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ABSTRACT

Researchers in the field of Deep Learning have used convolutional neural network
architectures to solve computer vision tasks claiming improved performance with
reduced computational cost. Designing these networks remains a complex task,

relying primarily on human experience. These new architectures have been created with
important innovative elements (ReLu, dropout and batch-normalisation layers) and new
structures (residual connections, grouped convolutions). However, a particular feature
has remained unchanged: the pyramidal pattern for distributing the number of filters
in each layer, increasing filters when feature map resolutions decrease. Initially pro-
posed in 1989 in the LeNet architecture, this pyramidal design is found in classical and
state-of-the-art CNN architectures. Also, it is the starting point for the exploration space
of pruning methods and automatic model search. The reason behind this incremental
design relies on the roots of the deep learning definition aiming to learn hierarchical
levels of representation, making complex concepts in higher levels by reusing simpler
low-level ones. Because many convolutional networks are tested mainly on the ImageNet
dataset, and the pyramidal distribution is tuned to fit that dataset, it is unclear if the
pattern works well in other datasets and domains or if other distributions could yield
better performances.

This thesis introduces the concept of filter distribution templates, a small set of fil-
ter distribution patterns differing from the widely adopted pyramidal distribution for
reassigning filters in an existing convolutional network without varying the original ar-
chitecture. This research experimentally shows that models produced with templates are
superior to those using the pyramidal distribution of filters in several popular datasets
from the domains of image classification and camera pose estimation. Additionally, this
work describes and evaluates how templates can work on top of convolutional network
compression techniques to obtain higher accuracy or reduction ratio.

Further, this thesis proposes an enhanced set of templates that improve final mod-
els’ accuracy by smoothing the variation in the number of filters between layers. The new
set is provided with a fast mechanism to match a predefined FLOPs budget. Extended
experiments on image and audio classification show that models obtained with the new
templates yield higher performances with fewer resources. For example, experiments
with three popular handcrafted architectures (VGG, ResNet and MobileNetV2) and
one automatically discovered (MNASNet) trained on MNIST, CIFAR, CINIC10 and
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TinyImagenet datasets show that models with these alternative distributions are more
resource-efficient reaching reductions up to 90% in parameters and 79% in memory
needs while matching or surpassing the original model accuracy.

Advantages in performance and resource requirements were also found in a repre-
sentation embeddings task, a domain where the network’s internal representation is
more important than its final output. Templates were again helpful to architectures
discovered with neural network search methods surpassing the highest accuracy model
in the NASBench-101 dataset requiring one-third of the original parameters. Finally, this
theis explored the variations in representation spaces produced by templates. Attempts
were conducted to correlate accuracy and representation spaces using CKA similarity.
However, results imply that finding the best template is challenging and requires more
exploration and analysis.

We hope this thesis illuminates new directions to neural network designers, both au-
tomated and manual, that help construct more efficient architectures and inspire the
re-think of model building assumptions in deep learning.
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1
INTRODUCTION

Modern artificial intelligence applications have become ubiquitous in our era.

When they are correctly tuned, existing systems can surpass human-level per-

formance in numerous specific tasks. This explosion of impressive achievements

has been primarily obtained thanks to the use of deep learning.

The core strength of deep learning comes from deep neural networks and their ability

to learn relevant representations of the world. Initially inspired by modelling the neurons

in a biological brain, neural networks are built by connecting artificial neurons in parallel

to conform sequential layers. How these layers and neurons are organised defines the

different deep learning network architectures.

In the deep learning field, a neural network design is currently commonly created

to solve one particular problem. For example, the VGG network was created to achieve

maximum accuracy on the ImageNet dataset in the image classification domain. Yet, it

is also common to use the resulting architecture to solve other tasks (in this work, we

will use indistinctly the terms task and domain). We are not referring here to transfer

learning, the process of taking a model trained in a dataset and then utilising it in a

different one in the same or a distinct domain after a small retraining in the new dataset.

Instead, we refers to the process of borrowing an existing untrained architecture and

minimally changing it to fit the requirements of the new dataset to eventually train it

from scratch in the new dataset. To illustrate the difference, let’s take the case of ResNet.

It was designed for ImageNet, but it has also been trained from scratch in the CIFAR-10

dataset and as a backbone of Faster R-CNN in PASCAL VOC and COCO datasets [73].
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On the other hand, by fine-tuning a ResNet model trained on ImageNet, researchers

have used it in a diverse range of tasks such as tracking objects in video surveillance

[91], malicious software classification [166], and video object segmentation [28].

As the number of domains where deep learning is applied has increased, researchers

have proposed a vast number of neural network architectures claiming enhanced per-

formance and less computational resource consumption demands. However, conceiving

these architectures remains a complex task, relying on experience and, in some cases,

trial and error procedures. Currently, there is no full understanding of the rules that

govern model design.

Despite the advances and widespread interest in neural networks, there is still a

notable gap between theory and practice. While practitioners have made outstanding

achievements, theorists have followed behind, with studies that usually include unrealis-

tic assumptions that lead to inaccurate results in understanding deep neural networks

as they are typically used.

Convolutional Neural Network (CNN), a particular deep learning architecture, has

been notably successful in many vision tasks. However, after all the continuous progress

in CNN models, an element in their design remains almost unchanged. There is a

practice of increasing the number of filters in deeper layers, basically doubling the filters

when a pooling layer halves the resolution of the feature map. This pyramidal design is

rooted in the philosophy of deep learning, aiming to build hierarchical representations,

reusing simple concepts in lower levels to form complex higher-level ones [14, 63]. It is

generally believed that a progressive increase in the number of kernels compensates for

a possible loss of the representation caused by the spatial resolution reduction [106], as

well as improves performance by keeping a constant number of operations in each layer

[30].

This pattern was first proposed in [106] with the introduction of LeNet and can be

observed in a diverse set of models such as VGG[183], ResNet[73] and MobileNet[82].

Even models obtained from neural architecture search (NAS), such as NASNet [222],

follow this principle since many automatic model discovery methods are mainly formu-

lated to search for layers and connections. In contrast, the number of filters in each layer

remains fixed.

Techniques used by NAS are now applied to channel number search (CNS) to find

the optimal distribution of filters in a convolutional neural network [200] based on the

intuition that the incremental design could not be the best option. Approaches perform a

search process considering a set of promising values for the filter distribution that depart

2
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Figure 1.1: The pyramidal pattern of increasing filters per layer is widely adopted in
convolutional models (left). We propose to apply a small set of templates to an existing
model to change its filter distribution (center). After being trained from scratch (right),
resulting models are competitive in accuracy compared to the original model, however,
they require less computational resources.

from the original ones of a base pattern, generally the incremental one. Being based

on NAS, the main limitation for widely using these CNS algorithms resides in the high

computational cost implied in the exploration of the search space, which requires training

and evaluating a vast number of candidate models before finding a good distribution of

filters.

To overcome the limitation of CNS methods that incur high computational costs, this

work is based on the idea that exploration should be performed in a few simple and

radically different distributions to the pyramidal pattern instead of exploring individual

widths in each layer. This work introduces a small set of these predefined distributions,

called templates, intuitively created firstly by using highly diverse patterns defined

by quadratic functions. Later, they are improved by using simple linear equations or

combinations of them that can be easily implemented in most of the existing CNN

classical and state-of-the-art models.

As depicted in Figure 1.1, to use a template, the method takes a base model and rede-

fines its filter distribution with the pattern provided while keeping the rest of the model

unchanged. The process preserves the number and types of layers, including pooling ones.

Therefore feature map resolutions at each level are those of the original model. Once

trained, the new model requires similar floating point operations (FLOPs), produces
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better or at least competitive accuracy, and consumes less of other resources. Unfortu-

nately, this research has not found a way of uncovering the most appropriate template

that could work with each task. Nonetheless, being the set of templates small enough,

a simple sequential search is still fairly competitive in time compared to automatic

methods. Moreover, experiments show an emerging pattern in which some templates

present favourable features according to the requirements of the task to be performed.

Experimental evidence shows that simple changes to the pyramidal distribution of

filters in some CNN models improve accuracy while reducing the number of parameters or

memory footprint. Experiments also highlight that tested models, although significantly

changed in their original filter design, present high resiliency in accuracy, a phenomenon

that requires further research and explanation. If resilience is a general condition for

all neural networks, the deep learning community will benefit in practicability, allowing

practitioners to freely choose an appropriate number of channels according to their

priorities in resource consumption without sacrificing the performance of the network

significantly.

1.1 Contributions

The conventional wisdom in deep learning is that increasing the filters in deeper layers

of neural networks increases the diversity of high-level attributes leading to a better

generalisation [70, 106].

This thesis offers the following main contributions:

• Chapter 3 challenges the widely adopted idea of incrementally allocating filters

in a convolutional neural network by adopting a small set of entirely different

patterns called templates for redistributing filters without varying the rest of the

original architecture.

• Chapter 4 explores the scope to which the use of templates can be beneficial to

convolutional neural networks and compares resulting models from other filter

number manipulation techniques such as compression methods.

• Chapter 5 proposes a linear-segment definition based on additive filter changes

from the PyramidNet design to develop a new set of improved templates that

matches a FLOPs budget.
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1.2 Thesis Outline

Chapter 2 examines the development of convolutional neural networks from their first

conception, including models that won the ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) [170]. This chapter outlines the primary improvements of listed

models and shows that the ImageNet dataset has influenced architectures to follow a

pyramidal filter distribution with no other argument than empirical results of improved

accuracy. Other strategies for optimising models that impact the distribution of filters,

such as pruning, distillation and neural architecture search, are also discussed.

Chapter 3 introduces the concept of templates to examine whether the standard

pyramidal configuration of filters in most known CNN models is beneficial to the task

of image classification. Experiments in this chapter compare the accuracy of models

by redistributing an equal number of filters in all templates without controlling the

redistribution effects on resources. Additionally, the chapter presents a resource matching

experiment showing the higher efficiency of templates in resource usage.

Chapter 4 explores the tasks of global localisation and super-resolution using tem-

plates with some classical CNN architectures to determine the scope in which a different

distribution of filters produces enhanced models. The chapter compares the reduction

effects of templates with three different pruning techniques and evaluated the templates

functioning in a serial pipeline with MorphNet, a CNS method.

Chapter 5 redefines the set of templates adopting linear segments to form the pat-

terns for the filter distributions. The new templates definition, inspired by the additive

PyramidNet pattern, produces higher accuracies and allows to match a predefined budget

of FLOPs. Templates are tested in an expanded group of domains where the performance

of models depends more on the internal representation than the final outputs. Templates

are also evaluated in the NASBench-101 dataset illustrating the importance of exploring

different distributions of filters.

Further, chapter 5 presents a study to find differences in the internal representations

of each template and then, relate the best performing template with features provided

for the CKA similitude metric.

Chapter 6 summarises the research presented in this thesis, outlines our main

findings and puts them into perspective concerning their implications for the neural

network designer community.
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2
RELATED WORK

This chapter revisits the evolution of convolutional neural networks since their

first appearance. We particularly mention models that have been successful in

the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [170]. We

describe their main innovations and show that one feature has been barely investigated

in convolutional network models: the pattern design for distributing filters and how it

influences the efficiency of models. This pattern comes from the earlier architectures

and has been adopted in most subsequent models. Just a handful of architectures, all of

them recently created, have been built using a different distribution. The pattern has

been so widely accepted that even in most automatic discovery methods, this feature is

not considered in the exploration space, but it is just adopted as the default distribution.

This chapter also revisits other techniques conceived to optimise models that affect the

distribution of filters like pruning and distillation. We enumerate them in this chapter

as well as methods for automatic discovery of models.

2.1 Evolution of Convolutional Neural Networks

Although the evolution of neural networks has been described in numerous articles

[6, 7, 115, 161, 171, 179], we go again through the different models having a glimpse

on features extrinsic to network architectures such as activation and loss functions,

parameter optimisation or regularisation. Additionally, we focus on architectural inno-

vations, such as multi path modules, deeper layers, residual connections and grouped
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Figure 2.1: Year of introduction of well-known CNN architectures cited in this section
showing used patterns of filter distribution. Our work is shown in bold.

convolutions, like the work in [94] but emphasise designers’ decisions on the distribution

of the number of filters within the layers. This characteristic is significant in our work,

and we will show later that from the first successful CNN architecture, almost all subse-

quent convolutional models have been using an increasing pattern for the distribution of

neurons. As far as we know, there is no other justification for keeping this incremental

distribution than “to keep the richness of the representation” [106].

Since LeNet’s emergence in 1998, there has been a massive expansion of research

around the pyramidal distribution. It has been taken for granted that the design is

optimal for all models and datasets, at least in the computer vision domain. Recently,

researchers are looking back building new architectures using a different pattern to the

pyramidal design [46, 174, 192]; however, they are only exploring the uniform pattern.

This work calls for extending the search to other different exploration spaces for filter

distributions, and it shows that some of these new distributions can produce more

efficient models (See Figure 2.1).
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Figure 2.2: Layers in Fukushima’s Neocognitron with the description of a uniform pattern
for filters’ distribution. Image and text from [56].

2.1.1 Early Neural Networks

Origins of artificial neural networks (ANN) go back to several decades ago with the work

published in the forties by McCulloch and Pitts, describing a mathematical model for

the behaviour of nets of biological neurons [131]. Among the model’s limitations were

the lack of a learning procedure and the use of binary data. A more complete neuron

model was introduced in the Perceptron [167]. It works as a binary classifier firing the

neuron when a weighted sum of the inputs exceeds a predefined threshold. The single-

layer model incorporated an algorithm for learning, and it was not limited to processing

binary inputs; however, it was found the Perceptron was capable of solving only linearly

separable functions [135]. Ivakhnenko and Lapa published the first functional networks

with multiple layers, later known as multilayer perceptron (MLP), in 1965 [177]. Still,

only until the work of Rumelhart, Hinton and Williams in 1986, it was shown neural

networks could find solutions for non-linear classification problems. Using backprop-

agation as a learning technique, these multilayer networks can produce meaningful

internal representations in intermediate layers [169]. The first model resembling modern

convolutional networks was Fukushima’s Neocognitron, published in 1980 (see Figure

2.2). This model has the ability to be invariant to changes in position or tiny distortions

in shape in stimulus patterns [56].

2.1.2 First Convolutional Networks

The architecture of the Neocognitron carries a hierarchical multilayered structure in

which the neurons in deeper layers respond to more complex features of the input pattern.

9
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Figure 2.3: Layers in LeNet-5 architecture. Image from [106].

The paper outlines that the number of cells in each layer decreases with the layer’s

depth. Nevertheless, the experimental section depicts a similar number of neurons in

each intermediate layer (24 to be specific). The first successful application of a CNN was

presented in a handwritten zip code recognition system [105]. The authors trained a

convolutional network, alternating convolutions with subsampling layers and stacking a

couple of fully connected layers at the end. This model is the first constructed with the

increasing pyramidal pattern, and it was named LeNet-5 (Figure 2.3). It presents all the

essential elements of current CNNs. Its design has a set of three convolutional layers (6,

16 and 120 neurons) and two fully connected layers (84 and 10 neurons).

AlexNet [100] builds on LeNet-5 design and introduces several improvements, still

in use in many current CNNs, that had been developed separately: ReLu for activation

functions [143], max-pooling layers for subsampling [160], dropout for regularisation

[79] and training process performed in GPU [185]. This last feature exploits the highly

parallelisable nature of neural network operations, drastically reducing the training

time. Its design consists of eight layers arranged in an almost pyramidal distribution (96,

256, 384, 384 and 256 units in convolutional layers). This model was the winner of the

ImageNet Large-Scale Visual Recognition Challenge [170] in 2012, beating handcrafted

feature encoding methods by a considerable margin.

One crucial work that redefined the shape of AlexNet filters distribution to be the

most widely used distribution is the one presenting ZFNet model [214]. The paper

experimentally shows that using small 3x3 filters and changing the number of filters

to 512, 1024 and 512 in the last convolutional layers decrease the validation error on

ImageNet by three percentage points.

The most recent models resembling LeNet-5 are the family of VGG architectures

[183]. The authors adopted the distribution of filters proposed by Zeyler and Fergus [214]

and tested different architectures by changing the depth. Filters were assigned following

10
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Figure 2.4: Distribution of filters by layer in VGG architectures. Image from [183].

the incremental pattern 64, 128, 256, 512, 512. To cope with the different depths, they

grouped convolutional layers in five blocks, as the number of layers in AlexNet, for each

particular architecture and assigned the same number of filters within the block (see

Figure 2.4).

2.1.3 Deeper, Wider and Denser

Although layers within blocks in VGG has nothing in particular other than the same

number of filters, designers realised this strategy allowed easier development of new and

deeper models. It is more flexible to design a small structure and then repetitively stack

it to form a complete network [119]. The GoogLeNet [187] model was built using identical

Inception modules. The authors state that the network topology tries to approximate

locally sparse structures with dense elements to avoid increasing computational resource

utilisation while conveniently exploring different-sized patches. With the increase in

depth, GoogleNet faced the problem of vanishing gradients [80]. The solution was to add
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Figure 2.5: Distribution of filters by layer in GoogLeNet architecture. Image from [187].

auxiliary outputs to translate gradient signals to lower parts of the architecture. We can

observe in Figure 2.5 that the pyramidal distribution of filters remains.

Following this block-style design emerged ResNet architectures [73] with a formu-

lation that enables very deep networks to be more easily trained. Their blocks are

constructed with residual connections that help reduce the degradation problem, leading

to poorer performance when stacking numerous layers in a neural network model [61].

In Figure 2.6, we can infer that the authors used the same filter distribution adopted in

VGG.

Another family of models with a solution for diminishing gradients is FractalNets

[102]. The authors argue that residual connections are not necessary, and they proposed

drop-path regularisation, which randomly enables a single column subnetwork to be

trained at once. They also declare in the FractelNet paper: “we set the number of filter

channels within blocks 1 through 5 as (64, 128, 256, 512, 512), mostly matching the

convention of doubling the number of channels after halving spatial resolution”.

After ResNet, based on the idea that deeper models are better models [194], re-

searchers started training networks up to more than one thousand layers [74, 85].

Although they utilised varied strategies for enabling convergence, such as an adaptive

rectifier and a robust initialisation method [72], very soon they realised that the cost

of slightly improving performance came at the expense of meaningfully increasing the

number of layers. Very deep models still suffered from diminishing gradients and a very
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Figure 2.6: Comparison of filters by layer between VGG and ResNet architectures. Image
from [73].

long time to train.

A natural alternative to keeping increases in depth was to scale models in width [11].

WideResNets [213] are constructed using residual modules in networks from 16 to 52

layers, proportionally scaling the number of filters from 2X to 12X. Being shallow, wide

residual networks are faster than deeper networks, but on the other hand, they count

more parameters and therefore are prone to overfitting. For this reason, the authors

added dropout layers within residual modules to work as regularisers. Similar to previous

architectures, the WideResNet base model adopts an increasing distribution of filters, as

shown in Figure 2.7.

Motivated by the success of residual connections, designers created DenseNet [84].
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Figure 2.7: Distribution of filters (16, 16, 32 and 64) in a Wide Residual Network with
the original residual block. Image from [213].

The architecture leverages feature reuse by adding short paths to every previous layer

inside a block. Because of these dense connections, the model has a low number of

parameters but at the cost of high memory utilisation and increasing FLOPs. Feature

maps in previous layers must reside in memory to be concatenated and processed again

along with the new features. The computational burden restrained the authors from

increasing the number of new filters in each block to only twelve. The DenseNet block

has a constant number of new filters in each layer, but the resulting number of feature

maps in the global design still resembles an increasing distribution.

Since the first CNN models, the incremental distribution of filters has followed the

shape of a stepped pyramid. The "steps" are found in the downsampling layers, where

the feature map resolution decreases by the pooling operation, and the number of filters

increases, doubling the previous ones. The work presented in [198] unveils a particular

behaviour in residual networks: removing blocks from the architecture at test time

have little impact on the final accuracy. This is because the residual connections make

the remaining subnetwork act as if it has been trained isolatedly, and then the final

model performs as an ensemble of subnetworks. The only block removals considerably

hurting the accuracy are those that happen in the sections next to the downsampling

layers. PyramidNet designers build on this outcome and hypothesise that a more reliable

ensemble distributes the damage in all the blocks [70]. They propose to smoothly increase

the number of filters in each layer within the block as shown in Figure 2.8.

2.1.4 Efficiency-Oriented Architectures

Once designers found hardware limitations for training and running deeper and wider

networks, they looked for solutions to reduce computational resource consumption of
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Figure 2.8: Number of filters in additive PyramidNet (red) and multiplicative PyramidNet
(blue). In both cases filters are smoothly distributed along layers. Better experimental
results were obtained with the additive distribution. Image from [70].

models instead of exclusively improving accuracy. One of the first models to show a

dramatic reduction of resource demands was SqueezeNet [86]. Using a module known

as Fire block, the model can reach AlexNet comparable accuracy with a much smaller

number of parameters. The reduction is achieved by reducing channels entering the

3x3 convolutions within the Fire block with a few 1x1 filters. The authors present an

extensive description of the exploration space for the hyperparameters defining the

architecture; however, filters in each layer are kept with the incremental distribution

without further explanation.

The GoogLeNet model suffered several refinements leading to better accuracy and

more computational efficiency. Firstly by adding batch normalisation layers [87]; sec-

ondly, by decomposing 5x5 convolutions with two cheaper sequential 3x3 ones; lastly, by

factorising nxn convolutions in nx1 followed by 1xn convolutions [188].

The author in [29] took inspiration from Inception modules and combined them with

the concepts described in [89, 182] of factorising convolutions to reduce computational

demands. This type of convolution, called depthwise separable convolutions, can signifi-

cantly reduce the number of operations performed in a neural network while keeping

similar accuracy. The rationale behind this idea is that the information contained in the

channels can be disentangled from spatial information. The distribution of filters in this

new model, named Xception, remains similar to the GoogLeNet model.

Almost concurrently with the appearance of Xception, a family of models called

MobileNets were proposed aiming to run efficiently in constrained environments [82].
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Figure 2.9: Number of filters in the MobileNet base model. Designers can fit variate
computational budgets using the architecture with a width multiplier. Image from [82].

MobileNet designers extensively used depthwise separable convolutions composed of 3x3

depthwise convolution filters performed in each input channel, followed by pointwise

convolutions made of 1×1 convolutions.

