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Abstract	

Application	of	loads	in	two	perpendicular	directions,	also	known	as	biaxiality,	has	been	

recognized	to	have	significant	effects	on	the	ability	of	a	material	to	resist	fracture,	known	

as	fracture	toughness,	normally	defined	for	high-constraint	conditions.		

There	 are	 contradictory	 results	 in	 literature;	most	 propose	 that	 biaxiality	 cannot	 drive	

fracture	toughness	below	a	minimum	value	found	in	specific	geometries	used	for	material	

characterization.	This	can	allow	for	more	lenient	assessment	of	components	and	longer	

life	expectancies.	However,	some	research	proposes	that	biaxiality	could	further	decrease	

fracture	toughness	potentially	leading	to	high	financial	costs	and	safety	risks.	

Initially	historical	data	is	used	to	investigate	how	biaxial	loading	could	be	analysed	using	

standards	that	have	been	developed	to	assess	the	fitness	for	service	of	a	component.	These	

mostly	use	uniaxial	fracture	toughness	data	to	assess	the	integrity	of	components,	which	

is	shown	to	be	a	safe	and	conservative	practice	for	all	biaxiality	levels.	Conservatism	varies	

with	flaw	geometry	and	biaxiality,	reaching	zero	for	equibiaxially	loaded	through	thickness	

cracks.	Use	of	marginally	higher	fracture	toughness	values	from	different	geometries	or	

loading	 conditions	 result	 in	 potentially	 unsafe	 predictions	 and	 raise	 concern	 for	 this	

configuration.		

Biaxiality	in	literature	has	mostly	been	studied	experimentally	in	combination	with	surface	

flaws.	To	decouple	the	two	effects	an	innovative	experimental	program	is	conducted	here	

on	through	thickness	flawed	rectangular	and	cruciform	specimens	loaded	in	uniaxial	and	

biaxial	bending	respectively.	Crack	propagation	shows	that	biaxiality	 is	captured,	while	

specimens	show	varying	plasticity	levels	with	some	including	considerable	ductile	tearing.		

Finite	element	analyses	are	conducted	to	analyse	the	tests.	Biaxiality	is	shown	to	constrain	

the	plastic	 flow	 and	 reduce	 fracture	 toughness	 in	 comparison	 to	uniaxial	 loading.	The	

fracture	toughness	values	estimated	with	the	application	of	experimental	displacements	

to	the	models,	for	both	geometries,	are	much	higher	than	those	for	geometries	used	for	

material	characterization	denoting	lower	constraint	levels	than	them.	

Finally,	it	is	concluded	that	the	combination	of	thickness	and	crack	geometry	of	the	steel	

specimens	 tested	 here	 do	 not	 raise	 concern	 for	 the	 safety	 of	 a	 component	 in	 biaxial	

bending	containing	through	thickness	cracks.	There	is	a	potentially	significant	margin	of	
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conservatism	in	assessing	such	a	component	with	high	constraint	data	and	considerably	

higher	fracture	toughness	values	could	be	used	instead.	
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 Introduction  

During	the	manufacturing	or	operation	of	an	engineering	structure,	crack-like	flaws	might	

be	 formed.	 The	 nature	 of	 the	 formation	 of	 such	 flaws	 is	 not	 of	 interest	 at	 this	 point,	

however	their	effect	on	the	integrity	of	the	structure,	which	has	concerned	the	engineering	

community	greatly,	is	focused	on	here.	Cases	of	catastrophic	failures	under	low	loads	and	

no	warning,	in	terms	of	deformation,	generated	the	motive	for	studying	the	effect	of	such	

crack-like	flaws.	In	light	of	this,	the	fracture	mechanics	field	was	developed	within	solid	

mechanics	and	continues	to	constitute	a	major	area	of	 interest	and	research	activity	 in	

recent	years.		

Fitness	 for	 service	 (FFS)	 procedures	 (e.g.	 BS_f]e,	API	 c_f/ASME	FFS-],	Rg)	 []]–[`]	 are	

developed	 for	 the	 assessment	 of	 the	 integrity	 of	 an	 engineering	 component	 against	

different	failure	modes,	namely:	

]. fracture	and	plastic	collapse	

d. fatigue	

`. creep	and	creep	fatigue	

a. leakage	of	containments	

c. corrosion	and/or	erosion	

g. environmentally	assisted	cracking	
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_. instability	(buckling)	

FFS	 procedures,	 based	 on	 continuum	 mechanics	 theory	 and	 literature,	 conduct	

engineering	 critical	 assessments	 (ECA),	 which	 result	 in	 a	 quantitative	measure	 of	 the	

structural	integrity	of	a	component	containing	a	flaw.			

Better	 understanding	 of	 complex	 features	 which	 affect	 the	 structural	 integrity	 of	 a	

component	 (e.g.	 residual	 stress	 distribution,	 strength	 mismatch),	 help	 advance	 FFS	

procedures.	 It	 is	 important	 to	 note	 that	 such	 advancements	 can	 be	 both	 in	 terms	 of	

exploring	new	features	and	variables	that	affect	the	structural	integrity	and	revisiting	and	

enhancing	 existing	 methods	 for	 improvement	 of	 accuracy	 in	 the	 analyses.	 The	

combination	of	

• the	initially	high	safety	margins	included	in	the	procedures,	

• the	 fact	 that	 FFS	 usage	 has	 over	 the	 years	 shifted	 from	 assessing	 existing	 flaws	 to	

designing	 flaw	 tolerant	 structures	 and	 thus	 the	 need	 for	 better	 estimation	 of	 the	

lifespan	of	structures	[a],	[c]	

• the	 need	 for	 better	 repair	 guidance	 of	 ageing	 structures	 in	 service,	whose	 number	

constantly	increases,	with	more	of	them	qualifying	as	fit	for	service	beyond	their	initial	

design	life	

• the	increase	in	computational	abilities	and	understanding	of	the	phenomena	

generate	motive	for	increased	accuracy.	

The	precision	of	the	procedures	relies	upon	several	variables	included	in	an	assessment.	

The	number	of	variables,	as	well	as	their	values,	depend	on	the,	

]. Geometry	of	component	

d. Geometry	of	flaw	

`. Material	Properties		

a. Loads	imposed	on	the	component	

c. Loading	history	–	residual	stresses	

The	 above	 parameters	may	 be	 studied	 individually;	 however,	 they	 are	 connected.	 For	

instance,	in	a	case	of	misalignment	in	the	connection	between	two	components	(e.g.		girth	
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weld	in	a	pipe)	the	geometry	of	the	component,	incorporating	the	apparent	misalignment,	

will	influence	the	imposed	load	by	an	added	bending	stress.		

From	the	large	variety	of	phenomena	that	can	affect	the	behaviour	of	a	flawed	component,	

this	 work	 focuses	 on	 the	 study	 of	 multiaxial	 loading	 and	 its	 effect,	 which	 has	 been	

recognized	to	be	significant	[6]–[9].	Multiaxial	loads	regard	to	the	application	of	loads	in	

different	(perpendicular)	directions	and	are	an	issue	especially	in	structures	like	nuclear	

reactor	pressure	vessels,	piping	systems	and	storage	tanks,	where	a	biaxial	state	of	loading	

is	met.	The	effects	of	biaxiality,	i.e.	application	of	loads	in	two	(perpendicular)	directions,	

are	 imprinted	 on	 the	 stress	 field	 tensor	 in	 the	 vicinity	 of	 the	 crack	 tip,	with	 biaxiality	

increasing	the	level	of	stress	triaxiality	also	defined	as	crack	tip	constraint,	and	decreasing	

the	plastic	zone	around	the	crack	tip	[10].	

Here	it	should	be	explained	that	a	metal’s	ability	to	resist	fracture,	i.e.	fracture	toughness,	

exhibits	temperature	and	geometry/stress	triaxiality	dependence.	Both	temperature	and	

constraint	affect	the	plastic	strain	development	and	consequently	the	material’s	resistance	

to	 failure.	 Depending	 on	 the	 temperature	 at	 which	 a	 component	 or	 structure	 is	

functioning,	 the	 effect	 of	 constraint	 will	 be	 of	 different	 severity	 on	 the	 component’s	

behaviour.		

In	the	lower	shelf	-transition	region,	experimental	work	studying	the	behaviour	of	biaxially	

loaded	 components	 [6], [7], [9], [11],	 shows	 that	 the	 existence	 of	 an	 increase	 biaxiality	

decreases	the	critical	values	of	the	energy	release	rate	-	J	with	increasing	constraint.		

Here	 it	 is	worth	defining	J	as	a	way	to	calculate	the	strain	energy	release	rate,	per	unit	

fracture	surface	area,	in	a	material.	For	isotropic,	perfectly	brittle,	linear	elastic	materials,	

the	J-integral	can	be	directly	related	to	the	fracture	toughness	if	the	crack	extends	straight	

ahead	with	 respect	 to	 its	 original	 orientation,	whilst	 J	 remains	 valid	 representation	 of	

fracture	toughness	in	nonlinear	(power	law	hardening)	elastic-plastic	materials	where	the	

size	of	the	plastic	zone	is	small	compared	with	the	crack	length.	

In	other	words	an	increase	in	biaxiality/triaxiality	is	translated	as	a	decrease	in	fracture	

toughness	values.	J	eventually	reaches	the	values	measured	from	testing	high	constraint	

specimens	(e.g.	Single	Edge	Notched	Bending	-	SENB,	Compact	tension-CT)	[9]	or	falling	

below	 them	 [11].	 While	 the	 structure	 is	 loaded,	 plasticity	 starts	 flowing	 and	 the	

constraint/stress	triaxiality	level	reduces,	allowing	for	more	elastic/plastic	strain	energy	to	

be	 consumed	 by	 the	 specimen	 prior	 to	 fracture,	 leading	 to	 an	 increase	 in	 fracture	
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toughness.	 This	 could	 also	 be	 expressed	 as	 a	 drop	 in	 the	 stresses	 and	 strains	 over	 the	

fracture	region	resulting	from	plasticity	elsewhere.	

These	 observations	 prompted	 a	 surge	 of	 interest	 in	 analysing	 and	 predicting	 fracture	

resistance	 behaviour	 across	 different	 levels	 of	 constraint	 as	 well	 as	 unifying	 fracture	

toughness	values	with	the	use	of	micromechanics	interpretations	of	the	cleavage	fracture	

process.	In	light	of	this,	probabilistic	models	incorporating	weakest	link	statistics	[12], [13],	

which	attempt	to	describe	the	coupling	of	the	(local)	fracture	stress/behaviour	with	the	

remote	 loading,	 were	 employed.	 Such	 models	 allowed	 the	 comparison	 between	

components	 with	 different	 levels	 of	 constraint,	 thus	 unifying	 the	 cleavage	 fracture	

toughness	 values.	 Successful	 implementation	 of	 such	methodologies	 ([14], [15])	 led	 to	

their	incorporation	(indirectly)	in	the	latest	editions	of	FFS	procedures	(e.g.	Annex	N	in	

BS_f]e:de]`)	allowing	for	constraint	effects	to	be	included	in	the	assessment.	Even	though	

such	methods	can	be	used	they	require	caution	in	how	they	are	implemented.		

Regarding	a	structure	operating	in	the	ductile-to-brittle	transition	(DBT)	region,	there	is	

uncertainty	concerning	the	type	of	failure	that	might	occur,	i.e.	ductile	failure	or	unstable	

fracture	by	transgranular	cleavage	are	both	potential	scenarios.	However,	during	ductile	

fracture	there	is	a	flow	of	plasticity	which	decreases	crack	tip	triaxiality,	while	more	energy	

is	consumed	by	the	material	to	have	a	larger	area	plastically	deforming	and	higher	values	

of	 fracture	 toughness	 are	 expected,	 compared	 to	 cleavage	 fracture	 of	 the	 same	

geometry/material/temperature.	 Hence,	 in	 the	 transition	 region,	 where	 there	 is	

uncertainty	over	the	type	of	failure	that	might	occur	and	constraint	favours	a	less	ductile	

behaviour,	concern	is	focused	on	the	avoidance	of	cleavage	fracture.		

As	 elaborated	 so	 far,	 biaxiality	 is	 an	 important	 factor	 in	 the	 lower	 shelf	 and	 transition	

region,	however,	many	structures,	such	as	offshore	pipelines	carrying	hot	 fluid	under	a	

combination	of	high	internal	pressure	and	axial	strain,	experience	biaxial	loads	whilst	in	

the	collapse	dominated-upper	shelf	area.	Experimental	evidence	 	 focusing	on	biaxiality	

effects	on	plastic	collapse	[7], [8], [16]	strongly	suggest	a	connection	between	variation	of	

limit	load/strain	capacity/plasticity	flow	and	biaxiality.	Considering	this	many	researchers	

studied	 the	 load	 bearing	 capability	 of	 components	 under	 biaxial	 (or	 combinations	 of)	

loading.	

This	work	focuses	mostly	on	the	exploration	of	 the	effect	of	biaxiality	on	the	 initiation	

fracture	toughness,	since	components	are	mostly	designed	to	avoid	initiation	rather	than	
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facing	crack	propagation	(e.g.	crack	arrest).	In	particular	the	decoupling	of	crack	depth	

and	biaxiality	is	attempted	as	described	in	later	chapters.		

Following	 the	 scope	 of	 the	 work	 described	 until	 now,	 Chapter	 d	 provides	 a	 detailed	

literature	review	on	the	studies	of	biaxiality	and	the	approaches	that	have	been	developed	

to	include	constraint	effects.		

In	pursuit	of	better	understanding	the	current	capabilities	of	the	existing	FFS	procedures,	

Chapter	 `	 includes	 engineering	 critical	 assessments	 (ECAs)	 on	 experimental	 databases	

with	 a	 variety	 of	 biaxiality	 ratios.	 From	 the	 analysis	 of	 historical	 data	 that	 do	 not	

specifically	 target	 biaxiality	 it	 shows	 that	 basic	 ECAs	 can,	 safely	 and	 conservatively	

estimate	the	fitness	for	service	of	a	component	and	prove	the	importance	of	a	targeted	

experimental	 database.	 The	 analysis	 on	 biaxiality	 related	 oriented	 experiments	 show	 a	

trend	 between	 biaxiality	 and	 limit	 loads.	 Additionally,	 more	 advanced	 assessment	

procedures	on	biaxial	tests	raise	concern	on	the	conservatism	in	the	fracture	toughness	

values	 used	 especially	 on	 through	 thickness	 flawed	 components.	Cases	 of	 components	

with	 such	 a	 flaw	 geometry	 appear	 to	 be	 incorrectly	 assessed	 when	 non-conservative	

fracture	toughness	values	are	used.		

An	innovative	experimental	program	is	explained	in	Chapter	a.	In	pursuit	of	decoupling	

biaxiality	and	flaw	depth	as	well	as	by	following	the	findings	of	its	preceding	chapter,	the	

program	in	Chapter	a	focuses	on	uniaxially	and	equibiaxially	loaded	plate	geometries	with	

through	thickness	flaws.	The	loading	applied	is	in	uniaxial	and	biaxial	bending,	and	the	

experimental	 layout	 is	 first	 validated	 with	 the	 use	 of	 a	 PMMA	 brittle	 thermoplastic	

material.	Following,	a	C-Mn	ferritic	steel	is	tested	at	a	single	lower	shelf	temperature.	The	

results	 show	both	geometries	 tested	exhibit	varying	 levels	of	plasticity	with	 some	 tests	

exhibiting	significant	plasticity.	Overall,	biaxiality	is	captured	by	the	setup	however	the	

combination	of	biaxiality	and	specimen	thickness	do	not	achieve	high	levels	of	constraint.	

