisation layers (BN) [87] to compute the importance of

the features maps in the previous convolution layer using the scaling factor of BN.

63

CHAPTER 4. BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES IN OTHER
DOMAINS

[Tock] :sparse/fullset

Trained BN 3
Model | = BN

GBN ,| Fine- | Pruned
gBN tune Model

- |[Tick]:freeze/subset

Figure 4.6: Gate Decorator framework divides pruning into two phases. The tick phase
freeze weights and compute filter importance in the loss using a small subset of the data.
The tock phase prunes less important weights and fine-tunes the model. Image from
[208].

Gate Decorator framework splits the pruning process into the two phases shown
in Figure 4.6. In the first phase, called Tick, all the weights in the model are set to
non-updatable. Nevertheless, the modified BN layers remain trainable to compute the
filter importance using a small subset of the data. After one epoch of training, a portion
of the less important filters is removed. The second step named Tock uses the whole
dataset to perform fine-tuning of the model with an added constraint to the loss function

that helps to find unimportant filters.

4.4.3 Reducing Filters With Filter Decomposition

Filter Basis [114] uses filter decomposition replacing the original filters with a set
of small ones that are combined linearly to produce the feature maps of the original
layer while minimising reconstruction error. Filter Basis is better classified as a model
compression method rather than a pruning method, given that it does not remove specific
filters. Instead, it replaces them with a set of low-rank matrices that operates with the
whole set of feature maps.

The authors implement the decomposition by doing convolutional operations ex-
ploiting the existing forward pass during the model training. All the feature maps are
processed individually with the same basis and then the appropriate number of channels
is obtained with a 1x1 convolution as presented in Figure 4.7. Learning the parameters
of the low-rank matrices is done jointly by adding the feature maps restoration error in

the loss function given by equation

loss = “y—fB,AlG)(x)”}z? +Yl_ii “wl -B-A ”j«‘

64

4.4. TEMPLATES AND NEURAL NETWORK PRUNING

2 W —
rd
rs
//
& A
- (¢
- > ,] >

Figure 4.7: Filter Basis uses decomposition to approximate feature maps produced by
original filters with low-rank matrices. Image from [114].

where fB Aje(x) denotes the network with parameters B, A conditioned that the rest
of the parameters ® are known. The feature maps reconstruction error F' is evaluated

along all of the L layers of the network.

4.4.4 Experiments and Results

We conducted an experiment to show the effects of templates with three different recent
compression methods using the CIFAR-100 dataset. We tested templates in two different
ways using a VGG19 model. In the first one, templates are compared with the pruning
methods applied to the original base model. In the second approach, the networks are
first changed with the templates, trained and then pruned with the different compression
techniques. Once neural network architectures have been adjusted with our templates
and trained, pruning methods are still able to reduce models.

We present results for VGG19 model in CIFAR-100 dataset comparing accuracy
versus the number of parameters in Table 4.11 for the three methods using code and
configurations referenced in their respective papers. The purpose of the table is to
observe improvements in each method when applying templates and a comparison
between methods should be taken with care. There are differences in the number of
epochs for training performing 160 for Geometric Mean, 300 for Filter Basis and variable

epochs in Gate Decorator (final fine-tuning step is not performed in our experiments with

65

CHAPTER 4. BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES IN OTHER
DOMAINS

Table 4.11: Accuracies and parameters (millions) of VGG19 with the original distribu-
tion and four templates for the same number of filters evaluated on CIFAR-100 after
being compressed using three different methods. When compared on similar parameters
templates produce higher performances. Geometric Median reduces models based on
percentage of pruned filters, Gate Decorator on the percentage of FLOPs and Filters
Basis on the number of basis created. Comparisons between compression methods should
consider differences between published training configurations as number of epochs.
Results show average of three repetitions.

Base Reverse Uniform Quadratic Neg-Quad
Method Size Acc. Par. Acc. Par. Acc. Par. Acc. Par. Acc. Par.
Baseline 100% | 71.98 | 20.34 | 74.54 | 20.12 | 73.64 | 16.22 | 73.14 | 16.08 | 74.05 | 20.06
80% | 70.83 | 12.93 | 73.81 | 12.80 | 72.85 | 10.33 | 72.35 | 10.23 | 73.56 | 12.76
Geometric 50% | 67.96 | 5.11 | 71.83 | 5.02 | 70.67 | 4.07 | 69.39 | 4.03 71.05 5.01
Median[75] 25% | 61.39 1.30 | 67.91 1.26 | 65.01 | 1.03 | 64.38 1.03 66.61 1.25

10% | 48.00 | 0.21 | 54.28 | 0.20 | 52.89 | 0.17 | 48.80 | 0.17 | 51.90 | 0.19
80% | 71.63 | 11.91 | 74.15 | 18.69 | 72.96 | 15.01 | 72.66 | 14.70 | 74.11 | 10.87
Gate 50% | 71.07 | 2.63 | 74.28 | 15.66 | 73.46 | 8.72 | 72.96 | 10.20 | 73.08 | 5.70
Decorator[208] 25% | 66.30 | 1.12 | 74.63 | 10.14 | 7298 | 4.57 | 73.39 | 535 | 71.72 | 2.70
10% | 59.58 | 0.47 | 73.15 | 4.10 | 68.73 | 1.84 | 71.13 | 2.57 | 67.01 1.02
Learning 64 73.59 | 9.54 | 7542 | 12.07 | 7463 | 7.73 | 73.76 | 9.33 | 75.62 | 9.33
Filter Basis[114] 32 69.74 | 558 | 75.13 | 9.13 | 73.20 | 5,53 | 7228 | 7.23 | 75.04 | 5.67

Gate Decorator). Baseline accuracies are produced by applying only templates, and they
differ slightly from results obtained in the classification task in the previous chapter
(Table 3.1) as they were obtained with the Gate Decorator code. We found that models
with templates perform better than the original model using similar parameters for the
first two methods. For Gate Decorator, we can find at least one template with better
accuracy than the pruned base model. For example, keeping parameters close to 1.10
million, a negative-quadratic model with 10% of FLOPs performs better than a base
model with 25% of FLOPs.

We additionally compare accuracy versus FLOPs in Table 4.12 using the three
previous methods with the same model/dataset. It is found that a reduction in FLOPs
causes a degradation in accuracy for templates excepting Negative-Quadratic which
helps to reduce the number of flops. Using similar FLOPs that the baseline original
model, Negative-Quadratic template in addition to pruning methods, produces networks

that surpass the original accuracy as with Filter Basis that improves 3.06%.

66

4.5. TEMPLATES + MORPHNET: IMPROVING THE SEARCH OF FILTER
DISTRIBUTION

Table 4.12: Accuracies and FLOPs (billions) of VGG19 with the original distribution
and four templates for the same number of filters evaluated on CIFAR-100 after being
compressed using three different methods. Geometric Median reduces models based on
percentage of pruned filters, Filters basis on the number of decompositions and Gate
decorator on the percentage of FLOPs. Comparisons between compression methods
should consider differences between published training configurations as number of
epochs. Results show average of three repetitions.

Base Reverse Uniform Quadratic Neg-Quad
Method Size Acc. Flops Acc. Flops | Acc. Flops | Acc. Flops Acc. Flops
Baseline 100% | 7198 | 040 | 7454 | 429 | 73.64 | 2.00 | 73.14 | 3.06 | 74.05 1.05
80% | 70.83 | 0.25 | 73.81 | 2.74 | 72.85 | 1.28 | 7235 | 1.95 | 73.56 | 0.67
Geometric 50% | 67.96 | 0.10 | 71.83 | 1.07 | 70.67 | 0.50 | 69.39 | 0.76 | 71.05 | 0.26
Median[75] 25% | 61.39 | 0.02 | 6791 | 0.27 | 65.01 | 0.12 | 64.38 | 0.19 | 66.61 | 0.06

10% | 48.00 | 0.004 | 54.28 | 0.04 | 52.89 | 0.02 | 48.80 | 0.03 | 51.90 | 0.01
80% | 71.63 | 031 | 74.15 | 3.41 | 7296 | 159 | 72.66 | 242 | 74.11 | 0.84
Gate 50% | 71.07 | 0.19 | 74.28 | 2.14 | 73.46 | 1.00 | 7296 | 1.52 | 73.08 | 0.52
Decorator[208] 25% | 66.30 | 0.09 | 74.63 | 1.07 | 7298 | 050 | 73.39 | 0.76 | 71.72 | 0.26
10% | 59.58 | 0.04 | 73.15 | 043 | 68.73 | 020 | 71.13 | 0.30 | 67.01 | 0.10
Learning 64 7359 | 020 | 7542 | 359 | 7463 | 143 | 73.76 | 2.75 | 75.62 | 0.57
Filter Basis[114] 32 69.74 | 013 | 7513 | 3.31 | 73.20 | 1.31 | 7228 | 2.63 | 75.04 | 0.40

4.5 Templates + MorphNet: Improving the Search of

Filter Distribution

In the previous section, we compared some pruning methods against the ability of
templates for reducing parameters in a neural network. Pruning methods’ goal is to take

an architecture and remove all unnecessary elements such as weights or filters.

MorphNet was one of the first techniques which were not based on only cutting off
filters of a previously defined neural network but searching for an optimal distribution
of them [64]. Furthermore, MorphNet is configurable to reduce a particular resource
while still increasing the accuracy of the model. For example, when targeting FLOPs,
higher-resolution neurons in the lower layers of the CNN tend to be sacrificed more
than lower-resolution neurons in the upper layers of the CNN. The situation is the exact

opposite when the targeted resource is model size rather than FLOPs.

We chose to test our templates with MorphNet looking for the answer regarding
MorphNet converging to the same filter distribution when starting from the different
templates. An affirmative answer would suggest that there is an optimal distribution
of filters. Even if the convergency was specific to a dataset and model. The result could

provide more insight to neural network designers.

67

CHAPTER 4. BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES IN OTHER
DOMAINS

a) Original Base Model b) Uniform Expansion ¢) Shrinking Regulariser

Layers: [input DConv D Final Filters: Untrained Trained D Pruned

Figure 4.8: MorphNet iterative steps for finding the best filter distribution matching a
particular resource in a toy example. All the filters in an untrained base model (a) are
expanded with an arbitrary global width multiplier (b). During training, a regulariser
shrinks the model removing less important filters (c). The resulting pruned model (d) is
then expanded again using a width multiplier to match a resource budget (e).

4.5.1 MorphNet Steps for Optimising the Filters Distribution

The searching process performed in MorphNet is divided into two phases. During expan-
sion, a simple method is used only, which uniformly expands the number of filters in each
layer with a width multiplier to reach the resource constraint. In the shrinking phase,
MorphNet identifies inefficient neurons and prunes them from the network by applying
a sparsifying regulariser such that the total loss function of the network includes a cost
for each neuron (see Figure 4.8).

The above steps completed one cycle of improving the network architecture. The
process continues iteratively until the performance is acceptable or until the architecture
converges, leading to similar filters per layer after several iterations. Yet, a single
iteration of expansion and shrinking is enough to deliver a model with appreciable
improvement over the naive solution of just using a uniform width multiplier. When a
layer has zero neurons, this effectively changes the topology of the network by cutting
the affected branch from the architecture. If the final model doesn’t fit the predefined
budget, MorphNet adjusts it with a width multiplier.

68

4.5. TEMPLATES + MORPHNET: IMPROVING THE SEARCH OF FILTER
DISTRIBUTION

4.5.2 Experiments

We tested MorphNet with three of the most used architectures: VGG, ResNet and
MobileNet. We modified the original models with four templates. Then, we run MorphNet
with the resulting network and trained the final design from scratch. We compared the
results with the performances obtained in the classification task section. We empirically
adjusted the additional hyperparameter y following the recommendations described in
the MorphNet paper. The iterative process to learn the architecture was repeated until
convergence defined by the suggested threshold in MorphNet.

Similar to the experiments with pruning methods, we compared the templates in
two ways for each of the three models and three datasets tested. The first way compares
directly templates versus MorphNet. The second way compares templates cooperatively
working with MorphNet. We initially changed the networks with the templates and next
we run the process of learning the distribution with MorphNet. Finally, we trained the
neural network architectures using the hyperparameters described in [64]. All models
produced from the same original architecture, either directly produced by templates or
by MorphNet are adjusted to the same amount of FLOPs to make a fair comparison.
We noticed that the MorphNet learning procedure was performed in CIFAR-10 and
transferred to the rest of the datasets.

Table 4.13 show results for the VGG19 model counting around 400 MFLOPs. Mor-
phNet was able to perform well in CIFAR-10 and CINIC datasets but the baseline model
surpassed the accuracies of MorphNet with all the templates. On the other hand, models
changed only by templates obtained the highest accuracy with the decreasing (a.k.a.
reverse) and negative quadratic distributions.

For ResNet results were lower than the VGG ones. We see in Table 4.14 that only
for CIFAR-100 MorphNet delivered a better accuracy than the base model but used
a uniform distribution as seed. Like with VGG, ResNet plus templates produced the
highest accuracy in two datasets with the negative quadratic distribution. All ResNet
models were set to 1307 MFLOPs.

Figures 4.9 and 4.10 depict the final distributions of filters obtained by MorphNet
using each template in VGG19 and ResNet50. We observe a trend in the final VGG
models with more filters in the near initial layers as well as in the final layers. A
reduction of filters can be seen in the middle of almost all VGG architectures. In ResNet,
the pattern remains but is less noticeable. It looks improbable that MorphNet is able to
converge to a unique distribution, but we can not conclude that an optimal distribution

is non-existent. We believe that the lack of convergence is caused by the definition of the

69

CHAPTER 4. BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES IN OTHER
DOMAINS

Table 4.13: Accuracy of models produced by combining VGG19 + Templates + MorphNet
+ Width Multiplier compared to only using Templates + Width Multiplier. All models are
adjusted to ~399 MFLOPs. MorphNet filter distribution search is performed on CIFAR10.
Table shows one-repetition results. *Increasing uses the original base filter distribution
therefore it is not applicable for templates only.

VGG19 Templates + MorphNet (~399 MFLOPs)

Dataset Base | Increasing*® | Decreasing | Uniform | Quadratic | Neg-Quad
CIFAR10 | 92.98 93.19 92.58 91.92 93.06 93.54
CIFAR100 | 71.22 71.03 69.61 66.23 70.17 67.56
CINIC10 | 83.33 83.77 82.74 81.83 83.66 83.76
VGG19 Templates Only (~399 MFLOPs)

Dataset Base Decreasing | Uniform | Quadratic | Neg-Quad
CIFAR10 | 92.98 93.43 93.43 93.23 93.16
CIFAR100 | 71.22 NA 69.52 70.56 67.37 71.91
CINIC10 | 83.33 83.90 83.92 83.51 84.17

Table 4.14: Accuracy of models produced by combining ResNet50 + Templates + Mor-
phNet + Width Multiplier compared to only using Templates + Width Multiplier. All
models are adjusted to ~1307 MFLOPs. MorphNet filter distribution search is performed
on CIFAR10. Table shows one-repetition results. *Increasing uses the original base filter
distribution therefore it is not applicable for templates only.

ResNet50 Templates + MorphNet (~1307 MFLOPs)

Dataset Base | Increasing* | Decreasing | Uniform | Quadratic | Neg-Quad
CIFAR10 | 94.31 92.96 92.91 93.83 93.36 93.36
CIFAR100 | 73.25 73.42 71.51 74.06 66.55 70.25
CINIC10 | 87.04 84.09 84.67 85.60 86.38 83.77
ResNet50 Templates Only (~1307 MFLOPs)

Dataset Base Decreasing | Uniform | Quadratic | Neg-Quad
CIFAR10 | 94.31 92.90 94.33 92.57 94.46
CIFAR100 | 73.25 NA 70.03 73.84 68.37 73.86
CINIC10 | 87.04 85.77 86.73 85.12 86.94

70

4.5. TEMPLATES + MORPHNET: IMPROVING THE SEARCH OF FILTER
DISTRIBUTION

Table 4.15: Accuracy of models produced by combining MobileNetV1 + Templates +
MorphNet + Width Multiplier compared to only using Templates + Width Multiplier. All
models are adjusted to ~47 MFLOPs. MorphNet filter distribution search is performed
on CIFAR10. Table shows one-repetition results. *Increasing uses the original base filter
distribution therefore it is not applicable for templates only.

MobileNetV1 Templates + MorphNet (~47 MFLOPs)
Dataset Base | Increasing™ | Decreasing | Uniform | Quadratic | Neg-Quad
CIFAR10 | 9145 91.70 89.06 88.90 86.73 82.38
CIFAR100 | 62.58 65.02 56.31 57.85 46.79 43.80
CINIC10 | 80.99 82.09 77.09 76.64 73.22 66.73
MobileNetV1 Templates Only (~47 MFLOPs)
Dataset Base Decreasing | Uniform | Quadratic | Neg-Quad
CIFAR10 | 9145 91.14 92.02 87.44 92.08
CIFAR100 | 62.58 NA 63.99 64.76 53.47 68.81
CINIC10 | 80.99 81.72 82.85 77.75 82.67
base-morph = oy erse-base-morph uniform-morph
= guadratic-morph negative-quadratic-morph

400

350

300

250

200
150
o | D N
50 L /
0 ¥ X
1 2 3 4 5 6 7 8 9 10 11 12 1

3 14 15 16

Filters

Layer

Figure 4.9: Final filters in VGG19 architecture using Templates + MorphNet. The plot
shows MorphNet final filter distributions tending to converge to the same distribution.

constraint in MorphNet.

It can be argued that using only templates to find a good performing model can
demand excessive computational resources to train each of the different templates.
Nevertheless, we have observed the lack of convergence of MorphNet in the resulting
filter distributions when the process initiates from different filter distributions. The
implication is that, in order to find a good model, it would be recommendable to explore
several initial distributions. This process could add more resources than the required for

only training the different templates, not adding the superior performance obtained by

71

CHAPTER 4. BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES IN OTHER
DOMAINS

base-morph Polynomial (base-morph)
reverse-base-morph == Polynomial (reverse-base-morph)
uniform-morph Polynomial (uniform-morph)
quadratic-morph = Polynomial (quadratic-morph)
negative-quadratic-morph Polynomial (negative-quadratic-morph)
1800
1600
1400
1200
» 1000
o 800
T 600
400
200 T
0 - —— ! ~ | { k 3
A I I T B O S ORI - I 2

Layer

Figure 4.10: Final filters in ResNet50 architecture using Templates + MorphNet. Contin-
uous lines are polynomial aproximations for smoothing the fluctuations in the number of
layers caused by the bottlenecks modules.