Additionally, designers introduced two extra parameters to control the model’s ca-

pacity: the width and resolution multipliers. These hyperparameters provide a flexible

design that allows the use of MobileNets in a broad range of applications. We emphasise

that the width multiplier proportionally increases or decreases the number of filters

but follows the base pyramidal distribution shown in Figure 2.9. Similar to GoogLeNet,

MobileNet architecture has been refined to reach higher accuracy with fewer resources

[175]. MobileNet V2 authors introduced the inverted bottleneck module, which on one

side, alleviates the loss of information caused by embedding the representation manifold

into a lower subspace with a non-linear transformation. On the other side, it incorporates

residual connections between the bottlenecks keeping expansion layers in the middle of

the module and saving computational costs.
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2.1.5 Grouped Convolutions and Attention

The strategy of the Inception module of splitting the input, processing it in separate

branches with different filter sizes, and then merging all the branches again is the

inspiration for a new type of architecture. The first of them is the ResNeXt model [205],

second place of ILSVRC 2016. The authors built a multipath structure taking parallel

ResNet blocks that split the input and merged the output at the end. Instead of having

specialised filter dimensions, the ResNeXt block uses similar 1x1 and 3x3 filters in all the

paths. The number of paths (known as cardinality) is a new hyperparameter that adjusts

the size and, therefore, the accuracy of the network. The macrostructure of ResNeXt

is similar to the ResNet model but proportionally counts much more filters. However,

the number of parameters and FLOPs are equivalent due to the implementation of

multibranch modules as grouped convolutions.

These grouped convolutions, combined with depthwise convolutions, are also present

in ShuffleNet, a model designed to be small and efficient [217]. The authors exploit the

assumption from [216] that keeping channel information separated in each group (or

branch) could limit the network’s performance and that randomly shuffling channels

could reduce the effect. Similarly, they proposed to mix the channels between groups. In

this way, all grouped convolutions can access information contained in the rest of the

branches without increasing computational requirements. However, the idea of doubling

the number of channels every time the feature map size is reduced still rules this design.

The concept of attention has been studied in several works [18, 88]. It is a mechanism

that enables dynamically weighting features produced for convolution layers depending

on the input being processed to select the more important ones for the task. Some of the

works building effective attention mechanisms are found in dasNet [184], stacked hour-

glass networks [144], and residual attention networks [199]. But it was the SENet model

which won the ILSVRC 2017 using attention. The authors of SENet modified existing

block-based architectures such as ResNet and Inception by adding an attention structure

called squeeze and excitation block (a.k.a SE block) [83]. The SE block first captures

global spatial information into a channel embedding. Then it learns the importance of

each channel using a pair of fully connected layers with a non-linear transformation. The

output of the original ResNet or Inception block is scaled according to the importance

learned by the SE block. The distribution of filters in the final model is not affected by

the modifications of the SE block, as reflected in Figure 2.10.
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Figure 2.10: Comparison of the number of filters in ResNet against ResNet and ResNeXt
architectures using SE blocks. SE enabled models are identified by the SE prefix. Image
from [83].

2.1.6 Recent Developments for Uniform Distribution

Since the start of this Thesis, there have been other works related to revisiting the

uniform distribution. We cite in this section state-of-the-art networks created with this

distribution of filters. They underline that, by not necessarily following the pyramidal

pattern, it is possible to achieve higher performance and structure simplicity, making

them easier to implement. We note that the first recent network successful with the

uniform distribution was published the same year our filter templates were publicly

presented.

In 2019, the first work was introduced following the neocognitron filter distribution.

The authors call the new type of networks Isometric Neural Networks (INN) [174]. The

research behind INN is not focused on the distribution of filters. Instead, the paper

argues that the significance of the internal resolution of hidden layers (internal feature

map resolutions) is more crucial than the resolution of the input image on the final

performance of the network. Based on the findings, the authors of INN propose a fixed

internal resolution across the architecture. Consequently, they keep a constant number

of filters in each layer (see Figure 2.11). As a result, INN not only performs higher than

MobileNets, but they count fewer parameters and memory footprint.

Based on the attention mechanism, the Transformer architecture appeared in the

natural language processing (NLP) domain. It was created to address the problem

of lack of parallelisation, and the subsequent slow training procedure, produced for
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Figure 2.11: Comparison of an isometric neural network (left) versus a standard pyrami-
dal architecture (right). Blue blocks schematise the resolution and number of feature
maps. Image from [174].

recurrences in existing networks [197]. Although attention is used in several computer

vision-based models, it is combined with convolutional networks. The Vision Transformer

(ViT) has been adapted to work with patches of images instead of tokens (words) [46].

Like the tokens in the NLP transformer, the patches are encoded with a linear learnable

embedding. The authors removed the convolutional structure entirely and utilised the

attention mechanism proposed in the original transformer. Its performance beats CNN

based architectures when trained in massive datasets and then fine-tuned to ImageNet.

The ViT network is composed of constant size transformer encoders keeping equal

resolution throughout all layers in a uniform pattern.

The use of image patches at the input of ViT networks raised the question of whether

their success originated from the transformer encoder or from the use of patches. Re-

searchers proposed using patches (previously embedded as in ViT) as inputs of a convo-

lutional network called Convolutional Mixer (ConvMixer) to answer the question [192].

Instead of using the classical pyramidal pattern for assigning filters in each layer, the

authors of ConvMixer copied the uniform resolution and number of channels from the

ViT network (see Figure 2.12). The resulting very simple architecture outperforms the

accuracies of ViT and ResNet on ImageNet using similar parameters.
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Figure 2.12: ConvMixer structure uses copies with the same number of filters of a simple
convolutional block. Image from [192].

2.2 Methods for Neural Network Model Compression

In the previous section, we listed the advances in convolutional neural networks. De-

spite new improvements having brought more powerful models, they were achieved at

the cost of increasing models’ computational complexity [94]. Many of these networks,

especially the best-performing ones, necessitate massive amounts of computing and mem-

ory. These restrictions not only raise infrastructure costs but also complicate network

implementation in resource-constrained contexts like mobile devices [138].

The necessity of finding a way to reduce these high demanding networks encouraged

the development of techniques to compress models without decreasing their performance.

Theoretical findings state that a smaller system shows better generalisation performance

[17]. Neural models are over-parameterised [40, 176]. Then, it is considered they are

amenable to be reduced in size and, therefore, in resource requirements [39] always that

the network dimension surpasses a certain minimum threshold [13].

Compressing a neural network allows multiple advantages. The final model is usually

faster to train, with less latency and reduced memory needs. These features enable it to

be deployed in low-energy devices used in mobile applications. Moreover, implementing

numerous compressed models in big data centres can help significantly reduce the total

energy consumption [116].

We revisit in this section two important compression methods for neural networks

related to our work: network pruning and knowledge distillation. Although templates

are not purposely designed like a model compression technique, many reach comparable

resource demand reductions.
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Figure 2.13: Unstructured and structured pruning approaches. The original model (left)
is reduced by eliminating some of the weights (top right) or complete neurons (bottom
right). Image from [25].

2.2.1 Neural Network Pruning

The purpose of pruning methods is to achieve a reduction of unnecessary elements in

neural network models such as connections, filters, or layers [16, 206]. Early pruning

works were focused on reducing the number of connections (parameters) [107, 142, 163].

The methods are known as unstructured pruning, and although they have shown to

be successful [47, 126, 139], the resulting networks are difficult to implement due to

their sparsity, requiring special hardware and libraries [71]. Recent studies claim that

the levels of compression achieved by these methods are not reachable by training the

reduced model from scratch [57].

On the other hand, structured pruning, which prunes at the levels of channels, layers

or even blocks, produces dense models that harvest the characteristics of actual GPU

devices. Figure 2.13 schematise the difference between the two approaches. Among all

the levels of structured pruning, the most popular is carried out by removing complete

neurons [75, 76, 104, 128, 208] using some heuristic. Thus, the final model ends up

with a different distribution of filters. We interpret this definition as if it is implicitly

assumed in pruning methods that the original distribution of filters is not optimal for

the architecture being reduced. Pruning methods assume there exists one distribution

that uses fewer filters but is still capable of reaching similar or even superior accuracy.

In that sense, our work is related to neural network pruning because we explore some

radically different distributions of filters for existing models.
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We describe below the three main beliefs that have been under discussion in the last

years regarding the importance of trained weights in a neural network:

1. Final weights are important, and then, neural networks can be reduced after/during

training by cutting less relevant elements.

2. Initial and final weights are important, therefore, neural networks can be reduced

after/during training by removing less relevant elements and then training the

subnetwork again from the original initialisation.

3. Only structure is essential, so neural networks can be reduced before training by

removing less relevant elements out of budget.

2.2.1.1 Pruning Based on Final Weights

Like the earliest pruning methods, the first group of works relies on the final weights of

the model. The network has to be fully trained, and then, metrics about the importance

of each element are used to decide whether to delete any of them. By far, this is the

predominant belief [10, 163], and it was adopted since the Optimal Brain Damage (OBD)

work [107]. It is commonly acknowledged that trained weights with high values are more

critical than those with low values. Furthermore, it is possible to group weights using

the `1−norm to remove complete filters [110]. This removal of weights with zero or

nearly zero values is the purpose of norm-based pruning algorithms. This means that the

distribution of weight magnitudes should be sufficiently wide to include enough weights

near zero to produce a small network. In some cases, however, this doesn’t happen,

making pruning based on a threshold problematic [75].

Pruning the final weights eliminates network redundancies while lowering the num-

ber of calculations without compromising accuracy. However, because the criterion to

select elements to remove is not always precise, certain critical elements may be left out,

resulting in a reduction in accuracy. To compensate for the loss of precision, the model

has to be retrained for some epochs using lower learning rates than in regular training

in a process known as fine-tuning [165] (see Figure 2.14).

2.2.1.2 Pruning Based on Initial and Final Weights

The idea of retaining initial weights was first introduced in the lottery ticket paper [51].

The authors hypothesise the existence of particular subnetworks (a.k.a. winning tickets)

hidden in an entire network model with such characteristics that, when trained isolated,
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Figure 2.14: Typical prunning pipeline to reduce a neural network model with minimal
diminishing in accuracy. Image from [140].

they can compete in accuracy with the original network. To be able to discover these

winning tickets, the whole network is fully trained from random initialisation. Next,

the network is pruned with some existing pruning methods. Then, the remaining model

needs to be initialised to their original random weights and be retrained. Experiments

indicate that dense, randomly initialised sub-networks may be trained effectively and

with the same training iterations as the original network.

According to a follow-up study [220], the winning tickets perform better than ran-

domly on some datasets even without any training. In light of this, they propose a

technique for locating a good subnetwork inside a randomly initialised network with

high accuracy.

There have been several improvements over the original lottery ticket paper extend-

ing the hypothesis with a new conjecture[129] to find winning tickets without training

[159] or providing more efficient methods for winning tickets discovery at early training

stages [52]. In addition, some authors have tested the lottery ticket hypothesis in new

architectures [26] and tasks [59].
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2.2.1.3 Pruning Based On Structure

These methods challenge two central assumptions in the field of neural network pruning

[124]. The first one assumes that starting with a large network is necessary because it

provides high accuracy. Then because of the over-parameterisation of the model, one can

remove redundant weights safely with negligible reductions in performance. The second

assumption is that after completing the model training, the final weights are relevant

for selecting the portions of the network that should be pruned.

Experimental evidence of the superior performance of large models over pruned

models trained from scratch has been presented in several works [110, 212] however,

authors of [124] claim that superiority is not undoubtedly true for structured pruning

methods. They found that a small model randomly initialised can perform similar or

better than the original model from which the small model was obtained. Therefore,

the model can be reduced directly to the required target size and trained from scratch.

This finding suggests that the reduced architecture may be more relevant for these

pruning strategies than the conserved weights. The approach presented in our research

about templates relies on the previous result. We claim that we can change the filter

distributions in a model straight away without doing any pretraining and still obtain

competitive accuracies.

2.2.2 Knowledge Distillation

While neural network compression is performed in pruning by removing less important

elements, knowledge distillation (KD) methods follow a different approach of replacing

the complete neural network (Teacher) with a smaller one (Student) [78] (see Figure

2.15). KD methods are based on the same premise used in pruning methods that models

are over-parameterised and therefore amenable to be reduced. However, KD methods

rely on a second assumption with a broad application than neural networks: it is easier

to train a small model not on the original data but in the mapping function the big model

has learned [22].

Although the first work focused on obtaining a small model from a pretrained cum-

bersome model [78, 112], recent works have proposed to perform the training process

of the teacher and the student concurrently [8, 203]. Furthermore, KD techniques are

not restricted to distil knowledge from a single big model but multiple ones combined

in an ensemble. Training the student network requires not the original labels of the

data but the processed labels from the ensemble (soft labels). The standard approach to

24



2.3. NEURAL ARCHITECTURE SEARCH

Figure 2.15: The knowledge distillation framework is composed of teacher and student
models. Image from [65].

combining multiple teacher models is averaging the outputs [23, 130]. Some other works

have proposed to combine the output distributions [54, 145].

The area of Knowledge distillation continues to be very active [4] with applications

in numerous domains such as image classification [168], semantic segmentation [122],

medical data mining [134] or video captioning [148]. Currently, several efforts are made

to have a theoretical understanding of the distillation process [5, 150, 153].

2.3 Neural Architecture Search

The process of designing a neural network is a task mainly based on experience and

experimentation that consumes a lot of time and computational resources. With the

increase in the use of neural networks, particularly convolutional networks for computer

vision problems, a mechanism to automatically find the best architecture has become a

requirement in the field of Deep Learning. Some works were published several years ago

[101, 155] trying to solve the topic of automatic architecture generation, but they did not

provide competitive results compared to handcrafted architectures. Modern algorithms

for neural architecture search (NAS) have rapidly reduced the gap, and recently [221],

they are capable of producing some of the highest performing models with minimal

human interaction [49].

Some approaches to NAS design are reported in [113]. The authors propose a classi-

fication of methods based on three elements: search space, search strategy and perfor-

25



CHAPTER 2. RELATED WORK

Figure 2.16: Modern framework of NAS methods. Image from [164].

mance estimation strategy. These aspects remain present in modern frameworks of NAS

as depicted in Figure 2.16.

Generally speaking, methods for automatic architecture discovery operate similarly.

A search strategy chooses an network from a predefined search space using a controller.

Next, the candidate architecture is passed to a evaluation strategy, which reports back

the true or estimated performance of the sample to the search strategy. Knowing the

network’s performance, the controller iteratively enhances its ability to sample selection.

At the final step, the NAS framework fully trains the best models choosing the highest

performing one.

One of the biggest challenges in automatic architecture design is that the search

space for CNN architectures is infinite. A frequent solution is to take a subset of the

possible values of the elements of the architecture, such as types of layers, number of

filters and interconnections. Even so, the problem is still complex [31, 50, 81] and many

approaches have decided to borrow previously published search spaces [120, 189] (see

Figure 2.17 for some examples of search space). Interestingly, the search space for most

NAS methods is restricted to different sets of layers and their connections. However, the

distribution of the number of filters in each layer follows an incremental pattern similar

to the ones found in the models described in section 2.1.

The exceptions to the rule are the new methods for channel number search (CNS)

designed to automatically find the best number of filters for each layer in a neural

network [64, 109]. CNS methods usually reduce the computational burden caused for

the exploration of the search space by parameter sharing [15, 44, 200, 209]. However,

most of the architectures used as base models to initialise the automatic search in CNS

methods share the practice of increasing filters resembling LeNet design[106].

The network architecture construction process iteratively adds simple blocks based

on the experience of the controller acquired by training [120], by analytical methods
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Figure 2.17: Two different architecture search spaces for NAS methods. A network
structure is built following a sequential design (left) or a more complex pattern (right).
Image from [49].

[36] or by the use of genetic algorithms [123, 127]. Another approach that reduces the

exploration time dramatically is to have a graph defining all networks in the search

space. Then, the edges of the graph defining this super network with shared weights

are reduced by a controller [152], or with stochastic gradient descent [121] alternatively

while training the model’s weights.

The weight sharing paradigm presented in [121] is leading most of the current NAS

techniques [204]. The method uses a relaxation condition to transform the selection

of layers in the architecture into a continuous space using a softmax function. The

relaxation allows performing a simultaneous search of weights and architecture using

gradient descent. The method converges after one day of GPU time, surpassing the

time-consuming previous methods. Most of them with computational demands for the

search process normally in the order of thousands of GPU days (see Figure 2.18).

Initially, a dataset was absent with examples of the best architectures for a particular
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Figure 2.18: Performances of models and resources consumed by NAS methods on the
CIFAR-10 dataset. Image from [27].

problem to feed the controller network to acquire experience in designing and selecting.

Therefore, one popular alternative for training was reinforcement learning (RL) [12].

But the evaluation process of the predicted architecture is carried on a standard manner

by training it with a large number of iterations, and it can only generate classical

architectures composed of sequential layers of convolutional, pooling and fully connected

blocks.

Researchers have proposed several improvements to build better controllers. In [21]

they present a mechanism to rank a group of CNN architectures by generating initial

weights with an auxiliary network. Those weights provide enough information to accu-

rately sort the architectures based on the validation performance of each configuration

with a few iterations. Recently several works released datasets to facilitate the evalua-

tion of controllers. In particular, the NASBench-101 dataset [207] contains the validation

accuracy of all the fully trained models from the typical search space for NAS (see Figure

2.19). New datasets have been extended to wider search spaces but use a surrogate

model to approximate the true validation accuracies [45, 181].
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Figure 2.19: Validation accuracy of fully trained models in NASBench-101 dataset. Every
blue point represents a trained model. Image from [207].

2.4 Conclusions

Since their early origins, this chapter revisited convolutional neural network architec-

tures, starting with the neocognitron. It showed that the distribution of filters began

with a uniform pattern but switched to a pyramidal pattern since the LeNet introduction

in 1989. Since then, the pyramidal design has been predominant in almost all neural

networks, including classical and resource-optimised ones. Methods that modify the

number of filters, such as pruning, neural architecture search, and channel number

search, also initiate their exploration from models following the pyramidal design. We

argue that researchers keep using the pyramidal design because models are mainly

tested on the ImageNet dataset. Therefore, the hyperparameters defining their structure

(including filter distribution) are overfitting ImageNet.

It is clear there are contributions to be made in terms of questioning if the architec-

tures that have been designed for ImageNet are applicable everywhere. The existence

of dataset-dependent architecture requires fasters ways to find networks performing

well in each case. Authors of new architectures such as the isometric neural networks,
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the vision transformer, and the convolutional mixer have looked back and adopted the

uniform distribution again. We aim to open the search for other filter distributions to

benefit the deep learning community by obtaining more efficient models.
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FILTER DISTRIBUTION TEMPLATES FOR IMAGE

CLASSIFICATION

This chapter challenges the widely used design of increasing filters in neural

convolutional models by applying a small subset of diverse filter distributions,

called templates, to existing neural network designs. Experimental evidence

shows that simple changes to the pyramidal distribution of filters in convolutional

network models lead to improvements in accuracy, number of parameters or memory

footprint. We highlight that many recent models, which have had a more detailed tuning

in the filter distribution, present resiliency in accuracy to filter distribution changes,

which requires further research and explanation.

Experiments in this chapter use an equal number of filters in all templates without

constraining the redistribution effects. We extend these experiments in chapter 5 where

templates are evaluated with more rigorous experiments keeping FLOPs to similar

values as in the original model and then comparing resource consumption.

3.1 Convolutional Neural Networks

A CNN consists of a set of layers. The first (input) layer is the one that directly takes

an image for further processing through the following multiple hidden layers, typically

including convolutional layers, pooling layers, fully connected layers and normalisation

layers. Finally, the final layer (output) produces a prediction relative to the sample
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introduced in the input layer.

Each convolutional layer Ln in a network of n layers apply M filters (we will use the

terms filters, kernels and neurons similarly) through overlapping regions of the input

image. Its functionality is defined by the number of input and output feature maps, filter

sizes, and skipping factors (strides). A convolutional layer produces M equal-size feature

maps with resolution (Mx, My). All filters of size (Kx,K y) are convolved over the input

image using steps Sx and Sy pixels in x and y directions. The M output map resolutions

(Mn
x , Mn

y ) for each layer are defined by the number and size of the filters in the equations:

Mn
x = Mn−1

x −Kn
x

Sn
x

+1

Mn
y =

Mn−1
y −Kn

y

Sn
y

+1

Each feature map created in layer Ln−1 is processed as input by layer Ln producing

Mn−1 output feature maps. Filters convolving different sections of an input feature map

share their weights but have different receptive fields [32].

Pooling layers combine the outputs of neuron clusters at one layer into a single

neuron in the next layer using one sample (e.g. the maximum or the average value) from

each cluster. Samples are taken from non-overlapping sections (patches) of Px×Py pixels.

The benefit of pooling layers is to allow position invariance over wide local areas and

reduce the processing of high resolution feature maps by a factor of Px ×Py [19].

Fully connected layers have all their neurons connected to all activations in the

previous layer, as seen in regular Neural Networks. This type of layer usually forms the

last layers in a CNN architecture. As they are in charge of producing the final prediction,

changing their size and activation function gives the CNN the flexibility to work in

different tasks. Traditionally, a CNN ends with a Softmax activation function [20] for

classification tasks, while a ReLu activation [2] is used in regression problems. Changing

the last layer according to the required output is a way to build a task-dependent map

using deep networks.

3.2 Popular CNN Architectures

The state-of-the-art networks evaluated represent some of the highest performing CNNs

on the ImageNet challenge in the previous years[170]. They have been primarily tested
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on classification tasks and also have demonstrated a solid ability to generalise to im-

ages outside the ImageNet dataset by transfer learning. Therefore, they are expected

to perform well in regression tasks, as PoseNet is based on the GoogleNet network.

Additionally, we present some state-of-the-art models designed to maintain a low number

of parameters. We merely describe those architectures since we are not interested in the

architectures themselves. We used them only as a map representation and as a tool for

visual features exploration.

The VGG network architecture [183] is recognised for its simplicity (see Figure 2.4).

It is composed of sequential convolutional layers followed by max-pooling reduction

layers. Finally, two fully-connected layers and a softmax classifier manage the final

classification. The main disadvantage of these networks is the size of their parameters,

being the biggest of all the architectures evaluated.

PoseNet [93] is also an adaptation of GoogleNet to be used as a regressor (see Figure

2.5). The intermediate classifiers are discarded at test time, and the softmax classifiers

are replaced with regressors. The authors placed a fully connected layer before the final

regressor acting as a localisation feature vector.

Authors of ResNet [73] succeed on the problem of training very deep CNNs by

reformulating the assumption that the network blocks are modelling a function closer

to an identity mapping than to a zero mapping. Therefore, it should be easier to find

differences with reference to an identity rather than a zero mapping. This assumption is

carried out by adding additional references at the end of building blocks (see Figure 2.6).

The MobileNet network [82] is built on depthwise separable convolutions except for

the first layer, which is a full convolution. All layers are followed by a batch normalisation

layer and a relu nonlinearity except the final fully connected layer, which consists of a

softmax layer for classification.

3.3 Convolutional Neural Networks and Their
Default Filter Distribution

An important consideration to create a convolutional neural network (CNN) model is the

number of filters required at every layer. The Neocognitron implementation, for example,

keeps an equal number of filters for each layer in the model [56]. A very common practice

has been to use a bipyramidal architecture. The number of filters across the different

layers is usually increased as the size of the feature maps decreases. This pattern was

first proposed in [106] with the introduction of LeNet and can be observed in a diverse
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Figure 3.1: Filters per layer using the proposed templates for filter redistribution in a toy
VGG style model. Base distribution, which is the original distribution, shows the common
design of growing the filters when resolution of feature maps decreases in deeper layers.
Although the total number of filters is kept constant after templates, changes in filter
distribution induce different effects in performance and resource consumption.

set of models such as VGG[183], ResNet[73] and MobileNet[82]. Even models obtained

from automatic model discovery, like NASNet [222], follow this principle since neural

architecture search methods are mainly formulated to search for layers and connections.