Subsequent	 to	 the	 experimental	 program,	 Chapter	 c	 includes	 finite	 element	 analyses	

(FEA)	that	of	the	specimens	tested.	For	the	linear	elastic	PMMA	tests,	structural	constraint	

parameters	 calculated	 from	 the	 FEA,	 show	 the	 constraint	 increase	 in	 the	 case	 of	 the	

biaxially	loaded	specimens.	The	modelling	of	the	steel	specimens	is	conducted	on	the	tests	

that	 exhibit	 cleavage	 fracture	 during	 failure	 and	 provide	 qualitative	 results,	 showing	 a	

trend	 of	 decreasing	 fracture	 toughness	with	 biaxiality	 and	 further	 supporting	 that	 the	

experimental	program	of	Chapter	a	does	not	achieve	high	levels	of	constraint.	
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Finally,	Chapter	g	summarises	the	findings	of	this	work	and	recommends	further	steps	of	

action	that	can	be	taken.	
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 Literature review  

 Initial studies on biaxiality 

Original	research	at	the	time	of	the	]f_e's	focused	on	further	understanding	the	physical	

quantities	that	had	a	non-negligible	effect	 in	the	calculation	of	 the	stresses	around	the	

crack	tip	and	predicting	the	stability,	morphology	and	the	trajectory	of	the	crack.		

Up	to	that	point,	common	practice	was	to	consider	cases	of	uniaxial	stress,	in	which	the	

crack	would	propagate	either	by	fatigue	or	quasi	static	loading	in	the	direction	normal	to	

the	load,	following	the	path	of	the	maximum	tangential	stress.	According	to	Leevers	et	al	

([17], [18]),	the		assumption	of	the	stresses	parallel	to	the	crack		having	a	negligible	effect	

on	the	crack	opening/propagation	was	an	oversimplification,	since	such	stresses	had	been	

shown	to	affect	the	fracture	toughness	of	the	structure	[19].	The	deterrents	for	the	hitherto	

analysis,	were	the	lack	of	a	theoretical	framework	and	a	biaxial	testing	machine/setup.	In	

light	of	the	latest,	an	experimental	setup	was	proposed	[17],	capable	of	applying	uniform	

normal	boundary	stresses	on	each	side	of	a	square	plate	specimen.	With	the	use	of	this	

experimental	setup	on	quasi-brittle	polymer	plates	(PMMA	-	polymethyl	methacrylate),		

Leevers		examined	in	the	context	of	linear	elastic	fracture	mechanics,	the	propagation	of	

the	crack	and	its	trajectory	in	relation	to	the	biaxiality	ratio	[18]	defined	in	Equation	d.].	
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=

𝐿𝑜𝑎𝑑	𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙	𝑡𝑜	𝑐𝑟𝑎𝑐𝑘
𝐿𝑜𝑎𝑑	𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟	𝑡𝑜	𝑐𝑟𝑎𝑐𝑘

	 Equation 2.1 

From	experimental	results	included	in	[18]	it	was	demonstrated	that	the	crack	propagation	

trajectories	were	straight	at	low	biaxiality	ratios	(k),	while	taking	the	form	of	an	"S"	shape	

at	higher	ones.	In	particular,	for	specimens	loaded	with	the	biaxiality	ratios	shown	in	Table	

d.]	,	the	crack	path	changed	in	accordance	with	biaxiality,	reaching	an	angle	of	almost	feo	

at	 the	highest	𝑘,	 as	 shown	 in	Figure	d.].	These	 results	provided	 further	 support	 to	 the	

notion	that	the	crack	changes	its	propagation	path	to	perpendicularly	align	to	the	most	

intense	stress.				

Table 2.1: Biaxiality ratios of specimens tested in [18] 

Specimen	No.	 𝑘	 Specimen	No.	 𝑘	
]	 e	 _	 ].ac	
d	 e	 i	 d.]e	
`	 e	 f	 d.]e	
a	 e.fc	 ]e	 d._i	
c	 e.f_	 ]]	 d._i	
g	 ].a`	 ]d	 d._f	

 

	

Figure 2.1: Fracture Trajectories of biaxially loaded 4 mm thick PMMA specimens [18] 
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In	pursuit	of	interpreting	this	behaviour,	the	stress	field	around	the	crack	was	given	by	

Williams’	[20]	and	Irwin's	[21]	analyses	concerning	plane	stress,	in	the	form	of	Equation	

d.d,	where	x	is	the	parallel	and	y	the	perpendicular	direction	to	the	crack.																

3
𝜎## = 𝐾𝑟$"/!𝑓##(𝜃) + 𝑇 +⋯
𝜎&& = 𝐾𝑟$"/!𝑓&&(𝜃) + ⋯
𝜎#& = 𝐾𝑟$"/!𝑓#&(𝜃) + ⋯

=	 Equation 2.2 

Where:	

• 𝑓##,&&,#&(𝜃):	functions	of	geometry	of	the	crack	and	angle	at	which	the	stresses	are	
calculated		

• 𝑟:	the	distance	from	the	crack	tip	

• 𝐾:	the	stress	intensity	factor	

• 𝑇:	the	uniform	stress	acting	parallel	to	the	crack	

In	Equation	d.d,	higher	order	terms	were	not	considered,	while	the	stress	acting	parallel	

to	the	crack	(T)	was	expressed	in	terms	of	the	biaxiality	ratio	(𝑘 = 𝜎##/𝜎&&)	as	follows,	

T = (𝑘 − 1)	𝜎&&	 Equation 2.3 

With	the	above	in	mind,	Leevers	[]i]	set	focus	on	producing	an	analytical	solution	able	to	

meet	the	following	requirements,		

• characterization	of	the	trajectory	in	terms	of	initially	determinable	parameters	

• determination	of	 the	 stress	 intensity	 factor	 at	 the	 instability	point,	 from	which	

fracture	toughness	will	be	calculated	

• a	quantification	of	the	effect	of	stress	biaxiality	at	the	instability	point,	denoting	

its	effect	on	toughness	

The	 S-shaped	 cracks,	 i.e.	 not	 having	 a	 straight-line	 propagation	 path,	 observed	

experimentally	 were	 approached	 either	 as	 bent	 or	 curved	 cracks	 and	 a	 model	 was	

employed	 for	 each	 of	 these	 cases,	 based	 on	 projecting	 the	 crack	 and	 conducting	

calculations	based	on	its	projected	length	and	angle.	The	curved	crack	model	attempted	

to	represent	the	right-hand	tip	of	the	crack	by	treating	it	as	a	part-circular	crack.	This	was	

implemented	by	the	superimposition	of	the	mode	I	and	mode	II	stress	intensity	factors	

calculated	for,		

• the	crack	projection	on	the	y	axis	
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• the	crack	projection	on	the	x	axis	

The	general	form	of	the	stress	intensity	factor	formulae	invoked	in	the	superimposition	

were,		

D
K( = F")(α)p)Iπα)K

"/! + F"*(α)p*(πα*)"/!

K++ = F!)(α)p)Iπα)K
"/! + F!*(α)p*(πα*)"/!

L	 Equation 2.4 

Where:	

• K+,	K++:	the	mode	I	and	mode	II	stress	intensity	factors	accordingly	

• 	F"*,"),!*,!)(α):	functions	of	geometry	and	angle	of	the	crack	

• 	p):	applied	uniform	stress	at	the	y	direction	

• 	p*:	applied	uniform	stress	at	the	x	direction	

• 	α*:	half	of	the	projected	length	(2α*)	on	the	x	axis	

• 	α):	half	of	the	projected	length	(2α))	on	the	y	axis	

After	 determining	 a	 way	 for	 calculating	 the	 stress	 intensity	 factors,	 a	 path	 prediction	

model	was	developed	based	on	Erdogan	&	Sih's	analysis	of	the	stresses	in	the	vicinity	of	

the	crack	[22].	According	to	their	assumptions	and	in	agreement	with	the	experimental	

data,	it	was	argued	that	the	crack	propagates	in	the	plane	perpendicular	to	the	direction	

of	 the	greatest	 tension,	 i.e.,	 in	 the	direction	of	 the	maximum	 tangential	 stress.	Hence,	

setting	 the	 first	 derivative	 of	 the	 tangential	 stress	 as	 zero	 resulted	 in	 the	 formula	

calculating	 the	difference	 in	 angle	between	 the	 crack	 tip	 and	 the	maximum	 tangential	

stress,	Equation	d.c.	

(K++/K+)(3cosθ∗ − 1) + sinθ∗ = 0	 Equation 2.5 

The	 above,	 in	 combination	with	 the	 assumption	 that	 the	 crack	 path	 does	 not	 deviate	

significantly	during	each	step	of	propagation,	were	translated	as	a	need	for	K++	to	be	zero.	

Setting	 this	 condition	 in	 Equation	 d.a	 (b)	 and	 taking	 into	 account	 the	 finite	 width	

corrections,	 the	 following	 formula	 which	 expresses	 the	 gradient	 of	 the	 propagation	

direction,	was	produced:		

dy/dx = 1.145k![F-(2y/W)/F-(2x/W)]!(y/x)	 Equation 2.6 

Where:	

• 𝐹.:	finite	width	corrections		
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• x, y:	Cartesian	coordinates	from	the	center	of	the	crack	

• k:	the	biaxiality	ratio	

Equation	 d.g	 showed	 good	 agreement	 between	 with	 the	 experimental	 results	 and	

supported	 the	 conclusion	 that	 the	 path	 of	 the	 crack	 positions	 itself	 normal	 to	 the	

maximum	applied	load	[18].		

Supplementary	work	done	by	Radon,	Leevers	&	Culver	[23]	pursued	the	study	of	the	effect	

of	biaxial	loading	on	the	fracture	toughness	of	the	material.	The	fracture	toughness	values	

calculated	diverged	insignificantly	from	those	of	uniaxial	tests,	leading	to	the	conclusion	

that	fracture	toughness	stayed	the	same	and	regardless	of	biaxiality.	

Further	research	on	the	effects	of	biaxiality	was	done	by	Eftis	et	al.	[24].	As	in	[17], [18],	it	

was	argued	that	for	strictly	symmetrical	and	anti-symmetrical	biaxial	loadings	with	respect	

to	 the	 axis	 of	 crack	 length,	 the	 one	 parameter	 representation	 of	 the	 elastic	 stress	 and	

displacements	was	qualitatively	unacceptable.	The	analysis	in	[24]	concerned	an	isotropic	

solid	in	plane	stress,	or	plane	strain	with	no	body	forces	exerted.	The	stress	function	under	

these	conditions	was	represented	by	the	Airy's	stress	function	(𝑈(𝑟, 𝜃)),	which	due	to	the	

condition	of	stress	compatibility	was	required	to	satisfy	the	biharmonic	equation.	

`U
(r, θ) = r/0"F(θ), Assumed	form	of	the	Airy1s	Stress	Function
∇!U = 0,																																																																							Biharmonic	Equation

p	 Equation 2.7 

Where:	

• F(θ):	the	eigenfunctions	of	the	partial	differential	equation		

• λ:	the	eigenvalues	of	the	partial	differential	equation		

• r:	the	radial	distance	from	the	crack	tip		

• θ:	the	angle	from	the	axis	on	which	the	crack	length	lies	

The	solution	of	the	system	in	Equation	d._	invoked		Williams’	solution	[20]	in	terms	of	a	

series	of	eigenfunctions.	This	was	commonly	implemented	with	keeping	only	the	first	term	

of	 the	 series,	 judging	 the	 rest	 to	 have	 a	 negligible	 effect.	 In	 this	 case	 the	 series	 was	

expanded	up	to	the	third	term,	keeping	only	what	was	of	order	higher	than	𝑟"/!.	The	final	

equations	 included	 three	 parameters,	𝐾+,	𝐾++	 and	𝐴,	 which	were	 determined	 from	 the	

traction	boundary	conditions	applied.	Overall,	it	was	illustrated	that,		

• close	to	the	crack	tip	the	first	term	dominated	quantitatively	
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• the	second	terms	were	independent	of	radial	distance,	hence	when	studying	the	

stresses	 very	 close	 to	 the	 crack	 tip	 they	 improved	 calculative	 accuracy	 in	 an	

inconsequential	way	

Thus,	 for	direct	stress	calculation,	 the	second	terms	might	have	been	 insignificant,	but	

when	 attempts	 were	 made	 to	 calculate	 other	 stress	 related	 quantities	 such	 as	 the	

maximum	 shear	 or	 strain	 energy,	 the	 existence	 of	 the	 second	 terms	was	 of	 significant	

qualitative	nature.	The	stress	intensity	factor,	expressed	as	a	complex	function,	was	shown	

to	be	independent	of	the	second	and	higher	order	terms	and	not	affected	by	them.		

The	boundary	conditions,	after	specifying	the	problem	as	a	biaxially	loaded	plate	with	a	

centre	crack,	were:	

s
σ&&(∞) = 	σ
𝜎**(∞) = k
𝜎*)(∞) = 0

v	 Equation 2.8 

With	 the	 additional	 assumption	 that	 loading	 could	 not	 cause	 buckling	 (thickness	

dimension	could	be	assumed	to	be	large	enough	to	prevent	this)	and	further	analysis	with	

the	boundary	conditions	known,	the	parameters	K(,	K((	and	A,	mentioned	before,	were	

expressed	as,	

s
K( = σw(πα)
K(( = 0

A = −(1 − k)σ
v	 Equation 2.9 

	

While	the	crack	border	stresses	were	calculated	by	the	following	equations,	
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,	for		0 < 5
8
≤ 1	 Equation 2.10 

Where:	

• 	K(:	the	mode	]	stress	intensity	factor	

• 	K((:	the	mode	d	stress	intensity	factor	

• 	k:	the	biaxiality	ratio		

• σ:	the	stress	acting	perpendicularly	to	the	crack	line	
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• 	θ, r:	angle	and	distance	from	the	crack	tip		

It	was	observed	that	the	single	term	approximation	of	Williams'	eigenfunction	expansion	

was	adequate	to	the	two-term	approach	only	in	the	case	where	k=],	i.e.	equiaxial	loading.	

The	 case	 of	 k=e,	 i.e.	 uniaxial	 loading,	 studied	 in	 [24],	 illustrated	 that	 even	 in	 uniaxial	

loading	the	displacement	relating	to	the	Poisson	ratio	effect	(perpendicular	to	the	loading)	

was	not	taken	into	account	with	the	single	term	approximation,	as	opposed	to	the	two-

term	solution,	in	which	the	second	term	incorporated	this	effect.		

Additionally,	a	single	term	characterization	was	shown	to	disregard	the	boundary	loading	

and	its	effect	on	the	stress	patterns	close	to	the	crack	tip	as	seen	during	comparison	with	

the	isochromatic	fringe	patterns,	which	resembled	the	maximum	shear	stress	trajectories.	

Since	 plastic	 deformation	 related	 to	maximum	 shear,	 plastic	 yield	 and	 its	 extent	were	

directly	affected	by	the	boundary	loading.	