H morphnet structure leaming M training
mobilenet negative+morphnet I
mobilenet negative I
mobilenet base+morphnet I
mobilenet base I
resnet50 negative+morphnet I
resnet50 negative IEEEE———————
resnet50 base+morphnet |IEEEEE——
resnetS50 base
vggl9 negative+morphnet N
vggl9 negative GG
vggl9 base+morphnet |
vggl9 base |EEEGEG—
0 2 4 6 8 10 12 14 16

Hours (1 GPU)

Figure 4.11: Comparison of individual and combined training times of templates and
MorphNet for several architectures.

only using the templates. We show in Figure 4.11 the time taken for training a template
compared to the time for searching a model with MorphNet. It is observed that the time
needed for MorphNet, combined with the training time for the resulting model, surpasses
the time of applying a template and training the model from scratch.

The overall results are summarised in Table 4.16. Templates were able to produce
models with higher accuracy than the networks produced by MorphNet in six out of the

nine combinations of datasets and models. MorphNet produced two of the best networks

72

4.6. CONCLUSION

Table 4.16: Best accuracy and pruning method by dataset compared to the original base
model.

Model Dataset Base | Best Method

VGG19 CIFAR10 | 92.98 | 93.54 | MorphNet (Negative)
~399 Mflops | CIFAR100 | 71.22 | 71.91 | Templates (Negative)
CINIC10 | 83.33 | 84.17 | Templates (Negative)

ResNet50 CIFAR10 | 94.31 | 94.46 | Templates (Negative)
~1307 Mflops | CIFAR100 | 73.25 | 74.06 | MorphNet (Uniform)
CINIC10 | 87.04 | 87.04 Base
MobileNetV1 | CIFAR10 | 91.45 | 92.08 | Templates (Negative)
~47.2 Mflops | CIFAR100 | 62.58 | 68.81 | Templates (Negative)
CINIC10 | 80.99 | 82.85 | Templates (Reverse)

but not starting from the original (increasing) distribution of filters. Instead, the initial
models were modified with the Negative Quadratic and Uniform templates. The results
highlight again the need for exploring new and diverse distributions of filters like the

ones proposed in our templates which can offer more efficient neural network designs.

4.6 Conclusion

The experimental results in this chapter suggest that other domains beyond image
classification are also prone to the benefits produced with templates. For example, in the
localisation task, we found the templates successful in more than half of the locations
tested in 7-scenes with PoseNet. Furthermore, the modified PoseNet achieved lower MSE
using 8% less memory. In the same dataset, VGG only performed better in two locations.
However, the second-best performing model, produced with a template, counted only 35%
of the original parameters. The template-changed PoseNet and MobileNetV1 obtained
lower errors than the original models in six out of seven locations for the Cambridge
Landmarks dataset. The best template in MobileNetV1 achieved better performance
while using 10% fewer parameters.

Experiments in SR showed that the correct distribution is important. While templates
may not have been able to show improvements on the tested datasets, the experiments
in classification leave open the possibility that different distributions could make a
difference when the dataset changes. Even though one template achieved a lower recon-
struction error (measured with PNSR) than the original model, it was done at the cost of
more computational resource demands in all aspects. It is worth noticing that in SR, the

adopted distribution is not the incremental one. Models designed for the task follow a

73

CHAPTER 4. BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES IN OTHER
DOMAINS

uniform distribution of filters. In other words, the incremental distribution was not the
best for this task.

When we studied how the templates can collaborate with pruning methods, we
found that the results of VGG models on CIFAR100 improved when the pruning process
started with models modified with templates. The Geometric Median method was able to
increase one point of accuracy in a model with a reduction of 50% of parameters. The
Gate Decorator method, which focuses on reducing FLOPs, found a model performing
more than one point higher in accuracy with approximately the original FLOPs. Filter
Basis, which replaces filters with low-rank matrix operations, found a model with 5.3
points higher in accuracy compared to the model obtained with the same method but
starting from an incremental distribution. These results highlight the advantages of
using templates together with pruning methods to get more efficient models.

Finally, the chapter includes research about how templates change the behaviour
of a CNS method. Using three classical neural network models and three datasets,
we evaluated MorphNet and templates in two ways: competing and collaborating. We
restricted MorphNet and templates to produce models with similar FLOPs to the base
model. There were improvements in accuracy in eight out of nine scenarios caused by
using only templates or some combination of MorphNet and templates. For example, for
VGG, MorphNet produced the best model in CIFAR10 with 0.56 points more accuracy but
started its process with a template-changed VGG model. Something similar happened
with ResNet and CIFAR100, improving accuracy by 0.81 points. For the rest of the cases,
templates showed superior performance to MorphNet. In particular, MobileNetV1 model
improves significantly with templates with up to 6.2 points in accuracy for CIFAR100.

In general templates were effective for the task and models we use for evaluation.
The benefits of exploring new distributions of filters extend beyond classification tasks.
In some areas like super-resolution, researchers already use a different pattern than the
incremental design. Furthermore, we found that pruning and CNS methods can produce
better results if they initiate the exploration process from another distribution from the
incremental one. An important outcome is that there is no absolute best template. Each
pair model-dataset seems to be particularly and differently affected for each template.
So the proposed templates are a simple tool to rapidly obtain increases in performance

without the burden of automatic neural network design methods.

74

CHAPTER

TEMPLATES 2.0

n the previous chapter, we have shown the effectiveness of templates in various

domains. The strategy of changing the pattern of filter design in convolutional

neural networks following mainly square functions has been found to be successful
considering its simplicity. This chapter improves templates with new functions to define
filters that replace "abrupt" quadratic changes in the number of filters in each layer for
"smoother" linear segments. We complement the new definition with a fast method to
match the number of FLOPs of the original design or any FLOPs budget, allowing a fair
comparison of models. Next, we extend the experiments with templates to domains that
differ significantly from the previously tested and where the internal representation
of models with templates is more relevant than the final outputs. The chapter also
illustrates the importance of exploring new filter distributions by applying templates to
the NASBench-101 dataset. Finally, it describes the exploration with a similarity metric,
trying to correlate the models’ accuracies and their internal representation space as a

proxy to find the best template.

5.1 Templates Redefinition to Match Similar

Resources

Chapter 3 presented a first approach to producing variations in the filter distribution

of existing architectures with different templates. However, comparing the resulting

75

CHAPTER 5. TEMPLATES 2.0

[
g ;
i / Template b
Template a Layers

Layers Layers

o8 Jopos

Template ¢ \ i i
p Layers Template d /\ Template e \/

Layers Layers

Filters

Filters

Layers: [l input [| conv [[] Final Filters: Untrained Trained

Figure 5.1: Schematic distribution of filters per layer in our templates. These templates
are created with simple and intuitive but aggressive variations of filter distributions.
Base distribution, which is the original pyramidal distribution, shows the common
design of drastically growing the filters when the resolution of feature maps decreases
in deeper layers. New templates follow a smoother transition in the number of filters
between layers. We match the same number of filters in the thinnest layers and adjust
the maximum to meet the original number of FLOPS for a fair comparison.

models is difficult because templates change the computational requirements of each
model. So, it is desirable to reduce the effects of variations and match the number of
resources. One naive solution is reducing filters proportionally across all layers with a
width multiplier. Unfortunately, some models end with different sizes in the layer with
the lowest number of filters and, therefore, in the minimal representation power. We
want to avoid these differences in the representational bottlenecks favouring unbiased

comparisons.

This section presents an improved set of template definitions using the finding of [70]
related to the benefits of using additive increases in the number of filters. The new set of
templates, named Templates 2.0, allows matching a predefined number of FLOPs. These
templates are depicted in figure 5.1 and have been found to perform well and are thus
candidates for model performance improvement beyond accuracy. Performance criteria

such as parameters, memory footprint and inference time are arguably as important.

76

5.1. TEMPLATES REDEFINITION TO MATCH SIMILAR RESOURCES

0.2 T T T T T T 1 T T T T T T T T i
—— Pre-activation ResNet-110 0.18 —— PyramidNet-110, proposed
018 — = Pre-activation ResNet-110 (no units are dropped) | | = = PyramidNet-110, proposed (no units are dropped)

0.14 [

012
0121

2 008 4
008 —\M

0.04 |-

Test error
o o
s o ©
& & o
est error
o

2
=}
B

0.02 [

o
o
5}

L L L L L
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Dropped layer index Dropped layer index

Figure 5.2: Impact of deleting one residual unit a time (solid red lines) in a sharply
increasing pattern (left) and in a smooth pattern (right). Dashed lines represent test
errors when no units are deleted. Blue lines point the place of downsampling layers.
Taken from [70].

5.1.1 Defining a New Set of Filter Distribution Templates

To define the new set of templates, we strongly rely on the findings of the PyramidNet
paper [70]. The article presents two variations of the incremental pattern for the dis-
tribution of filters in a modified ResNet architecture that brings increases in accuracy.
The authors propose to use multiplicative and additive increases in the number of filters
making the transitions of feature maps dimensions between layers smoother than in
the original pattern. The motivation to change the distribution is the harmful effects of
sharply increasing the filters between blocks (see figure 5.2), a phenomenon that has
only been studied in residual networks. However, we have found that the effect extends
to plain architectures. Thus, to define the new templates, we chose to use the additive
pattern, the most successful of the two, and gradually change the number of channels
across the architecture with linear segments.

We adopt as the first template, one with the same incremental distribution but with
a smooth step (a). The second template is a distribution with a fixed number of filters (b)
as in the original Neocognitron and Isometric Neural Networks [174]. Another immediate
option, contrary to the increasing distribution, is a decreasing distribution of filters (c).
Finally, inspired by the distributions of blocks from the resulting ResNet101 and VGG
models found in [64] and [104, 208], we define a template in which filters agglomerate in
the centre, increasing the internal resolution (d) and, on the contrary, where filters are
reduced in the centre of the model (e).

One first approach to implementing a change of filters in a model is to keep the origi-

nal number of filters in the resulting model and redistribute them differently across its

77

CHAPTER 5. TEMPLATES 2.0

layers. Nevertheless, final models end up with different resource demands and therefore
making a fair comparison is problematic. Parameters, FLOPs and inference time have
been used as a proxy for comparing models with different designs. We believed that using
one metric is insufficient for a fair comparison. As an example, our implementations of
VGG and ResNet count an approximate number of parameters (20.03 million versus
23.52 million, respectively), but ResNet’s FLOPs (1307 MFLOPs) are more than three
times VGG ones (399 MFLOPs). To facilitate comparisons, we match one metric while
comparing the other. In particular, we fix models obtained from templates to match the
number of FLOPs of the original distribution and then compare a second metric such as
parameters, memory footprint or inference time.

In a more formal way, we define a convolutional neural network base model as a
set of numbered layers L=1,...,D + 1, each with f; filters in layer [. D + 1 is the final
classification layer whose size is given by the task. The ordered set of all filters in the
model is F'1.p = {f1,...,[p} and the total number of FLOPs, the resource to be matched
between templates, is given by some function Z(F1.p). We want to find a new distribution
of filters F'| ,, in which

(5.1) R(F1.p) ~ R(F' 1)

and to test if the common heuristic of distributing F'1.p having f;.1 = 2f; each time
the feature map is halved, is advantageous to the model over FLD when evaluating
performance, memory footprint and inference time.

Our templates are defined as simple linear segments, or a combination of them, in

which min(F}.;)) = min(F1.p) = npin and max(F7 ;) = n €N satisfying constraint (5.1).

5.1.2 Similar FLOPs Optimisation

CNS methods aim to find individual values for the number of filters in each layer, and
thus, the exploration space becomes huge. For our method, the optimisation of the values
is eased by the constraint in (5.1) and the way the templates are defined. Given that they
are built with linear segments, only two natural numbers are required to compute the
number of filters in each layer. One is fixed (n,,;,), and it is found by taking the lower

number of filters generally in the first layer of the original model. To find the second

/
(nmax

valid for all templates. We use a modified binary search starting with the maximum

=n), we rely on the monotonic relationship between n and the model’s FLOPs,

number of filters (n,,4,) in the original model and then reducing or increasing the value

78

5.2. TEMPLATES 2.0 ON IMAGE CLASSIFICATION

of n depending if the modified model has more or less FLOPs than the original (See
Algorithm 1).

Algorithm 1: Producing a CNN model using templates with FLOPs similar to
an existing base model.
Input:
CNNbase
Nmax
template —[a,b,c,d,e]
Output:
CNNtemplate
n,max
begin
F —compute_flops(CNNpgyse)
n <—Nmax
repeat
CNNiempiate — change_filters(CNNyqse,template,n)
F' —compute_flops(CNNempiate)
factor — F'/F
Nold — N
n —int(n/factor)
until n =n,;4;
n,max —n
end

For obtaining the number of filters in intermediate layers in each linear segment,
we round the evaluation of the linear equation produced by 7,,;, and n according to the
layer position within the segment. The only particular change in the method is made
when using a template with a uniform pattern, in which case we make n,,;, = n. The
whole procedure is performed before training, carrying minimal computational costs for
redefining the model and estimating the new FLOPs value. We provide a precise value of

filters for each layer in all models and templates tested in this work in A.1 (appendix).

5.2 Templates 2.0 on Image Classification

We investigated the effects of applying different templates to the distribution of kernels
in well known convolutional neural network models (VGG, ResNet, MobileNet and
Mnasnet). We highlight that the resulting models obtained from templates have similar

FLOPs to the original model from which they are obtained. This constraint facilitates

79

CHAPTER 5. TEMPLATES 2.0

further comparison of models under the basis of size, memory and speed tested in several

popular datasets for classification tasks.

5.2.1 Datasets and Models

We selected six datasets with diverse domains, number of samples, and classes to test our
templates but allowed a relatively fast training process. Each model is evaluated with a
set of five templates. Therefore, we use MNIST, FashionMNIST, CIFAR-10, CIFAR-100
[99], CINIC-10 [38] and Tiny-Imagenet [103]. The first four datasets contain sets of
50,000 and 10,000 samples for train and validation, respectively. MNIST and FashionM-
NIST contain 28 x 28 grayscale images divided into 10 classes each. CIFAR datasets have
associated labels from 10 and 100 classes and colour images with a resolution of 32x32.
CINIC-10 contains 90,000 images in each, the training and validation sets with the same
resolution and classes as the CIFAR-10 dataset. Tiny-Imagenet is a reduced version of
the original Imagenet dataset with only 200 classes and images with a resolution of 64 x
64 pixels.

We evaluated VGG[183] and ResNet[73] models, which represent some of the most
influential CNN architectures on the ImageNet challenge in previous years [37, 170] as
well as MobileNetV2[175], one highly optimised model, and MnasNet[189], an automati-
cally produced architecture from a NAS method.

5.2.2 Implementation Details

Experiments have models fed with images with the standard augmentation techniques
of padding, random cropping and horizontal flipping and additionally, with cutout [41]
using one patch of 16 x 16 pixels. Our experiments were run in an NVidia Titan X Pascal
12GB GPU adjusting the batch size to 64 for TinyImagenet and 256 for the rest of the
datasets.

Models on MNIST-like datasets were trained for 150 epochs using stochastic gradient
descent (SGD) with a scheduled learning rate of 0.01 decreased with gamma 0.2 at epochs
75 and 110; weight decay of 1e-5 and momentum of 0.9. For CIFAR-10, CIFAR-100 and
CINIC-10, all models were trained for 200 epochs using the same conditions: SGD with a
learning rate of 0.1 scheduled with gamma 0.2 at epochs 60, 120 and 160; weight decay of
le-5 and momentum of 0.9. For TinyImagenet, models were trained for 90 epochs using
SGD with a scheduled learning rate of 0.1 decreased with gamma 0.1 at epochs 45, 70

and 85; weight decay of 1e-1 and momentum of 0.9.

80

5.2. TEMPLATES 2.0 ON IMAGE CLASSIFICATION

5.2.3 Effects of Templates on Classical Models

We conducted an experiment to test our proposed templates on the selected architectures.
Table 5.1 show properties of resulting models for each architecture after using templates.
Parameters, memory footprint and inference time are reduced in almost all cases. This
result is in some way surprising given that template patterns were only selected following
simplicity and diversity but not precisely efficiency.

In particular, for classical models, we observe in Figure 5.3 increases in accuracy up
to 2.11 points over the VGG base model primarily obtained with template d. Reductions
of 90% in parameters, 79% in memory usage and 22% in inference time are produced
by using template ¢ while accuracy is still slightly superior on all datasets. The fastest
model with a reduction of 24% in inference time is reached with template b.

The behaviour for ResNet differs from that of VGG in some aspects. The impact on
resource consumption es lower. Template ¢ shows savings of 85% in parameters, 30% in
memory usage and almost 20% in inference time. The highest accuracies are obtained
in half of the datasets by template a. The smallest model in memory is obtained with
template d reaching maximum accuracy in CIFAR datasets with 32% less memory.

We found that there is a frequent behaviour related to each template that is clearly
observed in Figure 5.3. Accuracy improves in many datasets with templates a and d.
Template b emerges as a good trade off between resource consumption and accuracy and
templates ¢ and e give the biggest reduction in resources by sacrificing some accuracy.

We provide detailed results of our experiments with classical models in Table 5.2.

5.2.4 Effects of Templates on Optimised Models

MobileNet and MnasNet architectures were optimised to perform well on mobile devices
focusing on obtaining high accuracy and low inference time. The former was optimised
by experts and the latter was optimised through a neural architecture search method.
We show resource demands of both base models and their modifications produced by
templates in Table 5.1. Although it is expected that the margin of improvement on these
highly optimised models be considerably lower, we found that templates can reduce up
to 77% in parameters and 11% in memory footprint.

Inference time depends more on the degree the computational graph allows paral-
lelism. Our method keeps the same layer distribution and interconnection in the model.
Thus, the computational graph remains similar. On the other hand, we keep similar

FLOPs for all the templates in our experiments. We think the differences in inference

81

CHAPTER 5. TEMPLATES 2.0

Table 5.1: Resource consumption on CIFAR-10 for original architectures and resulting
models after applying templates. FLOPs remain similar in comparison to base models.
Classical models show bigger reductions in all aspects, while optimised models benefit
more in parameters. Negative values represent increases in resources.