In contrast, the number of filters in each layer remains fixed. The motivation behind this

progressive increase in the number of kernels is to compensate for a possible loss of the

representation caused by the spatial resolution reduction [106]. In practice, it improves

performance by keeping a constant number of operations in each layer [30]. It remains

unknown if this pyramidal distribution of filters is also beneficial to different aspects of

model performances other than the number of operations.

3.4 Why Not A Learned Function?

We have mentioned in section 2.3 that the main disadvantage of NAS and CNS methods

is the high computational cost (some in the order of thousands GPU days) produced

for searching the space of possible solutions, not taking into account such space is
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incomplete and chosen based on experience. Trying to learn the function defining the

filter distribution could face identical drawbacks caused by searching any arbitrary

function. One solution is to reduce the set of possible functions (e.g. by searching only

linear functions). We go further by reducing the number of points that the searched

function should fit and constraining the number of FLOPs that the model with the new

distribution should count. However, the remaining space is still big enough to require a

considerable computational budget. Alternatively, we propose a small set of different but

straightforward distributions that can be exhaustively evaluated.

While our templates are heuristically chosen, they open avenues for insight and al-

ternatives for designing models. While searching the entire space may sound intractable,

the small number of proposed templates offer a fast and iteration-less alternative to

architecture search or optimisation, which can deliver better performance straight away.

3.5 Filter Distribution Templates

While most of the neural network architectures show an incremental distribution of

filters, recent pruning methods such as [64, 104], have yielded different filter distribution

patterns emerging when reducing models like VGG that defy the notion of pyramidal

design as the best distribution for a model. These results are a motivational insight

into what other distributions can and should be considered when designing models. On

one side, the combinatorial space of distributions makes this a challenging exploration.

On the other, however, it emphasises the need to pursue such exploration if resulting

networks can make gains in accuracy and overall performance.

In this work, rather than attempting to find the optimal filter distribution with

expensive automatic pruning or growing techniques, we propose first adjusting the filters

of a convolutional network model via a small number of pre-defined templates. These

templates, such as those depicted in Figure 3.1, are inspired by existing models that have

already been found to perform well and thus candidates that could be beneficial for model

performance improvement beyond the number of operations. In addition, performance

criteria such as accuracy, memory footprint and inference time are arguably as important

as the number of operations required.

In particular, we adopt as one template a distribution with a fixed number of filters as

with the original neocognitron design, but also other templates inspired by the patterns

discovered in [64]. Some of the proposed distributions can be found in different blocks

from the resulting ResNet101 model: 1) filters agglomerate in the centre, and 2) filters
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Figure 3.2: A toy example to show how two different templates with the same number of
filters produce a variety of effects in parameters, memory, inference time and FLOPs.
Layers (rectangles) contain, in total, an equal number of filters (circles) for both templates.
Lines between filters represent parameters. Red squares are by-channel feature maps
that reside in memory jointly with parameters. Flops are produced by shifting filters
along with feature maps. Inference time is affected by flops and number of transfers,
indicated by blue arrows and limited to two simultaneously, between memory and
GPU modules. The diagram assumes filters of equal sizes and pooling between layers.
Differences are scaled up in real models, counting thousand of filters.

are reduced in the centre of the block. In [104, 208] it is also shown a pattern with more

filters in the centre of a VGG model. We define the templates we use in this work based

on these observations.

Different distributions with the same number of filters can lead to different para-

meters (e.g. weights) and different memory or computational requirements (e.g. GPU

modules). In the toy example in Figure 3.2, both models have the same number of filters,

whereas the one on the right has fewer parameters and fewer compute requirements at

the cost of more memory footprint. This example highlights the compromises that filter

distributions can offer for the design and operation of network models.

We define a convolutional neural network base model as a set of numbered layers

L = 1, ...,D +1, each with f l filters in layer l ∈ {1, ...,D}. D +1 is the final classification
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layer. The total number of filters that can be redistributed is given by

(3.1) F =
D∑

l=1
f l .

We want to test if the common heuristic of distributing F having f l+1 = 2 f l each time

the feature map is halved, is advantageous to the model over other distributions of F
when evaluating performance, memory footprint and inference time.

The number of filters in the final layer D+1 depends on the task and remains the

same for all the templates. Therefore, it is not taken into account for computing the

number of filters to redistribute. For architectures composed of blocks (e.g. Inception) we

consider blocks as single layers and keep the number of filters within a block the same.

As a result, a final Inception module marked with f l filters is set to that number of filters

in each layer inside the module.

3.5.1 Uniform Template

The most simple distribution to evaluate is, as the original Neocognitron, a uniform

distribution of filters. Computing the number of filters in an uniform distribution is

straightforward, the new number in each layer is given by

(3.2) f ′l = F/D ∀l ∈ {1, ...,D} .

3.5.2 Reverse Template

Another straightforward transformation for the filter distribution adopted in this work

is reversing the number of filters in every layer. Our final model with this template is

defined by the filters

(3.3) f ′l = fD−l+1∀l ∈ {1, ...,D} .

3.5.3 Quadratic Template

This distribution is characterised by a quadratic equation f ′l = al2 + bl + c and conse-

quently, has a parabolic shape with the vertex in the middle layer. We set this layer to

the minimal number of filters in the base model

(3.4) fmin = min ( f l) l ∈ {1, ...,D}
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so, the new number of filters in the middle layer is described by

(3.5) f ′D/2 = fmin.

Also, we find the maximum value in both the initial and final convolutional layers,

thus

(3.6) f ′1 = f ′D .

To compute the new number of filters in each layer we solve the system of three linear

equations given by a) the restriction of the total number of filters in equation 3.1

(3.7)
D∑

l=1

(
f ′l

)= D∑
l=1

(
al2 +bl+ c

)= F,

that can be reduced to

(3.8)
(

D3

3
+ D2

2
+ D

6

)
a+

(
D2

2
+ D

2

)
b+Dc = F,

b) the equation 3.5 produced by the value in the vertex

(3.9) f ′D/2 =
(

D
2

)2
a+ D

2
b+ c = fmin

and c) the equality from the maximum values in equation 3.6, which reduces to

(3.10) (D2 −1)a+ (D−1)b = 0.

3.5.4 Negative Quadratic Template

It is a parabola with the vertex in a maximum, that is, a negative quadratic curve. The

equation is the same as the previous template, but the constraints change. Instead of

defining a value in the vertex, f ′l at the initial and final convolutional layers are set to

the minimal number of filters in the base model

(3.11) f ′l = fmin l ∈ {1,D} .

The number of filters in each layer is computed again with a system of equations

specified by the restriction of the total number of filters as in the quadratic template

(equation 3.8), and the two points already known in the first and last convolutional layers

(equation 3.11) defined by

(3.12) a+b+ c = fmin

and

(3.13) D2a+Db+ c = fmin.

38



3.6. MODEL COMPARISON WITH SIMILAR NEURONS

3.6 Model Comparison With Similar Neurons

This section investigates the effects of applying different templates to the distribution of

kernels in convolutional neural network models (VGG, ResNet, Inception and MobileNet).

We compare models based on size, memory, and speed in three popular datasets for

classification tasks with models produced from the same architectures with the same

number of neurons.

3.6.1 Datasets and Models

We trained over three datasets traditionally used for convolutional network evaluation:

CIFAR-10, CIFAR-100 [99] and Tiny-Imagenet [103]. The first two datasets contain

sets of 50,000 and 10,000 colour images for train and validation, respectively, with a

resolution of 32x32. Tiny-Imagenet is a reduced version of the original Imagenet dataset

with only 200 classes and images with 64 x 64 pixels resolution.

We evaluate some of the most popular CNN models: VGG [183], ResNet [73], Inception

[187] and MobileNet [82]; which represent some of the highest performing CNNs on the

ImageNet challenge in previous years [170].

3.6.2 Implementation Details

Experiments have models fed with images with the standard augmentation techniques

of padding, random cropping and horizontal flipping. Our experiments were run in an

NVidia Titan X Pascal 12GB GPU adjusting the batch size to 128. All convolutional mod-

els, with and without templates, were trained for 160 epochs using the same conditions.

Therefore, there is some margin for improving accuracy for each distribution by perform-

ing individual hyperparameter [111, 137]. We used stochastic gradient descent (SGD)

with weight decay of 1e-4, momentum of 0.9 and a scheduled learning rate starting in

0.1 for the first 80 epochs, 0.01 for the successive 40 epochs, and 0.001 for the remaining

epochs.

3.6.3 Template Effect Over Baseline Models

We conducted an experiment to test our proposed templates on the selected architectures.

Table 3.1 shows VGG, Inception and MobileNet accuracies improving in all datasets

when templates are applied. Being complex architectures, ResNet and Inception present

the highest accuracy in general. A surprising finding is that in both models difference
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Table 3.1: Model performances with the original distribution and four templates with the
same number of filters evaluated on CIFAR-10, CIFAR-100 and Tiny-Imagenet datasets.
After filter redistribution models surpass the base accuracy. Results show average of
three repetitions.

Redistribution Templates
Model Base Rev Base Unif Quad Neg Quad
CIFAR-10
VGG-19 93.52 ± 0.2029 94.40 ± 0.1609 94.24 ± 0.3080 94.18 ± 0.1501 94.21± 0.1096
ResNet-50 94.70 ± 0.0907 95.17 ± 0.2828 95.08 ± 0.2042 94.41 ± 0.0424 95.23 ± 0.2514
Inception 94.84 ± 0.2787 94.60 ± 0.3089 94.82 ± 0.2300 94.86 ± 0.3031 94.77 ± 0.2145
MobileNet 89.52 ± 3.2479 91.35 ± 3.5317 91.28 ± 3.1284 89.98 ± 2.9819 91.04 ± 3.2207
CIFAR-100
VGG-19 71.92 ± 0.5519 74.65 ± 0.4091 74.03 ± 0.8072 73.55 ± 0.5100 74.05 ± 0.6091
ResNet-50 77.09 ± 1.2008 74.80 ± 0.2969 76.65 ± 1.2796 75.71 ± 0.4808 76.76 ± 0.7595
Inception 78.03 ± 0.7239 77.78 ± 0.8005 78.12 ± 0.4454 77.67 ± 0.8310 76.65 ± 0.1184
MobileNet 65.08 ± 3.7613 66.39 ± 7.7449 68.71 ± 5.2817 63.89 ± 3.8005 67.05 ± 7.5938
Tiny-Imagenet
VGG-19 54.62 ± 1.5897 57.73 ± 0.7783 56.68 ± 1.2042 54.73 ± 0.9091 59.50 ± 1.4912
ResNet-50 61.52 ± 0.9634 53.67 ± 5.6167 60.97 ± 0.5379 59.77 ± 0.7864 60.12 ± 0.7239
Inception 54.80 ± 0.9814 55.24 ± 0.7143 55.78 ± 0.4315 54.97 ± 0.0500 55.87 ± 0.4935
MobileNet 56.29 ± 2.0687 51.40 ± 0.5246 58.11 ± 2.0120 53.37 ± 1.1472 55.76 ± 2.4712

in accuracy between templates is less than 2.3% despite the drastic modifications that

models are suffering after the change of filter distribution. Models that share a sequen-

tial classical architecture, such as VGG and MobileNet, show a better improvement

when using templates in Tiny-Imagenet. A remarkable accuracy improvement of 4.88

percentage points is achieved in VGG.

When analysing resource consumption (Table 3.2), we find models are affected differ-

ently with each template and model. Reverse-Base, Uniform and Quadratic templates

show some reductions in the number of parameters, while Negative Quadratic template

reduces the memory usage. Inference Time is affected negatively for most of the tem-

plates. This is an expected result as original models are designed to perform well in

the GPU. Inception model shows an improvement in speed with reductions of 14% over

inference time with respect to the base model while maintaining comparable accuracy.

ResNet can reduce inference time by 49% at the cost of having slightly less accuracy

than the base model.
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Table 3.2: Resource consumption of selected models when applying our templates keep-
ing the same number of filters evaluated on CIFAR-10 dataset. Models are normally
optimised to fast GPU operation, therefore the original base distribution has a good
effect in speed but the redistribution of filters induced by our templates makes models
capabilities improve on the other metrics. Memory footprint reported by CUDA.

Redistribution Templates
Resource Model Base Reverse Base Uniform Quadratic Neg Quad

VGG-19 20.0 20.0 16.0 15.8 20.0
Parameters ResNet-50 23.5 23.1 12.9 19.0 33.0
(Millions) Inception 6.2 6.7 6.2 7.2 7.0

MobileNet 3.2 2.2 2.2 3.2 2.4
Memory VGG-19 1.3 2.6 4.4 2.0 1.4
Footprint ResNet-50 3.1 11.5 4.1 7.9 3.0
(GB/batch) Inception 1.5 3.1 1.7 2.2 1.6

MobileNet 2.5 5.1 1.5 6.0 1.0
Inference VGG-19 3.0 8.2 5.3 7.5 7.3
Time ResNet-50 46.4 61.0 23.4 59.0 47.6
(ms/batch) Inception 28.5 54.9 34.3 25.2 24.3

MobileNet 3.8 6.8 4.3 7.4 4.9
FLOPs VGG-19 399 4296 2006 3060 1058
(Millions) ResNet-50 1304 16326 3515 9710 4741

Inception 1544 3734 2263 3469 2093
MobileNet 47 760 277 797 132
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Table 3.3: Resource consumption of selected models when applying our templates keeping
the same number of filters evaluated on Tiny-Imagenet dataset. Best improvements on
metrics differ from those obtained on CIFAR-10 suggesting there is not universal best
template. Memory footprint reported by CUDA.

Redistribution Templates
Resource Model Base Reverse Base Uniform Quadratic Neg Quad

VGG-19 25.0 20.6 19.3 20.7 20.6
Parameters ResNet-50 23.9 23.1 13.0 19.3 33.0
(Millions) Inception 19.2 10.0 12.7 18.7 10.1

MobileNet 3.4 2.4 2.4 3.3 2.6
Memory VGG-19 1.5 10.0 4.8 6.8 3.8
Footprint ResNet-50 5.0 10.1 9.6 7.5 9.8
(GB/batch) Inception 5.8 10.8 6.7 8.6 5.9

MobileNet 2.5 5.1 5.9 4.8 1.9
Inference VGG-19 4.9 4.1 4.2 4.6 3.5
Time ResNet-50 13.3 12.8 12.8 11.0 29.9
(ms/batch) Inception 24.0 21.4 28.3 18.3 31.4

MobileNet 5.8 6.7 9.7 7.3 5.3
FLOPs VGG-19 1716 17215 8112 12360 4265
(Millions) ResNet-50 335 4157 908 2489 1195

Inception 1568 3837 2279 3497 2100
MobileNet 51 886 324 913 136
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3.7 Template Effect With Similar Resources

It can be argued that models obtained with templates make use of more resources such

as memory or number of operations in the GPU (reflected in the low inference speed).

So, we formulated a second experiment that makes proportional changes in the models

after applying the templates. We reduce the models and increase them to observe if the

actual total number of filters is adequate for the task the model is performing or if the

model accuracy could improve by adding more filters. Thus, we create curves for each

template performing proportional reductions using a width multiplier with values of 1.6,

1.3, 1.0, 0.8, 0.5, 0.25, 0.1 and 0.05. These curves of reduction allow comparison under

the same amount of resources and compare the use of resources under the same accuracy.

The experiment also shows the level of reduction that our models can tolerate without a

significant loss in accuracy for the evaluated datasets.

We add dashed lines to every plot to be used as a reference for the model with the

original distribution and no reductions, which is the point where both vertical and

horizontal dashed lines cross. In general, any arbitrary vertical line in the plot compares

accuracy between models with the number of resources (parameters, memory or speed).

On the other side, any arbitrary horizontal line compares the resources taken for each

model under each template to produce similar accuracy.

3.7.1 Parameters Count

Evaluating a model’s performance using accuracy and parameters is, by far, the default

approach. We show models performances with these metrics in Figure 3.3. VGG and

MobileNet models improve accuracy almost with any template in CIFAR-10 and CIFAR-

100. By using reductions with width multipliers, the original accuracy can be reached

with less than 25% of the original parameters in the two models. ResNet shows less

improvement when compared with networks with similar resources, yet templates can

reduce the model further before accuracy drops. Inception behaviour considering the

same resources remains similar no matter the template used. In general, for this test,

the uniform template seems to get the best parameter efficiency for all the models.

3.7.2 Memory Footprint

Results in Table 3.2 have shown that comparing parameters is not the best option for

practical implementations. Models with a small number of parameters are not necessarily
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Figure 3.3: Average Accuracy versus Parameters in CIFAR-10 and CIFAR-100 datasets
using templates with VGG, ResNet, Inception and MobileNet. Curves are created by
changing models using width multiplier scaling. An arbitrary vertical line in the plot
compares templates effects using the same amount of parameters. An arbitrary horizon-
tal line compares parameters for reaching the same accuracy. Shadows cover maximum
and minimum of three repetitions. Dashed lines indicate base model accuracy and
parameters.
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related with a small memory footprint or greater speed, and more results are presented

in Figure 3.4. We observe again that templates enhance VGG and MobileNet accuracy.

More than 50% of memory consumption can be reduced in both models while producing

the same accuracy. With this metric, ResNet and Inception improve slightly in CIFAR-10

with the Negative-Quadratic template but perform lower with the rest of the templates.

We attribute the lower memory efficiency the fact that in all the templates except

Negative-Quadratic, the number of filters is increased in the initial layers. At these

layers, the size of feature maps produced for each filter is more significant and, therefore,

more memory costly.

3.7.3 Inference Time

One final comparison also crucial for practical issues is inference time. Our experiments

show the patter of improvement for VGG and MobileNet and degradation of inference

time when adopting templates in ResNet and Inception (See Figure 3.5 in Appendix). In

particular, Inception shows an improvement with the Negative-Quadratic template in

CIFAR-10.

Looking at results in inference time, it seems unpromising to use templates. However,

we can take a different perspective. It is possible to obtain models with better accuracy

by sacrificing inference speed. This could be an undesirable decision, but in practice, it is

frequently chosen. It is clearly reflected in the inference time between different original

models. For example, by using ResNet the accuracy improves compared to the obtained

by VGG in the two datasets tested, but at the cost of increasing the time for inference. On

the contrary, looking for speed, enhancement MobileNet has sacrificed accuracy. In this

sense, our templates are still competitive compared to searching for a totally different

model to improve accuracy.
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Figure 3.4: Accuracy versus Memory Footprint in CIFAR-10 and CIFAR-100 datasets
using templates with VGG, ResNet, Inception and MobileNet. Curves are created by
reducing models using width multiplier scaling. An arbitrary vertical line in the plot
compares templates effects in accuracy using the same amount of memory. An arbitrary
horizontal line compares memory consumption for reaching the same accuracy. Shadows
cover maximum and minimum accuracy of three repetitions. Dashed lines indicate base
model accuracy and memory footprint.
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Figure 3.5: Accuracy versus Inference Time in CIFAR-10 and CIFAR-100 datasets using
templates with VGG, ResNet, Inception and MobileNet. Curves are created by reducing
models using width multiplier scaling. An arbitrary vertical line in the plot compares
templates effects in accuracy between models with same inference speed. An arbitrary
horizontal line compares inference time of models with the same accuracy. Grey errors
bands denote maximum and minimum of three repetitions.
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3.8 Conclusion

The most common design of convolutional neural networks when choosing the distri-

bution of the number of filters is to start with a few and then increase the number in

deeper layers. We challenged this design by evaluating some architectures with vari-

ous distributions on the CIFAR and Tiny-Imagenet datasets. Our results suggest that

this pyramidal distribution is not necessarily the best option for obtaining the highest

accuracy or parameter efficiency.

Our experiments show that models with the same number of filters but different

distributions produced by our templates improve accuracy by up to 4.8 points for some

model-task pairs. Moreover, in terms of resource consumption, templates can obtain

a competitive accuracy compared to the original models using fewer resources with

up to 56% fewer parameters and a memory footprint up to 60% smaller. Results also

reveal an interesting behaviour in evaluated models: a strong resilience to changes in

filter distribution. After modifying models with templates, variation in accuracy for all

models is less than 5% despite the considerable modifications in filter distributions and,

therefore, in the original filter design.

It is important to notice that a reduced number of parameters does not correspond to

low consumption of memory, not even a small inference time. Some of the causes are the

difference in feature map resolution for filters in different layers, the need to keep early

feature maps in memory for late layers and the restrictions for improving parallelisation

in the computational graph of the model.
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BEYOND CLASSIFICATION TASKS: TESTING TEMPLATES

IN OTHER DOMAINS

Image Classification experiments in the previous chapter showed the advantage of

templates to find models with better accuracy by redistributing the same neurons

or filters in unexplored manners. The changes produce new models with different

resource demands than the original models. Compared with similar resources, these

new distributions, called templates, are more effective than the standard incremental

distribution present in most neural network models.

This chapter examines whether neural network models in other domains are amenable

to being improved by using the templates. Previous results showed that templates help

reduce parameters in final models. Therefore the chapter compares templates against

pruning methods. Furthermore, it describes and evaluates how templates can be used

jointly with CNS methods such as MorphNet, to produce more efficient models.

4.1 Introduction

We have found in chapter 3 that template resulting CNNs are more advantageous

than the original models from which they were obtained, particularly for the task of

image classification. We designed experiments in this chapter to explore the scope where

templates can help to improve existing models. We tested the templates using images as

input in two new domains. Firstly, we evaluated templates in a regression task, which is
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generally considered more difficult than classification. Secondly, we evaluated templates

in image super-resolution. Many models in the latter task possess a very particular

feature: they do not contain subsampling layers. Therefore the feature maps remain of

the same resolution along with the architecture, and then the effects of redistributing

templates can differ from other domains.

The proposed distributions in chapter 3 also showed reductions in parameters and

memory usage. We argue that using templates can be seen as a tool for obtaining better

performances. On the other hand, they can also be thought of as a tool to reduce the

resource consumption of models. With this in mind, we compared the accuracy and

resources of models obtained from templates with models obtained from three popular

pruning methods. Nonetheless, our primary goal is to see if pruning methods converge to

the same results starting from different distributions. We also showed that the templates

could work jointly with pruning methods to benefit further. Finally, we presented in this

chapter an evaluation of the templates working with MorphNet, a method searching for

the best number of filters of an existing architecture.

We investigated the effects of applying different templates to the distribution of

filters in some well known convolutional neural network models (VGG, PoseNet and

MobileNetV1) for the mentioned domains. Where possible, the resulting models produced

with templates have similar FLOPs to the original model from which they were obtained.

This constraint facilitates further comparison of models on the basis of size, memory and

speed.