In	this	mindset	Eftis	et.al,	as	Leevers	et	al.,	studied	the	crack	propagation	trajectory.	The	

extension	of	the	crack	based	on	the	maximum	normal	stress	criterion	was	mathematically	

expressed	as:	

⎩
⎪
⎨

⎪
⎧
[σ66]6" > 0

�
∂𝜎66
∂θ �

6"
= 0

�
∂!𝜎66
∂θ! �6"

= 0
⎭
⎪
⎬

⎪
⎫

	    Equation 2.11 

The	single	term	approximation	of	the	solution	gave	only	one	path	for	crack	propagation	

by	allowing	a	solution	of	θ = 0	or	2π	disregarding	boundary	conditions	that	concerned	

loading.	As	expected	this	was	not	the	case	observed	in	actual	experiments	and	retaining	

the	second	term	gave	rise	to	two	possible	solutions,	namely	

• 	for	𝑘	 ≤ 1,	the	only	permitted	solution	was	𝜃 = 0		

• 	for	𝑘 > 1,	the	angle	of	the	crack	path	repositioned	itself.	In	the	extreme	case	where	
𝑘 → ∞,	the	crack	oriented	itself	perpendicularly	to	the	horizontal	loading	which	
reached	infinity,	i.e.	𝜃 = 9

!
	

Additional,	analysis	conducted	in	[24], [25]	attempted	to	understand	the	effect	of	biaxiality	

on	the	relationship	between	the	stress	intensity	factor	and	global	and	local	elastic	strain	

energy	rates	in	the	case	of	symmetric	stresses	(K(( = 0).	The	global	and	local	elastic	strain	
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energy	rates	were	important	values	since	they	provided	a	measure	of	the	energy	available	

for	an	increment	of	crack	extension.		

Concerning	the	local	elastic	strain	energy	density	(Φ)	 it	was	calculated	using	the	stress	

and	strain	equations	retaining	the	second	terms,	Equation	d.]e,	thus	Φ	depended	on	both	

the	biaxiality	 factor	 (k)	 and	Poisson's	 ratio	 (v).	An	 interesting	observation	was	 that	 an	

increase	 in	 Poisson's	 ratio	 degenerated	 the	 solution	 to	 the	 equibiaxial	 loading	

condition/single	term	solution.	

The	local	elastic	strain	energy	rate	(Φ)	was	calculated	with	the	integration	of	the	elastic	

strain	energy	at	a	point	(φ),	over	a	circular	region	originating	from	the	crack	tip.	It	was	

shown	that	Φ	was	dependent	on	the	second	terms	of	the	series	expansion,	which	were	of	

major	 importance	 for	 the	 calculation	 of	 elastic	 strain	 energy	 rate	 locally	 since	 they	

accounted	for	the	loading	horizontally	of	the	crack.		

As	for	the	global	elastic	strain	energy	rate	(G),	a	load	applied	horizontal	to	the	crack	and	

consequently	the	second	term	of	Williams'	series	expansion,	appeared	to	have	no	effect.	A	

valid	 question	 as	 to	 why	 that	 happened	 is	 expressed	 in	 [24], [25]	 without	 further	

explanation.		

Concerning	 the	 effects	 of	 biaxiality	 beyond	 elastic	 behaviour,	 non-linear	 analysis	 was	

conducted	by	Liebowitz	et	al.	[26],	with	the	use	of	a	Ramberg-Osgood	stress	strain	relation.	

It	 was	 illustrated	 that	 the	 non-linear	 energy	 rate	 (G)	 and	 J-integral	 were	 affected	 by	

biaxiality	and	had	the	same	trend	in	value	change.	The	size	of	the	plastic	zone	behaved	in	

a	similar	way;	as	expected,	it	increased	with	an	increase	in	the	applied	load	or	a	rise	in	the	

value	of	the	biaxiality	ratio	k.	

 Biaxiality in elastic – plastic fracture mechanics 

Research	up	to	the	]fie’s	had	mostly	focused	on	the	analysis	of	the	crack	tip	stress	field	

and	the	material's	fracture	toughness	within	the	scope	of	linear	elastic	fracture	mechanics.	

Such	an	approach	was	valid	only	to	the	extent	where	non-linear	material	deformation	was	

confined	to	a	small	region	around	the	crack	tip	[27],	which	was	not	necessarily	the	case	in	

real	structures.		

In	a	ductile	material,	the	inelastic	zone	does	not	necessarily	remain	contained	in	a	small	

area.	This	led	to	the	development	of	elastic-plastic	fracture	mechanics	(EPFM),	where	the	
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material	behaviour	was	treated	as	non-linearly	elastic	[27], [28].	Within	this	context	the	

non-linear	energy	release	rate,	J,	can	be	expressed	as	a	path-independent	line	integral	[29].	

Assuming	 a	 Ramberg-Osgood	 power	 hardening	 law	 relationship,	 Hutchison,	 Rice	 and	

Rosengren	 (HRR)	 showed	 that	 the	 path	 independency	 stands,	 as	 long	 as	 there	 was	 a	

(plastic)	zone	around	the	crack	tip	governed	by	a	r$"/(;0")	singularity,	where	n	was	the	

hardening	coefficient	of	the	material.	EPFM	was	based	on	the	assumption	of	small	strain	

theory	and	was	valid	in	accordance	to	the	J-dominance	over	a	region,	i.e.	validity	of	the	J	

path	independence	in	that	region.	Path	independence	means	that	any	closed	path	has	a	J	

value	of	zero	and	that	any	path	around	the	crack	will	result	in	the	same	J	calculated.		It	

should	be	emphasized	that	the	HRR	solution	is	one	of	the	possible	solutions	that	translate	

the	J	path	integral	to	a	characterization	of	crack	tip	conditions,	hence	an	HRR	singularity	

was	 efficient	 but	 not	 necessary	 for	 J-dominance	 over	 a	 region.	 Additionally,	 path	

independence	of	J-integral	required	proportional1,	monotonically	applied	loading,	in	the	

case	of	multiaxial	loading	conditions,	the	load	path	could	be	non-radial,	i.e.	the	direction	

of	the	principal	stress	could	change	in	any	load	increment.			

As	plasticity	developed	further	with	increased	loading,	assuming	ductile	behaviour,	the	

crack	 tip	blunted	(large	strains)	and	reduced	stress	 triaxiality	 locally,	whilst	 the	plastic	

zone	 grew	 to	 a	 considerable	 size.	 Once	 the	 plastic	 zone	 was	 big	 enough,	 J	 could	 not	

uniquely	characterize	the	stress	distribution	in	front	of	the	crack	tip	and	was	affected	by	

geometry.			

It	would	be	prudent	to	sum	up	the	above	explanations	concerning	the	validity	limits	of	

LEFM	and	EPFM,	illustrated	in	Figure	d.d.	The	former	is	not	accurate	when	the	plastic	

zone	is	significant	in	regard	to	in-plane	dimensions,	i.e.	approximately	]/]c	times	larger	

than	 the	 crack	 length	 or	 ligament,	whilst	 J-integral	 lacks	 validity	 as	 a	 single	 crack	 tip	

characterization	 parameter	 as	 large-scale	 yielding	 is	 approached,	 i.e.	 this	 is	 where	 the	

plastic	zone	extends	to	start	interacting	with	a	free	surface	in	the	component/structure.	

The	size	of	this	area	and	consequently	the	region	of	J-dominance,	vary	according	to	the	

geometry/loading	and	hardening	coefficient	of	the	component	[31].		

	

	
1 Proportional	loading:	Loading	is	proportional	when	the	applied	load	on	one	axis	is	always	equal	
to	that	on	another	axis	multiplied	by	a	constant	[30],	hence	all	components	of	the	stress	tensor	
change	proportionally 
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 Two parameter fracture mechanics 

As	mentioned,	 single	 parameter	 fracture	mechanics	 could	not	 quantify	 the	 stress	 field	

around	a	crack	when	there	was	excessive	plasticity.	In	light	of	this,	two-parameter	crack-

tip	 constraint	 modified	 fracture	 mechanics	 approaches,	 which	 pursued	 the	

characterization	 of	 the	 material	 whilst	 considering	 the	 geometrical	 properties	 and/or	

complex	loading	conditions	that	affected	the	plasticity	flow	[32],	were	developed.		

It	was	apparent	to	researchers	that	the	crack	tip	triaxiality/constraint	was	dependent	on	

geometrical	aspects	(e.g.	thickness),	load	conditions	(e.g.	bending	loads	that	restrict	the	

plasticity	 flow)	 or	 material	 properties	 (e.g.	 ductile	 or	 brittle	 behaviour	 at	 operating	

temperature)	[13], [32]–[34].	Even	though	some	work	was	originally	done	by	O'Dowd	&	

Shih	 ([35], [36])	 on	 developing	 a	 two	 parameter	 approach	 which	 would	 address	 these	

effects	of	constraint,	validation	of	such	approaches	was	mostly	done	within	the	Oak	Ridge	

National	Laboratory,	where	extensive	research	was	conducted	for	the	better	assessment	of	

reactor	pressure	vessels	(RPV),	[37]–[42].	

It	was	noticed	that	fracture	in	such	components	began	from	shallow	flaws,	which	were	

under	a	state	of	biaxiality	due	to	the	internal	pressure,	that	created	both	a	hoop	stress	and	

an	out	of	plane	stress	at	the	caps	of	the	vessel.	In	this	direction,	tests	were	conducted	on	

Ac``B	steel,	in	the	transition	region	of	the	toughness	curve.	The	geometries	of	the	tested	

specimens	were:	

• Single	edge	notched	bend	specimens	(SENB),	with	shallow	or	deep	cracks	

• Bend	cruciform	specimens,	containing	a	surface	crack	in	the	centre,	which	were	

loaded	uni-axially	or	bi-axially	

The	latter	[37]	had	a	similar	specimen	geometry	to	that	used	in	the	PMMA	studies	[17],	

however	in	this	case	a	surface-breaking	rather	than	a	though	thickness	flaw	is	introduced,	

as	seen	in	Figure	d.`.		
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Figure 2.2: Effect of plasticity on the crack-tip stress fields: (a) small-scale yielding, (b) 
elastic-plastic conditions, and (c) large-scale yielding.[27] 
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Figure 2.3: Cruciform specimen geometry, showing the in and out of plane components 
of stress during biaxial testing [33] 

Concerning	the	SENB	specimens,	it	was	observed	that	the	shallow	cracked	specimens	had	

an	 increased	 fracture	 toughness	 compared	 with	 the	 deeply	 flawed.	 For	 the	 tests	 on	

cruciform	 specimens,	 biaxial	 loads	 resulted	 in	 lower	 fracture	 toughness	 compared	 to	

uniaxially	loaded	cruciform	or	SENB	specimens.	It	should	be	noted	that,	even	though	the	

critical	 loads	 for	 uniaxial	 and	 biaxial	 loading	 of	 the	 cruciform	 specimen	were	 close,	 a	

significantly	higher	amount	of	deflection	(plastic	 strain)	was	withstood	during	uniaxial	

loading,	leading	to	an	interpretation	of	biaxial	loading	as	reducing	the	ductility,	which	was	

also	supported	by	more	recent	experiments	[7].		

Comparison	 between	 the	 uniaxially	 loaded	 cruciform	 and	 the	 SENB	 specimens	

demonstrated	similar	values	of	fracture	toughness	[38].	This	can	be	explained	physically	

by	the	effect	of	constraint.	In	the	SENB	specimens,	deeper	cracks	would	encounter	higher	

crack	 tip	 constraint,	 due	 to	 plane	 strain	 conditions	 governing	 the	material	 behaviour	

around	the	centre	of	the	crack	at	the	mid-thickness	position.	In	other	words,	out	of	plane	

surfaces	of	the	specimen	would	be	displaced	towards	the	centre	of	the	specimen	as	a	result	
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of	the	contraction	which	follows	volume	retention.	This,	in	combination	with	the	nature	

of	the	loading	(i.e.	bending,	which	also	constraints	the	flow	of	plasticity)	increased	crack	

tip	triaxiality	and	lowered	fracture	toughness.		

In	 the	 case	 of	 the	 uniaxially	 loaded	 cruciform	 specimen,	 fracture	 toughness	 tended	 to	

approach	the	(lower	bound)	fracture	toughness	of	SENB	specimens,	as	expected	due	to	

their	similar	geometrical	and	loading	effects	on	constraint.	However,	when	biaxiality	was	

introduced,	 the	 existence	 of	 a	 far-field	 out-of-plane	 stress	 (stress	 parallel	 to	 the	 crack	

plane)	further	increased	stress	triaxiality	(constraint)	resulting	in	a	decrease	in	fracture	

toughness.		

Here	 it	 is	 prudent	 to	 explain	 that	 constraint	 evolved	 in	 accordance	 with	 the	 flow	 of	

plasticity	in	the	material,	which	could	reach	up	to	fully	yielded	conditions.	If	constraint	

was	 to	 remain	 constant	 throughout	 the	 loading	 procedure	 (initiation	 -	 failure),	 then	

yielding	would	have	stayed	contained	in	a	relatively	small	area	and	two	parameter	fracture	

mechanics	would	not	be	necessary.	However,	the	development	of	plasticity	raised	concern	

regarding	 the	way	 in	which	 the	material	would	 fail.	To	distinguish	between	the	stress-

induced	fracture2	(brittle	fracture,	where	opening	mode	stress	exceeds	a	critical	value	over	

a	finite	length	with	little	or	no	ductile	deformation	of	the	material	around	the	crack	tip)	

and	the	strain-induced	fracture	(ductile	tearing,	where	crack	tip	strains	exceed	the	stress-

state-dependent	 ductility	 of	 the	material	 and	 often	 results	 in	 a	 stable	 and	 predictable	

mode	of	fracture	in	which	crack	growth	can	only	occur	under	an	increasing	applied	load)	

the	crack	tip	stresses	were	studied	as	a	result	of	two	stress	fields	[34].	In	particular,	the	

stress	tensor,	Equation	d.]d,	

𝝈 = �
𝜎"" 𝜎"! 𝜎"7
𝜎!" σ!! 𝜎!7
𝜎7" 𝜎7! 𝜎77
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𝜎## 𝜎#& 𝜎#=
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� = �
𝜎## 𝜏#& 𝜏#=
𝜏&# 𝜎&& 𝜏&=
𝜏=# 𝜏=& 𝜎==

�	 Equation 2.12 

was	divided	into	two	tensors,	namely:		

• Hydrostatic	 Stresses:	 a	 volume	 changing	 stress	 tensor,	 Equation	 d.]`,	 its	 matrix	 is	

diagonal	and	is	composed	of	equal	stresses	at	each	of	the	axes	of	a	Cartesian	system.	

Change	in	orientation	of	the	system	studied	will	not	alter	the	stresses	[44].	This	tensor	

	
2	Brittle	fracture	is	interpreted	as	a	stress-based	failure;	however,	it	does	rely	on	plastic	strain	since	
sufficient	plastic	strain	is	needed	to	nucleate	a	microcrack.	[43]	
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contributes	 directly	 to	 the	 opening	 mode	 tensile	 stress	 and	 influences	 crack	 tip	

constraint	but	does	not	directly	influence	yielding	or	crack	tip	blunting	

𝝈Hyd = �
𝜎Hyd 0 0
0 σHyd 0
0 0 σHyd

�	,								𝜎Hyd =	
"
7
tr(σ) = "

7
σAA	 Equation 2.13 

• Deviatoric	Stresses:	part	of	the	stress	tensor	that	tends	to	distort	the	body,	Equation	

d.]a.	It	is	what	is	left	after	the	removal	of	the	hydrostatic	stresses	from	the	stress	tensor	

[44]	 and	 includes	 all	 shear	 stresses.	 The	 shear	 stresses	 govern	 the	 yielding	 and	

consequently	plastic	deformation	and	crack-tip	blunting	

𝛔1 = 𝛔 − 𝝈Hyd = �
   σ ""  −  σ B)C   σ "!   σ "7  

    σ !"   σ !!  −  σ B)C   σ !7  
    σ 7"   σ 7!   σ 77  −  σ B)C    

�  	    Equation 2.14 

Hence,	 an	 increase	 in	 the	 hydrostatic	 stress	 tensor	 under	 stress-controlled	 conditions	

(brittle	material/behaviour)	would	directly	increase	the	likelihood	of	fracture	by	cleavage.	