Param Mem Inference FLOPs
Template (Millions) (MB) Time (ms) (Millions)
vggl9 base 20.03 % | 87.0 % | 1.85 % | 399.2
vggl9 a 17.23 13.9 76.5 12.0 1.85 0.0 396.9
vggl9 b 3.17 84.1 23.0 73.5 140 24.3 400.2
vggl9c 1.89 90.5 17.8 79.5 1.43 22.7 399.5
vggl9 d 8.07 59.7 39.8 54.2 1.46 21.0 399.8
vggl9e 2.06 89.7 17.8 79.5 1.43 22.7 399.0
Param Mem Inference FLOPs
Template (Millions) (MB) Time (ms) (Millions)
resnet50 base 23.52 % | 185.5 % | 5.35 % | 1307.7
resnet50 a 14.17 39.7 146.8 20.8 4.83 9.7 1301.9
resnet50 b 4.85 79.3 132.1 28.7 4.29 19.8 1299.0
resnet50 ¢ 3.48 85.2 128.9 30.5 4.30 19.6 1293.5
resnet50 d 8.36 64.4 125.8 32.1 4.32 19.2 1307.3
resnet50 e 3.68 84.3 132.1 28.7 4.34 18.8 1297.7
Param Mem Inference FLOPs
Template (Millions) (MB) Time (ms) (Millions)
mobilenet base 2.23 % | 28.3 % | 3.81 % | 68.9
mobilenet a 1.42 36.3 27.2 3.8 3.86 -1.3 68.4
mobilenet b 0.80 64.1 28.3 0.0 3.91 -2.6 67.7
mobilenet ¢ 0.59 73.5 27.2 3.8 3.71 2.6 68.1
mobilenet d 1.12 49.7 27.2 3.8 3.68 3.4 68.1
mobilenet e 0.51 77.1 25.1 11.3 3.92 -2.8 68.8
Param Mem Inference FLOPs
Template (Millions) (MB) Time (ms) (Millions)
mnasnet base 3.11 % | 82.8 % | 3.79 % | 314.6
mnasnet a 1.57 49.5 98.5 -18.9 3.68 2.9 311.8
mnasnet b 1.05 66.2 101.7 -22.8 3.85 -1.5 309.6
mnasnet ¢ 0.79 745 101.7 -22.8 3.82 -0.7 312.1
mnasnet d 1.14 63.3 98.5 -18.9 3.61 4.7 313.3
mnasnet e 0.93 70.0 100.6 -21.4 3.75 1.0 314.5

82

5.2. TEMPLATES 2.0 ON IMAGE CLASSIFICATION

mnist fashionmnist
e base e be d M resnet50 A vggl9 e base ® b e d M resnet50 A vggl9
® a e C e ® a ® C e
99.79 ™
95.6 A
99781 u
A A
A u 95.5
S 99.77 A 8] A
< <
[]
u 95.4]
99.76
99.75 953 A
5 10 15 20 5 10 15 20
Param Param
cifar10 cifar100
e basee be d Mresnet50 Avggl9 e basee be d Mresnet50 Avggl9
e a e C e e a e C e
. ™ [] u
96.0 o []
= 775
95.6
Q [&]
(8] Q
< < 75.0
A
A
95.2 A
A, A
72.5
A A
948
5 10 15 20 5 10 15 20
Param Param
cinicl0 tiny—imagenet
e basee be d Mresnet50 Avggl9 e basee be d Mresnet50 Avggl9
e a e C e ® a e C e
[| 66- []
mE] "
89- =
[]
63-
88-
Q Q
2 2 60
87-
5 A A A
A
86 A A
A 54- 4
5 10 15 20 5 10 15 20 2F
Param Param

Figure 5.3: Accuracy of VGG and ResNet models after applying templates reported for
several datasets. Base is the original distribution of filters. In many cases, templates
outperform the base architecture. However, all of them use far fewer parameters than
the base model. Note that models produced with templates from VGG have less than a
third of FLOPs of those produced from ResNet.

83

CHAPTER 5. TEMPLATES 2.0

Table 5.2: VGG19 and ResNet50 performances with the original distribution of filters
and five templates evaluated on six datasets. Flops are kept to similar values between
templates of same models (399 MFLOPs for VGG19 and 1307 MFLOPs for ResNet50).
After filter redistribution, most models surpass the base accuracy with less resources.

Results show average of three repetitions.

tiny

Template mnist fashionmnist cifar10 cifar100 cinicl0 imagenet

vggl9 base 99.769 £ 0.011 9547 +0.05 94.90+0.10 73.91+0.08 85.79+0.10 57.34+0.30
vggl9 a 99.772 £ 0.019 9559 +0.16 95.03+0.26 74.47+0.10 86.13+£0.14 57.21 +£0.56
vggl9 b 99.779 £ 0.005 95.51+0.03 95.01+0.10 73.34+0.24 86.37+0.02 56.88 +0.31
vggl9c 99.775 £ 0.024 9528 +0.06 95.04+£0.19 72.27+0.35 86.15+0.09 54.50+0.24
vggl9 d 99.779 £ 0.040 95.65 £ 0.09 95.21 + 0.08 74.64 + 0.13 86.49 £ 0.05 59.45 + 0.18
vggl9e 99.789 £ 0.024 95.33 £0.17 94.75+0.07 71.13+0.28 85.85+0.03 54.26 + 0.35
resnet50 base | 99.772 + 0.009 95.58 £+ 0.10 95.91+0.29 78.31+0.54 88.78+0.93 65.57 +0.47
resnet50 a 99.766 + 0.022 95.66 + 0.16 96.10+ 0.07 79.00 +£0.05 89.60 £ 0.05 66.06 + 0.53
resnet50 b 99.762 + 0.019 95.48 +0.13 96.07 £0.08 78.91+0.08 89.36 +£0.09 65.01 +£0.43
resnet50 ¢ 99.779 £ 0.037 95.41+0.08 96.13+0.20 77.92+0.18 89.27 +0.15 64.07 £0.17
resnet50 d 99.775 £ 0.022 95.61+0.08 96.20+0.11 79.43 + 0.24 89.30 £ 0.29 65.59 + 0.39
resnet50 e 99.749 £ 0.030 9541 +0.07 95.79+0.03 77.99 +0.48 89.15+0.02 64.49 + 0.57

time come in how well the sizes and the number of feature maps fit better in GPU
memory. Since MobileNet and MNASNet more optimised, templates struggle to produce
significant improvements in this metric but still, models reach almost 5% of reduction in
inference time.

From Figure 5.4, we observe that template e produces the biggest savings in para-
meters and memory for MobileNet while still surpassing the base accuracy. The highest
performance is obtained with templates a and b for this model. For MnasNet, template
a emerges as the best one regarding accuracy and being capable of reducing almost 50%
of parameters. Moreover, it shows reductions of 2.9% on model latency despite being this
the main goal used in its NAS method.

We note that both MobileNetV2 and MnasNet perform best in tiny-Imagenet dataset.
We think the reason for this effect is that tiny-Imagenet is strongly related to Imagenet,
and models’ designs have been overfitted to the latter. However, template a is still
competitive with reductions of 1.5 and 1.8 points in accuracy but savings up to 36% and
49% in parameters for MobileNet and MnasNet, respectively, on this specific dataset. We

show detailed results for these models in Table 5.3.

84

5.2. TEMPLATES 2.0 ON IMAGE CLASSIFICATION

99.77
99.76
3 99.75
<
99.74

99.73

95.5

95.0
[&]
Q945

94.0

93.5

mnist
B mnasnetl A mobilenet2 e base e b e d
e a ec e
A m A
|
-
|
A
1 2 3
Param
cifarl0
M mnasnetl A mobilenet2 e base ® b e d
® a ec e
|
=
|
|
A
A
A
A
1 2 3
Param
cinic10

e base e be d
e a ec e

M mnasnetl A mobilenet2

87-

86-

Acc

84-

83-

82-

A
1 2 3
Param

95.2

Acc

94.8

94.4

8725
<

70.0

fashionmnist

M mnasnetl A mobilenet2 e base » b e d
® a ec e
] |
|
|
A
A A
A
1 2 3
Param
cifar100
M mnasnetl A mobilenet2 e base e b e d
® a ec e
= n
|
|
A A
A
A
1 2 3
Param

tiny—imagenet

M mnasnetl A mobilenet2 e base e be d

® a e C e

60-

55-

Acc

50-

45-

A u

1 2 3
Param

Figure 5.4: Parameter efficiency of MobileNetV2 and MnasNet models with templates
reported for several datasets. Base is the original distribution of filters. In many cases,
templates outperform the base architecture. However, all of them use far fewer para-
meters than the base model. Note that models produced with templates from MnasNet
have more than 4X FLOPs of those produced from MobileNetV2.

85

CHAPTER 5. TEMPLATES 2.0

Table 5.3: MobileNetV2 and MnasNet performances with the original distribution of
filters and five templates evaluated on six datasets. Flops are kept to similar values
between templates of same models (68 MFLOPs for MobileNetV2 and 314 MFLOPs for
MnasNet on CIFAR10). Despite both original architectures have been highly optimised,
most resulting models from applying templates surpass the base accuracy. Results show
average of three repetitions.

tiny

Template mnist fashionmnist cifar10 cifar100 cinic10 imagenet

mobilenetV2 base | 99.726 £ 0.024 94.38 £ 0.04 93.37+£0.10 72.62 +£0.03 82.19 £ 0.04 61.47 + 0.39
mobilenetV2 a 99.772 £ 0.019 94.69 + 0.14 93.69+£0.20 73.31 £ 0.39 82.83 £0.04 58.98 +2.11
mobilenetV2 b 99.752 £ 0.019 94.85 £ 0.11 94.26 + 0.15 73.27 £ 0.31 83.85 + 0.17 55.40 + 2.62
mobilenetV2 ¢ 99.772 + 0.026 94.72 +0.11 93.54 +0.20 67.96 + 0.40 83.03 +0.10 41.73 +5.04
mobilenetV2 d 99.752 £ 0.009 94.57 £0.04 93.57+0.11 68.92+0.11 82.33 £0.21 45.02 +£5.75
mobilenetV2 e 99.756 £ 0.020 94.66 £ 0.22 93.82+0.18 70.18+0.31 83.20+0.10 52.61 +1.86
mnasnet base 99.736 £ 0.005 95.17 £0.07 94.92 £ 0.07 76.46 +0.30 86.25 + 0.07 61.78 £ 0.27
mnasnet a 99.756 £ 0.015 95.52 £ 0.07 95.62 + 0.17 76.73 + 0.48 87.28 + 0.09 59.02 + 0.62
mnasnet b 99.772 £ 0.029 95.34 +0.10 95.49+0.10 75.82+0.26 86.94 +£0.11 56.51 +0.31
mnasnet ¢ 99.752 £ 0.017 95.50 £0.11 95.23+0.12 74.01 £0.50 86.65+ 0.14 49.12 +0.11
mnasnet d 99.746 £ 0.011 9547 £0.06 9553 £0.11 74.96 £ 0.25 86.93 £0.12 51.62 + 0.61
mnasnet e 99.759 £ 0.011 95.48 £ 0.08 95.41 +£0.08 75.55+0.26 86.88+0.16 57.62 + 0.29

5.3 Templates 2.0 on Audio Classification

One of the areas where research in deep learning has enabled many applications is
signal processing. After evolving in computer vision tasks, neural networks have been
widely adopted in many domains. In particular, they have been applied to audio process-
ing, including speech, music and environmental sound processing. Despite there being
significant differences between computer vision and audio domains, many of the existing
methods in the latter have been borrowed from the former [156]. However, researchers
have started to develop audio-focused techniques [62, 97, 172].

Raw audio samples come from a one-dimensional signal indexed in time [156]. Never-
theless, they are often translated into two-dimensional time-frequency representations,
such as mel-frequency cepstral coefficients (MFCCs), which is the standard representa-
tion used for audio data processing [58, 125, 218]. MFCC spectrograms, unlike images in
computer vision applications, do not represent an instant in time. Instead, they are built
taking constant-length segments from the raw audio signal. Yet, the resulting represen-
tation can be interpreted as a single image and processed using classic convolutional
neural networks [68].

Based on the differences mentioned above with computer vision tasks, we decided to
test our templates in two popular datasets from the audio classification domain [147].

We explore the accuracy and resource consumption of our proposed improved versions for

86

5.3. TEMPLATES 2.0 ON AUDIO CLASSIFICATION

filter distributions and compare them against using the traditional pyramidal pattern.

5.3.1 Audio Datasets

The GTZAN dataset [193] is the most-used public dataset for evaluation in machine
listening research for music genre recognition (MGR) [186]. GTZAN contains 1000 music
clips with a duration of 30 seconds each. The clips, sampled at a rate of 22.5kHz, are
grouped into 10 distinct genre classes: Blues, Classical, Country, Disco, Hip Hop, Jazz,
Metal, Popular, Reggae, and Rock.

Another popular audio dataset is the ESC-50 dataset, designed to provide a bench-
mark for environmental sound classification [154]. Analysis of environmental sounds is
considered a different task from other everyday audio events such as speech or music
(laughter, cat meowing, glass breaking or brushing teeth are some examples of environ-
mental sounds). The ESC-50 dataset consists of 2000 labelled environmental recordings
distributed between 50 classes. Each instance has a length of 5 seconds sampled at
44.1 kHz. Some examples of MFCCs for the two datasets used in our experiments are

presented in Figure 5.5.

5.3.2 Implementation Details

When convolutional neural networks are applied to raw waveform input, it is normally
done with 1-d convolutions. However, we use spectral input features for which 2-d
time-frequency convolution is commonly adopted. Neural models in audio use common
elements and follow similar pattern designs as computer vision models. They are com-
posed of a series of convolutional layers with pooling layers at the end of each sequence to
downsample the learned feature maps, followed by one or more dense layers to produce
the desired output according to the task to be solved.

According to [156], in the absence of a well-established theory to find the optimal
design hyperparameters for a CNN architecture for a specific task (size of kernels,
pooling, number of channels and interconnections with successive layers), researchers
have mostly opted to experimentally select the best performing model from a range of,
usually alike, alternatives. While this statement is made for the field of audio processing,
we agree that it is true for most, if not all, of the other domains of deep learning
architecture design.

We have found in audio processing architectures, as well in computer vision, that

many complex models are not developed from scratch. Instead, they use classical archi-

87

CHAPTER 5. TEMPLATES 2.0

Blues Classical Country

Jazz Pop Reggae

Fireworks Train Chainsaw
e Bl | b ‘

rooster Insects

Figure 5.5: MFCC spectrograms for some samples in the GTZAN (purple lines) and
ESC-50 (green lines) datasets.

tectures as a backbone, of which ResNet is one of the most popular [67]. So, we decided
to test out templates using the well known ResNet50 architecture, adapting only the
number of filters according to the new definition of templates and the final dense layer
to adjust the output as required for the dataset to be evaluated.

For training, we use the code and hyperparameters provided by [147], which were
found with grid search [117]. Learning rate and weight decay were set a 0.0001 and
0.001 respectively. We use a batch size of 32 for ESC-50 and 16 for GTZAN. The learning

rate was decreased by a factor of 10 for every 30 epochs from a total of 70 epochs.

5.3.3 Results

The results of this experiment are shown in Table 5.4. They show the average accuracy

of three runs. By using templates on ResNet50 we can see marginal improvements

88

5.4. TEMPLATES 2.0 ON NASBENCH 101 DATASET

Table 5.4: Accuracy and resource utilisation of ResNet50 with templates on GTZAN and
ESC-50 audio classification datasets. Results show average of three repetitions.

Filter Templates

Metric base a b c d e
GTZAN Accuracy | 85.59 | 85.92 | 87.26 | 85.75 | 87.43 | 85.08
+104 | £057 | £252 | £2.03 | £1.51 | £0.76
ESC-50 Accuracy | 69.66 | 70.33 | 68.16 | 65.75 | 69.91 | 67.25
+087 | £2.26 | £0.72 | £+1.88 | £1.89 | £0.75
Param (Millions) | 23.61 | 14.23 4.88 3.50 8.39 3.71
Memory (MB) 395.51 | 350.54 | 383.10 | 385.15 | 337.40 | 392.29
Inference (ms) 5.47 7.47 4.56 7.75 4.66 4.48
GFLOPs 4.119 | 4.102 | 4.093 | 4.076 | 4.118 | 4.089

in accuracy of 0.96% and 2.14% for GTZAN and ESC-50 over the base ResNet model
compared to the best performing template. However, when we look at the resource
consumption, savings in memory footprint and inference time reach 15% for template d
while the number of parameters shows a considerable reduction of 65%. We could take
template ¢ on GTZAN and obtain a similar accuracy with only 14.82% of the original
parameters. As in all the experiments performed in this chapter, the different templates
use similar FLOPs to the original ResNet architecture. In this way, we show that there
are no hidden costs of applying our templates other than the simple step of redistributing
neurons and training our small set.

Something worth noticing is that, again, there is no absolute winner template in this
task of audio classification. Instead, each particular template seems to provide some

advantage even between datasets.

5.4 Templates 2.0 on NASBench 101 Dataset

The aim of neural architecture search (NAS) is to find the best possible CNN model
on a specific dataset by iterating over a set of model candidates looking for the best
performance [164]. The size of the search space is the most challenging aspect of archi-
tecture search. An extensive evaluation of all networks is generally costly. Therefore,
most existing methods use some heuristic to predict the final performance of each model
with just a few epochs (or none if possible) of training.

The process is described in Figure 5.6. It starts with defining the space of all possible
architectures and follows by sampling architectures from that space to estimate their

accuracies which can update the exploration strategy.

89

CHAPTER 5. TEMPLATES 2.0

architecture

AcA
Search Space L—— | Performance
P Search Strategy Estimation
A S~ Strategy

performance
estimate of A

Figure 5.6: Schematics of Neural Architecture Search methods. From a pre-defined
search space an exploration strategy selects an architecture. An heuristic computes
an estimate of the model performance. Then, the exploration strategy can be updated
depending on the estimations. Image from [49].

Research in NAS is divided into the three areas described in the boxes of Figure
5.6: search space definition, exploration strategy and performance estimation strategy.
Despite numerous improvements in efficiency and performance, empirical evaluations
in NAS continue to be a challenge. Different NAS studies frequently employ different
training pipelines, search spaces, and hyperparameters. Thus they do not compare other
approaches in similar conditions [210, 211].