4.2 Global Localisation

Classification is the task where a predictive model approximates a mapping function

taking input values to predict discrete output values. Classification algorithms can

process any type of input variables, either categorical or numeric, but the examples must

be allocated into one of two or more classes. Regression tasks differ from classification

tasks in the type of output variables. Instead of predicting a discrete class, a model

performing regression predicts continuous values.

Neural networks have been used in both classification and regression tasks. However,

it is believed that neural network models perform better in classification than in regres-

sion tasks for some types of domains [151], possibly because regression tasks require a

more accurate prediction of output values.

Among many regression problems, one that has attracted plenty of attention is
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Figure 4.1: The typical design of architectures for localisation. The pattern was first
presented in PoseNet. Image from [24].

localisation. For decades, localisation has been studied, and a range of complicated hand-

designed models and algorithms have been devised [190]. The task’s purpose is to provide

an agent with its position (a continuous value) within the surrounding environment by

perceiving scenes with sensors such as a camera.

Recently, researchers have been adopting data-driven methods to directly compute

the camera’s position by using only the input image. The first implementation of a neural

network in global localisation was presented in the PoseNet paper [93].

Since then, researchers have proposed several improvements such as modelling uncer-

tainty [92] and inducing temporal [33] and spatial coherence [77] but normally following

a similar architectural design shown in Figure 4.1. The idea of PoseNet borrowing a

model from classification and then modifying the last layers to produce the desired

localisation values has been the trend in many of the subsequent works [24].

A singular model derived from PoseNet is the hourglass architecture [133]. It consists

of a two-section network that first encodes coarse information and then extracts fine-

grained details. The network structure follows an increasing number of filters in the

first half of layers and then a decreasing pattern in the other half, resembling one of our

templates.

The neural networks used in localisation tasks create an implicit map during training.

They are fed with the camera pose and the image captured in that position creating

a hidden representation of the world. We decided to test the templates in this task

to show if this implicit representation is significatively different when we change the

distribution of the filters. In the experiments with classification, we found that the

models are affected differently by each template in their parameter count. If we take

the parameters as the place the implicit map is stored, one could expect that templates
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Figure 4.2: Examples of the datasets used in the experiment. The first row corresponds
to samples from 7-Scenes dataset. The second row shows examples taken from the
Cambridge Landmarks dataset. The second dataset presents much more variations in
spatial dimension and illumination conditions.

producing networks with fewer parameters are less capable of performing well in this

localisation task. However, some works on map compression have shown that reductions

in the size of neural networks do not significantly affect the localisation error [35]. As

if the network was capable of automatically removing the less useful visual features to

build the map as made in hand-crafted descriptor approaches [34].

4.2.1 Models and Datasets

We create an experiment using three classical neural networks with several templates.

We took the PoseNet network as the first option. It was originally trained end-to-end

to compute the 6-DoF camera pose from a single RGB image. The architecture is based

mainly on GoogleNet [187]. Still, it changes the last softmax layer with a fully connected

layer to output the global pose, consisting of position and orientation vector. We chose

VGG and MobileNet as the second and third models to be tested, adapting the last layer

in the same fashion as in PoseNet.

All CNNs were trained over three 2D image datasets traditionally used for visual

metric localisation evaluation: the 7-scenes dataset[60] composed by small indoor settings

with very few illumination condition variations; and the Cambridge Landmarks[93] with

large scale outdoor scenes under varied lighting conditions (see samples in Figure 4.2).

This selection provides our experiment with diverse environments and differences in the

number and density of samples. The 7-scenes dataset contains scenes with between 500

and 1000 frames recorded from a Kinect RGB-D camera using a resolution of 640×480

pixels. The Cambridge Landmark dataset consists of outdoor urban scenes populated

with people and vehicles. Both datasets generated the camera pose with structure from

motion (SfM) methods [178].
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4.2.2 Implementation Details

In principle, PoseNet produces a 6-dimensional pose, but given that the orientation

is provided in quaternions, the final pose requires a 7-element vector. A drawback in

PoseNet is that the authors introduced a new hyperparameter β to tune the relevance of

both orientation (q) and position (x) within the loss function given by

loss(I)= ‖x̂−x‖2 +β
∥∥∥∥q̂− q

‖q‖
∥∥∥∥

In this section experiments, we decided only to predict the position to avoid tuning

the parameter, which could have different optimal values depending on the template to

be applied.

Our experiments in localisation follow a similar procedure to the classification exper-

iments. They run in an NVidia Titan X Pascal 12GB GPU adjusting the batch size to

16. With and without templates, all models were trained for 160 epochs using stochastic

gradient descent with weight decay of 1e-4, momentum of 0.9 and a learning rate of 0.1.

Localisation entirely relies upon the camera viewpoint, so augmentation was limited to

colour space transformations.

Our implementation is comparable to that in PoseNet with random initialisation,

which is lower than that using ImageNet and Places pretraining. Moreover, we used the

whole training set instead of fractions of the data like in the PoseNet paper because we

performed from scratch training.

4.2.3 Results

These experiments evaluate models using the mean absolute error (MAE). According to

the authors of 7-Scenes and Cambridge Landmarks datasets, the units for the camera

pose are given in metres. We present in Table 4.1 the results of evaluating VGG19 on the

7-Scenes datasets. We observe that in more than half of the scenes tested, the original

distribution gets the lower error while the negative-quadratic template obtains the lower

error in two cases. The difference between the best and the second model is less than

10% of the best value. The PoseNet architecture obtains lower errors (Table 4.2 compared

to those of VGG19. Besides, the templates produce the best models for five of the seven

scenes, mainly made with the negative-quadratic distribution.

For the Cambridge Landmark dataset, templates produce a similar pattern with

VGG19 and PoseNet models but with bigger improvements. For VGG19, Table 4.3 shows

that the base incremental distribution of filters is better in only three scenes while
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Table 4.1: MAE for 7-Scenes dataset for the VGG19 model with its original filter distri-
bution and four templates. Table shows one-repetition results.

7-Scenes (VGG19) Redistribution Templates
Scene Base Reverse Base Uniform Quadratic Neg Quad
chess 0.2517 0.2941 0.2936 0.2719 0.2773
fire 0.3672 0.4406 0.3958 0.4153 0.4057
heads 0.2178 0.2608 0.2190 0.3383 0.2013
office 0.3522 0.3821 0.3681 0.3572 0.3652
pumpkin 0.4423 0.5036 0.4472 0.4589 0.4220
redkitchen 0.4303 0.5131 0.5078 0.4859 0.4733
stairs 0.4181 0.4852 0.4038 0.4632 0.4295

Table 4.2: MAE for 7-Scenes dataset for the PoseNet model with its original filter
distribution and four templates. Table shows one-repetition results.

7-Scenes (PoseNet) Redistribution Templates
Scene Base Reverse Base Uniform Quadratic Neg Quad
chess 0.1868 0.2185 0.1979 0.1916 0.1975
fire 0.3120 0.3672 0.3179 0.3293 0.3117
heads 0.1986 0.2608 0.2056 0.1937 0.1810
office 0.3256 0.3471 0.3218 0.3220 0.3135
pumpkin 0.3202 0.3373 0.3086 0.3069 0.3247
redkitchen 0.3780 0.4587 0.3792 0.3884 0.3746
stairs 0.3741 0.4711 0.3822 0.4236 0.3787

for PoseNet (Table 4.4), the base model only performs better in one scene. Again, the

negative-quadratic distribution seems like the best suited for the dataset.

Localisation is expected to be performed for a mobile agent. While the original

PoseNet is considered a more efficient architecture than VGG, it is clear that its resource

consumption is enough to surpass the capacity of a mobile system. We extend our experi-

ment with the Cambridge Landmarks dataset to include MobileNet, a more appropriate

model for mobile applications optimised to that end. MobileNet performance is shown in

Table 4.5. The model obtains higher error than the performance-oriented PoseNet and

VGG. The differences in the three models’ results are compatible with the reported in

the literature for other datasets such as ImageNet. For MobileNet, the most successful

model is found with the uniform template with the lowest error for four out of six scenes.

Comparing performances among models gives a partial perspective of the model’s

capacity. For this reason, we also show in Table 4.6 the resources required for the

templates with the VGG19, PoseNet and MobileNet models. We found that, while memory,
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Table 4.3: MAE for Cambridge Landmark dataset for the VGG19 model with its original
filter distribution and four templates. Table shows one-repetition results.

Cambridge Landmarks (VGG19) Redistribution Templates
Scene Base Reverse Base Uniform Quadratic Neg Quad
KingsCollege 8.0613 7.5204 8.3575 8.8226 7.6481
OldHospital 5.2201 5.8798 5.4487 5.9931 5.5314
ShopFacade 2.8282 2.9202 4.3013 3.7109 3.3459
StMarysChurch 7.0244 8.5696 7.9538 8.4453 7.4600
Street 80.8015 83.3418 85.8898 86.5996 77.5769
GreatCourt 24.8433 25.5597 26.2833 24.6635 26.6305

Table 4.4: MAE for Cambridge Landmark dataset for the PoseNet model with its original
filter distribution and four templates. Table shows one-repetition results.

Cambridge Landmarks (PoseNet) Redistribution Templates
Scene Base Reverse Base Uniform Quadratic Neg Quad
KingsCollege 6.8787 9.1456 6.0554 6.2638 5.4428
OldHospital 5.0916 6.3190 4.6366 4.6476 4.8044
ShopFacade 3.2472 3.3165 2.9183 3.1887 2.7564
StMarysChurch 8.1209 11.1730 7.9718 8.6005 7.9059
Street 72.0053 131.9090 71.8444 78.5514 71.2381
GreatCourt 23.9980 25.2407 25.6946 24.6157 25.0797

Table 4.5: MAE for Cambridge Landmark dataset for the MobileNet model with its
original filter distribution and four templates. Table shows one-repetition results.

Cambridge Landmarks (MobileNet) Redistribution Templates
Scene Base Reverse Base Uniform Quadratic Neg Quad
KingsCollege 11.2847 12.4568 10.2853 13.5246 12.4949
OldHospital 7.7933 14.6661 8.5886 13.0720 9.2989
ShopFacade 5.2755 7.5576 5.6626 6.7993 6.1695
StMarysChurch 12.3526 15.3554 13.3396 16.4533 13.3917
Street 99.4402 100.3203 97.9171 108.3730 101.9091
GreatCourt 27.1893 28.5328 25.7820 28.8231 26.7306
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Table 4.6: Parameters, memory, inference time and FLOPs for selected models when
applying our templates keeping the same number of filters in localisation tasks.

Redistribution Templates
Resource Model Base Reverse Base Uniform Quadratic Neg Quad
Parameters VGG19 20.33 1.80 3.30 2.02 7.19
(Millions) PoseNet 6.16 3.28 4.99 3.48 6.29

MobileNet 3.21 0.12 0.33 0.17 0.80
Memory VGG19 0.44 0.53 0.55 0.54 0.43
Footprint PoseNet 5.02 5.57 5.08 4.77 4.62
(GB/batch) MobileNet 0.11 0.16 0.15 0.15 0.12
Inference VGG19 0.053 0.068 0.065 0.056 0.057
Time PoseNet 0.614 0.763 0.613 0.612 0.614
(ms/batch) MobileNet 0.012 0.025 0.023 0.025 0.017
FLOPs VGG19 19.55 18.99 19.86 18.45 18.63
(Gigas) PoseNet 99.88 92.29 99.92 95.13 98.23

MobileNet 0.57 0.54 0.54 0.56 0.53

inference time and FLOPs remains similar with all templates, using these different

distributions reduce original parameters significatively for all models. Furthermore,

the reduction allows storing a modified PoseNet model (reverse template), with lower

prediction error on average, in the same space of an original MobileNet.

4.3 Single Image Super-Resolution

The technique of recovering high-resolution (HR) images from low-resolution (LR) photos

is known as image super-resolution (SR) [201]. It is a subset of image processing tech-

niques used in computer vision and image processing with a vast scope of applications,

including enhancing medical, satellite, surveillance, and astronomical imaging.

The super-resolution task is particularly interesting for our work because of its

differences in architecture design. Firstly, models in SR do not reduce the size of the

feature maps in deeper stages of the architecture, but they keep the same size. Secondly,

most models observe not the incremental design found in almost all computer vision

tasks but one that follows a uniform distribution, keeping constant the number of filters

for all layers.

The first work proposing to use a CNN to produce high-resolution images from low-

resolution ones is presented in [43]. The model named Super-Resolution Convolutional

Neural Network (SRCNN) is a shallow network with two layers using double of filters
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in the first (64) than in the second layer (32). The distribution is contrary to what is

the typical neural network building pattern in other computer vision tasks consisting of

doubling filters in deeper layers. The justification behind this selection on the number

of filters relies on the analogy of sparse-coding based SR methods and SRCNN, so the

authors assume the model will "rely more on the central part of the high resolution

patch" [43] like typically happens in sparse-coding HR reconstruction. SRCNN uses large

filter size of up to 9x9.

VDSR is a deep model following SRCNN and inspired by the VGG architecture [95].

The network requires a preprocessing step to grow the LR image to the desired final

resolution using a classical interpolation technique. The model is composed of 20 layers

of 64 channels produced by 3x3 filters. This is the first architecture adopting a constant

number of filters in super-resolution which later became the standard distribution for

model design in this task. The authors realised that a deeper network produced a higher

performance, but it was more challenging to train, taking longer training time and failing

to converge. Their solution was to add a residual connection from the first to the final

layer.

Other approaches propose using a generative adversarial network (GAN) framework

for image super-resolution [108]. The trained generative network keeps the uniform

distribution of filter of VSDR but changes VGG layers for residual modules [73]. The

resulting network, called SRResNet, preserves high-frequency details producing percep-

tually satisfactory images at 4x resolution.

The EDSR model builds on SRResNet by transforming the multiple residual blocks

[118]. The proposed block in EDSR does not include batch normalisation layers, resulting

in improved performance and reduced memory consumption. Previous models were

capable of resolving HR images at several scales (2x, 3x and 4x) but creating independent

networks for each particular scale. The EDSR paper presents an extension of the network

that takes advantage of the inter-scale correlation training. The authors propose a

network with a single backbone sharing weights that connect with several branches

producing each scale as described in Figure 4.3.

We decide to take the EDSR architecture to test our templates in the super-resolution

task for several reasons: 1) it is one of the state-of-the-art models in SR, 2) its design is

modular and easily adaptable to templates, 3) the backbone is built with the well known

residual modules already in use in this work but it can fit other architectures, and 4) its

training code is publicly available.
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Figure 4.3: EDSR design for super-resolution. Residual modules count equal number
of filters. The final branch depends on the HR scale of the final image but they can be
combined to produce a multi-scale network. Image from [118].

4.3.1 Implementation Details

We used the code for training and evaluation of the models provided by [118]. We changed

the number of filters in the EDSR backbone according to the definitions of the templates

in section 3.5. Additionally, we tested a VGG-like backbone comparable to the VDSR

architecture.

For evaluation, we use the popular DIV2K benchmark dataset [3] consisting of a

set of 800 images for training, 100 for validation, and 100 for testing. As in previous

works, we present performances on the validation dataset, given the test set is not

available. Models in SR are typically trained with the mean squared error (MSE) as the

loss function. However, they are evaluated with peak signal-to-noise ratio (PSNR) given

by the equation

PSNR = 10 · log10

(
MAX2

I

MSE

)

MAX I is the maximum value for a pixel, usually 255. MSE is computed with pixel-

by-pixel differences between the resolved and the ground-truth images. Although other

metrics have been proposed considering the perceptual quality of the images [90], PSNR

is still the most popular in the field of SR.

In the experiment, we do not follow the common practice in SR of only processing the

image’s luminance channel (Y channel in YCbCr colour space) and computing the rest of
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Table 4.7: Performance at 4x and resource consumption of the EDSR method (VGG
backbone) using templates tested on the DIV2K dataset. Table shows one-repetition
results. ∗Unlike other tasks, original base template for super resolution uses an uniform
distribution.

DIV2K (EDSR-VGG19) Redistribution Templates
Metric Base* Increasing Reverse Quadratic Neg Quad
PNSR 28.623 28.516 28.404 28.720 28.495
Best epoch 191 172 151 199 171
Parameters (Millions) 21.5 25.9 24.9 21.6 24.8
Memory (GB) 7.36 7.71 7.18 7.16 7.70
GFLOPs 264.5 305.3 295.8 266.0 295.3
Inference time (ms) 8.11 8.98 8.71 8.32 8.82
File size (MB) 86.1 103.8 99.7 86.8 99.5

the channels with bicubic interpolation. Instead, we produce the full RGB channels with

the network and evaluate PSNR in all of them.

For training, we use the default configuration of the EDSR paper with a 4x scale and

a patch size of 192x192 for 300 epochs. We use an Adam optimiser with a learning rate

of 0.0001.

4.3.2 Results

We developed two experiments for the task of SR. The first one tests two architectures,

VGG and ResNet, as backbones of the EDSR framework using the different templates.

The second experiment explores reductions in the number of filters using a width

multiplier to find if the models are amenable to being compressed without significant

loss in quality.

EDSR performance using VGG as backbone is presented in Table 4.7. The quadratic
template shows benefits in the quality of the images evaluated with PSNR and lower

memory footprint compared with the base model following a uniform distribution. More-

over, the models produced by templates seem to converge earlier.

The same results are found with the ResNet backbone shown in Table 4.8. The

performances are higher compared to the VGG backbone which explains some of the

improvements from VDSR to EDSR papers. The negative-quadratic template gives the

best performance in this case, but this result is expected as the negative-quadratic
template counts twice the parameters of the original distribution.

We show a resolved sample using VGG and ResNet backbones in Figure 4.4. It can be
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Figure 4.4: A resolved image using bicubic interpolation compared with the best perform-
ing models using templates with VGG and ResNet backbones in EDSR.

Table 4.8: Performance at 4x and resource consumption of the EDSR method (ResNet
backbone) using templates tested on the DIV2K dataset. Table shows one-repetition
results. ∗Unlike other tasks, original base template for super resolution uses an uniform
distribution.

DIV2K (EDSR-ResNet) Redistribution Templates
Metric Base* Increasing Reverse Quadratic Neg Quad
PNSR 29.709 29.712 29.669 29.693 29.714
Best epoch 299 296 270 271 285
Parameters (Millions) 16.4 26.3 26.8 22.3 35.9
Memory (GB) 4.86 5.44 5.53 4.60 6.97
GFLOPs 217.9 308.6 313.8 272.1 397.2
Inference time (ms) 8.02 9.84 9.89 8.89 12.73
File size (MB) 65.9 105.2 107.5 89.4 143.7

appreciated a significant difference between the classical method of bicubic interpolation

and deep learning methods. However, no big gainings are obtained between different

neural network models.

It has been found empirically in [43] that increasing the wide of the network leads

to an increase in performance. The improvement, however, is small. Using a 4x width

multiplier, the network improves in 0.34 points of PSNR. We show in tables 4.9 and 4.10

that the same effect happens in the opposite direction. We reduced VGG and ResNet

backbones to 0.5x and 0.25x to find if there is a significant loss. We found that by using

one quarter of the filters, the quadratic template reduces its performance by 0.38 points

for the VGG backbone.

The loss using the negative-quadratic template with the ResNet backbone is lower:

only 0.22 points of PSNR. Edge devices could benefit from this level of compression by
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Table 4.9: Change of performance (PSNR) with different sizes of the EDSR method
(VGG19 backbone) using templates tested on the DIV2K dataset. Models are reduced by
using width multipliers. Table shows one-repetition results. ∗Unlike other tasks, original
base template for super resolution uses an uniform distribution.

DIV2K (EDSR-VGG19) Redistribution Templates
Width multiplier Base* Increasing Reverse Quadratic Neg Quad
1.00 28.623 28.516 28.404 28.720 28.495
0.50 28.464 28.540 28.088 28.484 28.329
0.25 28.291 28.249 27.874 28.340 28.089

Table 4.10: Change of performance (PSNR) with different sizes of the EDSR method
(ResNet backbone) using templates tested on the DIV2K dataset. Models are reduced by
using width multipliers. Table shows one-repetition results. ∗Unlike other tasks, original
base template for super resolution uses an uniform distribution.

DIV2K (EDSR-ResNet) Redistribution Templates
Width multiplier Base* Increasing Reverse Quadratic Neg Quad
1.00 29.709 29.712 29.669 29.693 29.714
0.50 29.539 29.580 29.539 29.479 29.610
0.25 29.416 29.449 29.394 29.339 29.497

receiving low-resolution images and producing high-resolution ones on the user side,

with savings in the communication channel and the processing capacity of the device.

The experimental results show that models with the already in-use uniform distribu-

tion are more efficient in resource consumption for most metrics, including parameters,

inference time and FLOPs. However, the quadratic template offers models with a smaller

memory footprint. For VGG and ResNet backbones, templates produce models with

more resource requirements in general. This disagrees with the reductions found in

the classification and localisation tasks described before. This can be explained by the

architectural design of the networks in the SR task that does not reduce the feature

maps in the whole architecture. Templates indeed increase the total number of filters

thus requiring more parameters and FLOPs. We found in this experiment that the

incremental filter distribution is not the best option for the SR task. Yet variations in the

performances and the resource demands are minimal across the templates. We believe

this is intriguing, considering the drastic changes in filter distributions.
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4.4 Templates and Neural Network Pruning

As we have shown in this and previous chapters, templates exhibit an ability to produce

networks with reduced resource demands such as parameters in classification and

localisation tasks. The reduction is conducted by simply redistributing the number of

filters in an existing network before any training. The resource network reduction is

analogous to that achieved by neural network pruning methods cited in section 2.2.1, so

a required comparison has to be done. In this section, we compare the models resulting

from templates against three different techniques for neural network pruning. The first

two methods prune filters by evaluating their importance with different approaches. The

first one, called Filter Pruning via Geometric Median (FPGM) remove filters close to the

geometric median. The second one, known as Gate Decorator, uses Taylor expansions to

evaluate the importance of filters on the loss function. The last one of the three methods

resembles more a knowledge distillation [78] technique but at the level of layers. It tries

to perform filter decomposition to reduce the number of parameters and FLOPs.

One common feature of these three methods is that they all fall in the category of

methods where learning occurs late or after training. We consider the utilisation of the

proposed templates as a pruning-at-initialisation method [53]. Templates do not evaluate

the magnitude of weights nor their repercussions in the loss function. We agree with

[124] that a simple reduction (or as in templates, a change) of filters and then training

from scratch with randomly initialised weights is enough to compress a model without a

noticeable decrease in performance.

4.4.1 Pruning Filters Based On Their Norm

Pruning weights with the smallest absolute magnitude is an obvious and surprisingly

efficient criterion. This heuristic is widely applied in pruning methods doing structured

and unstructured pruning. The common belief is that weights or filters with smaller

norms are less critical for the network and then can be safely removed. The problem with

that approach is that the remaining weights can not be used to reconstruct the values of

those pruned, which might represent subtle features for the performing task.

Geometric Median [75] considers, unlike other methods, removing filters with values

not close to zeroes but near to the geometric median of the set of filters in every layer. By

pruning these filters, the remaining ones can represent the ones missing. As a result,

reducing such filters doesn’t significantly impact model performance.