However,	 such	an	 increase	would	also	(indirectly)	affect	a	strain-controlled	 fracture	by	

increasing	the	crack	tip	stresses,	which,	if	not	combined	with	additional	yielding	or	crack	

tip	blunting	(increase	in	the	shear	stress	components	of	the	stress	tensor)	would	lead	to	

further	 strain	 on	 an	 already	 yielded	 area	 and	 consequently	 strain	 concentration	 and	

ductile	tearing.		

 K-T stress 

Similar	to	the	analysis	conducted	for	the	study	of	the	crack	trajectory	in	biaxially	loaded	

PMMA	specimens	(Section	d.]),	the	Williams’	eigenfunction	expansion	was	used	here	to	

incorporate	constraint.	The	second	term	of	the	expansion	was	found	to	have	a	significant	

effect	on	the	plastic	zone	shape	and	the	stresses	deep	inside	it	[27].	The	stress	distribution,	

from	 maintaining	 the	 first	 and	 second	 terms	 of	 the	 eigenfunction	 expansion,	 was	

expressed	as	[27], [45]:		

𝛔𝐢𝐣𝐞(𝐫, 𝛉) =
𝐊

H(𝟐𝛑𝐚)
⋅ 𝐟𝐢𝐣(𝛉) + 𝐓𝐬𝐭𝐫𝐞𝐬𝐬 ⋅ 𝛅𝐢𝟏 ⋅ 𝛅𝟏𝐣 , for  𝐫 ≪ 𝐚    Equation 2.15 

Where:	

• σPQR :	the	elastic	stresses	around	the	crack	tip	

• K:	the	elastic	stress	intensity	factor	

• fPQ(θ):	geometry	related	correction		
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• δPQ:	Kronecker	delta	functions	

• θ, r:	polar	coordinates	originating	from	the	crack	tip	

• 	a:	half	of	the	crack	length	

	
Figure 2.4: Modified boundary layer analysis, an area around the crack tip is studied 

remotely with the loading of Equation 2.15 applied at the boundary [27] 

By	applying	this	stress	distribution	as	a	boundary	condition	in	a	modified	boundary	layer	

analysis	(MBL),	which	is	essentially	the	focus	on	a	part	of	the	material	around	the	crack	

tip	 studied	 as	 a	 free	 body,	 Figure	 d.a,	 the	 effects	 of	 the	 T-stress	 were	 studied.	 Some	

important	conclusions	of	this	study	were:		

• a	T = 0	stress	was	equivalent	to	the	small-scale	yielding	limit,	i.e.	when	the	size	of	

the	plastic	zone	is	considered	negligible	in	regard	to	the	geometrical	dimensions	

(crack	length,	body	size).	This	was	expected	considering	the	form	of	Equation	d.]c	

• negative	T	stresses	caused	a	decrease	of	the	σ""	and	σ77	stresses	of	the	overall	stress	

tensor.	This	could	be	interpreted	as	a	decrease	in	constraint	and	divergence	from	

the	small-scale	yielding	condition	

• T = 0	did	not	match	the	HRR	solution,	since	the	latter	took	higher	order	plastic	

terms	into	account	

• T	stress	could	be	used	as	a	quantitative	index	of	constraint	effects	

It	should	be	noted	that	the	T-stress	approach	was	valid	only	when	plasticity	was	contained	

in	 a	 small	 area	 and	 the	 material	 around	 it	 behaved	 elastically,	 since	 it	 derived	 from	

analytical	 equations	 that	 originated	 from	 the	 elastic	 theory.	 Hence,	 T-stress	 loses	 its	

physical	meaning	and	does	not	provide	accurate	results	under	fully	plastic	conditions.		
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 J-Q Theory 

O'Dowd	 and	 Shih	 [35], [36]	 developed	 a	 methodology	 which	 quantified	 constraint	 as	

plastic	flow	progressed	from	well	contained	yielding	up	to		fully	yielded	conditions.	

Initial	observations	made	with	 the	use	of	 the	T-stress	were	 that	 the	different	crack	 tip	

stress	fields	caused	by	different	levels	of	triaxiality	(different	T-stress)	could	be	organized	

into	a	family	of	crack	tip	fields.	In	other	words,	the	effect	of	geometry	and	constraint	effects	

on	the	crack	tip	stress	field	could	be	parametrized,	albeit	only	in	conditions	of	small-scale	

yielding.			

To	overcome	the	limitation	of	the	small-scale	yielding,	a	plane-strain	family	of	self-similar	

stress	fields	was	derived,	albeit	this	time	from	plasticity	analysis.	Assuming	small	strains	

and	a	power	law	hardening	material,	the	asymptotic	expansion	solution	expressed	in	terms	

of	a	power	series,	had	the	HRR	solution	as	the	first	order	term,	while	all	the	higher	order	

terms	were	grouped	into	a	collective	term,	i.e.	the	“difference	field”.	This	difference	field	

designated	as	“𝑄”	expressed	the	divergence	of	the	crack	tip	stress	field	from	a	reference	

one	(IσPQK5RSR5R;TR),	which	was	the	HRR	solution	in	this	case.	Apart	from	the	HRR	solution	

another	reference	stress	field	used	was	the		𝑇-stress = 0	field,	which	related	to	small	scale	

yielding.		

With	the	use	of	an	MBL	analysis	(on	an	elastic	power	law	hardening	material)	the	forward	

sector	of	the	crack	within	the	annulus	of	J/σU < r < 5J/σU	was	investigated,	since	all	the	

microstructurally	 significant	 effects	 concerning	 both	 brittle	 and	 ductile	 fracture	 were	

encompassed	in	this	zone	[32].	It	was	noticed	that	the	stress	field	was	not	highly	dependent	

on	the	distance	and	angular	position	(σVV , σ66 	≈ constant)	and	that	the	shear	components	

of	stress	in	this	field	were	of	much	lower	magnitude	than	the	hydrostatic	stresses	(σ55 ≪

σ66).	Hence	𝑄	was	defined	as	a	spatially	uniform	(approximately),	normalized,	hydrostatic	

stress	tensor	of	adjustable	magnitude,	which	shifted	the	stresses	in	front	of	the	crack	tip	

to	lower	or	higher	levels	depending	on	the	constraint	during	loading.	𝑄	was	defined	at	a	

distance	of	r = 2J/σU	and	was	expressed	as:	

𝐐 =
𝛔𝛉𝛉 − (𝛔𝛉𝛉)𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞

𝛔𝟎
,  𝐚𝐭 𝛉 = 𝟎,  𝐫 = 𝟐𝐉/𝛔𝟎 Equation 2.16 

Where:	

• σ66:	the	hydrostatic	stress	at	the	θ	direction	
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• (σ66)5RSR5R;TR:	the	reference	stress	field	

• δPQ:	Kronecker	delta	functions	

• σU:	the	yield	stress	of	the	material	

The	near-tip	stress	field	with	the	use	of	the	J-Q	theory	was	expressed	by	Equation	d.]_.		

𝛔𝐢𝐣 = I𝛔𝐢𝐣K𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 + 𝐐𝛔𝟎𝛅𝐢𝐣    Equation 2.17 

In	general,	the	maximum	stress	and	stress	distribution	were	determined	by	Q,	which	scales	

the	stress	level	relative	to	a	reference	state	that	regarded	high	triaxiality,	while	J	adjusted	

the	size	of	the	process	zone	over	which	the	large	stresses	and	strains	developed	[35], [36].	

Negative	Q	values	expressed	a	 reduction	of	hydrostatic	 stress	 (and	consequently	 stress	

triaxiality),	whilst	positive	Q	values	expressed	an	increase,	by	𝑄σU	 from	the	𝑄 = 0	high	

triaxiality	state.		For	instance,	if	a	constant	value	of	J	was	considered,	a	negative	Q	(Q < 0)	

value	would	be	met	in	low	constraint	geometries	along	with	more	crack	tip	blunting	in	

comparison	to	positive	or	zero	values	of	Q	(Q ≥ 0)	and	less	blunting	met	in	high-constraint	

geometries.	 It	 should	 be	 noted	 that	 during	 excessive	 crack-tip	 blunting,	 the	 J-Q	

dominance	was	valid	in	a	region	not	much	bigger	than	the	annulus	where	J-dominance	

existed.	 Additionally,	 when	 excessive	 blunting	 or	 specific	 loading	 conditions	 (e.g.	

bending)	 were	 introduced,	 the	 distance	 independence	 of	 Q	 weakens,	 and	 it	 changed	

linearly	with	the	distance	r,	in	dependence	on	remote	load	and	crack	geometry.	

It	should	be	noted	that	J-Q	theory	was	not	applicable	to	growing	cracks,	since	Q	quantified	

both	 opening	 and	 mean	 (hydrostatic)	 stress,	 in	 terms	 of	 the	 crack	 tip	 constraint,	 it	

provided	a	description	of	the	“competition”	between	fracture	by	cleavage	(controlled	by	

the	 opening	 stress	 [46])	 and	 ductile	 tearing	 (controlled	 by	 the	 void	

growth/interaction/coalescence,	 which	 relied	 on	 the	mean	 stress	 [46])[32].	 It	 is	 worth	

noting	here	that	the	validity	of	these	methods	relies	on	the	compliance	of	the	material	

tensile	properties	to	a	Ramberg	Osgood	law.	In	non-ideal	power-law	hardening	materials,	

as	 are	most,	 additional	 contours	 further	 away	 from	 the	 crack	 tip	 need	 to	 be	 used	 for	

accurate	calculation	of	properties.		

 Failure prediction models 

In	pursuit	of	relating	the	crack	tip	fields	to	fracture	toughness,	a	need	for	micromechanical	

failure	criteria	was	developed.	A	simplified	mechanical	 failure	criterion,	connecting	the	
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local	 crack	 behaviour	 to	 the	 macroscopically	 applied	 loads,	 was	 the	 commonly	 used	

(cleavage)	fracture	toughness	(KT)	measured	from	high	constraint	specimens	(e.g.	Single	

edge	notched	bending	-	SENB).	In	particular,	the	measured	value	of	KT	 for	a	specimen,	

which	 maintained	 high	 constraint	 throughout	 loading,	 acted	 as	 a	 minimum	 value	 of	

fracture	toughness.	This	ensured	that	any	structure	of	the	same	material	would	have	at	

least	this	minimum	fracture	toughness,	at	any	level	of	constraint.	From	the	point	of	view	

of	statistics,	this	could	be	interpreted	as	the	lowest	limit	of	the	fracture	toughness,	where	

the	possibility	of	the	material	exhibiting	a	value	lower	than	that	was	approximately	zero.	

It	 was	 apparent	 that	 the	 above	 criterion	 provided	 conservatism	 since	 cracks	 were	 not	

always	under	such	high	constraint	and	crack	tip	triaxiality	was	reduced	as	plasticity	flowed	

with	load	increase.		

Determination	of	the	fracture	toughness	of	a	structure,	with	loss	of	constraint	taken	into	

account,	would	require	fracture	toughness	testing	on	specimens	that	match	the	structure	

in	terms	of	constraint.	While	this	decreased	conservatism	in	assessing	such	a	structure	it	

increased	the	amount	and	cost	of	experiments.	To	satisfy	the	demand	for	fewer	and	less	

costly	 experiments	 many	 researchers	 attempted	 to	 develop	 criteria	 that	 would	 unify	

fracture	 toughness	 as	 a	material	 parameter	 and	 detach	 it	 from	 geometric	 and	 loading	

configuration.	 Some	 of	 the	 criteria	 developed	 concerned	 ductile	 fracture	 [47], [48],	

however	for	constraint	related	cases,	the	majority	focused	on	cleavage.	The	reason	behind	

this	was	that	prior	to	ductile	fracture	there	was	a	flow	of	plasticity,	which	decreased	crack	

tip	triaxiality	and	its	effect	on	the	crack	tip	stress	field.	During	plasticity	flow	the	energy	

dissipated	in	the	material	did	not	seem	to	be	affected	by	biaxiality	according	to	Ostby	&	

Hellesvik	 [7],	 where	 the	 values	 of	 J	 and	 the	 crack	 growth	 resistance	 seemed	 to	 be	

insignificantly	 influenced	by	biaxial	 loading.	Here	 it	 should	be	noted	that	even	though	

biaxiality	might	not	 influence	ductile	 behaviour;	 constraint	 and	 especially	 crack	depth	

related	induced	constraint,	can	have	an	effect	on	the	J	developed	[af],	while	this	effect	

varies	 with	 different	 crack	 depths.	 Here,	 in	 the	 transition	 region,	 where	 there	 was	

uncertainty	over	the	type	of	failure	that	might	occur	and	constraint	favoured	a	less	ductile	

behaviour,	higher	concern	was	raised	with	regard	to	failure	by	cleavage.		

In	 this	 direction,	 many	 micromechanical	 criteria	 have	 been	 developed	 and	 calibrated	

against	experimental	data.	Validation	of	such	criteria	was	 intensively	conducted	within	

pressure	vessel	related	work,	a	high	fraction	of	which	was	conducted	at	 the	Oak	Ridge	

Laboratory	[9], [50], [51].	This	work	aimed	to	correlate	fracture	toughness	and	biaxiality	by	
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using	micromechanical	failure	criteria.	Several	of	the	criteria	covered	by	the	latest	work,	

along	 with	 additional	 ones,	 were	 revisited	 at	 a	 later	 time	 within	 the	 context	 of	 the	

VOCALIST	project	[45], [52],	which	was	launched	to	provide	an	overview	of	the	effects	of	

constraint	on	the	cleavage	fracture	toughness	and	the	existing	methodologies	assessing	it.	

From	 the	 failure	 criteria	 presented	 in	 the	 literature	 two	 of	 the	most	 used,	 concerning	

cleavage	fracture,	are	explained	in	the	following	paragraphs.		

 Dodds-Anderson toughness scaling model 

This	model	developed	by	Dodds	&	Anderson	(D&A)	concerned	(transgranular)	cleavage	

fracture	and	derived	from	weakest	link	model	which	assumed	that	cleavage	fracture	was	

controlled	by	a	particle	which	is	most	favourable,	either	by	its	orientation	or	size,	to	have	

fracture	 initiating	 from	 it	 [13], [53].	 The	 triggering	 effect	 included	 an	 instability	 of	 a	

microcrack	forming	at	the	particle,	where	a	critical	stress	was	reached	in	the	vicinity	of	the	

microcrack.	The	geometry	and	position	of	the	microstructural	feature	that	triggered	the	

microcrack	directly	affected	the	fracture	toughness	value	and	its	scatter.		

The	probability	of	finding	a	triggering	microfeature	ahead	of	the	crack	tip	was	related	to	

the	volume	of	the	zone	in	front	of	the	crack	where	the	stress	exceeded	a	limiting	value,	

that	sufficed	to	initiate	cleavage.	Hence,	the	probability	of	fracture	was	expressed	as,		

F = F[V(σ\)]	

Where:	

F:	the	failure	probability	

σ\:	the	cleavage	triggering	stress	at	a	point	

V(σ\):	volume	ahead	of	the	crack	tip	over	which	the	stress	was	equal	to	or	higher	than	σ\	

The	D&A	model	hence	assumed	that	when	the	critically	stressed	volumes	ahead	of	the	

crack	were	equal	then	the	cleavage	fracture	had	the	same	probability	of	happening.	Using	

two	parameter	fracture	mechanics,	the	stress	tensor	in	front	of	the	crack	tip	(dependent	

on	constraint	through	𝑄)	and	the	size	of	the	area	with	stresses	higher	than	a	critical	stress,	

could	be	calculated.	In	this	respect,	the	D&A	model	did	not	attempt	to	predict	a	value	for	

the	 fracture	 toughness	 (JT),	 but	 rather	 to	 correlate	 changes	 in	 fracture	 toughness	with	

changes	 of	 constraint	 effects	 by	 comparing	 to	 a	 reference	 condition.	 This	 reference	
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condition	was	the	small-scale	yielding	condition,	which	represented	an	upper	margin	on	

constraint.	