NASBench-101 [207] was introduced to provide a common framework to evaluate
new proposed exploration and performance estimation strategies. The dataset delivers
training and validation performances of all convolutional neural network architectures
on the CIFAR-10 dataset. All networks are built by stacking identical groups of layers
called cells which are followed by a downsampling layer. The network finish with a dense
layer that conducts the final classification. In this sense, the difference between networks
is found in the cell design. Cells are described by directed acyclic graphs with up to 9
vertices and 7 edges. The set of valid operations at each vertex are 3x3 convolution, 1x1
convolution, and 3x3 max-pooling.

The search space of NASBench-101 contains 423,624 individual CNN networks, each
of them being trained and evaluated several times on CIFAR-10. Given that networks

are evaluated at several steps, the dataset contains over 5 million trained models.

5.4.1 Implementation Details

More than a dataset, NASBench-101 is a benchmark framework that provides a full set
of tools programmed in TensorFlow [1] to evaluate neural networks following the pattern
defined in the search space. The search space of NASBench is restricted to the pyramidal
distribution of filters. Hence we performed minor changes to the original code to add our

different templates.

90

5.4. TEMPLATES 2.0 ON NASBENCH 101 DATASET

For all NASBench models, the authors used the same set of hyperparameters. By
running a coarse grid search on the average accuracy of 50 randomly sampled designs
from the space, this collection of hyperparameters was chosen to be robust across different

architectures. We use the same training parameters defined in the framework.

5.4.2 Results

It would be inaccessible to us, as well as to many researchers, to test our templates
with each architecture within the exploration space of NASBench. We instead evaluated
and compared the best model in the dataset. Other singular model mentioned in the
NASBench paper is a ResNet-like network. So we decide to test the templates on these
two architectures.

Models in the dataset are not constrained in resources in any way. Restrictions are
created indirectly by the types of layers and connections, the number of cells in each
module and the number of modules. Because our method follows the same graph as the
original architectures, we constrain the models using templates to operate under the
same amount of FLOPs to have a similar point of reference.

The experimental results are shown in Table 5.5. We have mentioned that a fair
comparison of models is challenging not only with models inside the dataset but also
with models in the literature in general. FLOPs and parameters of the best performing
network are more than five times the ones of the ResNet-like network, while gaining in
accuracy is less than three per cent.

Models obtained with templates show an impressive reduction of computational costs.
Template b with both models uses one-fifth of the original parameters. Template ¢ obtain
a higher accuracy than the best performing model with one-third of the parameters. We
are not aiming for our method to outperform any NAS method. We state that our method
can be used in combination with NAS methods to obtain further improvements at a very
low cost. Moreover, by exploring the proposed (and other) new distributions, it is possible

to find more efficient models. Each template enables different metrics to be enhanced.

91

CHAPTER 5. TEMPLATES 2.0

Table 5.5: Accuracy and parameters of the best model in NASBench-101 dataset and a
ResNet-like model produced with an extended search space. By using templates, both
models are capable of obtaining further accuracy with fewer parameters using similar
FLOPs. Results show average of three repetitions.

Templates
Models base a b c d e
Best Acc (avg) | 95.35 | 95.20 | 95.02 | 95.44 | 95.06 | 95.26

architecture | Acc (std) | 0.1855 | 0.2688 | 0.1552 | 0.3847 | 0.1345 | 0.5902
Param 32.42 | 27.49 6.44 10.38 | 17.26 8.73
GFLOPs | 3664 3629 3662 3545 3562 3567
ResNet Acc (avg) | 92.64 | 93.85 | 91.80 | 92.65 | 91.81 | 92.67
like Acc (std) | 0.3807 | 0.7145 | 0.2804 | 0.2502 | 0.5727 | 0.3442
architecture | Param 6.04 5.18 1.24 1.79 3.30 1.63
GFLOPs 687 684 685 602 679 665

5.5 Templates 2.0 on Representation and

Localisation

Until now we have implemented and tested our templates on domains where we evaluate
the final output of the network. We want to know if the internal representation of
the models using templates is as good as the representation delivered by the original
pyramidal distribution. This original distribution puts more filters on the last layer so, the
representation encodes a big number of features. By using templates the representation
varies from a few features at the end (templates ¢ and d) to medium range (b and e).
Despite template a follows a similar distribution to the original one, the number of
filters in the final layer is lower. We propose to evaluate templates in a task that uses
the internal representation and furthermore, applies the representation to a different
domain than the classification task. We have chosen to replicate experiments published

in [173] on localisation using embeddings.

5.5.1 Geolocalisation Embedding Maps and Images

This particular geolocalisation task consists of matching panoramic images with points
in a high-level 2-D map in order to find the geographic coordinates where the images
were taken. The task assumes no GPS service is available, so the localisation relies only
on visual elements in the input images.

The method proposed in [173] finds the best match by linking the semantic informa-

92

5.5. TEMPLATES 2.0 ON REPRESENTATION AND LOCALISATION

Figure 5.7: Sample location image and map. A georeferenced panorama (left) is divided
in four viewing directions (centre) and processed with the correspondant location tile
from the map (right). The arrow in the map indicates the heading direction. Image from
[173].

tion in both the map and the image in the same fashion as humans do. This is a different
approach from most geolocalisation methods where an image is encoded in a vector and
then compared to a large dataset of already georeferenced images. Maps are divided into
tiles of equal size, and the process jointly learns a low dimensional embedded vector for
the corresponding image and map tile pairs.

A training example is shown in Figure 5.7. A panorama is divided into four images
with a predefined heading direction. A tile of a configurable range is generated from
the whole map centred in the same location matching the orientation of the image. On
inference, an agent trying to self-localise produces an input image that is embedded
in some vector space. A search process looks in the dataset of all available locations,
which are also encoded in the same embedding space. Given that encoded locations are
georeferenced, the system is able to retrieve the absolute geographical coordinates of the

input image.

5.5.2 Dataset and Model

Georeferenced images for training are taken from the StreetLearn dataset [136] which
contains 113,767 panoramic images from Manhattan and Pittsburgh while maps tiles
are obtained from Open Street Map [69]. With the geographic coordinates from images,
authors generate corresponding map tiles using Mapnik [149]. We used for testing
the same three subsets from locations in Hudson River (HR), Union Square (US) and
Wall Street (WS), each including 5,000 points within areas of 3.25km?, 2.77km? and
2.33km?, respectively. We train with the same set of the original work obtained from
the remaining locations of the dataset. The total size of the training set included 98,767
images associated with two map tiles each of different scales (152x152m? and 76x76m?2).

The proposed architecture is built with two ResNet subnetworks following a siamese-

93

CHAPTER 5. TEMPLATES 2.0

Projection module

Ay

4

\ !

Nl

1

[R R
B e FC1 B e
M o0 Ny

~
Ay

\ I

e e e ‘ Embedding

__

R R
B . FC1 B e FC2
N L N L

u 1024 U 16

Y

1
7
’

Figure 5.8: Network architecture for embedded space learning. Input panoramic images
are divided into four images and then fed to a ResNet50 network. Map tiles are encoded
by a ResNetl8 network. Both networks are forced to produce close representation
embeddings. Image from [173].

like pattern. We illustrate the block design in Figure 5.8. The authors argue that encoding
images is a more complex task (and a different domain) than encoding maps. Conse-
quently, they decided to use two independent networks, a ResNet50 model to process
images into the embedding space and a ResNet18 model to process maps. Both models
produce 512 local 4x4 descriptors that enter a projection module consisting of two fully
connected layers. These projection modules reduce the descriptors dimension to 16 and
couple the domains in the same embedding space.

We modified the original ResNet subnetworks with each of our five templates, adjust-
ing the last layers to match the number of descriptors required for the projection models.
As in each experiment in this chapter, all models produced by templates matched the

FLOPs of the original subnetworks.

5.5.3 Implementation Details

Similarly to the work in [173], we trained the whole model end-to-end, updating parame-
ters from all modules at the same time using the provided triplet loss. The network was
trained 10 epochs with a learning rate of 0.00004 for the Adam optimiser. Again, aug-
mentation was limited to small variations on the scale of map tiles and the orientation of
images.

Differences to the original work lie in the datasets used to pre-train ResNet sub-
networks. ResNet50 was originally pre-trained on Places365 [219], but our available

94

5.5. TEMPLATES 2.0 ON REPRESENTATION AND LOCALISATION

Table 5.6: Accuracy and resource utilisation of ResNet50 with templates on geolocalisa-
tion embedding datasets. Table shows one-repetition results.

Filter Templates

Metric base a b c d e
Top 1% Recall HR | 77.28 | 79.92 | 76.12 | 76.64 | 78.82 | 74.00
Top 1% Recall US | 79.80 | 79.38 | 75.16 | 79.08 | 80.24 | 74.22
Top 1% Recall WS | 69.88 | 69.70 | 66.28 | 68.80 | 70.28 | 64.28
Param (Millions) 11.17 | 6.60 | 2.14 | 1.60 | 3.90 | 1.76

Param Change (%) - -40.9 | -80.8 | -85.6 | -65.0 | -84.2
Memory (MB) 66.46 | 49.28 | 34.78 | 32.88 | 38.91 | 33.52
Mem Change (%) - -25.8 | -47.6 | -50.5 | -41.4 | -49.5
Inference (ms) 8.07 | 642 | 463 | 4.36 | 539 | 3.93
Inf Change (%) - -204 | -425 | -45.9 | -33.2 | -51.2

ResNet50 models were pre-trained on Imagenet, so we used those. ResNet18 was pre-
trained on ImageNet, but we noticed that starting it from random weights yielded similar

results to the published values.

5.5.4 Results

We compared the system using the base ResNet architectures versus our template-
generated networks evaluating the quality of the embedded space with recall@k as in
information retrieval systems [9]. Particularly, we adopt the same recall at 1% metric to
the baseline work.

Results are shown in Table 5.6. Base performances are comparable to the published
work and present similar variations due to different degrees of complexity in the sets.
Templates show an improved top-1% recall for the three evaluation sets and still produce
greater benefits in the resource demands. With a higher recall, template d produces
savings in parameters up to 65% and template a up to 40%. Although template c slightly
compromises the performance, the reductions in parameters (85%) and memory (50%)
can widely compensate for the loss. Template e provides an alternative for applications
optimising speed with a reduction in inference time of more than 50 percentage points.

This experimental result in embedding spaces suggests that the internal representa-
tion differs in models using distinct distributions of filters. Moreover, models with the
pyramidal pattern of filters cause overuse of resources that can be alleviated by simply
changing the distribution. We revisit embedding spaces further in the next section to

provide more insights into the quality of the representation produced by templates.

95

CHAPTER 5. TEMPLATES 2.0

— First — Second — Third — Fourth

100+

801

% Experiments

401

0 50 100 150
Epoch

Figure 5.9: Percentage of runs in which the best final template, considering accuracy,
was at least in the first positions at each epoch. A horizontal dotted line marks 95% of
all experiments. The vertical dotted line shows the epoch in which 95% percent of cases
were in the first two positions.

5.6 Finding the Best Template

Templates have obtained better performances than base pyramidal models in many
previously presented tasks. Even though some templates tend to produce high results or
significantly reduce computational resources, there is no single template that improves
in every case. Training the five templates might still be cheaper than performing an
exhaustive model search [223]. However, for more extensive datasets, it is desirable to
have a way to predict which would be a good candidate template before full training or
even with no training. Methods try to achieve this estimation by using lower fidelities
(a.k.a proxy metrics) of the actual full training performance [49]. One naive approach is
to use performances obtained from early training steps [111, 162, 215] nevertheless, the

task of performance estimation has been found to be difficult [49].

To illustrate the complexity, we present in Figure 5.9 a summary of all our exper-

96

5.6. FINDING THE BEST TEMPLATE

iments on image classification with the first version of templates. The plot shows the
percentage in which the best final template was also the best (or at least one of the best)
at some previous epoch considering accuracy. We need to train all the templates up to
2/3 of the training process and then fully train the best two to find the best template in
95 per cent of cases. To choose a subset at 1/4 of the epochs that 95 per cent of the time
includes the best final template, we need to train four templates out of five.

Before trying to predict the final accuracy by using early performances or other
more sophisticated methods [48, 96, 121], we decided to analyse the properties of the
representations spaces generated by applying the different templates. We firstly make
a qualitative exploration using an algorithm for dimension reduction. Later, we test a
metric for measuring similarities between representation spaces looking for a correla-
tion between the representation and the final performance distances of the different

templates.

5.6.1 Embedding Space of Templates

The area researching techniques for visualising and understanding large, high dimen-
sional data is known as dimensionality reduction [196]. Methods in this field rely on the
existence of a smaller intrinsic dimension of the data [55].

For many years the standard method for dimensionality reduction was principal
component analysis (PCA) which transform data points into a subspace generated with
the first principal components that maximise the variance of the projected data. Later on,
t-Distributed Stochastic Neighbor Embedding (t-SNE) was proved to be a more effective
method by modelling a distribution that grants a high probability to similar points to be
close in the reduced representation [195]. However, one of the disadvantages of t-SNE is
that it does not preserve well the global structure of the data. Furthermore, it requires
tuning several hyperparameters to produce a meaningful plot [202].

Uniform Manifold Approximation and Projection (UMAP) is a new approach that pro-
poses a number of advantages over t-SNE, such as boosted speed and better conservation
of the data’s global structure [132].

UMAP follows an approach similar to t-SNE in the sense that they first build an
initial neighbourhood graph in the dimensional space of the original data, and later, they
try to find a similar graph in a reduced dimensional space.

On the other hand, UMAP and t-SNE differ in the way the initial graph is constructed.
UMAP extends a circular region from each point to determine its connectivity. Circles

are defined with variable radii depending on the density of the data points within the

97

CHAPTER 5. TEMPLATES 2.0

zone, using a long radius in low-density regions and a small radius in populated ones.
Instead of directly estimating the radius of the circle, UMAP uses the distance from the
point to the kth nearest neighbour. % is a hyperparameter that controls the trade-off
between global and local structure preservation. To complete the final graph, UMAP
weights each edge of connecting points with the distance between them. This procedure
allows finding a low-dimensional graph where close points look tight and remote points
stay far.

Based on its improvements over other techniques, we decided to use UMAP to com-
pare the representation spaces of base models and templates. We particularly analysed
the space projected by the final layer of VGG19 and ResNet50 models on the CIFAR10
dataset. Figure 5.10 show a 2-dimensional representation of the base model compared
against the representation obtained with template d. This template reached the highest
accuracy on CIFAR10. We observe that for the VGG architecture, the template d distri-
bution space features a clearer separation between classes than the original base space.
The separation is more evident for the ResNet architecture, presumably because the
accuracies of ResNet models are higher than those of the VGG models. There are less
than half mixed boundaries in ResNet with template d than in base model.

We present a comparison of projected representation spaces in Figure 5.11 for the rest
of the datasets used for testing templates on the image classification task. We exclusively
compare ResNet50 architectures with the original base distribution versus ones with
template d distribution.

On the CINIC10 dataset, clusters are tight and difficult to separate. The effect is
caused by the high number of samples comprising the dataset. Still, we observe more
"fuzzy" class boundaries with the base distribution, meaning that the model struggles
more to classify a sample. As the number of classes in the dataset increases, UMAP
embeddings are more difficult to analyse. For Tinylmagenet, we find more compact

clusters in template d than in the base model.

5.6.2 Comparing Representation Spaces of Templates Via CKA
Metric

We have discussed in the section 5.6.1 the qualitative properties of the UMAP two-

dimensional projections of the base model compared to templates. The analysis suggests

that the embedding spaces generated for the templates are better than the base model

in the sense that they tend to build clearer boundaries that facilitate the task of image

98

5.6. FINDING THE BEST TEMPLATE

(a) VGG19 base on CIFAR10

<
m T e P

(c) ResNet50 base on CIFAR10 (d) ResNet50 d on CIFAR10

Figure 5.10: UMAP embeddings for the final layer of VGG19 and ResNet50 on CIFAR10.
Template d distribution space (b, d) shows a more clear separation between classes than
the original base space (a, c). Colours in different plots represent the same classes.

classification. We also found that templates obtain higher performances in other tasks

such as audio classification and map localisation.

Additionally, we want to quantitatively analyse those embedding spaces (for the base
model and all templates) and their differences to find good markers in the embedding
space or, as we study in section 5.6.3, a correlation between differences and accuracies
on classification, as an intermediate step to find the best template. The intuition behind
this idea is the best templates could show similar properties disregarding the domain or
the model. So, we could constrain the space in the training procedure to acquire these

desirable properties.

To that end, we rely on the ability of similarity metrics for comparing neural network

99

CHAPTER 5. TEMPLATES 2.0

UMAP Umas

(a) Resnet50 (base) on CINIC10 (b) Resnet50 (d) on CINIC10

(e) Resnet50 (base) on 15 classes from Tiny- (f) Resnet50 (d) on 15 classes from Tiny-
Imagenet Imagenet

Figure 5.11: UMAP embeddings for the final layer of ResNet50 on several datasets. Maps
for base distribution are placed on the left column and maps for d distribution are in
the right column.

100

5.6. FINDING THE BEST TEMPLATE

representations [157]. A following work presents improvements that allow a better
comparison of layers with different numbers of neurons using Canonical Correlation
Analysis (CCA). The property of this metric to be invariant to affine transforms enables
its use without requiring any neuron to neuron alignment [141].

A recent technique, known as Centered Kernel Alignment (CKA), to measure simi-
larity is proposed in [98]. The authors aim that the technique, unlike the previous ones,
provides meaningful metrics between representations where there are more dimensions
than data points. Furthermore, CKA is more invariant to different initialisations when
training the models. Although there has been a lot of discussion around the universal
dominance of a particular similarity metric, we chose the latter to analyse templates’
embedding spaces because it performs well when comparing representation spaces in
vision tasks [42].

Several explorations and analyses have been presented recently using the CKA
similarity metric between models. However, authors compare other properties of different
architectures such as wider versus deeper models [146], CNNs versus Transformers
[158] or self-supervised versus supervised trained models [66]. In our experiments, we
analyse another aspect of the networks: the variation of representation across layers for
each different distribution of filters in the same architecture.

We computed the CKA metric using the Hilbert-Schmidt Independence Criterion
(HSIC) according to [98, 146] describing the problem as below.