Computing the geometric median is challenging. There is no algorithm nor explicit
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Figure 4.5: Instead of removing filters with norm close to zero, FPGM prunes filters close
to the geometric media and therefore, keeping those with more diversity and able to
represent the ones missing. Image from [75].

formula to produce exact results, but approximations can be computed iteratively with

certain error margins depending on the running time. The authors of FPGM use a simple

trick of reducing the search space to the list of filters in each layer. In this way, they find

which filter minimises the sum of the distances to the rest of the filters. Once sorted, the

set of distances is used to select the filters to be pruned.

4.4.2 Pruning Filters Based On The Importance Over The Loss
Function

Another widespread criterion to reduce the number of filters in a model is to compute

the effects of the filters on the loss function. Using a Taylor decomposition has been the

standard approach to compute the importance of a filter. During the backpropagation

step, the method evaluates the influence of a particular parameter when it is eliminated

from the loss.

Gate Decorator [208] solves the problem of importance filter ranking by using the

approach mentioned above and removing the less essential filters iteratively until the

pruning effect reaches a certain amount of FLOPs in the reduced model. The method

typically modifies the batch normalisation layers (BN) [87] to compute the importance of

the features maps in the previous convolution layer using the scaling factor of BN.
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Figure 4.6: Gate Decorator framework divides pruning into two phases. The tick phase
freeze weights and compute filter importance in the loss using a small subset of the data.
The tock phase prunes less important weights and fine-tunes the model. Image from
[208].

Gate Decorator framework splits the pruning process into the two phases shown

in Figure 4.6. In the first phase, called Tick, all the weights in the model are set to

non-updatable. Nevertheless, the modified BN layers remain trainable to compute the

filter importance using a small subset of the data. After one epoch of training, a portion

of the less important filters is removed. The second step named Tock uses the whole

dataset to perform fine-tuning of the model with an added constraint to the loss function

that helps to find unimportant filters.

4.4.3 Reducing Filters With Filter Decomposition

Filter Basis [114] uses filter decomposition replacing the original filters with a set

of small ones that are combined linearly to produce the feature maps of the original

layer while minimising reconstruction error. Filter Basis is better classified as a model

compression method rather than a pruning method, given that it does not remove specific

filters. Instead, it replaces them with a set of low-rank matrices that operates with the

whole set of feature maps.

The authors implement the decomposition by doing convolutional operations ex-

ploiting the existing forward pass during the model training. All the feature maps are

processed individually with the same basis and then the appropriate number of channels

is obtained with a 1x1 convolution as presented in Figure 4.7. Learning the parameters

of the low-rank matrices is done jointly by adding the feature maps restoration error in

the loss function given by equation

loss = ∥∥y− fB,A|Θ(x)
∥∥2

F +γ
L∑

l=1

∥∥∥Wl −Bl ·Al
∥∥∥2

F

64



4.4. TEMPLATES AND NEURAL NETWORK PRUNING

Figure 4.7: Filter Basis uses decomposition to approximate feature maps produced by
original filters with low-rank matrices. Image from [114].

where fB,A|Θ(x) denotes the network with parameters B,A conditioned that the rest

of the parameters Θ are known. The feature maps reconstruction error F is evaluated

along all of the L layers of the network.

4.4.4 Experiments and Results

We conducted an experiment to show the effects of templates with three different recent

compression methods using the CIFAR-100 dataset. We tested templates in two different

ways using a VGG19 model. In the first one, templates are compared with the pruning

methods applied to the original base model. In the second approach, the networks are

first changed with the templates, trained and then pruned with the different compression

techniques. Once neural network architectures have been adjusted with our templates

and trained, pruning methods are still able to reduce models.

We present results for VGG19 model in CIFAR-100 dataset comparing accuracy

versus the number of parameters in Table 4.11 for the three methods using code and

configurations referenced in their respective papers. The purpose of the table is to

observe improvements in each method when applying templates and a comparison

between methods should be taken with care. There are differences in the number of

epochs for training performing 160 for Geometric Mean, 300 for Filter Basis and variable

epochs in Gate Decorator (final fine-tuning step is not performed in our experiments with
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Table 4.11: Accuracies and parameters (millions) of VGG19 with the original distribu-
tion and four templates for the same number of filters evaluated on CIFAR-100 after
being compressed using three different methods. When compared on similar parameters
templates produce higher performances. Geometric Median reduces models based on
percentage of pruned filters, Gate Decorator on the percentage of FLOPs and Filters
Basis on the number of basis created. Comparisons between compression methods should
consider differences between published training configurations as number of epochs.
Results show average of three repetitions.

Base Reverse Uniform Quadratic Neg-Quad
Method Size Acc. Par. Acc. Par. Acc. Par. Acc. Par. Acc. Par.
Baseline 100% 71.98 20.34 74.54 20.12 73.64 16.22 73.14 16.08 74.05 20.06

80% 70.83 12.93 73.81 12.80 72.85 10.33 72.35 10.23 73.56 12.76
Geometric 50% 67.96 5.11 71.83 5.02 70.67 4.07 69.39 4.03 71.05 5.01
Median[75] 25% 61.39 1.30 67.91 1.26 65.01 1.03 64.38 1.03 66.61 1.25

10% 48.00 0.21 54.28 0.20 52.89 0.17 48.80 0.17 51.90 0.19
80% 71.63 11.91 74.15 18.69 72.96 15.01 72.66 14.70 74.11 10.87

Gate 50% 71.07 2.63 74.28 15.66 73.46 8.72 72.96 10.20 73.08 5.70
Decorator[208] 25% 66.30 1.12 74.63 10.14 72.98 4.57 73.39 5.35 71.72 2.70

10% 59.58 0.47 73.15 4.10 68.73 1.84 71.13 2.57 67.01 1.02
Learning 64 73.59 9.54 75.42 12.07 74.63 7.73 73.76 9.33 75.62 9.33
Filter Basis[114] 32 69.74 5.58 75.13 9.13 73.20 5.53 72.28 7.23 75.04 5.67

Gate Decorator). Baseline accuracies are produced by applying only templates, and they

differ slightly from results obtained in the classification task in the previous chapter

(Table 3.1) as they were obtained with the Gate Decorator code. We found that models

with templates perform better than the original model using similar parameters for the

first two methods. For Gate Decorator, we can find at least one template with better

accuracy than the pruned base model. For example, keeping parameters close to 1.10

million, a negative-quadratic model with 10% of FLOPs performs better than a base

model with 25% of FLOPs.

We additionally compare accuracy versus FLOPs in Table 4.12 using the three

previous methods with the same model/dataset. It is found that a reduction in FLOPs

causes a degradation in accuracy for templates excepting Negative-Quadratic which

helps to reduce the number of flops. Using similar FLOPs that the baseline original

model, Negative-Quadratic template in addition to pruning methods, produces networks

that surpass the original accuracy as with Filter Basis that improves 3.06%.
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Table 4.12: Accuracies and FLOPs (billions) of VGG19 with the original distribution
and four templates for the same number of filters evaluated on CIFAR-100 after being
compressed using three different methods. Geometric Median reduces models based on
percentage of pruned filters, Filters basis on the number of decompositions and Gate
decorator on the percentage of FLOPs. Comparisons between compression methods
should consider differences between published training configurations as number of
epochs. Results show average of three repetitions.

Base Reverse Uniform Quadratic Neg-Quad
Method Size Acc. Flops Acc. Flops Acc. Flops Acc. Flops Acc. Flops
Baseline 100% 71.98 0.40 74.54 4.29 73.64 2.00 73.14 3.06 74.05 1.05

80% 70.83 0.25 73.81 2.74 72.85 1.28 72.35 1.95 73.56 0.67
Geometric 50% 67.96 0.10 71.83 1.07 70.67 0.50 69.39 0.76 71.05 0.26
Median[75] 25% 61.39 0.02 67.91 0.27 65.01 0.12 64.38 0.19 66.61 0.06

10% 48.00 0.004 54.28 0.04 52.89 0.02 48.80 0.03 51.90 0.01
80% 71.63 0.31 74.15 3.41 72.96 1.59 72.66 2.42 74.11 0.84

Gate 50% 71.07 0.19 74.28 2.14 73.46 1.00 72.96 1.52 73.08 0.52
Decorator[208] 25% 66.30 0.09 74.63 1.07 72.98 0.50 73.39 0.76 71.72 0.26

10% 59.58 0.04 73.15 0.43 68.73 0.20 71.13 0.30 67.01 0.10
Learning 64 73.59 0.20 75.42 3.59 74.63 1.43 73.76 2.75 75.62 0.57
Filter Basis[114] 32 69.74 0.13 75.13 3.31 73.20 1.31 72.28 2.63 75.04 0.40

4.5 Templates + MorphNet: Improving the Search of
Filter Distribution

In the previous section, we compared some pruning methods against the ability of

templates for reducing parameters in a neural network. Pruning methods’ goal is to take

an architecture and remove all unnecessary elements such as weights or filters.

MorphNet was one of the first techniques which were not based on only cutting off

filters of a previously defined neural network but searching for an optimal distribution

of them [64]. Furthermore, MorphNet is configurable to reduce a particular resource

while still increasing the accuracy of the model. For example, when targeting FLOPs,

higher-resolution neurons in the lower layers of the CNN tend to be sacrificed more

than lower-resolution neurons in the upper layers of the CNN. The situation is the exact

opposite when the targeted resource is model size rather than FLOPs.

We chose to test our templates with MorphNet looking for the answer regarding

MorphNet converging to the same filter distribution when starting from the different

templates. An affirmative answer would suggest that there is an optimal distribution

of filters. Even if the convergency was specific to a dataset and model. The result could

provide more insight to neural network designers.
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a) Original Base Model b) Uniform Expansion c) Shrinking Regulariser

d) Pruned Model e) Budget-size Model

Input Conv Final Untrained TrainedLayers: Filters: Pruned

Figure 4.8: MorphNet iterative steps for finding the best filter distribution matching a
particular resource in a toy example. All the filters in an untrained base model (a) are
expanded with an arbitrary global width multiplier (b). During training, a regulariser
shrinks the model removing less important filters (c). The resulting pruned model (d) is
then expanded again using a width multiplier to match a resource budget (e).

4.5.1 MorphNet Steps for Optimising the Filters Distribution

The searching process performed in MorphNet is divided into two phases. During expan-

sion, a simple method is used only, which uniformly expands the number of filters in each

layer with a width multiplier to reach the resource constraint. In the shrinking phase,

MorphNet identifies inefficient neurons and prunes them from the network by applying

a sparsifying regulariser such that the total loss function of the network includes a cost

for each neuron (see Figure 4.8).

The above steps completed one cycle of improving the network architecture. The

process continues iteratively until the performance is acceptable or until the architecture

converges, leading to similar filters per layer after several iterations. Yet, a single

iteration of expansion and shrinking is enough to deliver a model with appreciable

improvement over the naive solution of just using a uniform width multiplier. When a

layer has zero neurons, this effectively changes the topology of the network by cutting

the affected branch from the architecture. If the final model doesn’t fit the predefined

budget, MorphNet adjusts it with a width multiplier.
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4.5.2 Experiments

We tested MorphNet with three of the most used architectures: VGG, ResNet and

MobileNet. We modified the original models with four templates. Then, we run MorphNet

with the resulting network and trained the final design from scratch. We compared the

results with the performances obtained in the classification task section. We empirically

adjusted the additional hyperparameter γ following the recommendations described in

the MorphNet paper. The iterative process to learn the architecture was repeated until

convergence defined by the suggested threshold in MorphNet.

Similar to the experiments with pruning methods, we compared the templates in

two ways for each of the three models and three datasets tested. The first way compares

directly templates versus MorphNet. The second way compares templates cooperatively

working with MorphNet. We initially changed the networks with the templates and next

we run the process of learning the distribution with MorphNet. Finally, we trained the

neural network architectures using the hyperparameters described in [64]. All models

produced from the same original architecture, either directly produced by templates or

by MorphNet are adjusted to the same amount of FLOPs to make a fair comparison.

We noticed that the MorphNet learning procedure was performed in CIFAR-10 and

transferred to the rest of the datasets.

Table 4.13 show results for the VGG19 model counting around 400 MFLOPs. Mor-

phNet was able to perform well in CIFAR-10 and CINIC datasets but the baseline model

surpassed the accuracies of MorphNet with all the templates. On the other hand, models

changed only by templates obtained the highest accuracy with the decreasing (a.k.a.

reverse) and negative quadratic distributions.

For ResNet results were lower than the VGG ones. We see in Table 4.14 that only

for CIFAR-100 MorphNet delivered a better accuracy than the base model but used

a uniform distribution as seed. Like with VGG, ResNet plus templates produced the

highest accuracy in two datasets with the negative quadratic distribution. All ResNet

models were set to 1307 MFLOPs.

Figures 4.9 and 4.10 depict the final distributions of filters obtained by MorphNet

using each template in VGG19 and ResNet50. We observe a trend in the final VGG

models with more filters in the near initial layers as well as in the final layers. A

reduction of filters can be seen in the middle of almost all VGG architectures. In ResNet,

the pattern remains but is less noticeable. It looks improbable that MorphNet is able to

converge to a unique distribution, but we can not conclude that an optimal distribution

is non-existent. We believe that the lack of convergence is caused by the definition of the
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Table 4.13: Accuracy of models produced by combining VGG19 + Templates + MorphNet
+ Width Multiplier compared to only using Templates + Width Multiplier. All models are
adjusted to ∼399 MFLOPs. MorphNet filter distribution search is performed on CIFAR10.
Table shows one-repetition results. ∗Increasing uses the original base filter distribution
therefore it is not applicable for templates only.

VGG19 Templates + MorphNet (∼399 MFLOPs)
Dataset Base Increasing* Decreasing Uniform Quadratic Neg-Quad
CIFAR10 92.98 93.19 92.58 91.92 93.06 93.54
CIFAR100 71.22 71.03 69.61 66.23 70.17 67.56
CINIC10 83.33 83.77 82.74 81.83 83.66 83.76
VGG19 Templates Only (∼399 MFLOPs)
Dataset Base Decreasing Uniform Quadratic Neg-Quad
CIFAR10 92.98 93.43 93.43 93.23 93.16
CIFAR100 71.22 NA 69.52 70.56 67.37 71.91
CINIC10 83.33 83.90 83.92 83.51 84.17

Table 4.14: Accuracy of models produced by combining ResNet50 + Templates + Mor-
phNet + Width Multiplier compared to only using Templates + Width Multiplier. All
models are adjusted to ∼1307 MFLOPs. MorphNet filter distribution search is performed
on CIFAR10. Table shows one-repetition results. ∗Increasing uses the original base filter
distribution therefore it is not applicable for templates only.

ResNet50 Templates + MorphNet (∼1307 MFLOPs)
Dataset Base Increasing* Decreasing Uniform Quadratic Neg-Quad
CIFAR10 94.31 92.96 92.91 93.83 93.36 93.36
CIFAR100 73.25 73.42 71.51 74.06 66.55 70.25
CINIC10 87.04 84.09 84.67 85.60 86.38 83.77
ResNet50 Templates Only (∼1307 MFLOPs)
Dataset Base Decreasing Uniform Quadratic Neg-Quad
CIFAR10 94.31 92.90 94.33 92.57 94.46
CIFAR100 73.25 NA 70.03 73.84 68.37 73.86
CINIC10 87.04 85.77 86.73 85.12 86.94
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Table 4.15: Accuracy of models produced by combining MobileNetV1 + Templates +
MorphNet + Width Multiplier compared to only using Templates + Width Multiplier. All
models are adjusted to ∼47 MFLOPs. MorphNet filter distribution search is performed
on CIFAR10. Table shows one-repetition results. ∗Increasing uses the original base filter
distribution therefore it is not applicable for templates only.

MobileNetV1 Templates + MorphNet (∼47 MFLOPs)
Dataset Base Increasing* Decreasing Uniform Quadratic Neg-Quad
CIFAR10 91.45 91.70 89.06 88.90 86.73 82.38
CIFAR100 62.58 65.02 56.31 57.85 46.79 43.80
CINIC10 80.99 82.09 77.09 76.64 73.22 66.73
MobileNetV1 Templates Only (∼47 MFLOPs)
Dataset Base Decreasing Uniform Quadratic Neg-Quad
CIFAR10 91.45 91.14 92.02 87.44 92.08
CIFAR100 62.58 NA 63.99 64.76 53.47 68.81
CINIC10 80.99 81.72 82.85 77.75 82.67

Figure 4.9: Final filters in VGG19 architecture using Templates + MorphNet. The plot
shows MorphNet final filter distributions tending to converge to the same distribution.

constraint in MorphNet.

It can be argued that using only templates to find a good performing model can

demand excessive computational resources to train each of the different templates.

Nevertheless, we have observed the lack of convergence of MorphNet in the resulting

filter distributions when the process initiates from different filter distributions. The

implication is that, in order to find a good model, it would be recommendable to explore

several initial distributions. This process could add more resources than the required for

only training the different templates, not adding the superior performance obtained by
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Figure 4.10: Final filters in ResNet50 architecture using Templates + MorphNet. Contin-
uous lines are polynomial aproximations for smoothing the fluctuations in the number of
layers caused by the bottlenecks modules.

Figure 4.11: Comparison of individual and combined training times of templates and
MorphNet for several architectures.

only using the templates. We show in Figure 4.11 the time taken for training a template

compared to the time for searching a model with MorphNet. It is observed that the time

needed for MorphNet, combined with the training time for the resulting model, surpasses

the time of applying a template and training the model from scratch.

The overall results are summarised in Table 4.16. Templates were able to produce

models with higher accuracy than the networks produced by MorphNet in six out of the

nine combinations of datasets and models. MorphNet produced two of the best networks
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Table 4.16: Best accuracy and pruning method by dataset compared to the original base
model.

Model Dataset Base Best Method
VGG19 CIFAR10 92.98 93.54 MorphNet (Negative)

∼399 Mflops CIFAR100 71.22 71.91 Templates (Negative)
CINIC10 83.33 84.17 Templates (Negative)

ResNet50 CIFAR10 94.31 94.46 Templates (Negative)
∼1307 Mflops CIFAR100 73.25 74.06 MorphNet (Uniform)

CINIC10 87.04 87.04 Base
MobileNetV1 CIFAR10 91.45 92.08 Templates (Negative)
∼47.2 Mflops CIFAR100 62.58 68.81 Templates (Negative)

CINIC10 80.99 82.85 Templates (Reverse)

but not starting from the original (increasing) distribution of filters. Instead, the initial

models were modified with the Negative Quadratic and Uniform templates. The results

highlight again the need for exploring new and diverse distributions of filters like the

ones proposed in our templates which can offer more efficient neural network designs.

4.6 Conclusion

The experimental results in this chapter suggest that other domains beyond image

classification are also prone to the benefits produced with templates. For example, in the

localisation task, we found the templates successful in more than half of the locations

tested in 7-scenes with PoseNet. Furthermore, the modified PoseNet achieved lower MSE

using 8% less memory. In the same dataset, VGG only performed better in two locations.

However, the second-best performing model, produced with a template, counted only 35%

of the original parameters. The template-changed PoseNet and MobileNetV1 obtained

lower errors than the original models in six out of seven locations for the Cambridge

Landmarks dataset. The best template in MobileNetV1 achieved better performance

while using 10% fewer parameters.

Experiments in SR showed that the correct distribution is important. While templates

may not have been able to show improvements on the tested datasets, the experiments

in classification leave open the possibility that different distributions could make a

difference when the dataset changes. Even though one template achieved a lower recon-

struction error (measured with PNSR) than the original model, it was done at the cost of

more computational resource demands in all aspects. It is worth noticing that in SR, the

adopted distribution is not the incremental one. Models designed for the task follow a
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uniform distribution of filters. In other words, the incremental distribution was not the

best for this task.

When we studied how the templates can collaborate with pruning methods, we

found that the results of VGG models on CIFAR100 improved when the pruning process

started with models modified with templates. The Geometric Median method was able to

increase one point of accuracy in a model with a reduction of 50% of parameters. The

Gate Decorator method, which focuses on reducing FLOPs, found a model performing

more than one point higher in accuracy with approximately the original FLOPs. Filter

Basis, which replaces filters with low-rank matrix operations, found a model with 5.3

points higher in accuracy compared to the model obtained with the same method but

starting from an incremental distribution. These results highlight the advantages of

using templates together with pruning methods to get more efficient models.

Finally, the chapter includes research about how templates change the behaviour

of a CNS method. Using three classical neural network models and three datasets,

we evaluated MorphNet and templates in two ways: competing and collaborating. We

restricted MorphNet and templates to produce models with similar FLOPs to the base

model. There were improvements in accuracy in eight out of nine scenarios caused by

using only templates or some combination of MorphNet and templates. For example, for

VGG, MorphNet produced the best model in CIFAR10 with 0.56 points more accuracy but

started its process with a template-changed VGG model. Something similar happened

with ResNet and CIFAR100, improving accuracy by 0.81 points. For the rest of the cases,

templates showed superior performance to MorphNet. In particular, MobileNetV1 model

improves significantly with templates with up to 6.2 points in accuracy for CIFAR100.

In general templates were effective for the task and models we use for evaluation.

The benefits of exploring new distributions of filters extend beyond classification tasks.

In some areas like super-resolution, researchers already use a different pattern than the

incremental design. Furthermore, we found that pruning and CNS methods can produce

better results if they initiate the exploration process from another distribution from the

incremental one. An important outcome is that there is no absolute best template. Each

pair model-dataset seems to be particularly and differently affected for each template.

So the proposed templates are a simple tool to rapidly obtain increases in performance

without the burden of automatic neural network design methods.
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TEMPLATES 2.0

In the previous chapter, we have shown the effectiveness of templates in various

domains. The strategy of changing the pattern of filter design in convolutional

neural networks following mainly square functions has been found to be successful

considering its simplicity. This chapter improves templates with new functions to define

filters that replace "abrupt" quadratic changes in the number of filters in each layer for

"smoother" linear segments. We complement the new definition with a fast method to

match the number of FLOPs of the original design or any FLOPs budget, allowing a fair

comparison of models. Next, we extend the experiments with templates to domains that

differ significantly from the previously tested and where the internal representation

of models with templates is more relevant than the final outputs. The chapter also

illustrates the importance of exploring new filter distributions by applying templates to

the NASBench-101 dataset. Finally, it describes the exploration with a similarity metric,

trying to correlate the models’ accuracies and their internal representation space as a

proxy to find the best template.

5.1 Templates Redefinition to Match Similar
Resources

Chapter 3 presented a first approach to producing variations in the filter distribution

of existing architectures with different templates. However, comparing the resulting
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Figure 5.1: Schematic distribution of filters per layer in our templates. These templates
are created with simple and intuitive but aggressive variations of filter distributions.
Base distribution, which is the original pyramidal distribution, shows the common
design of drastically growing the filters when the resolution of feature maps decreases
in deeper layers. New templates follow a smoother transition in the number of filters
between layers. We match the same number of filters in the thinnest layers and adjust
the maximum to meet the original number of FLOPS for a fair comparison.

models is difficult because templates change the computational requirements of each

model. So, it is desirable to reduce the effects of variations and match the number of

resources. One naive solution is reducing filters proportionally across all layers with a

width multiplier. Unfortunately, some models end with different sizes in the layer with

the lowest number of filters and, therefore, in the minimal representation power. We

want to avoid these differences in the representational bottlenecks favouring unbiased

comparisons.