The	implementation	of	the	method	started	with	the	calculation	of	the	area	enclosed	within	

a	specific	contour,	where	the	stress	(𝜎])	had	a	value	equal	or	higher	than	a	critical	stress	

(𝜎^).	Let	the	area	for	the	small-scale	yielding	(infinite	body)	be	represented	by	AU	and	the	

J-value	for	which	such	a	stress	distribution	was	created	by	JU.	In	the	same	way,	for	the	finite	

body	the	area	was	denoted	as	AS	and	J-value	as	JS.	The	ratio	of		JS/JU	for	which	AU(σ\) =

AS(σ\)		quantified	the	effect	of	constraint	on	fracture	toughness.	It	is	worth	noting	that	the	

brittle	fracture	models	(at	 least	those	presented	here)	adopt	a	weakest	link	assumption	

when	determining	the	failure	probability.	

Concerning	the	𝜎]	stress,	it	could	be	interpreted	in	different	ways.	In	the	initial	analysis,	

the	 model	 was	 validated	 against	 SENB	 specimens	 and	 a	 plane	 strain	 analysis	 was	

conducted,	where	thickness	was	disregarded	 [50].	At	that	stage,	𝜎]	stress	was	set	as	the	

opening	mode	stress	(𝜎7),	which	provided	valid	results	for	the	two-dimensional	loadings	

of	the	SENB	specimens.	However,	in	the	case	of	biaxial	loadings,	the	far-field	out-of-plane	

bending	stresses	had	an	impact	in	the	hydrostatic	stress	tensor,	which	was	not	imprinted	

on	the	opening	mode	stress.	It	was	shown	in	[9]	that	the	insensitivity	to	the	far-field	out-

of-plane	bending	stresses	was	alleviated	with	the	use	of	the	hydrostatic	stress	(𝜎_)	as	a	

failure	 criterion,	 illustrated	 in	Figure	d.c,	where	 increase	 in	 the	biaxiality	 ratio	had	no	

effect	on	the	opening	mode	stress	(𝜎7),	presented	as	𝜎==	in	the	figure;	however,	there	was	

an	apparent	shift	in	the	hydrostatic	stress	(𝜎_).					

  

(a) Opening mode stress, 𝝈𝟑                   (b) Hydrostatic stress, 𝝈𝑯 

Figure 2.5: Sensitivity to biaxiality for Q-stress based on different stress criteria, [9] 
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This	can	also	be	seen	in	Figure	d.g,	where	the	stress	contours	for	both	stress	criteria	were	

presented	 with	 increasing	 J-values.	 In	 the	 case	 of	 σ7,	 uniaxial	 and	 biaxial	 loadings	

produced	similar	stress	contours	for	all	levels	of	J;	however,	use	of	σB	included	the	effect	

of	biaxiality,	with	stress	contours	having	been	larger	for	biaxial	loading.	This	in	its	turn	

denoted	a	larger	critically	stressed	volume	and	thus	higher	probability	of	cleavage	fracture,	

which	was	expected	according	to	the	experimental	data	in	[9],	thus	rendering	σB	as	a	more	

accurate	stress	criterion.	

	

	

                        (a) Opening mode stress, 𝝈𝟑                  (b) Hydrostatic stress, 𝝈𝑯 

Figure 2.6: Contours of stresses with increasing J-values, [9] 

 Weibull cleavage model 

Another	 widely	 used	 local	 fracture	 criterion	 is	 the	Weibull	 cleavage	 model.	 This	 was	

initially	developed	by	the	Beremin	group	[12],	who	argued	that	there	is	a	need	for	statistical	

treatment	of	the	fracture	toughness	data	due	to	their	scatter.	Their	study	was	theoretically	

based	on	the	same	assumptions	as	the	ones	for	the	D&A	model,	i.e.	the	critically	stressed	

volume	in	front	of	the	crack	was	directly	related	to	the	probability	of	fracture.	Thus,	effort	

was	put	 towards	the	approximation	of	 the	distribution	of	microcracks	that	would	have	

sufficient	length	to	initiate	fracture.	This	sufficient	length	was	related	to	a	critical	stress	

(σT)	with	the	use	of	the	Griffith	model,	which	denoted	the	energy	required	for	a	crack	to	

start	propagating	(i.e.	sufficient	potential	energy	was	available	to	overcome	the	surface	

energy	of	the	material).	The	latter	was	approximated	in	[12],	with	use	of	Equation	d.]i.	
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𝛔𝐜 = $
𝟐𝐄𝛄

𝛑(𝟏 − 𝐯𝟐)𝐥𝟎
    Equation 2.18 

Where:	

• 𝜎^:	the	critical	stress	

• 𝛾:	surface	energy	

• 𝑣:	Poisson's	ratio	

• 𝑙U:	length	of	the	microcrack	

The	analysis	assumed	a	volume	VU,	which	should	be	large	enough	to	have	an	acceptable	

probability	 of	 including	 a	microcrack	with	 sufficient	 length	 and	 could	 be	 divided	 into	

smaller	volumes.	Each	fraction	of	the	volume	was	treated	as	statistically	independent	from	

the	 rest	 and	 the	 overall	 probability	 of	 failure	 was	 defined	 as	 the	 aggregation	 of	 the	

probability	of	each	of	the	volume	fractions.	After	expressing	the	crack	length	with	the	use	

of	Equation	d.]i	in	terms	of	critical	stress	and	combining	this	with	the	assumption	of	a	

constant	stress	over	VU	the	probability	of	failure	became:		

𝐏𝐑 = 𝟏 − 𝐞𝐱𝐩 3− 4
𝛔𝐰
𝛔𝐮
5
𝐦
6  Equation 2.19 

	

𝛔𝐰 = $78𝛔𝟏
𝐣 9
𝐦 𝐕𝐣
𝐕𝟎𝐣

𝐦       Equation 2.20 

It	is	clear	that	Equation	d.]f	represented	a	Weibull	distribution	[54],	where:		

• 𝑃 :	the	probability	of	failure	

• 𝜎a:	Weibull	stress.	This	was	a	fracture	parameter	that	showed	the	damage	of	the	
material	in	the	vicinity	of	the	crack	tip	[14]	

• 𝜎b:	scaling	stress	(scaling	factor),	a	material	parameter	

• 𝑚:	Weibull	modulus		

• 𝜎"
c:	maximum	principal	stress	

• 𝑉c:	volume	of	the	𝐽]d	element	experiencing	the	maximum	stress	𝜎"
c	

• 𝑉U:	 a	 reference	 volume;	 should	 be	 small	 enough	 for	 stress	 gradients	 to	 be	

approximately	zero	and	large	enough	to	incorporate	a	non-negligible	probability	

of	including	a	microcrack	of	appropriate	length	
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Concerning	the	applied	stress	in	Equation	d.de,	there	were	different	criteria	that	could	be	

used	to	evaluate	the	stress	that	was	to	reach	a	critical	value	for	failure.	The	one	applied	in	

Equation	 d.de	 was	 the	 “Maximum	 Principal	 Stress”.	 However,	 as	 in	 the	 case	 of	 the	

Anderson	&	Dodd	scaling	model,	 the	use	of	 the	hydrostatic	stress	as	a	 failure	criterion	

provided	higher	accuracy	in	the	application	of	the	Weibull	model	[15].	

A	three	parameter	Weibull	cleavage	model	had	also	been	developed	with	the	introduction	

of	parameter	designated	as	σe$fP;,	as	seen	in	Equation	d.d]	.	This	third	parameter	cancels	

out	any	non-zero	probabilities	of	failure	when	loads	were	very	close	to	zero	and	acted	as	

lower-bound	strength	[55].	

𝐏𝐑 = 𝟏 − 𝐞𝐱𝐩 �−¸
𝛔𝐰 − 𝛔𝐰$𝐦𝐢𝐧
𝛔𝐮 − 𝛔𝐰$𝐦𝐢𝐧

¹
𝐦
� Equation 2.21 

Another	 important	observation	was	 that	 the	Weibull	distribution	did	not	 consider	 the	

effect	of	plastic	 strains	on	 cleavage	 fracture	 initiation.	Although	 final	 fracture	was	 still	

stress-controlled,	 the	 attainment	 of	 a	 necessary	 critical	 plastic	 strain	 level	 invalidated	

Equation	d.]f,	which	did	not	recognize	the	effect	of	plastic	strain	in	the	cleavage	process.	

The	 stress-only	description	of	 cleavage	 inherently	 implied	 that	 all	 potential	 nucleators	

(e.g.	carbide	microcracks)	were	created	at	the	onset	of	plasticity	and	that	their	number	

kept	constant	with	further	plastic	deformation	[43],	which	did	not	necessarily	correspond	

to	real	behaviour.	

 Microstructure informed brittle fracture (MIBF) model  

A	microstructurally	informed	model	was	developed	by	Vincent	et	al.	[cg].	In	their	work	

fracture	 followed	 the	 same	 assumptions	 as	 the	Beremin	model,	 i.e.	 in	 a	 representative	

volume	V$,	micro-cracks	 initiate	for	a	certain	 level	of	plastic	strain	and	then	propagate	

when	 a	 local	 stress	 reaches	 a	 critical	 value.	 However,	 this	 model	 is	 microstructurally	

informed	and	can	accommodate	a	heterogeneous	stress	field.		

In	particular,	the	probability	to	find	a	maximum	principal	stress	higher	than	a	given	value	

𝜎+	 in	 one	 area	 out	 of	 a	 polycrystalline	 aggregate	 submitted	 to	 an	 average	 maximum	

principal	 stress	 〈𝜎+〉	and	 an	 average	 von	 Mises	 stress	 〈𝜎k+lml〉	,	 was	 microstructurally	

dependent	and	expressed	as	shown	in	Equation	d.dd	[cg].	
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𝐏(𝝈∗ > 𝝈𝟏) = 𝟏 − 𝐞𝐱𝐩 �−𝐞𝐱𝐩¼−½
𝛔𝟏 − 〈𝛔𝟏〉

𝜶𝟏〈𝛔𝑴𝒊𝒔𝒆𝒔〉 + 𝛃𝟏
+ 𝜸𝟏ÁÂ� Equation 2.22 

Where	 α%,β%,γ%	 are	 parameters	 describing	 the	 distributions	 of	 the	 maximum	 principal	

stresses	 (assumed	 to	 follow	 a	 Gumbull	 distribution)	 .	 These	 distributions	 have	 been	

produced	from	microstructural	(crystal	plasticity)	modelling.		Even	though	in	this	work	

these	parameters	are	shown	for	different	 irradiation	conditions,	constraint	effects	 from	

loading	conditions	can	also	be	expressed	with	the	different	values	of	these	parameters.	

Following	a	Griffith	type	criterion,	the	fracture	stress	of	a	representative	volume	is	given	

by	Equation	d.d`.	

𝛔𝒇 = $𝝀
𝐄	𝛄𝒇
𝐫     Equation 2.23 

Where,		

• λ:	is	a	micro-crack	shape	factor	

• E:	the	Young’s	modulus		

• γf	:	the	fracture	surface	energy	and	

• r:	is	the	size	of	the	micro-defect	which	becomes	instable	(i.e.	propagates)	under	

the	local	stress	σf	

The	micro-cracks	that	cause	fracture	are	mainly	produced	by	the	cracking	of	the	carbides.	

In	this	work	the	probability	of	failure,	𝑃r(𝜈, 𝛴),	of	a	volume	ν	containing	]	carbide	under	

loading	Σ,	is	calculated	by	integrating	the	probability	density	of	the	carbide	size	weighted	

by	the	probability	that	the	local	stress	will	be	higher	than	the	fracture	stress.	This	carbide	

size	distribution	is	taken	from	literature.	Integrating	the	carbide	sizes	amplified	the	failure	

probability	density	beyond	what	the	Beremin	model	could	calculate	[cg].	

Further	assuming	weakest	link	theory,	i.e.	failure	of	a	representative	volume	is	due	to	the	

first	unstable	micro-crack,	the	failure	of	a	representative	volume	V$	is	the	product	of	the	

probabilities	of	failure	of	the	N	number	of	ν	elements	that	V$	comprises.		

Taking	 this	 one	 step	 further,	 the	 probability	 of	 failure	 𝑃rI𝑉sK,	 	 a	 macroscopic	 plastic	

volume	Vp	which	consists	of	many	V$	volumes	can	again	be	calculated	with	weakest	link	

statistics.		
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A	 similar	model	 that	 incorporated	 the	 local	 approach	 to	 fracture,	 i.e.	 incorporated	 the	

inherent	 stress	heterogeneity	was	used	by	Forget	 et	 al	 [c_]	 assuming	 that	 stresses	 and	

carbide	sizes	both	follow	Weibull	distributions.		

The	model	was	applied	to	the	“Euro	Material	A”	(dd	NiMoCr	̀ 	_)	data	set	[ci].	The	material	

had	a	Master	Curve	reference	temperature	T$=-f]°C.	The	test	data	that	was	simulated	was	

selected	to	have	failed	by	cleavage	fracture	with	a	ductile	crack	extension	less	than	e.d	

mm.	 Analyses	 included	 C(T)	 tests	 conducted	 at	 lower	 shelf	 and	 lower	 transition	

temperatures,	with	a	variety	of	thicknesses.			

For	 all	 the	 different	 combinations	 of	 temperature	 and	 thickness,	 there	was	 very	 good	

agreement	between	experimental	and	FEA	calculated	fracture	toughness	values,	with	the	

specimens	 that	 showed	 less	 ductile	 tearing	 having	 the	 best	 agreement	 regardless	 of	

thickness.		

One	of	the	most	interesting	observations	of	this	work	is	that	the	MIBF	models	have	such	

flexibility	that	they	can	include	several	other	mechanisms	in	the	probability	of	fracture	

calculations	such	as	intergranular	failure,	competing	populations	of	nucleation	sites	and	

extremely	rare	particles	[c_].	

 Wallin, Saario, Törrönen (WST) model 

As	 in	previous	models	described;	 the	work	of	Wallin	et	al.	 [cf],	 [ge]	assumed	that	 the	

material	in	front	of	the	crack	contains	a	distribution	of	possible	cleavage	fracture	initiation	

sites	i.e.	cleavage	initiators.	The	cumulative	probability	distribution	for	a	single	initiator	

being	critical	could	be	expressed	as	Pr{I}	and	it	is	a	complex	function	of	the	initiator	size	

distribution,	stress,	strain,	grain	size,	temperature,	stress	and	strain	rate,	etc.	

The	WST	model	 assumes	 that	 the	 shape	 and	origin	 of	 the	 initiator	 distribution	 is	 not	

important	 if	 a	 sharp	 crack	 is	 ensured,	 while	 local	 interaction	 between	 initiators	 is	

permitted	and	a	cluster	of	cleavage	initiations	may	be	required	for	macroscopic	initiation.			