For a pair of layers with p; neurons and pg neurons, let X € R™*P1 and Y € R™*P2
contain their representations of a set of m examples. The mxm elements of Gramian
matrices K = XX7T and L =YY7 denotes the similarities between a pair of examples
according to the representationsin X or Y. Let H=1, — %IIT be the centering matrix.
The empirical estimator of HSIC is:

HSICK,L) = tr(KHLH)

(1-n)?)
HSIC is invariant to orthogonal transformations and, therefore, to permutation of
neurons. To make it invariant to scaling, CKA normalises HSIC to produce a value

between 0 and 1 given by

HSICK,L)

VHSIC(K,K)HSIC(L,L)
This CKA metric estimates the similarity of a pair of layers of the same or different

CKAKK,L)=

models. To produce a CKA plot for a whole model, we iterate the computation of CKA

with each pair of layers from that model to be compared.

101

CHAPTER 5. TEMPLATES 2.0

(a) base-base (b) base-a

(d) base-c (e) base-d (f) base-e

Figure 5.12: CKA metric of VGG19 base model vs templates with tiny-imagenet dataset.
Abscissas represent each layer in the base model and ordinates show layers in the model
obtained from a template.

We presented the CKA similarity of the base model compared with those produced
by templates from the VGG19 architecture in Figure 5.12. For reference, we show the
CKA metric of the base model against itself in the top-left plot. The bright diagonals
reflect total similarity, given that we are measuring the same layer and model. Represen-
tations in the first layers are found to be different from the ones from the final layer (in

perpendicular corners with respect to the bright diagonal).

There are different degrees of similarity when comparing templates and the base
model depending on the dataset in which CKA is computed. For tinyImagenet, all models
show a high similarity from the initial to middle layers independently that they have a
variable number of neurons. It is in the last layer where the representation spaces of
templates start to differ from the base model representation space. Interestingly, the
least similar representation to the one produced by the base model is that from template

d, which is the model with the highest accuracy on the tinyImagenet dataset.

102

5.6. FINDING THE BEST TEMPLATE

e e N e
—— BN R -

TiE

(c) base-b

>l|-
_._x..n.:l'lmr

sk Bk k|

(d) base-c (e) base-d () base-e

Figure 5.13: CKA metric of ResNet50 base model vs templates with tiny-imagenet
dataset. Abscissas represent each layer in the base model and ordinates show layers in
the model obtained from a template.

Similar plots are shown in Figure 5.13 for the ResNet50 architecture on tinylmagenet.
The top-left plot shows the CKA similarity of the same base model across layers. Visual
analysis is challenging given the big number of layers of the model and the dissimilarity of
even (post-residual) and odd (block interior) layers [98]. However, we found a distinctive
feature in the base-template a CKA metric denoted by the dark bands on the edges of
the plot: the first layers of the base model representation are very different from the rest

of the layers from the template @ which was the best performing model in the dataset.

5.6.3 An Attempt to Correlate CKA Measurements with

Accuracy and Parameters

Motivated by the results of the section 5.6.2, we hypothesise about the existence of a

correlation between the differences in performance of models and their similarity via

103

CHAPTER 5. TEMPLATES 2.0

the CKA metric. Going further, we wonder if there exists an ideal CKA similarity plot

(comparing the model against itself) that a good model should show.

Suppose we can find this ideal pattern of similarity between layers of the same
network. In that case, we may be able to induce the pattern at training time to produce
higher-accuracy models. An example of such a hypothesised CKA pattern could present
a smooth variance in the similarities of the representations as we go deeper into the
layers. So, we explored the correlation of accuracies and CKA similarities between all
templates. Because templates produce large variations in the number of parameters of
models, we also investigated the existence of a correlation between parameters and CKA
similarities.

CKA is a similarity metric for a pair of layers. The final result of comparing pairs of
models is, consequently, a matrix of CK A values of /1xl9 elements where [; and /5 are
the number of layers in each model to be compared. To reduce the CKA;,,;, matrix to a
single value to be computed in the correlation, we decided to use two methods: taking
the mean of the values (CK A ,,.q,) and taking the standard deviation (CKAg;q).

We also tested the correlation on the models’ CKA plot resemblance to the best
performing model CKA pattern and to, what we think, could be an ideal CKA pattern.
We measure the likeness of two CKA plots using the mean squared error (MSE). For
clarity, we called MSE}.s; the computed difference of the CK A matrices between the
compared template and the best performing template. We called MSE;.4; the difference
with our ideal CK A matrix.

We show in tables 5.7 the correlation for VGG19 and ResNet50 models in four of the
most used datasets in this work (CIFAR10, CIFAR100, CINIC10 and tinyImagenet). It
appears like there is a strong correlation for some of the attributes, such as accuracy
and CK A, cqn, or accuracy and MSE . testing VGG19 on CIFAR100. However, the
correlation values are not consistent on the other datasets. Moreover, the correlation
values are not consistent for ResNet50 nor among the datasets tested with ResNet50.

We also tried to find if the difference in parameters of models affects the differences
between representations measured by CKA. Similar findings to the accuracy can be seen
for parameters in Table 5.8. Parameters and CK A .4, looks promising, reaching high
correlation values for ResNet50 in three datasets. But very low values for VGG19 in the
same datasets. In general, correlation values in all attributes of VGG19 are low.

Looking at the correlation for MSE,.s; with high and low values, we could argue
that the differences in parameters, which it is believed affect the representation in some

way, are not captured by the CKA metric. We instead think that there is no strong

104

5.6. FINDING THE BEST TEMPLATE

Table 5.7: Spearman correlation between template CKA properties and accuracy for
ResNet50 and VGG19. CKA mean and std are obtained from summarising CKA metric
of all x all layers in the same model. MSE best difference is computed comparing each
template with the best accuracy pattern. MSE ideal is compared with a proposed ideal
gradient pattern.

VGG19 mean, acc | std, acc | mse best, acc | mse ideal, acc
cifar10 -0.68 0.36 -0.82 0.32
cifar100 -0.96 0.43 -0.93 0.75
cinicl0 -0.68 0.46 -0.54 0.61
tiny-imagenet -0.57 0.64 -0.68 -0.64
ResNet50 mean, acc | std, acc | mse best, acc | mse ideal, acc
cifar10 0.46 0.21 -0.68 -0.50
cifar100 -0.11 0.07 -0.43 0.00
cinicl0 0.54 -0.11 -0.75 0.11
tiny-imagenet -0.18 0.50 -0.18 0.71

Table 5.8: Spearman correlation between template CKA properties and parameters for
ResNet50 and VGG19. CKA mean and std are obtained from summarising CKA metric
of all x all layers in the same model. MSE best difference is computed by comparing each
template with the best accuracy pattern. MSE ideal is compared with a proposed ideal
gradient pattern.

VGG19 mean, param | std, param | mse best, param | mse ideal, param
cifar10 -0.36 -0.26 0.80 0.69
cifar100 -0.44 0.58 0.98 0.58
cinicl0 -0.36 0.36 0.40 0.07
tiny-imagenet 0.36 0.11 -0.26 0.26
ResNet50 mean, param | std, param | mse best, param | mse ideal, param
cifar10 -0.86 0.21 0.86 0.96
cifar100 -0.86 0.89 0.75 0.86
cinicl0 -0.71 0.86 0.64 0.43
tiny-imagenet -0.18 0.50 -0.18 0.71

correlation between parameters and the effectiveness of a representation for a particular
architecture. Using the templates, we redistributed filters in several different ways
producing models with a diverse number of parameters. We found that the highest
performance was not always obtained for the model counting the highest number of

parameters.

105

CHAPTER 5. TEMPLATES 2.0

5.7 Conclusion

This chapter presented a new definition of templates named Templates 2.0. The new set
improves over the previous templates in that the definition allows matching a specific
budget of FLOPs which makes fair comparisons with the original models. A noticeable
difference from the previous design is that the filter distribution for each template is
parameterised with linear segments providing smooth changes in the number of feature
maps. This smoothness has proved to be beneficial in obtaining a higher accuracy related
to the original architecture. With templates, the VGG model obtained improvements
up to 2.11 points in accuracy for image classification tasks. Templates can also produce
models with reductions of 90% in parameters, 79% in memory usage and 22% in inference
time. Templates obtained higher accuracies with highly optimised models for all the
tested datasets, except tiny-Imagenet. With MobileNet V2, templates are able of reducing
up to 77% parameters and 11% memory footprint. With MNASNet, templates produced
architectures 74.5% smaller in parameters and 4.7% lower inference time.

We extended the experiments to new domains where templates were evaluated for the
final output and the intermediate representations they build. In the audio classification
datasets, using templates on ResNet50 reached improvements in accuracy of 0.96% for
the GTZAN dataset and 2.14% for the ESC-50 dataset. Templates offer reductions in
memory footprint and inference time by around 15%, while the number of parameters
shows a considerable decrease of 65%.

We showed a relevant example of the benefits of templates. Applying them to the best
architecture in the NASBench-101 dataset produced a model with higher accuracy using
only one-third of the original parameters. By using one-fifth of the original parameters,
a different template obtained only 0.33 fewer points in accuracy.

In the task of localisation utilising embeddings, we changed the model backbone
with modified versions using templates. The new models showed increases in the three
evaluated datasets with 65%, 41% and 33% fewer parameters, memory and inference
time demands, respectively.

The work in section 5.6 takes a step back. We do not offer a way of finding the best
template. Our experiments exploring the representation spaces of templates with the
CKA similarity metric suggest that the task is especially complex and indicates further
experimentation and analysis. We consider that this complexity is the cause of some
of the drawbacks of NAS methods, such as lack of convergence and inaccurate model

performance prediction.

106

CHAPTER

CONCLUSIONS

his thesis challenges the universality of the pyramidal design in convolutional
neural networks. We introduce the idea of taking an existing model and changing
its original distribution of filters with a small set of diverse patterns that we call
templates. We performed experiments with several models on different domains, showing
that original architectures are generally susceptible to performing more efficiently when

using the distributions proposed in this work.

6.1 Findings

This section summarises the findings of each chapter within this thesis.

In chapter 3 we introduced the concept of templates to defy the standard incremental
design for distributing filters existing in many CNN architectures.

The experimental results on CIFAR-10, CIFAR-100 and Tiny-Imagenet datasets
with four popular convolutional models showed that a simple redistribution of the same
number of filters could improve the accuracies over the original pyramidal design. For
CIFAR-10, models increased up to 1.83 points in accuracy. At the same time, for CIFAR-
100 and Tiny-Imagenet, templates were effective for VGG, Inception and MobileNet,
reaching improvements of up to 4.88, 1.07 and 3.63, respectively (Table 3.1).

A second experiment varying the size of models with a width multiplier found tem-

plates produce more efficient models in terms of resource demands with up to 85% fewer

107

CHAPTER 6. CONCLUSIONS

parameters and a memory footprint up to 76% smaller (Figures 3.3 and 3.4).

In chapter 4 experiments imply that benefits from templates can extend to domains
other than image classification. Furthermore, we described how templates could work on

top of CNN compression techniques to obtain further improvements.

Using PoseNet, the first CNN model to carry out real-time camera pose estimation
from a single image, we found templates were effective in more than half of the sets
evaluated in the 7-scenes dataset (Table 4.2). In addition, the improved PoseNet had a
lower MSE while producing 8% less memory footprint (Table 4.6). For the Cambridge
Landmarks dataset, the modified PoseNet and MobileNetV1 models had fewer locali-
sation errors than the original models in six out of seven scenes (Table 4.5). The top
MobileNetV1 template outperformed the original architecture despite utilising 10% fewer
parameters. Experiments revealed a singular condition in the super-resolution task with
VGG and ResNet backbones. All templates caused increases in resource requirements,
and only one template had a higher PNSR than the original model (Tables 4.8 and 4.7).
Interestingly, researchers are not using the incremental filter distribution as default but
a uniform distribution with a constant number of filters per layer, such as one of the
proposed templates. The uniform distribution had already led to a more efficient use of

resources in this task.

Regarding comparing model compression methods, the experimental evidence with
VGG models on CIFAR-100 suggests that the pruning methods can obtain superior
models with higher accuracy using similar resources when pruning from models with
different filter distributions. For example, the Geometric Median technique enhanced
3.87 points of accuracy in VGG when pruning 50% from the reverse-base template
and still accomplishing a small decrease in parameters. The Gate Decorator approach
discovered a model, again with the reverse-base template, that performed more than
one point higher in accuracy with FLOPs close to the original. Filter Basis discovered a
model, using the negative-quadratic template, 5.3 points better in accuracy than starting

with an incremental distribution (Table 4.11).

We compared MorphNet and templates using several neural networks and datasets.
Using templates alone or MorphNet and templates improved accuracy in eight out of
nine pairs of model-dataset (Table 4.16). Particularly, templates only were superior in
six out of nine cases, increasing MobileNetV1 accuracy up to 6.2 points for CIFAR100
(Table 4.15).

108

6.1. FINDINGS

Chapter 5 introduced a new definition of templates that allows matching a predefined
number of FLOPs with no significant overheating in the search process. An expanded set
of experiments with templates were performed in more demanding domains to evaluate
their representation capability. The chapter attempted to find a correlation between the
internal representation, as seen by the CKA similitude metric, and the template with

the best accuracy.

The filter distributions in the new templates were built with linear segments, giving
smooth variations in the number of feature maps between layers. The idea introduced in
the PyramidNet paper achieves better accuracy than the quadratic-based distributions.
The VGG model reached more than 2.11 points higher in accuracy when using templates.
Templates also produced models with up to 90 per cent fewer parameters, 79 per cent
less memory, and 22 per cent less inference time (Table 5.1). Except for tiny-Imagenet,
all of the datasets studied yielded greater accuracies when templates were used with
exhaustively tuned models (Table 5.3). A possible explanation for the unsatisfactory
results in Tiny-Imagenet is, as mentioned in chapter 2, that architectures with the
existing incremental filter distribution have been tuned to perform well in the Imagenet
dataset. Therefore, the pattern also fits the derived tiny-ImageNet dataset. Templates
with MobileNet V2 templates reduced parameters by up to 77 per cent. Templates with
MNASNet resulted in architectures that were 74.5 per cent smaller in parameters (Table
5.1).

We performed an expanded series of experiments evaluating templates in other
areas where intermediate representations of models are important. Templates applied to
ResNet improved accuracy by 0.96 per cent for the GTZAN dataset and 2.14 per cent
for the ESC-50 dataset, decreasing parameters by 65% (Table 5.4). When templates
were applied to the highest accuracy model in the NASBench-101 dataset, the resulting
network increased accuracy, requiring one-third of the base model parameters (Table
5.5). This is a notable outcome considering we only tested five templates. In the task
of mapping and localisation using representation embeddings, models obtained with
templates showed reductions up to 65 per cent fewer parameters, 41 per cent less memory

footprint and 33 per cent improved inference time (Table 5.6).

Finally, we showed that the representation produced for the models trained with
different templates differs from each other (Figure 5.10). So we use the CKA similitude
metric to find a correlation between the template with the best accuracy and its internal
variation captured via CKA (Table 5.7). Our outcomes using CKA to explore the rep-

resentation spaces of templates imply that the task is challenging and calls for more

109

CHAPTER 6. CONCLUSIONS

exploration and analysis. We believe that several shortcomings of NAS techniques, such
as lack of convergence and erroneous model performance prediction, are caused for this

complexity.

6.2 General Advice to Future Deep Learning

Practitioners

Overall, templates enhanced performances and reduced resource demands for the mod-
els and domains we used. Exploring novel filter distributions has advantages that go
beyond the domain of image classification. Consequently, the suggested templates offer a
straightforward mechanism for quickly achieving performance gains compared to the
computationally expensive NAS approaches.

Despite significant changes in filter distributions from the original architectures,
the variation in accuracy for all models after using templates is less than 5% for image
classification. These results defy the common wisdom that CNN models are required to
capture more diverse features in deeper layers and show that lower-dimensional repre-
sentations are still useful in deeper layers. Moreover, lowering filters can be beneficial
for some datasets.

It is essential to note that a smaller number of parameters does not imply a lower
memory usage or a faster inference time. Differences in feature map resolution for filters
in different layers, the necessity to store early feature maps in memory for further
processing in deeper layers, and hardware and software limits in the parallelisation
procedure are some of the causes.

Experiments indicate that for each model tested, there is no particular distribution
of filters that guarantees the best accuracy on all tasks. Furthermore, templates can
improve differently on the same task but different datasets. This means that the results
of automatically searching for the number of channels in small datasets such as CIFAR
should be carefully extrapolated to others. In the opposite direction, models with distri-
butions that work well on extensive datasets should be changed (e.g., using templates) to
perform efficiently on different domains.

The approach presented in this work allows a model’s architect to apply a set of tem-
plates for changing the number of filters originally assigned to each layer before training
from scratch. This redesign can be easily achieved without any previous training process

to select particular weights. In essence, the application of filter distribution templates

110

6.3. FUTURE WORK

offers an alternative approach to the iteration-intensive automatic architecture search

and model pruning methods.

6.3 Future Work

We envision several opportunities for further research in this work.

Finding the best template. We explored in chapter 5 a way to correlate several
measures obtained from the between-layer CKA similarity of a model produced with a
template and its final validation accuracy. The experiments showed no correlation for
the values we tested. Although the number of templates is low, an automatic method for
finding a suitable template could either accelerate the identification of an efficient model

or explore other patterns to the ones defined in the templates.

Explore the idea of hard-coded representation compression. The information
bottleneck (IB) principle [180, 191] found that most of the training process in deep learn-
ing is spent on compressing the input to efficient representation that helps generalisation
and not on fitting the training labels. Experimental results in this thesis glimpse a ten-
dency to templates with filters in final layers matching the number of classes of the task
to perform better. This pattern extends to CNN models explicitly designed for ImageNet,
defining the last layers with a large number of filters. We hypothesise that the effort of
the CNN to compress the representation described by IB can be reduced by hard-coding
the compression in the dimensionality induced by the number of filters. A positive answer
to this question could facilitate the choice of filters for each specific task and speed up

training.

We highlight that there is much work to do to create algorithms that find the optimal
distribution of filters for a given model and task. However, we expect the community to
be aware of a new exploration space opened by the described templates that help refine
better models.

This thesis offers insights to model designers, both automated and manual, to con-
struct more efficient models by introducing new distributions of filters in the exploration
space for neural network model search. In addition, we hope this work helps gather data
to better understand the design process of model-task pairs and inspires the re-think of

assumptions on model building that are normally given for granted.