This section presents an improved set of template definitions using the finding of [70]

related to the benefits of using additive increases in the number of filters. The new set of

templates, named Templates 2.0, allows matching a predefined number of FLOPs. These

templates are depicted in figure 5.1 and have been found to perform well and are thus

candidates for model performance improvement beyond accuracy. Performance criteria

such as parameters, memory footprint and inference time are arguably as important.
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Figure 5.2: Impact of deleting one residual unit a time (solid red lines) in a sharply
increasing pattern (left) and in a smooth pattern (right). Dashed lines represent test
errors when no units are deleted. Blue lines point the place of downsampling layers.
Taken from [70].

5.1.1 Defining a New Set of Filter Distribution Templates

To define the new set of templates, we strongly rely on the findings of the PyramidNet

paper [70]. The article presents two variations of the incremental pattern for the dis-

tribution of filters in a modified ResNet architecture that brings increases in accuracy.

The authors propose to use multiplicative and additive increases in the number of filters

making the transitions of feature maps dimensions between layers smoother than in

the original pattern. The motivation to change the distribution is the harmful effects of

sharply increasing the filters between blocks (see figure 5.2), a phenomenon that has

only been studied in residual networks. However, we have found that the effect extends

to plain architectures. Thus, to define the new templates, we chose to use the additive

pattern, the most successful of the two, and gradually change the number of channels

across the architecture with linear segments.

We adopt as the first template, one with the same incremental distribution but with

a smooth step (a). The second template is a distribution with a fixed number of filters (b)
as in the original Neocognitron and Isometric Neural Networks [174]. Another immediate

option, contrary to the increasing distribution, is a decreasing distribution of filters (c).
Finally, inspired by the distributions of blocks from the resulting ResNet101 and VGG

models found in [64] and [104, 208], we define a template in which filters agglomerate in

the centre, increasing the internal resolution (d) and, on the contrary, where filters are

reduced in the centre of the model (e).

One first approach to implementing a change of filters in a model is to keep the origi-

nal number of filters in the resulting model and redistribute them differently across its
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layers. Nevertheless, final models end up with different resource demands and therefore

making a fair comparison is problematic. Parameters, FLOPs and inference time have

been used as a proxy for comparing models with different designs. We believed that using

one metric is insufficient for a fair comparison. As an example, our implementations of

VGG and ResNet count an approximate number of parameters (20.03 million versus

23.52 million, respectively), but ResNet’s FLOPs (1307 MFLOPs) are more than three

times VGG ones (399 MFLOPs). To facilitate comparisons, we match one metric while

comparing the other. In particular, we fix models obtained from templates to match the

number of FLOPs of the original distribution and then compare a second metric such as

parameters, memory footprint or inference time.

In a more formal way, we define a convolutional neural network base model as a

set of numbered layers L = 1, ...,D +1, each with f l filters in layer l. D +1 is the final

classification layer whose size is given by the task. The ordered set of all filters in the

model is F1:D = { f1, . . . , fD} and the total number of FLOPs, the resource to be matched

between templates, is given by some function R(F1:D). We want to find a new distribution

of filters F ′
1:D in which

(5.1) R(F1:D)≈R(F ′
1:D)

and to test if the common heuristic of distributing F1:D having f l+1 = 2 f l each time

the feature map is halved, is advantageous to the model over F ′
1:D when evaluating

performance, memory footprint and inference time.

Our templates are defined as simple linear segments, or a combination of them, in

which min(F ′
1:D)= min(F1:D)= nmin and max(F ′

1:D)= n ∈N satisfying constraint (5.1).

5.1.2 Similar FLOPs Optimisation

CNS methods aim to find individual values for the number of filters in each layer, and

thus, the exploration space becomes huge. For our method, the optimisation of the values

is eased by the constraint in (5.1) and the way the templates are defined. Given that they

are built with linear segments, only two natural numbers are required to compute the

number of filters in each layer. One is fixed (nmin), and it is found by taking the lower

number of filters generally in the first layer of the original model. To find the second

(n′
max = n), we rely on the monotonic relationship between n and the model’s FLOPs,

valid for all templates. We use a modified binary search starting with the maximum

number of filters (nmax) in the original model and then reducing or increasing the value
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of n depending if the modified model has more or less FLOPs than the original (See

Algorithm 1).

Algorithm 1: Producing a CNN model using templates with FLOPs similar to
an existing base model.

Input:
CNNbase
nmax
template ← [a,b, c,d, e]
Output:
CNNtemplate
n′

max
begin

F ← compute_ f lops(CNNbase)
n ← nmax
repeat

CNNtemplate ← change_ f ilters(CNNbase, template,n)
F ′ ← compute_ f lops(CNNtemplate)
f actor ← F ′/F
nold ← n
n ← int(n/ f actor)

until n = nold;
n′

max ← n
end

For obtaining the number of filters in intermediate layers in each linear segment,

we round the evaluation of the linear equation produced by nmin and n according to the

layer position within the segment. The only particular change in the method is made

when using a template with a uniform pattern, in which case we make nmin = n. The

whole procedure is performed before training, carrying minimal computational costs for

redefining the model and estimating the new FLOPs value. We provide a precise value of

filters for each layer in all models and templates tested in this work in A.1 (appendix).

5.2 Templates 2.0 on Image Classification

We investigated the effects of applying different templates to the distribution of kernels

in well known convolutional neural network models (VGG, ResNet, MobileNet and

Mnasnet). We highlight that the resulting models obtained from templates have similar

FLOPs to the original model from which they are obtained. This constraint facilitates
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further comparison of models under the basis of size, memory and speed tested in several

popular datasets for classification tasks.

5.2.1 Datasets and Models

We selected six datasets with diverse domains, number of samples, and classes to test our

templates but allowed a relatively fast training process. Each model is evaluated with a

set of five templates. Therefore, we use MNIST, FashionMNIST, CIFAR-10, CIFAR-100

[99], CINIC-10 [38] and Tiny-Imagenet [103]. The first four datasets contain sets of

50,000 and 10,000 samples for train and validation, respectively. MNIST and FashionM-

NIST contain 28 x 28 grayscale images divided into 10 classes each. CIFAR datasets have

associated labels from 10 and 100 classes and colour images with a resolution of 32x32.

CINIC-10 contains 90,000 images in each, the training and validation sets with the same

resolution and classes as the CIFAR-10 dataset. Tiny-Imagenet is a reduced version of

the original Imagenet dataset with only 200 classes and images with a resolution of 64 x

64 pixels.

We evaluated VGG[183] and ResNet[73] models, which represent some of the most

influential CNN architectures on the ImageNet challenge in previous years [37, 170] as

well as MobileNetV2[175], one highly optimised model, and MnasNet[189], an automati-

cally produced architecture from a NAS method.

5.2.2 Implementation Details

Experiments have models fed with images with the standard augmentation techniques

of padding, random cropping and horizontal flipping and additionally, with cutout [41]

using one patch of 16 x 16 pixels. Our experiments were run in an NVidia Titan X Pascal

12GB GPU adjusting the batch size to 64 for TinyImagenet and 256 for the rest of the

datasets.

Models on MNIST-like datasets were trained for 150 epochs using stochastic gradient

descent (SGD) with a scheduled learning rate of 0.01 decreased with gamma 0.2 at epochs

75 and 110; weight decay of 1e-5 and momentum of 0.9. For CIFAR-10, CIFAR-100 and

CINIC-10, all models were trained for 200 epochs using the same conditions: SGD with a

learning rate of 0.1 scheduled with gamma 0.2 at epochs 60, 120 and 160; weight decay of

1e-5 and momentum of 0.9. For TinyImagenet, models were trained for 90 epochs using

SGD with a scheduled learning rate of 0.1 decreased with gamma 0.1 at epochs 45, 70

and 85; weight decay of 1e-1 and momentum of 0.9.

80



5.2. TEMPLATES 2.0 ON IMAGE CLASSIFICATION

5.2.3 Effects of Templates on Classical Models

We conducted an experiment to test our proposed templates on the selected architectures.

Table 5.1 show properties of resulting models for each architecture after using templates.

Parameters, memory footprint and inference time are reduced in almost all cases. This

result is in some way surprising given that template patterns were only selected following

simplicity and diversity but not precisely efficiency.

In particular, for classical models, we observe in Figure 5.3 increases in accuracy up

to 2.11 points over the VGG base model primarily obtained with template d. Reductions

of 90% in parameters, 79% in memory usage and 22% in inference time are produced

by using template c while accuracy is still slightly superior on all datasets. The fastest

model with a reduction of 24% in inference time is reached with template b.

The behaviour for ResNet differs from that of VGG in some aspects. The impact on

resource consumption es lower. Template c shows savings of 85% in parameters, 30% in

memory usage and almost 20% in inference time. The highest accuracies are obtained

in half of the datasets by template a. The smallest model in memory is obtained with

template d reaching maximum accuracy in CIFAR datasets with 32% less memory.

We found that there is a frequent behaviour related to each template that is clearly

observed in Figure 5.3. Accuracy improves in many datasets with templates a and d.

Template b emerges as a good trade off between resource consumption and accuracy and

templates c and e give the biggest reduction in resources by sacrificing some accuracy.

We provide detailed results of our experiments with classical models in Table 5.2.

5.2.4 Effects of Templates on Optimised Models

MobileNet and MnasNet architectures were optimised to perform well on mobile devices

focusing on obtaining high accuracy and low inference time. The former was optimised

by experts and the latter was optimised through a neural architecture search method.

We show resource demands of both base models and their modifications produced by

templates in Table 5.1. Although it is expected that the margin of improvement on these

highly optimised models be considerably lower, we found that templates can reduce up

to 77% in parameters and 11% in memory footprint.

Inference time depends more on the degree the computational graph allows paral-

lelism. Our method keeps the same layer distribution and interconnection in the model.

Thus, the computational graph remains similar. On the other hand, we keep similar

FLOPs for all the templates in our experiments. We think the differences in inference
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Table 5.1: Resource consumption on CIFAR-10 for original architectures and resulting
models after applying templates. FLOPs remain similar in comparison to base models.
Classical models show bigger reductions in all aspects, while optimised models benefit
more in parameters. Negative values represent increases in resources.

Param Mem Inference FLOPs
Template (Millions) (MB) Time (ms) (Millions)
vgg19 base 20.03 % ↓ 87.0 % ↓ 1.85 % ↓ 399.2
vgg19 a 17.23 13.9 76.5 12.0 1.85 0.0 396.9
vgg19 b 3.17 84.1 23.0 73.5 1.40 24.3 400.2
vgg19 c 1.89 90.5 17.8 79.5 1.43 22.7 399.5
vgg19 d 8.07 59.7 39.8 54.2 1.46 21.0 399.8
vgg19 e 2.06 89.7 17.8 79.5 1.43 22.7 399.0

Param Mem Inference FLOPs
Template (Millions) (MB) Time (ms) (Millions)
resnet50 base 23.52 % ↓ 185.5 % ↓ 5.35 % ↓ 1307.7
resnet50 a 14.17 39.7 146.8 20.8 4.83 9.7 1301.9
resnet50 b 4.85 79.3 132.1 28.7 4.29 19.8 1299.0
resnet50 c 3.48 85.2 128.9 30.5 4.30 19.6 1293.5
resnet50 d 8.36 64.4 125.8 32.1 4.32 19.2 1307.3
resnet50 e 3.68 84.3 132.1 28.7 4.34 18.8 1297.7

Param Mem Inference FLOPs
Template (Millions) (MB) Time (ms) (Millions)
mobilenet base 2.23 % ↓ 28.3 % ↓ 3.81 % ↓ 68.9
mobilenet a 1.42 36.3 27.2 3.8 3.86 -1.3 68.4
mobilenet b 0.80 64.1 28.3 0.0 3.91 -2.6 67.7
mobilenet c 0.59 73.5 27.2 3.8 3.71 2.6 68.1
mobilenet d 1.12 49.7 27.2 3.8 3.68 3.4 68.1
mobilenet e 0.51 77.1 25.1 11.3 3.92 -2.8 68.8

Param Mem Inference FLOPs
Template (Millions) (MB) Time (ms) (Millions)
mnasnet base 3.11 % ↓ 82.8 % ↓ 3.79 % ↓ 314.6
mnasnet a 1.57 49.5 98.5 -18.9 3.68 2.9 311.8
mnasnet b 1.05 66.2 101.7 -22.8 3.85 -1.5 309.6
mnasnet c 0.79 74.5 101.7 -22.8 3.82 -0.7 312.1
mnasnet d 1.14 63.3 98.5 -18.9 3.61 4.7 313.3
mnasnet e 0.93 70.0 100.6 -21.4 3.75 1.0 314.5
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Figure 5.3: Accuracy of VGG and ResNet models after applying templates reported for
several datasets. Base is the original distribution of filters. In many cases, templates
outperform the base architecture. However, all of them use far fewer parameters than
the base model. Note that models produced with templates from VGG have less than a
third of FLOPs of those produced from ResNet.
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Table 5.2: VGG19 and ResNet50 performances with the original distribution of filters
and five templates evaluated on six datasets. Flops are kept to similar values between
templates of same models (399 MFLOPs for VGG19 and 1307 MFLOPs for ResNet50).
After filter redistribution, most models surpass the base accuracy with less resources.
Results show average of three repetitions.

tiny
Template mnist fashionmnist cifar10 cifar100 cinic10 imagenet
vgg19 base 99.769 ± 0.011 95.47 ± 0.05 94.90 ± 0.10 73.91 ± 0.08 85.79 ± 0.10 57.34 ± 0.30
vgg19 a 99.772 ± 0.019 95.59 ± 0.16 95.03 ± 0.26 74.47 ± 0.10 86.13 ± 0.14 57.21 ± 0.56
vgg19 b 99.779 ± 0.005 95.51 ± 0.03 95.01 ± 0.10 73.34 ± 0.24 86.37 ± 0.02 56.88 ± 0.31
vgg19 c 99.775 ± 0.024 95.28 ± 0.06 95.04 ± 0.19 72.27 ± 0.35 86.15 ± 0.09 54.50 ± 0.24
vgg19 d 99.779 ± 0.040 95.65 ± 0.09 95.21 ± 0.08 74.64 ± 0.13 86.49 ± 0.05 59.45 ± 0.18
vgg19 e 99.789 ± 0.024 95.33 ± 0.17 94.75 ± 0.07 71.13 ± 0.28 85.85 ± 0.03 54.26 ± 0.35
resnet50 base 99.772 ± 0.009 95.58 ± 0.10 95.91 ± 0.29 78.31 ± 0.54 88.78 ± 0.93 65.57 ± 0.47
resnet50 a 99.766 ± 0.022 95.66 ± 0.16 96.10± 0.07 79.00 ± 0.05 89.60 ± 0.05 66.06 ± 0.53
resnet50 b 99.762 ± 0.019 95.48 ± 0.13 96.07 ± 0.08 78.91 ± 0.08 89.36 ± 0.09 65.01 ± 0.43
resnet50 c 99.779 ± 0.037 95.41 ± 0.08 96.13 ± 0.20 77.92 ± 0.18 89.27 ± 0.15 64.07 ± 0.17
resnet50 d 99.775 ± 0.022 95.61 ± 0.08 96.20 ± 0.11 79.43 ± 0.24 89.30 ± 0.29 65.59 ± 0.39
resnet50 e 99.749 ± 0.030 95.41 ± 0.07 95.79 ± 0.03 77.99 ± 0.48 89.15 ± 0.02 64.49 ± 0.57

time come in how well the sizes and the number of feature maps fit better in GPU

memory. Since MobileNet and MNASNet more optimised, templates struggle to produce

significant improvements in this metric but still, models reach almost 5% of reduction in

inference time.

From Figure 5.4, we observe that template e produces the biggest savings in para-

meters and memory for MobileNet while still surpassing the base accuracy. The highest

performance is obtained with templates a and b for this model. For MnasNet, template

a emerges as the best one regarding accuracy and being capable of reducing almost 50%

of parameters. Moreover, it shows reductions of 2.9% on model latency despite being this

the main goal used in its NAS method.

We note that both MobileNetV2 and MnasNet perform best in tiny-Imagenet dataset.

We think the reason for this effect is that tiny-Imagenet is strongly related to Imagenet,

and models’ designs have been overfitted to the latter. However, template a is still

competitive with reductions of 1.5 and 1.8 points in accuracy but savings up to 36% and

49% in parameters for MobileNet and MnasNet, respectively, on this specific dataset. We

show detailed results for these models in Table 5.3.
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Figure 5.4: Parameter efficiency of MobileNetV2 and MnasNet models with templates
reported for several datasets. Base is the original distribution of filters. In many cases,
templates outperform the base architecture. However, all of them use far fewer para-
meters than the base model. Note that models produced with templates from MnasNet
have more than 4X FLOPs of those produced from MobileNetV2.
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Table 5.3: MobileNetV2 and MnasNet performances with the original distribution of
filters and five templates evaluated on six datasets. Flops are kept to similar values
between templates of same models (68 MFLOPs for MobileNetV2 and 314 MFLOPs for
MnasNet on CIFAR10). Despite both original architectures have been highly optimised,
most resulting models from applying templates surpass the base accuracy. Results show
average of three repetitions.

tiny
Template mnist fashionmnist cifar10 cifar100 cinic10 imagenet
mobilenetV2 base 99.726 ± 0.024 94.38 ± 0.04 93.37 ± 0.10 72.62 ± 0.03 82.19 ± 0.04 61.47 ± 0.39
mobilenetV2 a 99.772 ± 0.019 94.69 ± 0.14 93.69 ± 0.20 73.31 ± 0.39 82.83 ± 0.04 58.98 ± 2.11
mobilenetV2 b 99.752 ± 0.019 94.85 ± 0.11 94.26 ± 0.15 73.27 ± 0.31 83.85 ± 0.17 55.40 ± 2.62
mobilenetV2 c 99.772 ± 0.026 94.72 ± 0.11 93.54 ± 0.20 67.96 ± 0.40 83.03 ± 0.10 41.73 ± 5.04
mobilenetV2 d 99.752 ± 0.009 94.57 ± 0.04 93.57 ± 0.11 68.92 ± 0.11 82.33 ± 0.21 45.02 ± 5.75
mobilenetV2 e 99.756 ± 0.020 94.66 ± 0.22 93.82 ± 0.18 70.18 ± 0.31 83.20 ± 0.10 52.61 ± 1.86
mnasnet base 99.736 ± 0.005 95.17 ± 0.07 94.92 ± 0.07 76.46 ± 0.30 86.25 ± 0.07 61.78 ± 0.27
mnasnet a 99.756 ± 0.015 95.52 ± 0.07 95.62 ± 0.17 76.73 ± 0.48 87.28 ± 0.09 59.02 ± 0.62
mnasnet b 99.772 ± 0.029 95.34 ± 0.10 95.49 ± 0.10 75.82 ± 0.26 86.94 ± 0.11 56.51 ± 0.31
mnasnet c 99.752 ± 0.017 95.50 ± 0.11 95.23 ± 0.12 74.01 ± 0.50 86.65 ± 0.14 49.12 ± 0.11
mnasnet d 99.746 ± 0.011 95.47 ± 0.06 95.53 ± 0.11 74.96 ± 0.25 86.93 ± 0.12 51.62 ± 0.61
mnasnet e 99.759 ± 0.011 95.48 ± 0.08 95.41 ± 0.08 75.55 ± 0.26 86.88 ± 0.16 57.62 ± 0.29

5.3 Templates 2.0 on Audio Classification

One of the areas where research in deep learning has enabled many applications is

signal processing. After evolving in computer vision tasks, neural networks have been

widely adopted in many domains. In particular, they have been applied to audio process-

ing, including speech, music and environmental sound processing. Despite there being

significant differences between computer vision and audio domains, many of the existing

methods in the latter have been borrowed from the former [156]. However, researchers

have started to develop audio-focused techniques [62, 97, 172].

Raw audio samples come from a one-dimensional signal indexed in time [156]. Never-

theless, they are often translated into two-dimensional time-frequency representations,

such as mel-frequency cepstral coefficients (MFCCs), which is the standard representa-

tion used for audio data processing [58, 125, 218]. MFCC spectrograms, unlike images in

computer vision applications, do not represent an instant in time. Instead, they are built

taking constant-length segments from the raw audio signal. Yet, the resulting represen-

tation can be interpreted as a single image and processed using classic convolutional

neural networks [68].

Based on the differences mentioned above with computer vision tasks, we decided to

test our templates in two popular datasets from the audio classification domain [147].

We explore the accuracy and resource consumption of our proposed improved versions for
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filter distributions and compare them against using the traditional pyramidal pattern.

5.3.1 Audio Datasets

The GTZAN dataset [193] is the most-used public dataset for evaluation in machine

listening research for music genre recognition (MGR) [186]. GTZAN contains 1000 music

clips with a duration of 30 seconds each. The clips, sampled at a rate of 22.5kHz, are

grouped into 10 distinct genre classes: Blues, Classical, Country, Disco, Hip Hop, Jazz,

Metal, Popular, Reggae, and Rock.

Another popular audio dataset is the ESC-50 dataset, designed to provide a bench-

mark for environmental sound classification [154]. Analysis of environmental sounds is

considered a different task from other everyday audio events such as speech or music

(laughter, cat meowing, glass breaking or brushing teeth are some examples of environ-

mental sounds). The ESC-50 dataset consists of 2000 labelled environmental recordings

distributed between 50 classes. Each instance has a length of 5 seconds sampled at

44.1 kHz. Some examples of MFCCs for the two datasets used in our experiments are

presented in Figure 5.5.

5.3.2 Implementation Details

When convolutional neural networks are applied to raw waveform input, it is normally

done with 1-d convolutions. However, we use spectral input features for which 2-d

time-frequency convolution is commonly adopted. Neural models in audio use common

elements and follow similar pattern designs as computer vision models. They are com-

posed of a series of convolutional layers with pooling layers at the end of each sequence to

downsample the learned feature maps, followed by one or more dense layers to produce

the desired output according to the task to be solved.

According to [156], in the absence of a well-established theory to find the optimal

design hyperparameters for a CNN architecture for a specific task (size of kernels,

pooling, number of channels and interconnections with successive layers), researchers

have mostly opted to experimentally select the best performing model from a range of,

usually alike, alternatives. While this statement is made for the field of audio processing,

we agree that it is true for most, if not all, of the other domains of deep learning

architecture design.

We have found in audio processing architectures, as well in computer vision, that

many complex models are not developed from scratch. Instead, they use classical archi-
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Figure 5.5: MFCC spectrograms for some samples in the GTZAN (purple lines) and
ESC-50 (green lines) datasets.

tectures as a backbone, of which ResNet is one of the most popular [67]. So, we decided

to test out templates using the well known ResNet50 architecture, adapting only the

number of filters according to the new definition of templates and the final dense layer

to adjust the output as required for the dataset to be evaluated.