Is	also	considers	the	conditional	events	of	

• A	particle	failing	but	not	being	capable	to	initiate	cleavage	because	it	blunted	and	

formed	a	void	

• An	 initiated	 cleavage	 crack	 not	 being	 able	 to	 propagate	 through	 the	matrix	 to	

produce	failure	(crack	arrest)		
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With	the	above	in	mind	a	probability	tree	of	cleavage	fracture	is	created.	Assuming	that	

cleavage	fracture	process	zone	is	essentially	restricted	to	the	region	of	high	tensile	stresses	

and	plastic	 strains	and	 that	 the	 self-similarity	of	 the	 stress	 field	 remains	unaffected	by	

loading	 (small	 scale	 yielding),	 a	 two-dimensional	 calculation	 is	 allowed	 where	 a	 slice	

through	the	thickness	is	representative	of	the	whole	volume.		

The	WST	model	 expresses	 conditional	 probability	 of	 cleavage	 initiation	 Pr{I/O}	 as	 the	

integral	of	the	product	of	the	particle	failure	and	survival	probabilities	to	compensate	for	

the	previously	broken	particles	which	do	not	contribute	to	the	cleavage.	The	probability	

of	particle	fracture	is	described	by	a	Weibull	expression	accounting	for	particle	size	and	

particle	stress.	

The	particle	size	distribution	was	formulated	so	that	it	was	fully	described	by	the	average	

particle	size	and	the	shape	factor.	While	for	the	particle	stress,	since	the	particle	is	elastic	

and	 the	stress	 in	 the	particle	equals	approximately	 to	 the	product	of	matrix	 stress	and	

strain,	it	is	expressed	in	terms	of	strain	energy	density.	Hence,	the	effect	of	matrix	strain	

is	introduced	into	the	new	version	of	the	WST	model	[ge]	through	the	particle	stress.		

As	also	seen	in	the	three	parameter	Beremin	model	the	authors	here	address	the	scenario	

of	infinitesimal	stress	intensity	factor	values	leading	to	a	finite	failure	probability	with	the	

incorporation	of	conditional	crack	propagation	criterion,	that	introduces	a	lower	limiting	

Kmin	 value,	below	which	cleavage	 fracture	 is	 impossible.	This	 cancels	out	any	non-zero	

probabilities	 of	 failure	when	 loads	were	 very	 close	 to	 zero	 and	 addresses	 the	 need	 for	

propagation	in	relation	to	initiation	for	cleavage	fracture	to	happen.	The	total	cumulative	

failure	probability	was	expressed	as	shown	in	Equation	d.da	

𝐏𝒇 = 𝟏 − 𝐞𝐱𝐩 �−
𝑩 ∙ 𝑨
𝑩𝟎 ∙ 	𝑲𝟎

𝟒 (𝑲𝑰 −𝑲𝒎𝒊𝒏)𝟒� Equation 2.24 

Where:	

• Kmin:	 the	 steepest	 possible	 stress	 distribution	 enabling	 propagation,	 calculated	

under	the	assumption	that	a	microcrack	of	size	U	must	have	an	increasing	dK/dU	

ratio	for	propagation	to	be	possible.	

• A:	the	propagation	probability	of	a	uniform	stress	state	

• B:	thickness		

• B$,K$:	interrelated	normalization	parameters	
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This	model	was	applied	on	a	test	dataset	of	C(T)	sampled	made	out	of	Acei	Cl.`	German	

pressure	 vessel	 steel	 which	 has	 been	 used	 in	 various	 	 programs	 [cd],	 [g]],	 [gd].	 This	

material	was	extremely	well	characterized	and	allowed	for	the	strain	energy	density	(and	

thus	particle	stress),	particle	size	distribution	and	distance	of	initiation	site	from	the	crack	

tip	to	be	included	in	the	WST	model.	Distance	of	initiation	sites	in	combination	with	the	

fracture	toughness	allowed	to	express	a	normalized	initiation	distance	which	is	needed	

since	the	stress	and	strain	distributions	in	front	of	the	crack	scale	in	a	similar	way.			

Through	 FEA	 work	 the	 stresses	 and	 strains	 in	 front	 of	 the	 crack	 tip	 were	 calculated	

qualitatively.	These	FEA	 results	were	used	 in	 the	WST	model,	which	was	 successful	 in	

qualitatively	 predicting	 the	 local	 cleavage	 initiation	 probability	 in	 front	 of	 a	 crack.	

Quantitative	discrepancies	were	argued	by	the	authors	to	be	due	to	uncertainties	in	the	

fractography,	or	to	the	fact	that	the	cleavage	initiation	might	be	controlled	by	something	

other	than	the	carbides	[cf],	[ge].	

 James Ford Jivkov (JFJ) model  

In	 the	 work	 of	 James	 et	 al.	 [g`]	 the	 authors	 attempted	 to	 compare	 the	 predictive	

capabilities	between	a	variety	of	existing	models	at	a	single	temperature	and	proposed	a	

model	whose	terms	will	not	vary	with	temperature	or	constraint	levels.		

The	 authors	 initially	 argued	 that	 the	 parameters	 of	 the	 Beremin	model	 changed	 with	

different	 temperatures	 or	 constraint	 conditions.	 This	 meant	 that	 the	 Weibull	 fitting	

parameters	(m,	σu)	of	the	Beremin	model,	calibrated	for	geometries	with	high	constraint	

would	not	 lead	 to	 accurate	predictions	under	 lower	 constraint	 conditions	or	 at	higher	

temperatures.	 Additionally,	 it	 was	 stated	 that	 methodologies	 that	 attempt	 to	 cross-

calibrate	these	parameters	were	valid	up	to	temperatures	below	the	reference	temperature.	

This	denoted	that	the	link	between	physics	and	mechanics	did	not	adequately	capture	the	

effects	of	high	levels	of	plasticity.	

This	work	laid	out	the	basic	two	assumptions	of	local	approaches,	which	were:		

• The	 local	 mechanical	 fields	 were	 defined	 under	 the	 assumption	 of	 a	

macroscopically	homogenous	material	and	provided	an	‘individual’	probability	of	

failure	on	each	of	the	micro-crack	initiators	

• Individual	failure	events	were	independent,	allowing	weakest-link	statistic	to	be	

applied	for	calculating	the	global	failure	probability	
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Following	these	assumption	the	JFJ	model	was	developed	in	[g`].	JFJ	agreed	with	WST	[ge]	

that	 the	 probability	 of	 failure	 was	 based	 also	 on	 the	 particle	 size.	 This	 was	 explained	

considering	that	 larger	particles	had	higher	probability	of	 failure	than	smaller	particles	

under	identical	mechanical	conditions,	and	the	larger	particles	released	more	energy	when	

they	 failed,	 so	were	more	 likely	 to	 rupture	 the	 surrounding	matrix	 and	 cause	 cleavage	

fracture.		

In	the	developed	model	principal	strains	in	the	intact	particle,	which	were	elastic,	were	set	

equal	to	the	total	principal	strains	in	the	surrounding	matrix.	This	together	with	the	plastic	

incompressibility	 condition,	 connected	 the	 principal	 stresses	 in	 the	 particle	 to	 the	

principal	stresses	and	principal	plastic	strains	in	the	matrix.	The	principal	stresses	could	

then	be	given	in	a	form	that	expresses	plastic	overload	on	the	particle.		

For	the	JFJ	model	the	probability	of	a	particle	rupturing	was	calculated	from	subtracting	

the	survival	probability	of	a	particle	from	unity.	This	survival	probability	was	calculated	

from	the	energy	lost	during	rapture.	It	was	considered	that	the	survival	probability	must	

decrease	with	 increasing	work	of	 rupture.	The	 final	 formulation	was	dependent	on	the	

matrix	stresses	and	strains	and	thus	incorporated	the	effects	of	plastic	strain	and	stress	

triaxiality.	

A	very	interesting	concept	in	this	work	was	to	account	for	the	reduction	in	crack	driving	

force	due	to	plastic	dissipation	in	the	matrix	(i.e.	crack	tip	blunting)	through	the	definition	

of	an	effective	critical	micro-crack	size	criterion	which	incorporated	crack	tip	blunting.	

This	was	a	developed	by	modifying	 the	Griffith	criterion	 to	 include	a	 “fictional”-	 crack	

whose	size	depended	on	the	original	microcrack	size,	and	the	plastic	strains	developed.	

This	connection	was	made	under	the	assumption	that	the	crack	opening	displacement	of	

the	initial	microcrack	equalled	its	size	multiplied	by	the	plastic	strains.		

The	developed	JFJ	model	was	compared	with	the	

• original	Weibull	model		

• modified	Beremin	allowing	 for	 the	effect	of	constraint,	 improving	 the	ability	 to	

apply	the	model	to	geometries	other	than	the	calibration	geometry	

• WST	model	 compensating	 for	 the	 particle	 size	 and	 previously	 broken	 particles	

cleavage	initiators	which	do	not	contribute	to	the	cleavage	
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• Bordet	 Model	 [ga],	 which	 is	 another	 modification	 of	 the	 Beremin	 model	

accounting	for	the	effects	of	strain	rate	and	temperature	

The	comparison	was	conducted	on	data	from	an	RPV	ddNiMoCr`_	ferritic	steel,	known	as	

Euro	Material	A,	for	which	the	mechanical	and	fracture	toughness	properties	at	a	number	

of	temperatures	and	irradiation	states	within	the	lower	shelf	and	in	DBT	were	available	

from	[ci].	Additionally,	 this	material	had	gone	 through	comprehensive	metallographic	

examination	which	 provided	 the	 number	 density	 of	 carbides	 and	 allowed	 a	 fit	 for	 the	

probability	 density	 of	 particle	 sizes.	 The	 test	 specimens	 that	 were	 included	 from	 this	

dataset	and	modelled	in	the	work	of	JFJ	regarded	Charpy	V	notch	(PCCV)	specimens	in	

three-point	bending.	

In	 general,	 all	 the	 models	 compared	 showed	 little	 difference	 between	 them	 and	 the	

cleavage	fracture	predictions	they	made	were	in	good	agreement	with	experimental	data.			

Regarding	calibration	of	the	models,	 the	Weibull	model	was	the	simplest	as	 it	requires	

calibration	of	three	individual	terms.	The	JFJ	model	along	with	the	WST	model	required	

calibration	only	of	two	microstructurally	informed	values,	i.e.	rupture	energy	density	scale	

and	surface	energy	value.	While	the	remaining	two	models	required	calibration	of	multiple	

parameters	which	did	not	relate	to	measurable	values	and	couldn’t	easily	be	taken	from	

experimental	results	or	literature	

It	 should	 be	 noted	 that	 the	 JFJ	model	 required	 a	 simple	 set	 of	 experimental	 data	 for	

calibration:	 size	 distribution	 and	 density	 of	 the	 cleavage	 initiating	 particles	 from	

metallography	 and	 a	 limited	 range	 of	 positions	 of	 cleavage	 initiation	 sites	 from	

fractography.	 Furthermore,	 even	 though	 calibration	 was	 performed	 at	 a	 single	

temperature	the	JFJ	model	results	showed	good	agreement	with	experimental	data	at	a	

range	 of	 different	 irradiation	 and	 constraint	 conditions	 and	 any	 change	 in	 toughness	

calculations	arose	only	from	the	changing	deformation	properties.	

 Seal and Sherry model  

The	work	of	Seal	and	Sherry	[gc]	attempted	to	combine	the	D&A	scaling	model	with	the	

Beremin	modified	Rice	and	Tracey	[gg]	model	to	predict	the	benefit	of	constraint	loss	to	

fracture	toughness.		

The	Rice	and	Tracey	[gg]	model	predicted	that	void	growth	is	a	function	of	the	stress	state	

and	plastic	strain	increment,	while	it	assumed	that	critical	void	size	is	a	material	property.	
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The	need	to	know	this	property	was	a	drawback	for	its	application	to	a	variety	of	materials,	

however	the	authors	argued	that	this	could	be	overcome	by	using	an	equivalent	scaling	

method	to	the	Anderson	and	Dodds	method	but	this	time	including	contours	of	equal	void	

growth	ratios,	 i.e.	Rice	and	Tracey	contours.	 It	was	argued	 that	 if	 the	areas	defined	by	

different	Rice	and	Tracey	contours	could	be	shown	to	scale	proportionally	in	both	the	low	

and	 high	 constraint	 cases,	 then	 the	 ratio	 of	 the	 effective	 fracture	 toughness	 for	 a	 low	

constraint	structure	to	the	high	constraint	toughness	would	be	independent	of	the	Rice	

and	Tracey	parameter	chosen.	

Using	an	MBL	model	multiple	parametric	 studies	describing	different	constraint	 states	

were	run.	These	models	considered	a	variety	of	materials,	that	represent	a	wide	range	of	

ferritic	steels.	The	models	were	run	for	a	combination	of	applied	K	and	T-stress,	several	

areas	enclosed	by	iso-stress	and	iso-Rice	and	Tracey	contours.	For	the	D&A	parameters	

the	area	enclosed	by	iso-stress	contour	for	the	small-scale	yielding	was	determined	from	

the	T=e	analyses	while	for	the	actual	constraint	level	from	each	of	the	T-stresses	in	the	

range	tested	and	allowed	the	calculation	of	the	benefit	to	fracture	toughness.	This	in	turn	

allowed	parametrization	of	the	benefit	in	α	and	k	terms	as	they	are	used	in	BS_f]e	and	Rg	

described	later	in	Section	d.c.	The	validity	window	of	the	results	was	expressed	in	terms	

of	the	size	of	the	plastic	zone	being	smaller	than	]/c	of	the	radius	of	the	model.		

The	predicted	benefit	to	ductile	initiation	fracture	toughness	from	the	use	of	different	Rice	

and	Tracey	parameter	contours	was	independent	of	the	choice	of	critical	Rice	and	Tracey	

parameter	and	was	argued	that	the	benefit	to	ductile	initiation	fracture	toughness	could	

be	predicted	from	any	sensible	Rice	and	Tracey	parameter,	thus	eliminating	the	need	to	

determine	the	critical	value	for	the	individual	steel	of	interest.	However,	the	iso-Rice	and	

Tracey	contours	showed	 loading	path	dependence	which	and	was	argued	that	 this	was	

expected	since	the	presence	of	a	hydrostatic	stress	field	accelerates	the	growth	of	voids.	In	

light	of	this	the	benefit	on	ductile	fracture	predicted	by	the	α,k	values	shown	here	should	

be	used	only	indicatively.			

Comparing	against	three	point	bend	data	from	literature	[g_]–[gf]	the	model	developed	

by	Seal	and	Sherry	[gc]	showed	good	promise	for	predicting	the	influence	of	constraint	on	

both	cleavage	and	ductile	initiation	fracture	toughness.	
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 Background to ECAs 

An	ECA	is	represented	graphically	with	the	use	of	the	Failure	Assessment	Diagram	(FAD).	

This	consists	of	a	failure	assessment	line	(FAL)	and	the	assessment	point	of	the	component	

analysed.	The	FAL	divides	the	diagram	into	two	zones,	i.e.	underneath/inside	the	FAL	and	

outside	the	FAL.	The	zone	inside	is	considered	as	the	“acceptable/safe	region”	while	the	

one	 outside	 is	 the	 “unacceptable/potentially	 unsafe	 region”.	 Depending	 on	 where	 the	

assessment	point	lies,	the	flaw	is	deemed	as	acceptable,	i.e.	the	component	can	withstand	

the	loading	conditions	modelled,	or	unacceptable,	i.e.	its	integrity	cannot	be	guaranteed.	

A	graphical	representation	of	a	FAD	can	be	found	in	Figure	d._.	