111

APPENDIX

APPENDIX A

A.1 Filters in Tested Models with Templates 2.0

In order to facilitate reproducibility of experiments, we present in this section the values
for each layer obtained by applying templates to the four models tested in our work. In
the case of ResNet we set the value of filters at the level of each layer inside residual
modules, as presented in Table A.4. VGG design consists of simple layers so we change
filters in each of them (Table A.1). For the rest of architectures, we set the value of filters
at the level of modules (Tables A.2 and A.3). Last layers of all models are fully connected
ones and the number of neurons is imposed by the dataset. We add the schematics of the

templates as a visual aid in figure A.1.

Table A.1: VGG19 with the original distribution of filters and five templates. All models
count similar number of FLOPs.

Template Filter Values
Base (Original values) | 64, 64, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512
a 64, 99, 133, 168, 203, 238, 272, 307, 342, 377, 411, 446, 481, 516, 550, 585
b 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153
c 165, 158, 152, 145, 138, 131, 125, 118, 111, 104, 98, 91, 84, 77, 71, 64
d 64, 105, 146, 186, 227, 268, 308, 349, 390, 343, 297, 250, 204, 157, 111, 64
e 175, 161, 147, 133, 120, 106, 92, 78, 64, 80, 96, 112, 127, 143, 159, 175

113

APPENDIX A. APPENDIX A

Template ¢

Template d

Template a

Template b

Filters

Layers

Layers

N

Layers

Template e

Filters

Figure A.1: Schematic distribution of filters per layer in templates. Base distribution
is the original pyramidal distribution. Templates follow a smoother transition in the
number of filters between layers. Number of filters does not match between models but
they are adjusted to fit the original number of FLOPS of the base model.

Table A.2: Original distribution of filters for MobileNet2 after applying five templates.

Template

Filter Values

Base (Original values)

16, 24, 32, 64, 96, 160, 320, 1280

o QL6 T W

16, 36, 56, 76, 97, 117, 137, 157
61, 61, 61, 61, 61, 61, 61, 61
77, 68, 60, 51, 42, 33, 25, 16
16, 38, 59, 80, 102, 73, 45, 16
92,73, 54, 35, 16, 41, 67, 92

Table A.3: Distribution of filters for MNASNet showing the original design and filters

from five templates.

Template

Filter Values

Base (Original values)

32, 16, 24, 40, 80, 96, 192, 320, 1280

o 0 T W

32, 46, 60, 73, 87, 101, 114, 128, 142
76, 76, 76, 76, 76, 76, 76, 76, 76
102, 93, 84, 76, 67, 58, 50, 41, 32
32, 49, 66, 84, 101, 84, 66, 49, 32

141, 114, 86, 59, 32, 59, 86, 114, 141

114

A.1. FILTERS IN TESTED MODELS WITH TEMPLATES 2.0

Table A.4: Original distribution of filters for ResNet50 and five templates. All models
count similar number of FLOPs. Filter redistribution is made at the lever of layers within
modules. Expansion layers within modules in the same block are kept with equal filters
to fit residual connections.

Template Filter Values
64,

[[64,64,256], [64,64,256], [64,64,256]],
[[128,128,512], [128,128,512], [128,128,512], [128,128,512]],
[[256,256,1024], [256,256,1024], [256,256,1024],
[256,256,1024], [256,256,1024], [256,256,1024] 1,
[[512,512,2048], [612,512,2048], [5612,512,2048]]

64,

[[64,73,256], [83,92,256], [102,111,256]],

[[120,130,480], [139,148,480], [158,167,480], [177,186,480] 1,
[[195,205,7801, [214,224,780], [233,242,780],
[252,261,780], [271,280,780], [289,299,780]],

[[308,317,1232], [327,336,1232], [346,355,1232]]

64,

[[123,123,492], [123,123,492], [123,123,492]],

[[123,123,492], [123,123,492], [123,123,492], [123,123,492]],
[[123,123,492], [123,123,492], [123,123,492],
[123,123,492], [123,123,492], [123,123,492]],

[[123,123,492], [123,123,492], [123,123,492]]

64,

[[134,132,536], [129,127,536], [125,123,536] 1,
[[120,118,480], [116,114,480], [111,109,480], [107,105,480] 1,
[[102,100,408], [98,96,408], [93,91,408],
[89,87,408], [84,82,408], [80,78,408] 1,

[[75,73,300], [71,69,3001, [66,64,300]]

64,

[[64,76,256], [88,99,256], [111,123,256]],

[[134,146,536], [158,170,536], [182,193,536], [205,217,536]],
[[228,240,912], [252,239,912], [227,214,912],
[202,189,912],[177,164,912], [152,139,912]],
[[127,114,508], [102,89,508], [77,64,508]]

64,

[[144,139,576], [134,129,576], [124,119,576] 1,

[[114,109,456], [104,99,456], [94,89,456], [84,79,456] 1,

[[74,69,296], [64,69,296], [75,80,296],
[85,91,296], [96,101,296], [107,112,296]],
[[117,123,468], [128,133,468], [139,144,468] |

Base (Original values)

115

APPENDIX

APPENDIX B

his appendix is a perspective of the challenges lived from my particular point
of view. I hope the content helps the future me comprehend the decisions I took,
serves future studies about the effects of the COVID-19 pandemic, and helps

better cope with them.
When someone decides to study for a doctorate, the person visualises possible compli-
cations that may arise during its development. They are seen as obstacles or challenges,

but they can never be an impediment to achieving the goal of completing it.

B.1 A Reflection on the COVID-19 Pandemic

Unexpectedly, in December 2019, the appearance of the COVID-19 disease in Wuhan,
China, was announced. Its rapid spread worldwide and seriousness represented a public
health risk. As a result, governments established restrictions and changes in all areas
of social and individual life. Those restrictions generated unusual situations and forced
everyday activities to be adjusted to continue with a different and uncertain rhythm.

Each nation made decisions based on the severity of the health emergency and the
country’s economic conditions. As a result, some items stopped being produced, and a
few others increased the production. In addition, outdoor activities were interrupted,
including working in offices and attending a face-to-face education, to name a few.

As a doctoral student, and combined with the status of father of a family, the chal-

lenges were not easy. Still, at the same time, it was a decisive moment because it brought

117

APPENDIX B. APPENDIX B

various situations to attend to and analyse, both from my own research and from my
family life. Fortunately, at every moment, I was supported by the indications of the
University and the recommendations of my advisor.

Starting from March 2020, we lived in exceptional circumstances. COVID-19 lock-
down disrupted my studies significantly due to university facilities closure, added re-
sponsibilities at home such as homeschooling, and technical difficulties in accessing the
computational resources needed for my research.

But not only my studies were affected. As a non-native english speaker, I enormously
benefited from having daily chats with my lab colleagues. With the university facilities
closed, I stopped improving my communication skills. We had some meetings online
during the first moments of the pandemic. Still, they never replaced the richness of the
face-to-face discussions.

Many of the students suffered from physical and mental stress, caused in some way
for being isolated and impeded from participating in social life and recreation. In my
case, I was not significantly affected by losing physical closeness with my family as
we remained together. On the other hand, there was a perceptible remoteness with
friends. Our group used to have frequent activities in the sports centres at the University.
Unfortunately, all of the centres were closed during the first months. Despite rules
allowing people to exercise, this had to be done in an isolated way.

After several months of missing the educational, cultural and social benefits of living
in a foreign country and studying at a top university, some students, including myself,
decided to return to our home countries, continuing our research at home.

Not everything was negative during the pandemic. Our periodical seminars, which
normally included speakers from places near our location, expanded their scope to
researchers around the world. Also, educational systems for remote and blended learning
were significantly improved, providing more and better tools.

The preceding circumstances have left a mark on our life. Unfortunately, we did not
have control of the unpredictable situations produced by the pandemic. Yet, we must use
the experience in the future to recover and rethink the path and the strategies allowing
us to move objectively and correct the adversities that the COVID-19 pandemic caused

in its way.

118

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

BIBLIOGRAPHY

M. ABADI, P. BARHAM, J. CHEN, Z. CHEN, A. DAvVIS, J. DEAN, M. DEVIN,

S. GHEMAWAT, G. IRVING, M. ISARD, ET AL., Tensorflow: A system for large-

scale machine learning, in 12th {USENIX} symposium on operating systems
design and implementation ({OSDI} 16), 2016, pp. 265—283.

. F. AGARAP, Deep learning using rectified linear units (relu), arXiv preprint

arXiv:1803.08375, (2018).

. AGUSTSSON AND R. TIMOFTE, Ntire 2017 challenge on single image super-

resolution: Dataset and study, in Proceedings of the IEEE conference on com-

puter vision and pattern recognition workshops, 2017, pp. 126-135.

. ALKHULAIFI, F. ALSAHLI, AND I. AHMAD, Knowledge distillation in deep

learning and its applications, Peerd Computer Science, 7 (2021).

. ALLEN-ZHU AND Y. L1, Towards understanding ensemble, knowledge distil-

lation and self-distillation in deep learning, arXiv preprint arXiv:2012.09816,
(2020).

. ALOYSIUS AND M. GEETHA, A review on deep convolutional neural networks,

in 2017 International Conference on Communication and Signal Processing
(ICCSP), IEEE, 2017, pp. 0588—0592.

. ALZUBAIDI, J. ZHANG, A. J. HUMAIDI, A. AL-DUJAILI, Y. DUAN, O. AL-

SHAMMA, J. SANTAMARIA, M. A. FADHEL, M. AL-AMIDIE, AND L. FARHAN,
Review of deep learning: Concepts, cnn architectures, challenges, applications,

future directions, Journal of big Data, 8 (2021), pp. 1-74.

. ANIL, G. PEREYRA, A. PASS0S, R. ORMANDI, G. E. DAHL, AND G. E. HINTON,

Large scale distributed neural network training through online distillation,
arXiv preprint arXiv:1804.03235, (2018).

119

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. ARORA, U. KANJILAL, AND D. VARSHNEY, Evaluation of information retrieval:
precision and recall, International Journal of Indian Culture and Business
Management, 12 (2016), pp. 224-236.

M. AUGASTA AND T. KATHIRVALAVAKUMAR, Pruning algorithms of neural net-
works—a comparative study, Open Computer Science, 3 (2013), pp. 105-115.

L. J. BA AND R. CARUANA, Do deep nets really need to be deep?, arXiv preprint
arXiv:1312.6184, (2013).

B. BAKER, O. GUPTA, N. NAIK, AND R. RASKAR, Designing neural network

architectures using reinforcement learning, arXiv preprint arXiv:1611.02167,
(2016).

E. B. BAUM AND D. HAUSSLER, What size net gives valid generalization?, Neural
computation, 1 (1989), pp. 151-160.

Y. BENGIO, Deep learning of representations for unsupervised and transfer learning,
in Proceedings of ICML workshop on unsupervised and transfer learning,
JMLR Workshop and Conference Proceedings, 2012, pp. 17-36.

M. BERMAN, L. PISHCHULIN, N. XU, M. B. BLASCHKO, AND G. MEDIONI, Aows:
Adaptive and optimal network width search with latency constraints, in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 11217-11226.

D. BLALOCK, J. J. G. ORTIZ, J. FRANKLE, AND J. GUTTAG, What is the state of
neural network pruning?, arXiv preprint arXiv:2003.03033, (2020).

A. BLUMER, A. EHRENFEUCHT, D. HAUSSLER, AND M. K. WARMUTH, Learnabil-
ity and the vapnik-chervonenkis dimension, Journal of the ACM (JACM), 36
(1989), pp. 929-965.

A. BORJI AND L. ITTI, State-of-the-art in visual attention modeling, IEEE transac-
tions on pattern analysis and machine intelligence, 35 (2012), pp. 185-207.

Y.-L. BOUREAU, J. PONCE, AND Y. LECUN, A theoretical analysis of feature pooling
in visual recognition, in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 111-118.

120

BIBLIOGRAPHY

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. S. BRIDLE, Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition, in Neurocomputing,
Springer, 1990, pp. 227-236.

A. BrROCK, T. LiM, J. M. RITCHIE, AND N. WESTON, Smash: one-shot model
architecture search through hypernetworks, arXiv preprint arXiv:1708.05344,
(2017).

C. BUCILUA, R. CARUANA, AND A. NICULESCU-MIZIL, Model compression, in
Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2006, pp. 535-541.

Y. CHEBOTAR AND A. WATERS, Distilling knowledge from ensembles of neural
networks for speech recognition., in Interspeech, 2016, pp. 3439-3443.

C. CHEN, B. WANG, C. X. LU, N. TRIGONI, AND A. MARKHAM, A survey on deep
learning for localization and mapping: Towards the age of spatial machine
intelligence, arXiv preprint arXiv:2006.12567, (2020).

J. CHEN AND X. RAN, Deep learning with edge computing: A review, Proceedings
of the IEEE, 107 (2019), pp. 1655-1674.

T. CHEN, J. FRANKLE, S. CHANG, S. L1U, Y. ZHANG, Z. WANG, AND M. CARBIN,
The lottery ticket hypothesis for pre-trained bert networks, Advances in neural

information processing systems, 33 (2020), pp. 15834—15846.

W. CHEN, X. GONG, AND Z. WANG, Neural architecture search on imagenet in four

gpu hours: A theoretically inspired perspective, arXiv preprint arXiv:2102.11535,
(2021).

J. CHENG, Y.-H. TsAI, S. WANG, AND M.-H. YANG, Segflow: Joint learning
for video object segmentation and optical flow, in Proceedings of the IEEE

international conference on computer vision, 2017, pp. 686—-695.

F. CHOLLET, Xception: Deep learning with depthwise separable convolutions, in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 1251-1258.

J. L. CHU AND A. KRZYZAK, Analysis of feature maps selection in supervised
learning using convolutional neural networks, in Canadian Conference on

Artificial Intelligence, Springer, 2014, pp. 59-70.

121

BIBLIOGRAPHY

[31] Y. Ci1, C. LIN, M. SUN, B. CHEN, H. ZHANG, AND W. OUYANG, Evolving search
space for neural architecture search, in Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, 2021, pp. 6659—6669.

[32] D. C. CIRESAN, U. MEIER, J. MASCI, L. MARIA GAMBARDELLA, AND J. SCHMID-
HUBER, Flexible, high performance convolutional neural networks for image
classification, in IJCAI Proceedings-International Joint Conference on Artificial

Intelligence, vol. 22, Barcelona, Spain, 2011, p. 1237.

[33] R. CLARK, S. WANG, A. MARKHAM, N. TRIGONI, AND H. WEN, Vidloc: A deep
spatio-temporal model for 6-dof video-clip relocalization, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6856—
6864.

[34] L. CONTRERAS AND W. MAYOL-CUEVAS, O-poco: Online point cloud compression

mapping for visual odometry and slam, in 2017 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2017, pp. 4509—-4514.

[835] ——, Towards cnn map representation and compression for camera relocalisa-
tion, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2018, pp. 292—-299.

[36] C. CORTES, X. GONZALVO, V. KUZNETSOV, M. MOHRI, AND S. YANG, Adanet:
Adaptive structural learning of artificial neural networks, in International

conference on machine learning, PMLR, 2017, pp. 874—-883.

[37] M. CoSKUN, O. YILDIRIM, U. AYSEGUL, AND Y. DEMIR, An overview of popular
deep learning methods, European Journal of Technique, 7 (2017), pp. 165-176.

[38] L. N. DARLOW, E. J. CROWLEY, A. ANTONIOU, AND A. J. STORKEY, Cinic-10 is
not imagenet or cifar-10, arXiv preprint arXiv:1810.03505, (2018).

[39] M. DENIL, B. SHAKIBI, L. DINH, M. RANZATO, AND N. DE FREITAS, Predicting
parameters in deep learning, arXiv preprint arXiv:1306.0543, (2013).

[40] E. L. DENTON, W. ZAREMBA, J. BRUNA, Y. LECUN, AND R. FERGUS, Exploit-
ing linear structure within convolutional networks for efficient evaluation, in

Advances in neural information processing systems, 2014, pp. 1269-1277.

[41] T. DEVRIES AND G. W. TAYLOR, Improved regularization of convolutional neural
networks with cutout, arXiv preprint arXiv:1708.04552, (2017).

122

BIBLIOGRAPHY

[42] F. DING, J.-S. DENAIN, AND J. STEINHARDT, Grounding representation similarity
with statistical testing, arXiv preprint arXiv:2108.01661, (2021).

[43] C. DoNgG, C. C. Loy, K. HE, AND X. TANG, Image super-resolution using deep
convolutional networks, IEEE transactions on pattern analysis and machine
intelligence, 38 (2015), pp. 295-307.

[44] X.DONG AND Y. YANG, Network pruning via transformable architecture search,
arXiv preprint arXiv:1905.09717, (2019).

[45] ——, Nas-bench-201: Extending the scope of reproducible neural architecture
search, arXiv preprint arXiv:2001.00326, (2020).

[46] A.DOSOVITSKIY, L. BEYER, A. KOLESNIKOV, D. WEISSENBORN, X. ZHAI, T. UN-
TERTHINER, M. DEHGHANI, M. MINDERER, G. HEIGOLD, S. GELLY, ET AL.,

An image is worth 16x16 words: Transformers for image recognition at scale,
arXiv preprint arXiv:2010.11929, (2020).

[47] E. ELSEN, M. DUKHAN, T. GALE, AND K. SIMONYAN, Fast sparse conuvnets,
in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2020, pp. 14629-14638.

[48] T. ELSKEN, J. H. METZEN, AND F. HUTTER, Efficient multi-objective neural

architecture search via lamarckian evolution, arXiv preprint arXiv:1804.09081,
(2018).

[49] ——, Neural architecture search: A survey, The Journal of Machine Learning
Research, 20 (2019), pp. 1997-2017.

[50] dJ. FANG, Y. SUN, Q. ZHANG, Y. L1, W. L1u, AND X. WANG, Densely connected
search space for more flexible neural architecture search, in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 10628-10637.

[51] J. FRANKLE AND M. CARBIN, The lottery ticket hypothesis: Finding sparse, train-
able neural networks, arXiv preprint arXiv:1803.03635, (2018).

[562] dJ. FRANKLE, G. K. DZIUGAITE, D. M. RoY, AND M. CARBIN, Stabilizing the
lottery ticket hypothesis, arXiv preprint arXiv:1903.01611, (2019).

123

BIBLIOGRAPHY

[53]

[564]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

—, Pruning neural networks at initialization: Why are we missing the mark?,
arXiv preprint arXiv:2009.08576, (2020).