For training, we use the code and hyperparameters provided by [147], which were

found with grid search [117]. Learning rate and weight decay were set a 0.0001 and

0.001 respectively. We use a batch size of 32 for ESC-50 and 16 for GTZAN. The learning

rate was decreased by a factor of 10 for every 30 epochs from a total of 70 epochs.

5.3.3 Results

The results of this experiment are shown in Table 5.4. They show the average accuracy

of three runs. By using templates on ResNet50 we can see marginal improvements
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Table 5.4: Accuracy and resource utilisation of ResNet50 with templates on GTZAN and
ESC-50 audio classification datasets. Results show average of three repetitions.

Filter Templates
Metric base a b c d e
GTZAN Accuracy 85.59 85.92 87.26 85.75 87.43 85.08

± 1.04 ± 0.57 ± 2.52 ± 2.03 ± 1.51 ± 0.76
ESC-50 Accuracy 69.66 70.33 68.16 65.75 69.91 67.25

± 0.87 ± 2.26 ± 0.72 ± 1.88 ± 1.89 ± 0.75
Param (Millions) 23.61 14.23 4.88 3.50 8.39 3.71
Memory (MB) 395.51 350.54 383.10 385.15 337.40 392.29
Inference (ms) 5.47 7.47 4.56 7.75 4.66 4.48
GFLOPs 4.119 4.102 4.093 4.076 4.118 4.089

in accuracy of 0.96% and 2.14% for GTZAN and ESC-50 over the base ResNet model

compared to the best performing template. However, when we look at the resource

consumption, savings in memory footprint and inference time reach 15% for template d
while the number of parameters shows a considerable reduction of 65%. We could take

template c on GTZAN and obtain a similar accuracy with only 14.82% of the original

parameters. As in all the experiments performed in this chapter, the different templates

use similar FLOPs to the original ResNet architecture. In this way, we show that there

are no hidden costs of applying our templates other than the simple step of redistributing

neurons and training our small set.

Something worth noticing is that, again, there is no absolute winner template in this

task of audio classification. Instead, each particular template seems to provide some

advantage even between datasets.

5.4 Templates 2.0 on NASBench 101 Dataset

The aim of neural architecture search (NAS) is to find the best possible CNN model

on a specific dataset by iterating over a set of model candidates looking for the best

performance [164]. The size of the search space is the most challenging aspect of archi-

tecture search. An extensive evaluation of all networks is generally costly. Therefore,

most existing methods use some heuristic to predict the final performance of each model

with just a few epochs (or none if possible) of training.

The process is described in Figure 5.6. It starts with defining the space of all possible

architectures and follows by sampling architectures from that space to estimate their

accuracies which can update the exploration strategy.
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Figure 5.6: Schematics of Neural Architecture Search methods. From a pre-defined
search space an exploration strategy selects an architecture. An heuristic computes
an estimate of the model performance. Then, the exploration strategy can be updated
depending on the estimations. Image from [49].

Research in NAS is divided into the three areas described in the boxes of Figure

5.6: search space definition, exploration strategy and performance estimation strategy.

Despite numerous improvements in efficiency and performance, empirical evaluations

in NAS continue to be a challenge. Different NAS studies frequently employ different

training pipelines, search spaces, and hyperparameters. Thus they do not compare other

approaches in similar conditions [210, 211].

NASBench-101 [207] was introduced to provide a common framework to evaluate

new proposed exploration and performance estimation strategies. The dataset delivers

training and validation performances of all convolutional neural network architectures

on the CIFAR-10 dataset. All networks are built by stacking identical groups of layers

called cells which are followed by a downsampling layer. The network finish with a dense

layer that conducts the final classification. In this sense, the difference between networks

is found in the cell design. Cells are described by directed acyclic graphs with up to 9

vertices and 7 edges. The set of valid operations at each vertex are 3x3 convolution, 1x1

convolution, and 3x3 max-pooling.

The search space of NASBench-101 contains 423,624 individual CNN networks, each

of them being trained and evaluated several times on CIFAR-10. Given that networks

are evaluated at several steps, the dataset contains over 5 million trained models.

5.4.1 Implementation Details

More than a dataset, NASBench-101 is a benchmark framework that provides a full set

of tools programmed in TensorFlow [1] to evaluate neural networks following the pattern

defined in the search space. The search space of NASBench is restricted to the pyramidal

distribution of filters. Hence we performed minor changes to the original code to add our

different templates.
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For all NASBench models, the authors used the same set of hyperparameters. By

running a coarse grid search on the average accuracy of 50 randomly sampled designs

from the space, this collection of hyperparameters was chosen to be robust across different

architectures. We use the same training parameters defined in the framework.

5.4.2 Results

It would be inaccessible to us, as well as to many researchers, to test our templates

with each architecture within the exploration space of NASBench. We instead evaluated

and compared the best model in the dataset. Other singular model mentioned in the

NASBench paper is a ResNet-like network. So we decide to test the templates on these

two architectures.

Models in the dataset are not constrained in resources in any way. Restrictions are

created indirectly by the types of layers and connections, the number of cells in each

module and the number of modules. Because our method follows the same graph as the

original architectures, we constrain the models using templates to operate under the

same amount of FLOPs to have a similar point of reference.

The experimental results are shown in Table 5.5. We have mentioned that a fair

comparison of models is challenging not only with models inside the dataset but also

with models in the literature in general. FLOPs and parameters of the best performing

network are more than five times the ones of the ResNet-like network, while gaining in

accuracy is less than three per cent.

Models obtained with templates show an impressive reduction of computational costs.

Template b with both models uses one-fifth of the original parameters. Template c obtain

a higher accuracy than the best performing model with one-third of the parameters. We

are not aiming for our method to outperform any NAS method. We state that our method

can be used in combination with NAS methods to obtain further improvements at a very

low cost. Moreover, by exploring the proposed (and other) new distributions, it is possible

to find more efficient models. Each template enables different metrics to be enhanced.
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Table 5.5: Accuracy and parameters of the best model in NASBench-101 dataset and a
ResNet-like model produced with an extended search space. By using templates, both
models are capable of obtaining further accuracy with fewer parameters using similar
FLOPs. Results show average of three repetitions.

Templates
Models base a b c d e
Best Acc (avg) 95.35 95.20 95.02 95.44 95.06 95.26
architecture Acc (std) 0.1855 0.2688 0.1552 0.3847 0.1345 0.5902

Param 32.42 27.49 6.44 10.38 17.26 8.73
GFLOPs 3664 3629 3662 3545 3562 3567

ResNet Acc (avg) 92.64 93.85 91.80 92.65 91.81 92.67
like Acc (std) 0.3807 0.7145 0.2804 0.2502 0.5727 0.3442
architecture Param 6.04 5.18 1.24 1.79 3.30 1.63

GFLOPs 687 684 685 602 679 665

5.5 Templates 2.0 on Representation and
Localisation

Until now we have implemented and tested our templates on domains where we evaluate

the final output of the network. We want to know if the internal representation of

the models using templates is as good as the representation delivered by the original

pyramidal distribution. This original distribution puts more filters on the last layer so, the

representation encodes a big number of features. By using templates the representation

varies from a few features at the end (templates c and d) to medium range (b and e).

Despite template a follows a similar distribution to the original one, the number of

filters in the final layer is lower. We propose to evaluate templates in a task that uses

the internal representation and furthermore, applies the representation to a different

domain than the classification task. We have chosen to replicate experiments published

in [173] on localisation using embeddings.

5.5.1 Geolocalisation Embedding Maps and Images

This particular geolocalisation task consists of matching panoramic images with points

in a high-level 2-D map in order to find the geographic coordinates where the images

were taken. The task assumes no GPS service is available, so the localisation relies only

on visual elements in the input images.

The method proposed in [173] finds the best match by linking the semantic informa-

92



5.5. TEMPLATES 2.0 ON REPRESENTATION AND LOCALISATION

Figure 5.7: Sample location image and map. A georeferenced panorama (left) is divided
in four viewing directions (centre) and processed with the correspondant location tile
from the map (right). The arrow in the map indicates the heading direction. Image from
[173].

tion in both the map and the image in the same fashion as humans do. This is a different

approach from most geolocalisation methods where an image is encoded in a vector and

then compared to a large dataset of already georeferenced images. Maps are divided into

tiles of equal size, and the process jointly learns a low dimensional embedded vector for

the corresponding image and map tile pairs.

A training example is shown in Figure 5.7. A panorama is divided into four images

with a predefined heading direction. A tile of a configurable range is generated from

the whole map centred in the same location matching the orientation of the image. On

inference, an agent trying to self-localise produces an input image that is embedded

in some vector space. A search process looks in the dataset of all available locations,

which are also encoded in the same embedding space. Given that encoded locations are

georeferenced, the system is able to retrieve the absolute geographical coordinates of the

input image.

5.5.2 Dataset and Model

Georeferenced images for training are taken from the StreetLearn dataset [136] which

contains 113,767 panoramic images from Manhattan and Pittsburgh while maps tiles

are obtained from Open Street Map [69]. With the geographic coordinates from images,

authors generate corresponding map tiles using Mapnik [149]. We used for testing

the same three subsets from locations in Hudson River (HR), Union Square (US) and

Wall Street (WS), each including 5,000 points within areas of 3.25km2, 2.77km2 and

2.33km2, respectively. We train with the same set of the original work obtained from

the remaining locations of the dataset. The total size of the training set included 98,767

images associated with two map tiles each of different scales (152x152m2 and 76x76m2).

The proposed architecture is built with two ResNet subnetworks following a siamese-
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Figure 5.8: Network architecture for embedded space learning. Input panoramic images
are divided into four images and then fed to a ResNet50 network. Map tiles are encoded
by a ResNet18 network. Both networks are forced to produce close representation
embeddings. Image from [173].

like pattern. We illustrate the block design in Figure 5.8. The authors argue that encoding

images is a more complex task (and a different domain) than encoding maps. Conse-

quently, they decided to use two independent networks, a ResNet50 model to process

images into the embedding space and a ResNet18 model to process maps. Both models

produce 512 local 4x4 descriptors that enter a projection module consisting of two fully

connected layers. These projection modules reduce the descriptors dimension to 16 and

couple the domains in the same embedding space.

We modified the original ResNet subnetworks with each of our five templates, adjust-

ing the last layers to match the number of descriptors required for the projection models.

As in each experiment in this chapter, all models produced by templates matched the

FLOPs of the original subnetworks.

5.5.3 Implementation Details

Similarly to the work in [173], we trained the whole model end-to-end, updating parame-

ters from all modules at the same time using the provided triplet loss. The network was

trained 10 epochs with a learning rate of 0.00004 for the Adam optimiser. Again, aug-

mentation was limited to small variations on the scale of map tiles and the orientation of

images.

Differences to the original work lie in the datasets used to pre-train ResNet sub-

networks. ResNet50 was originally pre-trained on Places365 [219], but our available
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Table 5.6: Accuracy and resource utilisation of ResNet50 with templates on geolocalisa-
tion embedding datasets. Table shows one-repetition results.

Filter Templates
Metric base a b c d e
Top 1% Recall HR 77.28 79.92 76.12 76.64 78.82 74.00
Top 1% Recall US 79.80 79.38 75.16 79.08 80.24 74.22
Top 1% Recall WS 69.88 69.70 66.28 68.80 70.28 64.28
Param (Millions) 11.17 6.60 2.14 1.60 3.90 1.76
Param Change (%) - -40.9 -80.8 -85.6 -65.0 -84.2
Memory (MB) 66.46 49.28 34.78 32.88 38.91 33.52
Mem Change (%) - -25.8 -47.6 -50.5 -41.4 -49.5
Inference (ms) 8.07 6.42 4.63 4.36 5.39 3.93
Inf Change (%) - -20.4 -42.5 -45.9 -33.2 -51.2

ResNet50 models were pre-trained on Imagenet, so we used those. ResNet18 was pre-

trained on ImageNet, but we noticed that starting it from random weights yielded similar

results to the published values.

5.5.4 Results

We compared the system using the base ResNet architectures versus our template-

generated networks evaluating the quality of the embedded space with recall@k as in

information retrieval systems [9]. Particularly, we adopt the same recall at 1% metric to

the baseline work.

Results are shown in Table 5.6. Base performances are comparable to the published

work and present similar variations due to different degrees of complexity in the sets.

Templates show an improved top-1% recall for the three evaluation sets and still produce

greater benefits in the resource demands. With a higher recall, template d produces

savings in parameters up to 65% and template a up to 40%. Although template c slightly

compromises the performance, the reductions in parameters (85%) and memory (50%)

can widely compensate for the loss. Template e provides an alternative for applications

optimising speed with a reduction in inference time of more than 50 percentage points.

This experimental result in embedding spaces suggests that the internal representa-

tion differs in models using distinct distributions of filters. Moreover, models with the

pyramidal pattern of filters cause overuse of resources that can be alleviated by simply

changing the distribution. We revisit embedding spaces further in the next section to

provide more insights into the quality of the representation produced by templates.
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Figure 5.9: Percentage of runs in which the best final template, considering accuracy,
was at least in the first positions at each epoch. A horizontal dotted line marks 95% of
all experiments. The vertical dotted line shows the epoch in which 95% percent of cases
were in the first two positions.

5.6 Finding the Best Template

Templates have obtained better performances than base pyramidal models in many

previously presented tasks. Even though some templates tend to produce high results or

significantly reduce computational resources, there is no single template that improves

in every case. Training the five templates might still be cheaper than performing an

exhaustive model search [223]. However, for more extensive datasets, it is desirable to

have a way to predict which would be a good candidate template before full training or

even with no training. Methods try to achieve this estimation by using lower fidelities

(a.k.a proxy metrics) of the actual full training performance [49]. One naive approach is

to use performances obtained from early training steps [111, 162, 215] nevertheless, the

task of performance estimation has been found to be difficult [49].

To illustrate the complexity, we present in Figure 5.9 a summary of all our exper-
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iments on image classification with the first version of templates. The plot shows the

percentage in which the best final template was also the best (or at least one of the best)

at some previous epoch considering accuracy. We need to train all the templates up to

2/3 of the training process and then fully train the best two to find the best template in

95 per cent of cases. To choose a subset at 1/4 of the epochs that 95 per cent of the time

includes the best final template, we need to train four templates out of five.

Before trying to predict the final accuracy by using early performances or other

more sophisticated methods [48, 96, 121], we decided to analyse the properties of the

representations spaces generated by applying the different templates. We firstly make

a qualitative exploration using an algorithm for dimension reduction. Later, we test a

metric for measuring similarities between representation spaces looking for a correla-

tion between the representation and the final performance distances of the different

templates.

5.6.1 Embedding Space of Templates

The area researching techniques for visualising and understanding large, high dimen-

sional data is known as dimensionality reduction [196]. Methods in this field rely on the

existence of a smaller intrinsic dimension of the data [55].

For many years the standard method for dimensionality reduction was principal

component analysis (PCA) which transform data points into a subspace generated with

the first principal components that maximise the variance of the projected data. Later on,

t-Distributed Stochastic Neighbor Embedding (t-SNE) was proved to be a more effective

method by modelling a distribution that grants a high probability to similar points to be

close in the reduced representation [195]. However, one of the disadvantages of t-SNE is

that it does not preserve well the global structure of the data. Furthermore, it requires

tuning several hyperparameters to produce a meaningful plot [202].

Uniform Manifold Approximation and Projection (UMAP) is a new approach that pro-

poses a number of advantages over t-SNE, such as boosted speed and better conservation

of the data’s global structure [132].

UMAP follows an approach similar to t-SNE in the sense that they first build an

initial neighbourhood graph in the dimensional space of the original data, and later, they

try to find a similar graph in a reduced dimensional space.

On the other hand, UMAP and t-SNE differ in the way the initial graph is constructed.

UMAP extends a circular region from each point to determine its connectivity. Circles

are defined with variable radii depending on the density of the data points within the
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zone, using a long radius in low-density regions and a small radius in populated ones.

Instead of directly estimating the radius of the circle, UMAP uses the distance from the

point to the kth nearest neighbour. k is a hyperparameter that controls the trade-off

between global and local structure preservation. To complete the final graph, UMAP

weights each edge of connecting points with the distance between them. This procedure

allows finding a low-dimensional graph where close points look tight and remote points

stay far.

Based on its improvements over other techniques, we decided to use UMAP to com-

pare the representation spaces of base models and templates. We particularly analysed

the space projected by the final layer of VGG19 and ResNet50 models on the CIFAR10

dataset. Figure 5.10 show a 2-dimensional representation of the base model compared

against the representation obtained with template d. This template reached the highest

accuracy on CIFAR10. We observe that for the VGG architecture, the template d distri-

bution space features a clearer separation between classes than the original base space.

The separation is more evident for the ResNet architecture, presumably because the

accuracies of ResNet models are higher than those of the VGG models. There are less

than half mixed boundaries in ResNet with template d than in base model.

We present a comparison of projected representation spaces in Figure 5.11 for the rest

of the datasets used for testing templates on the image classification task. We exclusively

compare ResNet50 architectures with the original base distribution versus ones with

template d distribution.

On the CINIC10 dataset, clusters are tight and difficult to separate. The effect is

caused by the high number of samples comprising the dataset. Still, we observe more

"fuzzy" class boundaries with the base distribution, meaning that the model struggles

more to classify a sample. As the number of classes in the dataset increases, UMAP

embeddings are more difficult to analyse. For TinyImagenet, we find more compact

clusters in template d than in the base model.

5.6.2 Comparing Representation Spaces of Templates Via CKA
Metric

We have discussed in the section 5.6.1 the qualitative properties of the UMAP two-

dimensional projections of the base model compared to templates. The analysis suggests

that the embedding spaces generated for the templates are better than the base model

in the sense that they tend to build clearer boundaries that facilitate the task of image
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(a) VGG19 base on CIFAR10 (b) VGG19 d on CIFAR10

(c) ResNet50 base on CIFAR10 (d) ResNet50 d on CIFAR10

Figure 5.10: UMAP embeddings for the final layer of VGG19 and ResNet50 on CIFAR10.
Template d distribution space (b, d) shows a more clear separation between classes than
the original base space (a, c). Colours in different plots represent the same classes.

classification. We also found that templates obtain higher performances in other tasks

such as audio classification and map localisation.

Additionally, we want to quantitatively analyse those embedding spaces (for the base

model and all templates) and their differences to find good markers in the embedding

space or, as we study in section 5.6.3, a correlation between differences and accuracies

on classification, as an intermediate step to find the best template. The intuition behind

this idea is the best templates could show similar properties disregarding the domain or

the model. So, we could constrain the space in the training procedure to acquire these

desirable properties.

To that end, we rely on the ability of similarity metrics for comparing neural network
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(a) Resnet50 (base) on CINIC10 (b) Resnet50 (d) on CINIC10

(c) Resnet50 (base) on CIFAR100 (d) Resnet50 (d) on CIFAR100

(e) Resnet50 (base) on 15 classes from Tiny-
Imagenet

(f) Resnet50 (d) on 15 classes from Tiny-
Imagenet

Figure 5.11: UMAP embeddings for the final layer of ResNet50 on several datasets. Maps
for base distribution are placed on the left column and maps for d distribution are in
the right column.
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representations [157]. A following work presents improvements that allow a better

comparison of layers with different numbers of neurons using Canonical Correlation

Analysis (CCA). The property of this metric to be invariant to affine transforms enables

its use without requiring any neuron to neuron alignment [141].

A recent technique, known as Centered Kernel Alignment (CKA), to measure simi-

larity is proposed in [98]. The authors aim that the technique, unlike the previous ones,

provides meaningful metrics between representations where there are more dimensions

than data points. Furthermore, CKA is more invariant to different initialisations when

training the models. Although there has been a lot of discussion around the universal

dominance of a particular similarity metric, we chose the latter to analyse templates’

embedding spaces because it performs well when comparing representation spaces in

vision tasks [42].

Several explorations and analyses have been presented recently using the CKA

similarity metric between models. However, authors compare other properties of different

architectures such as wider versus deeper models [146], CNNs versus Transformers

[158] or self-supervised versus supervised trained models [66]. In our experiments, we

analyse another aspect of the networks: the variation of representation across layers for

each different distribution of filters in the same architecture.

We computed the CKA metric using the Hilbert-Schmidt Independence Criterion

(HSIC) according to [98, 146] describing the problem as below.

For a pair of layers with p1 neurons and p2 neurons, let X ∈ Rmxp1 and Y ∈ Rmxp2

contain their representations of a set of m examples. The mxm elements of Gramian

matrices K = X X T and L = Y Y T denotes the similarities between a pair of examples

according to the representations in X or Y . Let H = In − 1
n11T be the centering matrix.

The empirical estimator of HSIC is:

HSIC(K ,L)= 1
(1−n)2)

tr(KHLH)

HSIC is invariant to orthogonal transformations and, therefore, to permutation of

neurons. To make it invariant to scaling, CKA normalises HSIC to produce a value

between 0 and 1 given by

CK A(K ,L)= HSIC(K ,L)√
HSIC(K ,K)HSIC(L,L)

This CKA metric estimates the similarity of a pair of layers of the same or different

models. To produce a CKA plot for a whole model, we iterate the computation of CKA

with each pair of layers from that model to be compared.
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(a) base-base (b) base-a (c) base-b

(d) base-c (e) base-d (f) base-e

Figure 5.12: CKA metric of VGG19 base model vs templates with tiny-imagenet dataset.
Abscissas represent each layer in the base model and ordinates show layers in the model
obtained from a template.

We presented the CKA similarity of the base model compared with those produced

by templates from the VGG19 architecture in Figure 5.12. For reference, we show the

CKA metric of the base model against itself in the top-left plot. The bright diagonals

reflect total similarity, given that we are measuring the same layer and model. Represen-

tations in the first layers are found to be different from the ones from the final layer (in

perpendicular corners with respect to the bright diagonal).

There are different degrees of similarity when comparing templates and the base

model depending on the dataset in which CKA is computed. For tinyImagenet, all models

show a high similarity from the initial to middle layers independently that they have a

variable number of neurons. It is in the last layer where the representation spaces of

templates start to differ from the base model representation space. Interestingly, the

least similar representation to the one produced by the base model is that from template

d, which is the model with the highest accuracy on the tinyImagenet dataset.
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(a) base-base (b) base-a (c) base-b

(d) base-c (e) base-d (f) base-e

Figure 5.13: CKA metric of ResNet50 base model vs templates with tiny-imagenet
dataset. Abscissas represent each layer in the base model and ordinates show layers in
the model obtained from a template.

Similar plots are shown in Figure 5.13 for the ResNet50 architecture on tinyImagenet.

The top-left plot shows the CKA similarity of the same base model across layers. Visual

analysis is challenging given the big number of layers of the model and the dissimilarity of

even (post-residual) and odd (block interior) layers [98]. However, we found a distinctive

feature in the base-template a CKA metric denoted by the dark bands on the edges of

the plot: the first layers of the base model representation are very different from the rest

of the layers from the template a which was the best performing model in the dataset.