	

	

Figure 2.7: Graphical presentation of an ECA 

	

There	are	three	assessment	options	(Option	]	–	`);	with	increasing	option	number	the	FAL	

is	more	accurate	and	less	conservative	but	requires	a	higher	amount	of	information	for	its	

calculation.	 The	 easiest	 to	 conduct	 are	 Option	 ]	 assessments	 due	 to	 the	 limited	 data	

required.	The	Option	]	FAL	requires	knowledge	of	the	yield	stress	(𝜎&)	and	tensile	strength	

(𝜎y.l)	 of	 the	 material	 as	 well	 as	 its	 yielding	 behaviour	 (continuous/discontinuous	

yielding),	 i.e.	 whether	 a	 Luders	 strain	 is	 included	 in	 the	 tensile	 curve.	 The	 latter	 isn’t	

important	when	 large	 complex	deformations	happen	while	 it	 shows	 a	higher	 effect	 on	

smaller	 (test	 specimens).	 In	 many	 cases	 where	 𝜎&,	 𝜎y.l	 are	 not	 available	 at	 the	

test/operating	 temperature,	 they	 are	 determined	 following	 the	 guidance	 the	 standard	
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provides	for	calculation	of	the	tensile	properties	at	different	temperatures,	for	BS	_f]e	this	

is	included	in	clause	_.].`.a	[1]	background	for	this	clause	is	provided	in	[70].	

The	assessment	point	is	plotted	with	an	abscissa	designated	𝐿V,	considered	as	proximity	

to	plastic	collapse,	and	an	ordinate	of	𝐾V,	proximity	to	fracture.	Lr	is	cut-off	at	the	average	

between	the	yield	and	UTS	stresses	(Lr
max),	while	yield	discontinuity	should	be	included	as	

the	standard	advises	in	accordance	to	tensile	properties.		

For	BS	_f]e	assessments,	their	values	are	calculated	from	the	following	equations,		

𝐿V =
𝜎Vzr
𝜎&

	 Equation 2.25 

𝐾V =
𝐾+
s + 𝐾+{

𝐾|}]
+ 𝜌 Equation 2.26 

Where:		

• 𝜎Vzr	:	the	reference	stress	calculated	in	accordance	with	BS	_f]e:de]f	(Annex	P)	

• 𝐾+
s, 𝐾+{:	the	elastic	stress	intensity	factor	at	the	current	crack	size	due	to	primary	and	

secondary	stresses	respectively,	calculated	in	accordance	with	BS	_f]e:de]f	(Annex	M)	

• 𝜌:	a	 function	of	primary	and	secondary	 loads	that	account	 for	plasticity	 interaction	

effects,	 calculated	 according	 to	 BS	 _f]e:de]f	 (Annex	 R),	 this	 approach	 has	 been	

amended	in	later	versions	of	Rg	

• 𝐾|}]:	the	‘characteristic’	(i.e.	lower	bound)	fracture	toughness.	This	is	given	directly	

in	 terms	 of	 a	 critical	 stress	 intensity	 factor	 (MPa√m),	 or	 J-integral	 (kJ/m0)	 value	

converted	 to	 stress	 intensity	 factor	 (KJ);	 in	many	cases	 it	 is	 estimated	 from	Charpy	

measurements	(J),	using	the	guidance	of	BS	_f]e:de]f	(Annex	J)		

In	 some	 cases,	 where	 the	 material	 of	 the	 tested	 specimen	 exhibits	 tearing	 under	

increasing	load,	resistance	curves	(R-curve)	can	be	used.	In	these	instances,	various	

amounts	 of	 ductile	 tearing	 are	 postulated	 (from	 e.d	 to	 d	mm)	 and	 𝐿V	 and	𝐾V	 are	

calculated	 at	 different	 flaw	 sizes	 equivalent	 to	 the	 initial	 flaw	 length	 plus	 the	

postulated	 amount	 of	 crack	 growth.	 The	 fracture	 ratio	 (𝐾V)	 is	 calculated	 using	 an	

enhanced	𝐾|}]	which	corresponds	to	the	postulated	amount	of	tearing.	This	results	to	

each	specimen	having	a	series	of		𝐿V,	𝐾V	value	pairs	as	a	function	of	increasing	flaw	

size.	These	are	plotted	on	the	FAD	as	a	line	consisting	of	the	locus	of	the	assessment	

points	that	derive	from	the	different	flaw	lengths.	An	example	of	what	an	assessment	
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including	ductile	tearing	resistance	(R-curve)	looks	like	is	given	in	Figure	d.i,	where	

the	locus	of	assessment	points	lies	in	the	unsafe	zone	of	the	FAD.	

	

Figure 2.8: Example of tearing resistance (R-curve) assessment 

If	there	is	no	conservatism	and	the	assessment	methodology	is	representative,	then	the	

distribution	of	failure	will	equally	straddle	the	FAL	for	a	ce%	toughness	value	(when	using	

mean	tensile	properties	etc)	but	should	then	be	mostly	outside	the	FAD	when	using	a	c%	

toughness	(but	mean	properties)	and	would	be	expected	to	be	fully	outside	if	using	lower	

bound	properties	and	lower	bound	toughness.	Hence,	a	completely	accurate	assessment	

of	a	specimen	whose	failure	is	certain	would	have	the	assessment	point	lying	outside	of	

the	FAL,	at	a	distance	relative	to	the	estimate	of	fracture	toughness	used.		

In	order	to	estimate	the	conservatism	of	the	assessment	a	line	is	drawn	between	the	start	

of	the	axes	and	the	assessment	point,	as	shown	in	Figure	d.f,	then	the	modelling	error	is	

calculated	as	the	ratio	of	the	distance	from	the	start	of	the	axes	to	the	assessment	point,	

divided	by	the	distance	from	the	start	of	the	axes	to	where	the	line	meets	the	FAL,	distance	

OB	 to	 OA	 in	 Figure	 d.f.	 It	 is	 worth	 noting	 that	 this	 definition	 of	 modelling	 error	

encapsulates	secondary	stresses	in	Kr	but	due	to	relaxation	point	B	could	potentially	not	

be	aligned	to	the	original	angle	from	the	origin.	This	is	not	of	concern	in	this	collection	of	

experimental	 data	 since	 all	 but	 three	 specimens	 experienced	 secondary	 stresses.	

Additionally,	the	vast	majority	of	specimens	have	been	loaded	to	high	values	of	Lr	where	

the	secondary	stresses	would	have	been	washed	out	by	the	plasticity	developed.	
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Figure 2.9: Modelling error in ECAs 

 Biaxiality in ECAs 

 Biaxiality in BS7910 

Biaxiality	and	 its	effects	are	at	 the	stage	of	 this	work	not	 incorporated	 in	the	reference	

stress	solutions	and	stress	intensity	factors,	of	BS	_f]e	[71].	However,	the	standard	has	a	

clause	(Annex	N)	which	deals	with	constraint	effects.	Since	the	fracture	toughness	values	

used	in	the	assessments,	defined	in	Section	d.a,	are	already	a	conservative	lower	bound	

from	 the	 measured	 values3,	 Annex	 N	 provides	 guidance	 on	 exploiting	 the	 increased	

fracture	 toughness	 values,	 due	 to	 the	 relaxation	 of	 constraint,	 for	 the	 assessment	 of	 a	

structure.	The	level	of	constraint	in	the	structure	is	expressed	with	either	the	elastic	T-

stress,	recommended	for	L5 ≤ 1,	or	the	hydrostatic	parameter	Q,	generally	recommended	

for	L5 > 1.	It	should	be	noted	that	small-scale	yielding	effects	can	have	a	significant	impact	

on	plasticity	at	the	crack-tip	are	typically	seen	for	e.g	<	Lr	<	]	and	Q	could	be	used	from	

lower	values	than	]	of	Lr.	Whichever	parameter	is	adopted	for	the	expression	of	constraint	

	
3	fracture	toughness	values	are	measured	with	deeply	cracked	bend	specimens	designed	to	ensure	
high	constraint	conditions	and	can	be	treated	as	lower	bound	material	property	
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is	then	translated	to	a	structural	constraint	parameter	designated	as	β,	with	the	formulae	

in	Equation	d.d_.	

⎩
⎪
⎨

⎪
⎧ β =

T
L5σ)

,		when	calculated	with	the	T-stress

β =
𝑄
𝐿V
,		when	calculated	with	the	Q	parameter

⎭
⎪
⎬

⎪
⎫

	 Equation 2.27 

BS	_f]e	offers	a	compendium	of	β	solutions,	together	with	the	reference	stress	solutions	

used	for	their	calculation.	Concerning	biaxiality,	only	a	single	reference	stress-β	solution	

in	this	compendium	relates	to	biaxial	loading	(of	a	centre-cracked	plate).	In	addition,	it	is	

not	 clear	 from	 the	 procedure	 whether	 the	 reference	 stress	 solutions	 used	 for	 the	

calculation	of	β	should	also	be	used	for	the	calculation	of	the	L5	abscissa	of	the	assessment	

point.	This	is	a	current	issue	being	researched	and	is	discussed	in	the	later	paragraphs.		

Moving	forward,	once	β	was	calculated	it	can	be	used	for	estimating	the	constraint	related	

fracture	toughness	(Kf8\T )	in	three	ways,	namely	

• Using	material	constraint	parameters	α	and	k	

• Using	the	Master	Curve	transition	temperature	

• Using	low	constraint	testing	which	corresponds	to	the	structure's	level	of	β𝐿V		

From	the	three	ways	of	measuring	𝐾|}]^ 	the	standard	focuses	mostly	on	the	first,	i.e.	using		

α	 and	 k.	 These	 parameters	 can	 be	 either	 calculated	 or	 invoked	 directly	 from	 tables	

included	in	the	standard.	The	values	presented	in	tabular	form	derive	from	the	work	done	

by	Sherry	et	al.	[_d],	[_`]	within	the	framework	of	VOCALIST	[ac].	Sherry	et	al.	with	the	

aid	of	FEA	and	the	Weibull	cleavage	 fracture	model,	produced	Kf8\T /Kf8\	—constraint	

(T/σU,Q)	points,	where	the	probability	of	cleavage	failure	would	remain	the	same	between	

different	 levels	 of	 constraint.	 It	was	 observed	 from	 the	 results	 that	 fracture	 toughness	

ratios	(Kf8\T /Kf8\)	between	two	different	constraint	levels	were	approximately	the	same	

for	any	probability	of	cleavage	failure.	This	effectively	meant	that	fracture	toughness	ratio	

(Kf8\T /Kf8\)	—	 constraint	 points	 could	 be	 bounded	 from	 below	 with	 the	 same	 curve	

regardless	of	the	cleavage	failure	probability.	

In	 this	 direction,	 lower	 bound	 curves	 in	 the	 form	of	 Equation	 d.di,	were	 created	 as	 a	

function	of	the	parameters	α	and	k,	for	a	range	of		

• 𝐸/𝜎&	

• Hardening	coefficients	(𝑛)	
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• Weibull	parameters	𝑚	

D
Kf8\T = Kf8\ ~1 + αI−T/σ)K

~
� , T σ)⁄ < 0	when	calculated	with	the	T-stress

Kf8\T = Kf8\Ð1 + α(−Q)~Ñ, 				Q < 0		when	calculated	with	Q	parameter
L	

Equation 
2.28 

	

With	 the	 use	 of	 this	method,	 the	 increased	 fracture	 toughness	 can	 be	 applied	 to	 the	

assessment	with	two	ways,	namely	

• Modification	to	the	FAD,	i.e.	for	β < 0	the	FAL	has	the	form:	

	K5 = f(L5)Ð1 + α(−βL5)~Ñ	

• Modification	to	K5,	where	the	denominator	changes	from	Kf8\	to	Kf8\T 	

Overall,	the	influence	of	constraint	relaxation	included	in	the	standards	is,			

]. in	 the	 cleavage/brittle	 regime:	 fracture	 toughness	 increases	 with	 decreasing	

constraint	(as	βL5	became	more	negative)	

d. in	 the	ductile	 regime:	 the	magnitude	of	 the	constraint	 effect	on	ductile	 tearing	

initiation	depends	on	the	yield	and	strain	hardening	of	the	material	in	question	

while	after	crack	growth	the	fracture	toughness	increases	with	decreasing	(more	

negative	βL5)	constraint	

`. in	the	transition	region:	as	constraint	decreases	the	transition	curve	shifts	towards	

lower	temperatures	

 Biaxiality in R6 

BS	_f]e	[_]]	and	Rg	[`]	use	the	same	underlying	method	to	account	for	constraint	effects,	

and	 consequently	 biaxiality.	 The	 integration	 of	 constraint	 in	 an	 assessment	 with	 Rg,	

follows	 the	 same	 steps	 as	 in	 BS	 _f]e.	 The	 former	 provides	 guidance	 on	 incorporating	

constraint	 in	 Section	 III._,	 where	 the	 calculation	 steps	 are	 described,	 while	 the	

compendium	 of	 β	 solutions	 and	 the	 reference	 stresses	 used	 for	 their	 calculation	 are	

included	 in	Section	 IV.c.	 It	 should	be	noted	 that	Rg	states	directly	 that	 “the	particular	

value	of	β	required	for	application	of	Section	III._	should	use	the	same	limit	load	as	that	

used	 in	 the	 determination	 of	 L5”	 [`].	 Additionally,	 it	 is	 advised	 in	 cases	 that	 no	 limit	

load/reference	 stress	 solution	 are	 provided	 for	 the	 calculation	 of	 the	 constraint	

development	(β)	for	a	particular	geometry,	one	of	the	available	β	solutions	of	Section	IV.c	
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should	be	calculated	with	the	use	of	its	respective	reference	stress	solution	and	scaled	with	

the	ratio	of	the	reference	stress	solution	used	to	calculate	β	to	the	reference	stress	solution	

(limit	load	in	Rg)	used	for	the	assessment	of	the	specific	geometry.	The	approach	described	

is	for	primary	loads	and	this	differs	slightly	in	BS_f]e	when	adding	the	contribution	from	

secondary	stresses.	

 Biaxiality and plastic collapse 

Even	 though	 biaxiality	 is	 an	 important	 factor	 in	 the	 fracture	 dominated	 zone,	 many	

structures,	 such	 as	 offshore	 pipelines	 carrying	 hot	 fluid	 under	 a	 combination	 of	 high	

internal	pressure	and	axial	strain,	experience	biaxial	loads	whilst	in	the	collapse	dominated	

area.	 Procedures	 deal	 with	 the	 effect	 of	 biaxiality	 mostly	 in	 the	 context	 of	 fracture	

toughness	variation	due	to	changes	in	constraint,	however,	do	not	explicitly	address	the	

effect	of	biaxial	loading	on	the	reference	stress/limit	load	solutions.	

Experimental	evidence	showing	biaxiality	effects	on	the	upper	shelf-collapse	dominated	

zone	are	available	in	the	literature	[_],	[i],	[]g].	The	data	strongly	suggests	a	connection	

between	differences	in	limit	load/strain	capacity/plasticity	flow	and	biaxiality.	

Researchers	have	put	effort	towards	producing	reference	stress/limit	load	solutions,	for	a	

variety	 of	 geometries	 and	 crack	 configurations,	 which	 incorporate	 biaxiality	 and	 its	

consequent	effects	on	the	load	bearing	capability	of	the	structure/component.	This	effect	

can	be	important	in	reducing	conservatism	in	high	plasticity	situations.	

Such	an	analyses	can	be	found	in	the	work	by	Meek	and	Ainsworth	[_a],	who	studied	the	

effects	 of	 biaxial	 loads	 on	 the	 limit	 load	 of	 a	 centre	 cracked	 plate	 under	 plane	 strain	

conditions.	 Using	 lower	 and	 upper	 bound	 solutions4,5,	 as	 well	 as	 FE	 analyses,	 they	

produced	limit	load	solutions	and	concluded	that	accurate	estimates	of	limit	load	enable	

accurate	estimates	of	J	under	biaxial	loading.	These	solutions	are	used	later	in	this	chapter	

for	assessing	fracture	test	data.	