T. FUKUDA, M. SUZUKI, G. KURATA, S. THOMAS, J. CUI, AND B. RAMABHADRAN,

Efficient knowledge distillation from an ensemble of teachers., in Interspeech,
2017, pp. 3697-3701.

K. FURKUNAGA, Introduction to statistical pattern recognition, Elsevier, 2013.

K. FUKUSHIMA, Neocognitron: A self-organizing neural network model for a mecha-
nism of pattern recognition unaffected by shift in position, Biological cybernetics,
36 (1980), pp. 193-202.

T. GALE, E. ELSEN, AND S. HOOKER, The state of sparsity in deep neural networks,
arXiv preprint arXiv:1902.09574, (2019).

T. GANCHEV, N. FAKOTAKIS, AND G. KOKKINAKIS, Comparative evaluation of

various mfcc implementations on the speaker verification task, in Proceedings
of the SPECOM, vol. 1, 2005, pp. 191-194.

S. GIRISH, S. R. MAIYA, K. GUPTA, H. CHEN, L. S. DAVIS, AND A. SHRIVAS-
TAVA, The lottery ticket hypothesis for object recognition, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,
pp. 762-771.

B. GLOCKER, S. 1ZADI, J. SHOTTON, AND A. CRIMINISI, Real-time rgb-d cam-
era relocalization, in Mixed and Augmented Reality (ISMAR), 2013 IEEE
International Symposium on, IEEE, 2013, pp. 173-179.

X. GLOROT AND Y. BENGIO, Understanding the difficulty of training deep feedfor-
ward neural networks, in Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, 2010, pp. 249-256.

Y. GONG, Y.-A. CHUNG, AND J. GLASS, Ast: Audio spectrogram transformer, arXiv
preprint arXiv:2104.01778, (2021).

I. GOODFELLOW, Y. BENGIO, AND A. COURVILLE, Deep learning, MIT press, 2016.

A. GORDON, E. EBAN, O. NACHUM, B. CHEN, H. WU, T.-J. YANG, AND E. CHOI,

Morphnet: Fast & simple resource-constrained structure learning of deep net-

124

BIBLIOGRAPHY

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

works, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 1586-1595.

J. Gou, B. YU, S. J. MAYBANK, AND D. TA0, Knowledge distillation: A survey,
International Journal of Computer Vision, 129 (2021), pp. 1789-1819.

T. G. GRIGG, D. BUSBRIDGE, J. RAMAPURAM, AND R. WEBB, Do self-supervised

and supervised methods learn similar visual representations?, arXiv preprint
arXiv:2110.00528, (2021).

A. GuzHOV, F. RAUE, J. HEES, AND A. DENGEL, Esresnet: Environmental sound
classification based on visual domain models, in 2020 25th International Con-
ference on Pattern Recognition (ICPR), IEEE, 2021, pp. 4933-4940.

G. GWARDYS AND D. M. GRZYWCZAK, Deep image features in music information

retrieval, International Journal of Electronics and Telecommunications, 60
(2014), pp. 321-326.

M. HAKLAY AND P. WEBER, Openstreetmap: User-generated street maps, IEEE
Pervasive computing, 7 (2008), pp. 12—-18.

D. HAN, J. KiM, AND J. KIM, Deep pyramidal residual networks, in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 5927-5935.

S. HAN, X. Liu, H. MAo, J. Pu, A. PEDRAM, M. A. HOROWITZ, AND W. J.
DALLY, Eie: Efficient inference engine on compressed deep neural network,
ACM SIGARCH Computer Architecture News, 44 (2016), pp. 243-254.

K. HE, X. ZHANG, S. REN, AND J. SUN, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in Proceedings of the IEEE

international conference on computer vision, 2015, pp. 1026-1034.

—, Deep residual learning for image recognition, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 770-778.

—, Identity mappings in deep residual networks, in European conference on

computer vision, Springer, 2016, pp. 630-645.

125

BIBLIOGRAPHY

[75] Y. HE, P. L1U, Z. WANG, Z. HU, AND Y. YANG, Filter pruning via geometric median
for deep convolutional neural networks acceleration, in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2019, pp. 4340-4349.

[76] Y. HE, X. ZHANG, AND J. SUN, Channel pruning for accelerating very deep neural

networks, in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 1389-1397.

[77] J. F. HENRIQUES AND A. VEDALDI, Mapnet: An allocentric spatial memory for
mapping environments, in proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 8476-8484.

[78] G. HINTON, O. VINYALS, J. DEAN, ET AL., Distilling the knowledge in a neural
network, arXiv preprint arXiv:1503.02531, 2 (2015).

[791 G. E. HINTON, N. SRIVASTAVA, A. KRIZHEVSKY, I. SUTSKEVER, AND R. R.
SALAKHUTDINOV, Improving neural networks by preventing co-adaptation of
feature detectors, arXiv preprint arXiv:1207.0580, (2012).

[80] S. HOCHREITER, The vanishing gradient problem during learning recurrent neural
nets and problem solutions, International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 6 (1998), pp. 107-116.

[81] M.-F. HONG, H.-Y. CHEN, M.-H. CHEN, Y.-S. XU, H.-K. Kuo, Y.-M. TsAI, H.-
J. CHEN, AND K. JOoU, Network space search for pareto-efficient spaces, in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 3053-3062.

[82] A. G. HOWARD, M. ZHU, B. CHEN, D. KALENICHENKO, W. WANG, T. WEYAND,
M. ANDREETTO, AND H. ADAM, Mobilenets: Efficient convolutional neural net-
works for mobile vision applications, arXiv preprint arXiv:1704.04861, (2017).

[83] J. HU, L. SHEN, AND G. SUN, Squeeze-and-excitation networks, in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 7132-7141.

[84] G. HUANG, Z. L1U, L. VAN DER MAATEN, AND K. Q. WEINBERGER, Densely
connected convolutional networks, in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 4700—4708.

126

BIBLIOGRAPHY

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

G. HUANG, Y. SUN, Z. L1U, D. SEDRA, AND K. Q. WEINBERGER, Deep networks

with stochastic depth, in European conference on computer vision, Springer,
2016, pp. 646-661.

. N. IANDOLA, S. HAN, M. W. MOSKEWICZ, K. ASHRAF, W. J. DALLY, AND

K. KEUTZER, Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and< 0.5 mb model size, arXiv preprint arXiv:1602.07360, (2016).

. IOFFE AND C. SZEGEDY, Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift, in International conference on machine
learning, PMLR, 2015, pp. 448-456.

. ITT1 AND C. KOCH, Computational modelling of visual attention, Nature reviews

neuroscience, 2 (2001), pp. 194-203.

J. JIN, A. DUNDAR, AND E. CULURCIELLO, Flattened convolutional neural net-

works for feedforward acceleration, arXiv preprint arXiv:1412.5474, (2014).

. JOHNSON, A. ALAHI, AND L. FEI-FEI, Perceptual losses for real-time style

transfer and super-resolution, in European conference on computer vision,
Springer, 2016, pp. 694-711.

. KALE AND R. SHRIRAM, Suspicious activity detection using transfer learning

based resnet tracking from surveillance videos, in International Conference on

Soft Computing and Pattern Recognition, Springer, 2020, pp. 208-220.

. KENDALL AND R. CIPOLLA, Modelling uncertainty in deep learning for cam-

era relocalization, in 2016 IEEE international conference on Robotics and
Automation (ICRA), IEEE, 2016, pp. 4762—4769.

. KENDALL, M. GRIMES, AND R. CIPOLLA, Posenet: A convolutional network for

real-time 6-dof camera relocalization, in Proceedings of the IEEE international

conference on computer vision, 2015, pp. 2938-2946.

. KHAN, A. SOHAIL, U. ZAHOORA, AND A. S. QURESHI, A survey of the recent

architectures of deep convolutional neural networks, Artificial Intelligence
Review, 53 (2020), pp. 5455-5516.

J. KiM, J. K. LEE, AND K. M. LEE, Accurate image super-resolution using very deep

convolutional networks, in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 1646-1654.

127

BIBLIOGRAPHY

[96] A.

[97]1 Q.

[98] S.

[99] A.

[100] A.

[101] A.

[102] G.

KLEIN, S. FALKNER, J. T. SPRINGENBERG, AND F. HUTTER, Learning curve

prediction with bayesian neural networks, in ICLR, 2017.

KoNG, Y. Cao, T. IQBAL, Y. WANG, W. WANG, AND M. D. PLUMBLEY, Panns:
Large-scale pretrained audio neural networks for audio pattern recognition,
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28
(2020), pp. 2880-2894.

KORNBLITH, M. NOROUZI, H. LEE, AND G. HINTON, Similarity of neural

network representations revisited, in International Conference on Machine
Learning, PMLR, 2019, pp. 3519-3529.

KRIZHEVSKY, G. HINTON, ET AL., Learning multiple layers of features from
tiny images, tech. rep., Citeseer, 2009.

KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet classification
with deep convolutional neural networks, in Advances in neural information

processing systems, 2012, pp. 1097-1105.

F. KURI-MORALES, The best neural network architecture, in Mexican Interna-
tional Conference on Artificial Intelligence, Springer, 2014, pp. 72—-84.

LARSSON, M. MAIRE, AND G. SHAKHNAROVICH, Fractalnet: Ultra-deep neural
networks without residuals, arXiv preprint arXiv:1605.07648, (2016).

[103] Y. LE AND X. YANG, Tiny imagenet visual recognition challenge, CS 231N, 7 (2015),

p-7.

[104] G. LECLERC, M. VARTAK, R. C. FERNANDEZ, T. KRASKA, AND S. MADDEN, Small-

ify: Learning network size while training, arXiv preprint arXiv:1806.03723,
(2018).

[105] Y. LECUN, B. BOSER, J. S. DENKER, D. HENDERSON, R. E. HOWARD, W. HUB-

BARD, AND L. D. JACKEL, Backpropagation applied to handwritten zip code
recognition, Neural computation, 1 (1989), pp. 541-551.

[106] Y. LECUN, L. BoTTOU, Y. BENGIO, P. HAFFNER, ET AL., Gradient-based learning

applied to document recognition, Proceedings of the IEEE, 86 (1998), pp. 2278-
2324.

128

BIBLIOGRAPHY

[107] Y.

[108] C.

[109] E.

[110] H.

[111] L.

[112] T.

[113] Y.

[114] Y.

[115] Y.

[116] T.

[117] R.

LECUN, J. S. DENKER, AND S. A. SOLLA, Optimal brain damage, in Advances

in neural information processing systems, 1990, pp. 598-605.

LEDIG, L. THEIS, F. HUSZAR, J. CABALLERO, A. CUNNINGHAM, A. ACOSTA,
A. AITKEN, A. TEJANI, J. TOTZ, Z. WANG, ET AL., Photo-realistic single image
super-resolution using a generative adversarial network, in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2017, pp. 4681—
4690.

LEE AND C.-Y. LEE, Neuralscale: Efficient scaling of neurons for resource-
constrained deep neural networks, in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 1478-1487.

L1, A. KADAV, I. DURDANOVIC, H. SAMET, AND H. P. GRAF, Pruning filters
for efficient convnets, arXiv preprint arXiv:1608.08710, (2016).

L1, K. JAMIESON, G. DESALVO, A. ROSTAMIZADEH, AND A. TALWALKAR,
Hyperband: A novel bandit-based approach to hyperparameter optimization,
The Journal of Machine Learning Research, 18 (2017), pp. 6765-6816.

L1, dJ. L1, Z. L1u, AND C. ZHANG, Few sample knowledge distillation for efficient
network compression, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 14639-14647.

L1, Deep reinforcement learning: An overview, arXiv preprint arXiv:1701.07274,
(2017).

L1, S. Gu, L. V. GooL, AND R. TIMOFTE, Learning filter basis for convolu-
tional neural network compression, in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 5623-5632.

L1, Z. HAO, AND H. LEI, Survey of convolutional neural network, Journal of
Computer Applications, 36 (2016), pp. 2508—2515.

LIANG, J. GLOSSNER, L. WANG, S. SHI, AND X. ZHANG, Pruning and quan-

tization for deep neural network acceleration: A survey, Neurocomputing, 461
(2021), pp. 370-403.

Liaw, E. LIANG, R. NISHIHARA, P. MORITZ, J. E. GONZALEZ, AND I. STOICA,
Tune: A research platform for distributed model selection and training, arXiv
preprint arXiv:1807.05118, (2018).

129

BIBLIOGRAPHY

[118] B.

[119] M.

[120] C.

[121] H.

[122] Y.

[123] Y.

[124] Z.

[125] B.

[126] C.

[127] S.

[128] J.-

LiM, S. SON, H. KiM, S. NAH, AND K. MU LEE, Enhanced deep residual net-
works for single image super-resolution, in Proceedings of the IEEE conference

on computer vision and pattern recognition workshops, 2017, pp. 136-144.

LIN, Q. CHEN, AND S. YAN, Network in network, arXiv preprint
arXiv:1312.4400, (2013).

Liu, B. ZorH, M. NEUMANN, J. SHLENS, W. HuA, L.-J. L1, L. FEI-FEI,
A.YUILLE, J. HUANG, AND K. MURPHY, Progressive neural architecture search,
in Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 19-34.

L1u, K. SIMONYAN, AND Y. YANG, Darts: Differentiable architecture search,
arXiv preprint arXiv:1806.09055, (2018).

Liu, K. CHEN, C. LIU, Z. QIN, Z. LUO, AND J. WANG, Structured know!-
edge distillation for semantic segmentation, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 2604-2613.

L1u, Y. SUN, B. XUE, M. ZHANG, G. G. YEN, AND K. C. TAN, A survey on
evolutionary neural architecture search, IEEE transactions on neural networks

and learning systems, (2021).

Liu, M. SUN, T. ZHOU, G. HUANG, AND T. DARRELL, Rethinking the value of
network pruning, arXiv preprint arXiv:1810.05270, (2018).

LOGAN, Mel frequency cepstral coefficients for music modeling, in In Interna-

tional Symposium on Music Information Retrieval, Citeseer, 2000.

Louizos, M. WELLING, AND D. P. KINGMA, Learning sparse neural networks
through [_0 regularization, arXiv preprint arXiv:1712.01312, (2017).

LOUSSAIEF AND A. ABDELKRIM, Convolutional neural network hyper-
parameters optimization based on genetic algorithms, International Journal of
Advanced Computer Science and Applications, 9 (2018), pp. 252—-266.

H. Luo, J. WU, AND W. LIN, Thinet: A filter level pruning method for deep neural
network compression, in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 5058-5066.

130

BIBLIOGRAPHY

[129] E. MALACH, G. YEHUDAI, S. SHALEV-SCHWARTZ, AND O. SHAMIR, Proving the
lottery ticket hypothesis: Pruning is all you need, in International Conference
on Machine Learning, PMLR, 2020, pp. 6682—6691.

[130] K. MARKOV AND T. MATSUI, Robust speech recognition using generalized distilla-
tion framework., in Interspeech, 2016, pp. 2364—2368.

[131] W. S. McCULLOCH AND W. PITTS, A logical calculus of the ideas immanent in
nervous activity, The bulletin of mathematical biophysics, 5 (1943), pp. 115—
133.

[132] L. MCINNES, J. HEALY, AND J. MELVILLE, Umap: Uniform manifold approxima-

tion and projection for dimension reduction, arXiv preprint arXiv:1802.03426,
(2018).

[133] I. MELEKHOV, J. YLIOINAS, J. KANNALA, AND E. RAHTU, Image-based local-
ization using hourglass networks, in Proceedings of the IEEE international

conference on computer vision workshops, 2017, pp. 879-886.

[134] H. MENG, Z. LIN, F. YANG, Y. XU, AND L. CUI, Knowledge distillation in medical
data mining: A survey, in 5th International Conference on Crowd Science and
Engineering, 2021, pp. 175-182.

[135] M. MINSKY AND S. A. PAPERT, Perceptrons: An introduction to computational
geometry, MIT press, 2017.

[136] P. MIROWSKI, A. BANKI-HORVATH, K. ANDERSON, D. TEPLYASHIN, K. M. HER-
MANN, M. MALINOWSKI, M. K. GRIMES, K. SIMONYAN, K. KAVUKCUOGLU,
A. ZISSERMAN, ET AL., The streetlearn environment and dataset, arXiv preprint
arXiv:1903.01292, (2019).

[137] G. MiTTAL, C. L1U, N. KARIANAKIS, V. FRAGOSO, M. CHEN, AND Y. Fu, Hy-
perstar: Task-aware hyperparameters for deep networks, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,
pp. 8736-8745.

[138] S. MITTAL, A survey of fpga-based accelerators for convolutional neural networks,
Neural computing and applications, 32 (2020), pp. 1109-1139.

131

BIBLIOGRAPHY

[139] D. MOLCHANOV, A. ASHUKHA, AND D. VETROV, Variational dropout sparsi-

fies deep neural networks, in International Conference on Machine Learning,
PMLR, 2017, pp. 2498-2507.

[140] P. MOLCHANOV, S. TYREE, T. KARRAS, T. AILA, AND J. KAUTZ, Pruning con-

volutional neural networks for resource efficient inference, arXiv preprint
arXiv:1611.06440, (2016).

[141] A. MORCOS, M. RAGHU, AND S. BENGIO, Insights on representational similarity
in neural networks with canonical correlation, Advances in Neural Information
Processing Systems, 31 (2018).

[142] M. C. MOZER AND P. SMOLENSKY, Skeletonization: A technique for trimming the
fat from a network via relevance assessment, in Advances in neural information

processing systems, 1989, pp. 107-115.

[143] V. NAIR AND G. E. HINTON, Rectified linear units improve restricted boltzmann

machines, in Ieml, 2010.

[144] A. NEWELL, K. YANG, AND J. DENG, Stacked hourglass networks for human
pose estimation, in European conference on computer vision, Springer, 2016,
pp- 483—499.

[145] D. NGUYEN, S. GUPTA, T. NGUYEN, S. RANA, P. NGUYEN, T. TRAN, K. LE,
S. RYAN, AND S. VENKATESH, Knowledge distillation with distribution mis-
match, in Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, Springer, 2021, pp. 250—265.

[146] T. NGUYEN, M. RAGHU, AND S. KORNBLITH, Do wide and deep networks learn the
same things? uncovering how neural network representations vary with width
and depth, arXiv preprint arXiv:2010.15327, (2020).