5.6.3 An Attempt to Correlate CKA Measurements with
Accuracy and Parameters

Motivated by the results of the section 5.6.2, we hypothesise about the existence of a

correlation between the differences in performance of models and their similarity via
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the CKA metric. Going further, we wonder if there exists an ideal CKA similarity plot

(comparing the model against itself) that a good model should show.

Suppose we can find this ideal pattern of similarity between layers of the same

network. In that case, we may be able to induce the pattern at training time to produce

higher-accuracy models. An example of such a hypothesised CKA pattern could present

a smooth variance in the similarities of the representations as we go deeper into the

layers. So, we explored the correlation of accuracies and CKA similarities between all

templates. Because templates produce large variations in the number of parameters of

models, we also investigated the existence of a correlation between parameters and CKA

similarities.

CKA is a similarity metric for a pair of layers. The final result of comparing pairs of

models is, consequently, a matrix of CK A values of l1xl2 elements where l1 and l2 are

the number of layers in each model to be compared. To reduce the CK Al1xl2 matrix to a

single value to be computed in the correlation, we decided to use two methods: taking

the mean of the values (CK Amean) and taking the standard deviation (CK Astd).

We also tested the correlation on the models’ CKA plot resemblance to the best

performing model CKA pattern and to, what we think, could be an ideal CKA pattern.

We measure the likeness of two CKA plots using the mean squared error (MSE). For

clarity, we called MSEbest the computed difference of the CK A matrices between the

compared template and the best performing template. We called MSE ideal the difference

with our ideal CK A matrix.

We show in tables 5.7 the correlation for VGG19 and ResNet50 models in four of the

most used datasets in this work (CIFAR10, CIFAR100, CINIC10 and tinyImagenet). It

appears like there is a strong correlation for some of the attributes, such as accuracy

and CK Amean, or accuracy and MSEbest testing VGG19 on CIFAR100. However, the

correlation values are not consistent on the other datasets. Moreover, the correlation

values are not consistent for ResNet50 nor among the datasets tested with ResNet50.

We also tried to find if the difference in parameters of models affects the differences

between representations measured by CKA. Similar findings to the accuracy can be seen

for parameters in Table 5.8. Parameters and CK Amean looks promising, reaching high

correlation values for ResNet50 in three datasets. But very low values for VGG19 in the

same datasets. In general, correlation values in all attributes of VGG19 are low.

Looking at the correlation for MSEbest with high and low values, we could argue

that the differences in parameters, which it is believed affect the representation in some

way, are not captured by the CKA metric. We instead think that there is no strong
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Table 5.7: Spearman correlation between template CKA properties and accuracy for
ResNet50 and VGG19. CKA mean and std are obtained from summarising CKA metric
of all x all layers in the same model. MSE best difference is computed comparing each
template with the best accuracy pattern. MSE ideal is compared with a proposed ideal
gradient pattern.

VGG19 mean, acc std, acc mse best, acc mse ideal, acc
cifar10 -0.68 0.36 -0.82 0.32
cifar100 -0.96 0.43 -0.93 0.75
cinic10 -0.68 0.46 -0.54 0.61
tiny-imagenet -0.57 0.64 -0.68 -0.64

ResNet50 mean, acc std, acc mse best, acc mse ideal, acc
cifar10 0.46 0.21 -0.68 -0.50
cifar100 -0.11 0.07 -0.43 0.00
cinic10 0.54 -0.11 -0.75 0.11
tiny-imagenet -0.18 0.50 -0.18 0.71

Table 5.8: Spearman correlation between template CKA properties and parameters for
ResNet50 and VGG19. CKA mean and std are obtained from summarising CKA metric
of all x all layers in the same model. MSE best difference is computed by comparing each
template with the best accuracy pattern. MSE ideal is compared with a proposed ideal
gradient pattern.

VGG19 mean, param std, param mse best, param mse ideal, param
cifar10 -0.36 -0.26 0.80 0.69
cifar100 -0.44 0.58 0.98 0.58
cinic10 -0.36 0.36 0.40 0.07
tiny-imagenet 0.36 0.11 -0.26 0.26

ResNet50 mean, param std, param mse best, param mse ideal, param
cifar10 -0.86 0.21 0.86 0.96
cifar100 -0.86 0.89 0.75 0.86
cinic10 -0.71 0.86 0.64 0.43
tiny-imagenet -0.18 0.50 -0.18 0.71

correlation between parameters and the effectiveness of a representation for a particular

architecture. Using the templates, we redistributed filters in several different ways

producing models with a diverse number of parameters. We found that the highest

performance was not always obtained for the model counting the highest number of

parameters.
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5.7 Conclusion

This chapter presented a new definition of templates named Templates 2.0. The new set

improves over the previous templates in that the definition allows matching a specific

budget of FLOPs which makes fair comparisons with the original models. A noticeable

difference from the previous design is that the filter distribution for each template is

parameterised with linear segments providing smooth changes in the number of feature

maps. This smoothness has proved to be beneficial in obtaining a higher accuracy related

to the original architecture. With templates, the VGG model obtained improvements

up to 2.11 points in accuracy for image classification tasks. Templates can also produce

models with reductions of 90% in parameters, 79% in memory usage and 22% in inference

time. Templates obtained higher accuracies with highly optimised models for all the

tested datasets, except tiny-Imagenet. With MobileNet V2, templates are able of reducing

up to 77% parameters and 11% memory footprint. With MNASNet, templates produced

architectures 74.5% smaller in parameters and 4.7% lower inference time.

We extended the experiments to new domains where templates were evaluated for the

final output and the intermediate representations they build. In the audio classification

datasets, using templates on ResNet50 reached improvements in accuracy of 0.96% for

the GTZAN dataset and 2.14% for the ESC-50 dataset. Templates offer reductions in

memory footprint and inference time by around 15%, while the number of parameters

shows a considerable decrease of 65%.

We showed a relevant example of the benefits of templates. Applying them to the best

architecture in the NASBench-101 dataset produced a model with higher accuracy using

only one-third of the original parameters. By using one-fifth of the original parameters,

a different template obtained only 0.33 fewer points in accuracy.

In the task of localisation utilising embeddings, we changed the model backbone

with modified versions using templates. The new models showed increases in the three

evaluated datasets with 65%, 41% and 33% fewer parameters, memory and inference

time demands, respectively.

The work in section 5.6 takes a step back. We do not offer a way of finding the best

template. Our experiments exploring the representation spaces of templates with the

CKA similarity metric suggest that the task is especially complex and indicates further

experimentation and analysis. We consider that this complexity is the cause of some

of the drawbacks of NAS methods, such as lack of convergence and inaccurate model

performance prediction.
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CONCLUSIONS

This thesis challenges the universality of the pyramidal design in convolutional

neural networks. We introduce the idea of taking an existing model and changing

its original distribution of filters with a small set of diverse patterns that we call

templates. We performed experiments with several models on different domains, showing

that original architectures are generally susceptible to performing more efficiently when

using the distributions proposed in this work.

6.1 Findings

This section summarises the findings of each chapter within this thesis.

In chapter 3 we introduced the concept of templates to defy the standard incremental

design for distributing filters existing in many CNN architectures.

The experimental results on CIFAR-10, CIFAR-100 and Tiny-Imagenet datasets

with four popular convolutional models showed that a simple redistribution of the same

number of filters could improve the accuracies over the original pyramidal design. For

CIFAR-10, models increased up to 1.83 points in accuracy. At the same time, for CIFAR-

100 and Tiny-Imagenet, templates were effective for VGG, Inception and MobileNet,

reaching improvements of up to 4.88, 1.07 and 3.63, respectively (Table 3.1).

A second experiment varying the size of models with a width multiplier found tem-

plates produce more efficient models in terms of resource demands with up to 85% fewer
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parameters and a memory footprint up to 76% smaller (Figures 3.3 and 3.4).

In chapter 4 experiments imply that benefits from templates can extend to domains

other than image classification. Furthermore, we described how templates could work on

top of CNN compression techniques to obtain further improvements.

Using PoseNet, the first CNN model to carry out real-time camera pose estimation

from a single image, we found templates were effective in more than half of the sets

evaluated in the 7-scenes dataset (Table 4.2). In addition, the improved PoseNet had a

lower MSE while producing 8% less memory footprint (Table 4.6). For the Cambridge

Landmarks dataset, the modified PoseNet and MobileNetV1 models had fewer locali-

sation errors than the original models in six out of seven scenes (Table 4.5). The top

MobileNetV1 template outperformed the original architecture despite utilising 10% fewer

parameters. Experiments revealed a singular condition in the super-resolution task with

VGG and ResNet backbones. All templates caused increases in resource requirements,

and only one template had a higher PNSR than the original model (Tables 4.8 and 4.7).

Interestingly, researchers are not using the incremental filter distribution as default but

a uniform distribution with a constant number of filters per layer, such as one of the

proposed templates. The uniform distribution had already led to a more efficient use of

resources in this task.

Regarding comparing model compression methods, the experimental evidence with

VGG models on CIFAR-100 suggests that the pruning methods can obtain superior

models with higher accuracy using similar resources when pruning from models with

different filter distributions. For example, the Geometric Median technique enhanced

3.87 points of accuracy in VGG when pruning 50% from the reverse-base template

and still accomplishing a small decrease in parameters. The Gate Decorator approach

discovered a model, again with the reverse-base template, that performed more than

one point higher in accuracy with FLOPs close to the original. Filter Basis discovered a

model, using the negative-quadratic template, 5.3 points better in accuracy than starting

with an incremental distribution (Table 4.11).

We compared MorphNet and templates using several neural networks and datasets.

Using templates alone or MorphNet and templates improved accuracy in eight out of

nine pairs of model-dataset (Table 4.16). Particularly, templates only were superior in

six out of nine cases, increasing MobileNetV1 accuracy up to 6.2 points for CIFAR100

(Table 4.15).
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Chapter 5 introduced a new definition of templates that allows matching a predefined

number of FLOPs with no significant overheating in the search process. An expanded set

of experiments with templates were performed in more demanding domains to evaluate

their representation capability. The chapter attempted to find a correlation between the

internal representation, as seen by the CKA similitude metric, and the template with

the best accuracy.

The filter distributions in the new templates were built with linear segments, giving

smooth variations in the number of feature maps between layers. The idea introduced in

the PyramidNet paper achieves better accuracy than the quadratic-based distributions.

The VGG model reached more than 2.11 points higher in accuracy when using templates.

Templates also produced models with up to 90 per cent fewer parameters, 79 per cent

less memory, and 22 per cent less inference time (Table 5.1). Except for tiny-Imagenet,

all of the datasets studied yielded greater accuracies when templates were used with

exhaustively tuned models (Table 5.3). A possible explanation for the unsatisfactory

results in Tiny-Imagenet is, as mentioned in chapter 2, that architectures with the

existing incremental filter distribution have been tuned to perform well in the Imagenet

dataset. Therefore, the pattern also fits the derived tiny-ImageNet dataset. Templates

with MobileNet V2 templates reduced parameters by up to 77 per cent. Templates with

MNASNet resulted in architectures that were 74.5 per cent smaller in parameters (Table

5.1).

We performed an expanded series of experiments evaluating templates in other

areas where intermediate representations of models are important. Templates applied to

ResNet improved accuracy by 0.96 per cent for the GTZAN dataset and 2.14 per cent

for the ESC-50 dataset, decreasing parameters by 65% (Table 5.4). When templates

were applied to the highest accuracy model in the NASBench-101 dataset, the resulting

network increased accuracy, requiring one-third of the base model parameters (Table

5.5). This is a notable outcome considering we only tested five templates. In the task

of mapping and localisation using representation embeddings, models obtained with

templates showed reductions up to 65 per cent fewer parameters, 41 per cent less memory

footprint and 33 per cent improved inference time (Table 5.6).

Finally, we showed that the representation produced for the models trained with

different templates differs from each other (Figure 5.10). So we use the CKA similitude

metric to find a correlation between the template with the best accuracy and its internal

variation captured via CKA (Table 5.7). Our outcomes using CKA to explore the rep-

resentation spaces of templates imply that the task is challenging and calls for more
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exploration and analysis. We believe that several shortcomings of NAS techniques, such

as lack of convergence and erroneous model performance prediction, are caused for this

complexity.

6.2 General Advice to Future Deep Learning
Practitioners

Overall, templates enhanced performances and reduced resource demands for the mod-

els and domains we used. Exploring novel filter distributions has advantages that go

beyond the domain of image classification. Consequently, the suggested templates offer a

straightforward mechanism for quickly achieving performance gains compared to the

computationally expensive NAS approaches.

Despite significant changes in filter distributions from the original architectures,

the variation in accuracy for all models after using templates is less than 5% for image

classification. These results defy the common wisdom that CNN models are required to

capture more diverse features in deeper layers and show that lower-dimensional repre-

sentations are still useful in deeper layers. Moreover, lowering filters can be beneficial

for some datasets.

It is essential to note that a smaller number of parameters does not imply a lower

memory usage or a faster inference time. Differences in feature map resolution for filters

in different layers, the necessity to store early feature maps in memory for further

processing in deeper layers, and hardware and software limits in the parallelisation

procedure are some of the causes.

Experiments indicate that for each model tested, there is no particular distribution

of filters that guarantees the best accuracy on all tasks. Furthermore, templates can

improve differently on the same task but different datasets. This means that the results

of automatically searching for the number of channels in small datasets such as CIFAR

should be carefully extrapolated to others. In the opposite direction, models with distri-

butions that work well on extensive datasets should be changed (e.g., using templates) to

perform efficiently on different domains.

The approach presented in this work allows a model’s architect to apply a set of tem-

plates for changing the number of filters originally assigned to each layer before training

from scratch. This redesign can be easily achieved without any previous training process

to select particular weights. In essence, the application of filter distribution templates
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offers an alternative approach to the iteration-intensive automatic architecture search

and model pruning methods.

6.3 Future Work

We envision several opportunities for further research in this work.

Finding the best template. We explored in chapter 5 a way to correlate several

measures obtained from the between-layer CKA similarity of a model produced with a

template and its final validation accuracy. The experiments showed no correlation for

the values we tested. Although the number of templates is low, an automatic method for

finding a suitable template could either accelerate the identification of an efficient model

or explore other patterns to the ones defined in the templates.

Explore the idea of hard-coded representation compression. The information

bottleneck (IB) principle [180, 191] found that most of the training process in deep learn-

ing is spent on compressing the input to efficient representation that helps generalisation

and not on fitting the training labels. Experimental results in this thesis glimpse a ten-

dency to templates with filters in final layers matching the number of classes of the task

to perform better. This pattern extends to CNN models explicitly designed for ImageNet,

defining the last layers with a large number of filters. We hypothesise that the effort of

the CNN to compress the representation described by IB can be reduced by hard-coding

the compression in the dimensionality induced by the number of filters. A positive answer

to this question could facilitate the choice of filters for each specific task and speed up

training.

We highlight that there is much work to do to create algorithms that find the optimal

distribution of filters for a given model and task. However, we expect the community to

be aware of a new exploration space opened by the described templates that help refine

better models.

This thesis offers insights to model designers, both automated and manual, to con-

struct more efficient models by introducing new distributions of filters in the exploration

space for neural network model search. In addition, we hope this work helps gather data

to better understand the design process of model-task pairs and inspires the re-think of

assumptions on model building that are normally given for granted.
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A.1 Filters in Tested Models with Templates 2.0

In order to facilitate reproducibility of experiments, we present in this section the values

for each layer obtained by applying templates to the four models tested in our work. In

the case of ResNet we set the value of filters at the level of each layer inside residual

modules, as presented in Table A.4. VGG design consists of simple layers so we change

filters in each of them (Table A.1). For the rest of architectures, we set the value of filters

at the level of modules (Tables A.2 and A.3). Last layers of all models are fully connected

ones and the number of neurons is imposed by the dataset. We add the schematics of the

templates as a visual aid in figure A.1.

Table A.1: VGG19 with the original distribution of filters and five templates. All models
count similar number of FLOPs.

Template Filter Values
Base (Original values) 64, 64, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512

a 64, 99, 133, 168, 203, 238, 272, 307, 342, 377, 411, 446, 481, 516, 550, 585
b 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153
c 165, 158, 152, 145, 138, 131, 125, 118, 111, 104, 98, 91, 84, 77, 71, 64
d 64, 105, 146, 186, 227, 268, 308, 349, 390, 343, 297, 250, 204, 157, 111, 64
e 175, 161, 147, 133, 120, 106, 92, 78, 64, 80, 96, 112, 127, 143, 159, 175
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Figure A.1: Schematic distribution of filters per layer in templates. Base distribution
is the original pyramidal distribution. Templates follow a smoother transition in the
number of filters between layers. Number of filters does not match between models but
they are adjusted to fit the original number of FLOPS of the base model.

Table A.2: Original distribution of filters for MobileNet2 after applying five templates.

Template Filter Values
Base (Original values) 16, 24, 32, 64, 96, 160, 320, 1280

a 16, 36, 56, 76, 97, 117, 137, 157
b 61, 61, 61, 61, 61, 61, 61, 61
c 77, 68, 60, 51, 42, 33, 25, 16
d 16, 38, 59, 80, 102, 73, 45, 16
e 92, 73, 54, 35, 16, 41, 67, 92

Table A.3: Distribution of filters for MNASNet showing the original design and filters
from five templates.

Template Filter Values
Base (Original values) 32, 16, 24, 40, 80, 96, 192, 320, 1280

a 32, 46, 60, 73, 87, 101, 114, 128, 142
b 76, 76, 76, 76, 76, 76, 76, 76, 76
c 102, 93, 84, 76, 67, 58, 50, 41, 32
d 32, 49, 66, 84, 101, 84, 66, 49, 32
e 141, 114, 86, 59, 32, 59, 86, 114, 141

114



A.1. FILTERS IN TESTED MODELS WITH TEMPLATES 2.0

Table A.4: Original distribution of filters for ResNet50 and five templates. All models
count similar number of FLOPs. Filter redistribution is made at the lever of layers within
modules. Expansion layers within modules in the same block are kept with equal filters
to fit residual connections.

Template Filter Values

Base (Original values)

64,
[ [64,64,256], [64,64,256], [64,64,256] ],

[ [128,128,512], [128,128,512], [128,128,512], [128,128,512] ],
[ [256,256,1024], [256,256,1024], [256,256,1024],
[256,256,1024], [256,256,1024], [256,256,1024] ],
[ [512,512,2048], [512,512,2048], [512,512,2048] ]

a

64,
[ [64,73,256], [83,92,256], [102,111,256] ],

[ [120,130,480], [139,148,480], [158,167,480], [177,186,480] ],
[ [195,205,780], [214,224,780], [233,242,780],
[252,261,780], [271,280,780], [289,299,780] ],

[ [308,317,1232], [327,336,1232], [346,355,1232] ]

b

64,
[ [123,123,492], [123,123,492], [123,123,492] ],

[ [123,123,492], [123,123,492], [123,123,492], [123,123,492] ],
[ [123,123,492], [123,123,492], [123,123,492],
[123,123,492], [123,123,492], [123,123,492] ],
[ [123,123,492], [123,123,492], [123,123,492] ]

c

64,
[ [134,132,536], [129,127,536], [125,123,536] ],

[ [120,118,480], [116,114,480], [111,109,480], [107,105,480] ],
[ [102,100,408], [98,96,408], [93,91,408],

[89,87,408], [84,82,408], [80,78,408] ],
[ [75,73,300], [71,69,300], [66,64,300] ]

d

64,
[ [64,76,256], [88,99,256], [111,123,256] ],

[ [134,146,536], [158,170,536], [182,193,536], [205,217,536] ],
[ [228,240,912], [252,239,912], [227,214,912],
[202,189,912], [177,164,912], [152,139,912] ],

[ [127,114,508], [102,89,508], [77,64,508] ]

e

64,
[ [144,139,576], [134,129,576], [124,119,576] ],

[ [114,109,456], [104,99,456], [94,89,456], [84,79,456] ],
[ [74,69,296], [64,69,296], [75,80,296],

[85,91,296], [96,101,296], [107,112,296] ],
[ [117,123,468], [128,133,468], [139,144,468] ]
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This appendix is a perspective of the challenges lived from my particular point

of view. I hope the content helps the future me comprehend the decisions I took,

serves future studies about the effects of the COVID-19 pandemic, and helps

better cope with them.

When someone decides to study for a doctorate, the person visualises possible compli-

cations that may arise during its development. They are seen as obstacles or challenges,

but they can never be an impediment to achieving the goal of completing it.

B.1 A Reflection on the COVID-19 Pandemic

Unexpectedly, in December 2019, the appearance of the COVID-19 disease in Wuhan,

China, was announced. Its rapid spread worldwide and seriousness represented a public

health risk. As a result, governments established restrictions and changes in all areas

of social and individual life. Those restrictions generated unusual situations and forced

everyday activities to be adjusted to continue with a different and uncertain rhythm.

Each nation made decisions based on the severity of the health emergency and the

country’s economic conditions. As a result, some items stopped being produced, and a

few others increased the production. In addition, outdoor activities were interrupted,

including working in offices and attending a face-to-face education, to name a few.

As a doctoral student, and combined with the status of father of a family, the chal-

lenges were not easy. Still, at the same time, it was a decisive moment because it brought
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various situations to attend to and analyse, both from my own research and from my

family life. Fortunately, at every moment, I was supported by the indications of the

University and the recommendations of my advisor.

Starting from March 2020, we lived in exceptional circumstances. COVID-19 lock-

down disrupted my studies significantly due to university facilities closure, added re-

sponsibilities at home such as homeschooling, and technical difficulties in accessing the

computational resources needed for my research.

But not only my studies were affected. As a non-native english speaker, I enormously

benefited from having daily chats with my lab colleagues. With the university facilities

closed, I stopped improving my communication skills. We had some meetings online

during the first moments of the pandemic. Still, they never replaced the richness of the

face-to-face discussions.

Many of the students suffered from physical and mental stress, caused in some way

for being isolated and impeded from participating in social life and recreation. In my

case, I was not significantly affected by losing physical closeness with my family as

we remained together. On the other hand, there was a perceptible remoteness with

friends. Our group used to have frequent activities in the sports centres at the University.

Unfortunately, all of the centres were closed during the first months. Despite rules

allowing people to exercise, this had to be done in an isolated way.

After several months of missing the educational, cultural and social benefits of living

in a foreign country and studying at a top university, some students, including myself,

decided to return to our home countries, continuing our research at home.

Not everything was negative during the pandemic. Our periodical seminars, which

normally included speakers from places near our location, expanded their scope to

researchers around the world. Also, educational systems for remote and blended learning

were significantly improved, providing more and better tools.

The preceding circumstances have left a mark on our life. Unfortunately, we did not

have control of the unpredictable situations produced by the pandemic. Yet, we must use

the experience in the future to recover and rethink the path and the strategies allowing

us to move objectively and correct the adversities that the COVID-19 pandemic caused

in its way.
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