[147] K. PALANISAMY, D. SINGHANIA, AND A. YAO, Rethinking cnn models for audio
classification, arXiv preprint arXiv:2007.11154, (2020).

[148] B. PAN, H. CAI1, D.-A. HUANG, K.-H. LEE, A. GAIDON, E. ADELI, AND J. C.
NIEBLES, Spatio-temporal graph for video captioning with knowledge distil-
lation, in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 10870-10879.

132

BIBLIOGRAPHY

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

A. PAVLENKO, Mapnik, 2016.

B. PENG, X. JIN, J. Liu, D. L1, Y. WU, Y. LIU, S. ZHOU, AND Z. ZHANG, Corre-
lation congruence for knowledge distillation, in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 5007-5016.

L. PEROTIN, A. DEFOSSEZ, E. VINCENT, R. SERIZEL, AND A. GUERIN, Regression
versus classification for neural network based audio source localization, in 2019
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), IEEE, 2019, pp. 343-347.

H. PHAM, M. GUAN, B. ZOPH, Q. LE, AND J. DEAN, Efficient neural architecture

search via parameters sharing, in International conference on machine learning,
PMLR, 2018, pp. 4095-4104.

M. PHUONG AND C. LAMPERT, Towards understanding knowledge distillation, in
International Conference on Machine Learning, PMLR, 2019, pp. 5142-5151.

K. J. PICZAK, Esc: Dataset for environmental sound classification, in Proceedings
of the 23rd ACM international conference on Multimedia, 2015, pp. 1015-1018.

N. PINTO, D. DOUKHAN, J. J. DICARLO, AND D. D. COX, A high-throughput
screening approach to discovering good forms of biologically inspired visual

representation, PLoS computational biology, 5 (2009), p. €e1000579.

H. PURWINS, B. L1, T. VIRTANEN, J. SCHLUTER, S.-Y. CHANG, AND T. SAINATH,
Deep learning for audio signal processing, IEEE Journal of Selected Topics in
Signal Processing, 13 (2019), pp. 206—-219.

M. RAGHU, J. GILMER, J. YOSINSKI, AND J. SOHL-DICKSTEIN, Svcca: Singular
vector canonical correlation analysis for deep learning dynamics and inter-

pretability, Advances in neural information processing systems, 30 (2017).

M. RAGHU, T. UNTERTHINER, S. KORNBLITH, C. ZHANG, AND A. DOSOVITSKIY,
Do vision transformers see like convolutional neural networks?, Advances in

Neural Information Processing Systems, 34 (2021).

V. RAMANUJAN, M. WORTSMAN, A. KEMBHAVI, A. FARHADI, AND M. RASTEGARI,
What’s hidden in a randomly weighted neural network?, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,
pp. 11893-11902.

133

BIBLIOGRAPHY

[160] M. RaNzATO, F. J. HUANG, Y.-L. BOUREAU, AND Y. LECUN, Unsupervised
learning of invariant feature hierarchies with applications to object recognition,

in 2007 IEEE conference on computer vision and pattern recognition, IEEE,
2007, pp. 1-8.

[161] W. RAWAT AND Z. WANG, Deep convolutional neural networks for image classifica-
tion: A comprehensive review, Neural computation, 29 (2017), pp. 2352—2449.

[162] E. REAL, A. AGGARWAL, Y. HUANG, AND Q. V. LE, Aging evolution for image
classifier architecture search, in AAAI conference on artificial intelligence, vol. 3,
2019.

[163] R. REED, Pruning algorithms-a survey, IEEE transactions on Neural Networks, 4
(1993), pp. 740-747.

[164] P. REN, Y. XIAO, X. CHANG, P.-Y. HUANG, Z. L1, X. CHEN, AND X. WANG, A
comprehensive survey of neural architecture search: Challenges and solutions,
arXiv preprint arXiv:2006.02903, (2020).

[165] A. RENDA, J. FRANKLE, AND M. CARBIN, Comparing rewinding and fine-tuning
in neural network pruning, arXiv preprint arXiv:2003.02389, (2020).

[166] E. REZENDE, G. RUPPERT, T. CARVALHO, F. RAMOS, AND P. DE GEUS, Mali-
cious software classification using transfer learning of resnet-50 deep neural
network, in 2017 16th IEEE International Conference on Machine Learning
and Applications ICMLA), IEEE, 2017, pp. 1011-1014.

[167] F. ROSENBLATT, The perceptron: a probabilistic model for information storage and
organization in the brain., Psychological review, 65 (1958), p. 386.

[168] F. RUFFY AND K. CHAHAL, The state of knowledge distillation for classification,
arXiv preprint arXiv:1912.10850, (2019).

[169] D. E. RUMELHART, G. E. HINTON, AND R. J. WILLIAMS, Learning representations
by back-propagating errors, nature, 323 (1986), pp. 533-536.

[170] O. RUSSAKOVSKY, J. DENG, H. SU, J. KRAUSE, S. SATHEESH, S. MA, Z. HUANG,
A. KARPATHY, A. KHOSLA, M. BERNSTEIN, ET AL., Imagenet large scale visual
recognition challenge, International Journal of Computer Vision, 115 (2015),
pp. 211-252.

134

BIBLIOGRAPHY

[171] M.

[172] H.

[173] N.

[174] M.

[175] M.

[176] K.

SAHU AND R. DASH, A survey on deep learning: Convolution neural network
(cnn), in Intelligent and Cloud Computing, Springer, 2021, pp. 317-325.

B. SAILOR, D. M. AGRAWAL, AND H. A. PATIL, Unsupervised filterbank
learning using convolutional restricted boltzmann machine for environmental

sound classification., in InterSpeech, vol. 8, 2017, p. 9.

SAMANO, M. ZHOU, AND A. CALWAY, You are here: Geolocation by embedding
maps and images, in European Conference on Computer Vision, Springer, 2020,
pp. 502-518.

SANDLER, J. BACCASH, A. ZHMOGINOV, AND A. HOWARD, Non-discriminative
data or weak model? on the relative importance of data and model resolution,
in Proceedings of the IEEE/CVF International Conference on Computer Vision
Workshops, 2019, pp. 0-0.

SANDLER, A. HOWARD, M. ZHU, A. ZHMOGINOV, AND L.-C. CHEN, Mo-
bilenetv2: Inverted residuals and linear bottlenecks, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2018, pp. 4510-4520.

A. SANKARARAMAN, S. DE, Z. XU, W. R. HUANG, AND T. GOLDSTEIN, The
impact of neural network overparameterization on gradient confusion and

stochastic gradient descent, in International Conference on Machine Learning,
PMLR, 2020, pp. 8469-8479.

[177] J. SCHMIDHUBER, Deep learning in neural networks: An overview, Neural net-

works, 61 (2015), pp. 85-117.

[178] J. L. SCHONBERGER AND J.-M. FRAHM, Structure-from-motion revisited, in Pro-

[179] A.

[180] R.

ceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 4104-4113.

SHRESTHA AND A. MAHMOOD, Review of deep learning algorithms and archi-
tectures, IEEE Access, 7 (2019), pp. 53040-53065.

SHWARTZ-ZIV AND N. TISHBY, Opening the black box of deep neural networks
via information, arXiv preprint arXiv:1703.00810, (2017).

[181] J. SIEMS, L. ZIMMER, A. ZELA, J. LUKASIK, M. KEUPER, AND F. HUTTER, Nas-

bench-301 and the case for surrogate benchmarks for neural architecture search,
arXiv preprint arXiv:2008.09777, (2020).

135

BIBLIOGRAPHY

[182] L.

[183] K.

[184] M.

[185] D.

[186] B.

[187] C.

[188] C.

[189] M.

SIFRE AND S. MALLAT, Rigid-motion scattering for texture classification, arXiv
preprint arXiv:1403.1687, (2014).

SIMONYAN AND A. ZISSERMAN, Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556, (2014).

STOLLENGA, J. MAscI, F. GOMEZ, AND J. SCHMIDHUBER, Deep networks

with internal selective attention through feedback connections, arXiv preprint
arXiv:1407.3068, (2014).

STRIGL, K. KOFLER, AND S. PODLIPNIG, Performance and scalability of gpu-

based convolutional neural networks, in 2010 18th Euromicro Conference on
Parallel, Distributed and Network-based Processing, IEEE, 2010, pp. 317-324.

L. STURM, A survey of evaluation in music genre recognition, in International
Workshop on Adaptive Multimedia Retrieval, Springer, 2012, pp. 29-66.

SZEGEDY, W. LIU, Y. J1A, P. SERMANET, S. REED, D. ANGUELOV, D. ERHAN,
V. VANHOUCKE, AND A. RABINOVICH, Going deeper with convolutions, in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1-9.

SZEGEDY, V. VANHOUCKE, S. IOFFE, J. SHLENS, AND Z. WOJNA, Rethinking
the inception architecture for computer vision, in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818-2826.

TAN, B. CHEN, R. PANG, V. VASUDEVAN, M. SANDLER, A. HOWARD, AND Q. V.
LE, Mnasnet: Platform-aware neural architecture search for mobile, in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 2820-2828.

[190] S. THRUN ET AL., Robotic mapping: A survey, Exploring artificial intelligence in

[191] N.

[192] A.

the new millennium, 1 (2002), p. 1.

TISHBY AND N. ZASLAVSKY, Deep learning and the information bottleneck
principle, in 2015 ieee information theory workshop (itw), IEEE, 2015, pp. 1-5.

TROCKMAN AND dJ. Z. KOLTER, Patches are all you need?, arXiv preprint
arXiv:2201.09792, (2022).

136

BIBLIOGRAPHY

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

G.

G.

L.

L.

A.

A.

TZANETAKIS AND P. COOK, Musical genre classification of audio signals, IEEE
Transactions on speech and audio processing, 10 (2002), pp. 293-302.

URBAN, K. J. GERAS, S. E. KAHOU, O. ASLAN, S. WANG, R. CARUANA,
A. MOHAMED, M. PHILIPOSE, AND M. RICHARDSON, Do deep convolutional
nets really need to be deep and convolutional?, arXiv preprint arXiv:1603.05691,
(2016).

VAN DER MAATEN AND G. HINTON, Visualizing data using t-sne., Journal of

machine learning research, 9 (2008).

VAN DER MAATEN, E. POSTMA, J. VAN DEN HERIK, ET AL., Dimensionality
reduction: a comparative, J Mach Learn Res, 10 (2009), p. 13.

VASWANI, N. SHAZEER, N. PARMAR, J. USZKOREIT, L.. JONES, A. N. GOMEZ,
L.. KAISER, AND I. POLOSUKHIN, Attention is all you need, Advances in neural

information processing systems, 30 (2017).

VEIT, M. J. WILBER, AND S. BELONGIE, Residual networks behave like ensem-

bles of relatively shallow networks, Advances in neural information processing
systems, 29 (2016), pp. 550-558.

F. WANG, M. JIANG, C. QIAN, S. YANG, C. L1, H. ZHANG, X. WANG, AND X. TANG,

Residual attention network for image classification, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017, pp. 3156-3164.

J. WANG, H. Ba1, J. WU, X. SHI, J. HUANG, I. KING, M. LYU, AND J. CHENG,

Z.

Revisiting parameter sharing for automatic neural channel number search,

Advances in Neural Information Processing Systems, 33 (2020).

WANG, J. CHEN, AND S. C. HOI, Deep learning for image super-resolution: A
survey, IEEE transactions on pattern analysis and machine intelligence, 43
(2020), pp. 3365—-33817.

[202] M. WATTENBERG, F. VIEGAS, AND I. JOHNSON, How to use t-sne effectively, Distill,

1(2016), p. e2.

[203] G. WU AND S. GONG, Peer collaborative learning for online knowledge distillation,

in AAAI 2021.

137

BIBLIOGRAPHY

[204] L. X1E, X. CHEN, K. B1, L. WEI, Y. XU, L. WANG, Z. CHEN, A. XIAO, J. CHANG,
X. ZHANG, ET AL., Weight-sharing neural architecture search: A battle to shrink
the optimization gap, ACM Computing Surveys (CSUR), 54 (2021), pp. 1-37.

[205] S. XIE, R. GIRSHICK, P. DOLLAR, Z. TU, AND K. HE, Aggregated residual trans-
formations for deep neural networks, in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 1492-1500.

[206] S. XU, A. HUANG, L. CHEN, AND B. ZHANG, Convolutional neural network prun-
ing: A survey, in 2020 39th Chinese Control Conference (CCC), IEEE, 2020,
pp. 7458-7463.

[207] C. YING, A. KLEIN, E. CHRISTIANSEN, E. REAL, K. MURPHY, AND F. HUTTER,
Nas-bench-101: Towards reproducible neural architecture search, in Interna-
tional Conference on Machine Learning, PMLR, 2019, pp. 7105-7114.

[208] Z.YoU, K. YAN, J. YE, M. MA, AND P. WANG, Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks, in Advances in

Neural Information Processing Systems, 2019, pp. 2130-2141.

[209] J. YU AND T. HUANG, Autoslim: Towards one-shot architecture search for channel
numbers, arXiv preprint arXiv:1903.11728, (2019).

[210] K. YU, R. RANFTL, AND M. SALZMANN, How to train your super-net: An analysis

of training heuristics in weight-sharing nas, arXiv preprint arXiv:2003.04276,
(2020).

[211] K. YU, C. SciuTo, M. JAGGI, C. MUSAT, AND M. SALZMANN, Evaluating the

search phase of neural architecture search, arXiv preprint arXiv:1902.08142,
(2019).

[212] R. YU, A. L1, C.-F. CHEN, J.-H. LAI, V. I. MORARIU, X. HAN, M. GAoO, C.-Y.
LIN, AND L. S. DAVIS, Nisp: Pruning networks using neuron importance score
propagation, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 9194-9203.

[213] S. ZAGORUYKO AND N. KOMODAKIS, Wide residual networks, arXiv preprint
arXiv:1605.07146, (2016).

138

BIBLIOGRAPHY

[214] M. D. ZEILER AND R. FERGUS, Visualizing and understanding convolutional

[215] A.

[216] T.

[217] X.

[218] F.

[219] B.

[220] H.

[221] B.

networks, in European conference on computer vision, Springer, 2014, pp. 818—
833.

ZELA, A. KLEIN, S. FALKNER, AND F. HUTTER, Towards automated deep

learning: Efficient joint neural architecture and hyperparameter search, arXiv
preprint arXiv:1807.06906, (2018).

ZHANG, G.-d. QI1, B. X1A0, AND J. WANG, Interleaved group convolutions, in

Proceedings of the IEEE international conference on computer vision, 2017,
pp. 4373-4382.

ZHANG, X. ZHOU, M. LIN, AND J. SUN, Shufflenet: An extremely efficient
convolutional neural network for mobile devices, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2018, pp. 6848—-6856.

ZHENG, G. ZHANG, AND Z. SONG, Comparison of different implementations of
mfcc, Journal of Computer science and Technology, 16 (2001), pp. 582-589.

ZHOU, A. LAPEDRIZA, A. KHOSLA, A. OLIVA, AND A. TORRALBA, Places: A
10 million image database for scene recognition, IEEE transactions on pattern
analysis and machine intelligence, 40 (2017), pp. 1452-1464.

ZHOU, J. LAN, R. L1U, AND J. YOSINSKI, Deconstructing lottery tickets: Zeros,
signs, and the supermask, Advances in neural information processing systems,
32 (2019).

ZOPH AND Q. V. LE, Neural architecture search with reinforcement learning,
arXiv preprint arXiv:1611.01578, (2017).

[222] B. ZOPH, V. VASUDEVAN, J. SHLENS, AND Q. V. LE, Learning transferable ar-
chitectures for scalable image recognition, arXiv preprint arXiv:1707.07012,
(2017).

[223] ——, Learning transferable architectures for scalable image recognition, in Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 8697-8710.

139

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Contributions
	Thesis Outline

	Related Work
	Evolution of Convolutional Neural Networks
	Early Neural Networks
	First Convolutional Networks
	Deeper, Wider and Denser
	Efficiency-Oriented Architectures
	Grouped Convolutions and Attention
	Recent Developments for Uniform Distribution

	Methods for Neural Network Model Compression
	Neural Network Pruning
	Knowledge Distillation

	Neural Architecture Search
	Conclusions

	Filter Distribution Templates for Image Classification
	Convolutional Neural Networks
	Popular CNN Architectures
	Convolutional Neural Networks and Their Default Filter Distribution
	Why Not A Learned Function?
	Filter Distribution Templates
	Uniform Template
	Reverse Template
	Quadratic Template
	Negative Quadratic Template

	Model Comparison With Similar Neurons
	Datasets and Models
	Implementation Details
	Template Effect Over Baseline Models

	Template Effect With Similar Resources
	Parameters Count
	Memory Footprint
	Inference Time

	Conclusion

	Beyond Classification Tasks: Testing Templates in Other Domains
	Introduction
	Global Localisation
	Models and Datasets
	Implementation Details
	Results

	Single Image Super-Resolution
	Implementation Details
	Results

	Templates and Neural Network Pruning
	Pruning Filters Based On Their Norm
	Pruning Filters Based On The Importance Over The Loss Function
	Reducing Filters With Filter Decomposition
	Experiments and Results

	Templates + MorphNet: Improving the Search of Filter Distribution
	MorphNet Steps for Optimising the Filters Distribution
	Experiments

	Conclusion

	Templates 2.0
	Templates Redefinition to Match Similar Resources
	Defining a New Set of Filter Distribution Templates
	Similar FLOPs Optimisation

	Templates 2.0 on Image Classification
	Datasets and Models
	Implementation Details
	Effects of Templates on Classical Models
	Effects of Templates on Optimised Models

	Templates 2.0 on Audio Classification
	Audio Datasets
	Implementation Details
	Results

	Templates 2.0 on NASBench 101 Dataset
	Implementation Details
	Results

	Templates 2.0 on Representation and Localisation
	Geolocalisation Embedding Maps and Images
	Dataset and Model
	Implementation Details
	Results

	Finding the Best Template
	Embedding Space of Templates
	Comparing Representation Spaces of Templates Via CKA Metric
	An Attempt to Correlate CKA Measurements with Accuracy and Parameters

	Conclusion

	Conclusions
	Findings
	General Advice to Future Deep Learning Practitioners
	Future Work

	Appendix A
	Filters in Tested Models with Templates 2.0

	Appendix B
	A Reflection on the COVID-19 Pandemic

	Bibliography