In	 pursuit	 of	 evaluating	 the	 J-integral	 values	 on	 a	 surface	 cracked	 plate	 under	 biaxial	

loading,	Miura	 and	Takahashi	 [_c],	proposed	 the	use	of	 the	 “extended	 reference	 stress	

	
4	Lower	Bound	Limit	Load	solutions	are	generated	by	the	assumption	of	a	stress	distribution	which	
satisfies	equilibrium	
5	Upper	Bound	Limit	Load	solutions	are	generated	by	the	assumption	of	a	deformational	pattern	
which	equates	internal	and	external	work 
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method”.	Their	method	was	based	on	the	accurate	evaluation	of	the	reference	stress/limit	

load	of	a	geometry	under	uniaxial	loading	and	the	multiplication	of	the	uniaxial-load	with	

a	factor	which	connects	the	yielding	between	uniaxial	and	biaxial	loads	based	on	the	Von	

Mises	yielding	criterion	(a	hypothesis	defining	the	limit	of	elasticity	in	a	material	and	the	

onset	of	plastic	deformation).		

Using	the	Von	Mises	yielding	criterion,	Lei	and	Budden	[_g],	studied	how	the	combination	

of	 biaxial	 and	 cross-thickness	 bending	 affects	 the	 net	 collapse	 limit	 loads	 of	 surface	

cracked	 plates.	 Ignoring	 stress	 concentration	near	 the	 crack	 tip	 region,	 they	 studied	 a	

rectangular	 section	 including	 a	 rectangular	 crack.	 They	 provided	 different	 solutions	

according	to:	

• Stress	distribution:	two	distributions	were	studied,	the	first	had	the	maximum	-	

tensile	stress	perpendicular	to	the	crack,	being	applied	in	the	front	part	of	the	crack	

ligament	while	the	second	had	the	minimum	–	compressive	stress	at	the	front	part		

• Crack	 geometry:	 a	 crack	 located	 wholly	 in	 one	 stress	 zone	 was	 designated	 as	

“shallow	crack”	if	it	crosses	both	stress	zones	it	was	designated	as	a	“deep	crack”.	

Hence,	even	though	crack	depth	 in	this	study	won’t	affect	stress	concentration,	

which	is	not	considered,	it	still	is	an	important	factor	that	will	affect	the	position	

of	the	neutral	axis	and	the	choice	of	solution	

Relating	to	plates	with	surface	cracks	under	biaxial	loading,	the	work	of	Madia	et	al.	[__],	

focused	on	the	load	bearing	capacity	of	a	plate	with	a	semi	elliptical	crack.	The	capacity	

was	studied	in	terms	of	the	“reference	yield	stress”,	which	acts	as	a	limit	load,	translated	

to	stress	and	corresponds	to	an	LV	value	of	].		Reference	yield	stress	solutions	were	given	

for	 the	deepest	and	 the	near	 surface	points	of	 the	crack	and	 for	bending,	uniaxial	 and	

biaxial	 loads.	 In	 the	 case	 of	 the	 latter	 loading,	 solutions	 using	maximum	 principal	 or	

equivalent	(Von	Mises)	stress	were	generated.		

Additional	work	by	Lei	et	al.	[_i],	[_f]	focused	on	the	effect	of	the	combination	of	internal	

pressure,	 axial	 forces	 and	bending	moments	 on	 the	 limit	 loads	 of	 thick	 cylinders	with	

circumferential	flaws.	The	analysis	follows	the	same	principle	and	criteria	as	in	[_g],	with	

the	minor	differences	regarding	crack	face	contact.	Lei	et	al.	produce	different	solutions	

according	to	the	stress	distribution	and	the	positioning	of	the	crack	regarding	the	stress	

field.		
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 Summary  

The	preceding	sections	have	given	a	chronological	picture	of	how	biaxiality	was	accounted	

for	 in	 the	 failure	mode	 and	 fracture	 toughness	 values	 and	 how	 current	 FFS	 standards	

address	this.	Whilst	such	effects	were	initially	disregarded	under	the	assumption	of	linear	

elasticity,	that	changed	over	time	with	the	introduction	of	a	second	parameter	in	the	stress	

functions	calculating	the	crack	tip	fields,	that	addressed	non-linear	material	deformation.	

These	 parameters	 quantified	 the	 concept	 of	 constraint,	 the	 suppression	 of	 plasticity	

around	the	crack	tip,	imposed	by	different	temperature,	geometric	and	loading	conditions.		

Building	 on	 the	 two	 parameter	 fracture	mechanics,	multiple	methods	were	 developed	

attempting	to	predict	fracture	toughness	values	in	relation	to	constraint,	by	connecting	

the	 local	 crack	 behaviour	 to	 the	 macroscopically	 applied	 loads.	 Methods	 focusing	 on	

cleavage	 fracture	 firstly	 assumed	 that	 the	 material	 in	 front	 of	 the	 crack	 contains	 a	

distribution	of	possible	cleavage	 fracture	 initiation	sites,	 i.e.	cleavage	 initiators	and	the	

probability	of	 finding	a	triggering	microfeature	ahead	was	related	to	the	volume	of	the	

zone	 in	 front	of	 the	crack	where	the	stress	exceeded	a	 limiting	value.	Additionally,	 the	

fraction	of	the	volume	was	treated	as	statistically	independent	from	the	rest	and	the	overall	

probability	 of	 failure	 was	 defined	 as	 the	 aggregation	 of	 the	 probability	 of	 each	 of	 the	

volume	fractions	allowing	for	weakest	link	statistics.	Overall,	a	variety	of	statistical	and	

mathematical	tools	were	invoked	to	describe	the	probability	of	finding	a	micromechanical	

feature	capable	of	being	a	cleavage	 initiator,	 as	well	 as	 the	critical	 stress	needed	stress	

needed	to	initiate	crack.		

Most	 methods	 were	 calibrated	 against	 C(T)	 and	 three-point	 bend	 test	 datasets	 to	

quantify/predict	out	of	plane	and	shallow	flaw	effects	on	constraint.	Even	though,	these	

methods	showed	great	promise,	at	the	time	of	writing,	such	methods	have	not	yet	been	

applied	to	experimental	datasets	that	solely	focus	on	biaxiality.			

The	current	capability	of	the	ECA	procedures	is	quite	fundamental	and	requires	knowing	

the	sensitivity	of	fracture	toughness	with	constraint.	This	is	translated	in	a	need	for	a	wide	

variety	 of	 tests	 to	 be	 conducted.	 Another	 drawback	 is	 that	 the	 available	 structural	

parameter	β	(T-stress)	solutions	in	the	standards	refer	to	limited	geometries	and	loading	

conditions	and	in	the	case	of	biaxial	loading	they	do	not	differentiate	shallow	flaw	effects	

and	biaxiality.		
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Considering	 the	 above,	 it	 is	 important	 to	 create	 a	 consistent	 biaxiality	 centred	

experimental	 database	 on	 which	 failure	 prediction	 models	 could	 be	 applied.	 Such	 a	

database	that	decouples	shallow	flaw	effects	from	biaxiality	does	not	yet	exist	and	has	thus	

not	 been	 used	 by	 any	 of	 the	 models	 described	 here.	 Implementing	 failure	 prediction	

models	on	such	data	could	allow	biaxiality	to	be	included	separately	from	shallow	flaws	in	

ECAs	without	requiring	lots	of	experiments.		
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 Analysis of existing 
experiments  

 Introduction 

To	decide	on	the	focus	of	the	work,	this	chapter	studies	the	current,	at	the	time	of	writing,	

capabilities	 of	 the	 Fitness	 for	 Service	 standards	 (FFS)	 in	 assessing	 biaxiality.	 FFS	

Procedures,	like	BS	_f]e	[]]	and	Rg	[`]	are	built	upon	sound	fracture	mechanics	principles	

and	 engineering	 data,	 and	have	 been	 implemented	 by	 the	 engineering	 community	 for	

many	decades.	They	provide	guidance	on	conducting	Engineering	Critical	Assessments	

(ECAs)	 for	 purposes	 ranging	 from	 defect-tolerant	 design	 to	 life	 extension	 of	 safety-

sensitive	components.	

Firstly,	an	exercise,	where	ECAs	with	BS	_f]e	are	conducted	on	hundreds	of	fracture	tests	

including	wide	 plate	 and	 cylindrical	 geometries	with	 different	 levels	 of	 biaxiality.	 This	

exercise,	 is	 conducted	 to	 validate	 the	 safety	 and	 accuracy	 of	 the	 standards,	 providing	

advice	to	the	procedure	where	applicable	and	secondly	to	recognize	any	trend	between	

the	assessment	results	of	uniaxially	loaded	wide	plates	and	biaxially	loaded	pipes.		

Subsequently,	 the	 analyses	 conducted	 on	 specimens	 from	 an	 experimental	 program	

conducted	within	TWI	are	presented.	These	analyses	include	a	combination	of	FEA,	with	
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analytical	 solutions	 to	 check	 the	 usability	 and	 robustness	 of	 the	 standards’	 constraint	

specific	clauses.	The	biaxiality	ratios	in	these	analyses	vary	from	k=e	to	k=d.	

 Application of BS 7910 on historical data 

 Introduction 

The	aim	of	this	exercise	was,	firstly	to	update	cases	concerning	full	scale	tests	which	had	

been	 studied	 in	 the	 past	 with	 earlier	 versions	 of	 BS	 _f]e	 [ie]–[i`],	 and	 check	 the	

soundness	 of	 the	 latest,	 at	 the	 time,	 version	 [_]],	 as	 well	 as	 to	 investigate	 whether	

structures	that	experience	different	biaxial	loadings	could	reveal	a	trend	when	analysed	

with	the	basic	option	of	BS	_f]e	and	how	such	loading	conditions	should	be	incorporated	

in	the	analyses,	which	is	one	of	the	aspects	of	validation	not	hitherto	considered	in	any	

detail.		

The	 formulae	 used	 for	 the	 necessary	 calculations	 during	 an	 ECA	 can	 vary	 in	 terms	 of	

accuracy	between	different	procedures	and	especially	when	considering	the	wide	variety	

of	 applications	 that	 each	 of	 them	must	 cover.	 To	 ensure	 that	 the	 FFS	 procedures	 can	

provide	 acceptable	 results	 in	 all	 these	 different	 applications	 they	 need	 to	 be	 validated	

regularly.	 Validation	 is	 achieved	 by	 applying	 them	 in	 situations	 in	 which	 the	 failure	

conditions	 are	 known.	 For	 example,	 a	 large-scale	 test,	 in	 which	 the	 loading	 history,	

geometric	parameters	and	mechanical	properties,	are	known,	could	be	used.	Assessments	

of	such	tests	with	the	use	of	an	FFS	procedure	demonstrate	if	it	is	reliable	and	can	help	

trace	potential	inadequacies	or	room	for	improvement.	

Validation	 is	 therefore	 an	 important	 tool	 that	 is	 applied	 to	 standards	 to	 improve	 their	

existing	accuracy	and	to	safely	incorporate	new	additions	to	them,	e.g.	consideration	of	

the	effect	of	constraint	on	failure	[ia].	Validation	against	experimental	data	ensures	that	

standards	encapsulate	best	practice	that’s	calibrated	to	real	cases,	nevertheless	validation	

is	often	done	using	FEA	[ic],	[ig]	or	a	combination	of	FEA	and	experiments	[i_].		

Experimental	validation	work	for	FFS	standards	is	very	limited	in	the	public	domain.	Even	

though	updated	versions	of	standards	are	usually	followed	by	overview	papers	explaining	

the	newest	alterations	 [ii]–[f`],	widely	used	standards	 like	Rg	 [`]	 (Chapter	V).	 In	 the	

cases	where	information	is	included	in	other	sources	these	are	usually	in	bulletins/reports	

[ie],	[fa],	[fc]	and	not	in	the	public	domain.	
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To	 update	 the	 limited	 experimental	 validation	 data	 available	 in	 the	 public	 domain,	 to	

evaluate	the	accuracy	of	the	procedure	and	to	recognize	trends	in	regard	to	biaxiality,	a	

validation	exercise	of	BS	_f]e,	including	analysis	of	several	hundred	large-scale	fracture	

tests	from	the	literature,	has	been	conducted.		

The	exercise	was	initially	carried	out	with	the	use	of	the	de]`	version	of	the	standard	[_]],	

which	was	the	most	recent	at	the	time,	while	all	assessments	in	this	study	are	Option	]	

assessments,	as	explained	in	detail	in	Section	d.a.	

An	 important	 result	 of	 the	 analyses	with	de]`	 version	was	 to	 investigate	 an	 aspect	 for	

modification	for	the	newest	version	(de]f)	of	BS	_f]e	[]].	This	concerned	the	proximity	to	

plastic	collapse	 (Lr)	of	a	pipe	 (or	curved	shell)	 containing	an	axial	 flaw,	either	 surface-

breaking	 or	 through	 thickness.	 Namely,	 the	 reference	 stress	 solutions	 used	 for	 the	

calculation	of	 Lr	were	 found	 to	 be	 overconservative,	 due	 to	 a	multiplication	 factor.	As	

explained	in	[fg],	this	factor	provides	added	conservatism	thus	not	being	necessary	for	a	

safe	 assessment	 and	 has	 been	 omitted	 in	 the	 de]f	 version	 of	 BS	 _f]e	 []].	 Detailed	

assessments	with	and	without	this	factor	can	be	found	in	Appendix	]	of	the	report	that	

contains	all	original	assessments	[f_].	

This	exercise	focused	on	the	stress	based	assessment	of	full	scale	tests	on	plates	as	well	as	

pressure	vessels	and	pipelines	(cylinders/curved	shells),	some	of	which	have	been	studied	

in	the	past	with	earlier	versions	of	BS	_f]e	[ie]–[i`].	For	the	cases	that	have	been	assessed	

in	previous	work,	all	original	 sources	mentioned	were	assessed	directly	and	 reanalysed	

when	possible,	while	where	the	original	reports	were	not	available	the	data	was	selected	

from	previous	validation	work	[id],	[i`],	[fi].	

In	pursuit	of	conciseness	an	overview	of	the	work	conducted	is	presented	in	this	chapter,	

whilst	 the	Appendix	 ]	of	 the	TWI	member	 report	 [f_]	with	all	 the	detailed	analyses	 is	

available	upon	request	in	case	the	reader	required	further	details.		

 Background to analyses 

The	geometries	studied	in	this	exercise	were	wide	plates	and	closed	cylinders/pipes,	the	

latter	experiencing	different	loadings	(tensile,	pressure,	bending)	and	thus	biaxiality	ratios	

ranging	from	k=e	to	k=d.	Table	`.]	includes	the	subclauses	of	the	annexes	the	reference	

stress	and	stress	intensity	factor	solutions	were	obtained	from,	while		further	information	

concerning	the	origin	of	the	solutions	can	be	found	in	[ff].	In	Table	`.]	“closed	cylinders”	
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refers	to	the	geometry	of	pipes/closed	cylinders	(i.e.	cylindrical	pressure	vessels),	while	

curved	shells	to	flat	plates	with	curvature.	It	should	be	noted	that	several	of	the	tested	

pipes	had	geometrical	features	which	exceeded	the	validity	margins	of	the	stress	intensity	

factor	solutions	for	closed	cylinders	and	were	assessed	as	curved	shells.	

	

Table 3.1: Reference stress and Stress intensity factor solutions used for the assessments. 

Component	
Geometry	 Flaw	Geometry	

Reference	
Stress	

Solution	

Stress	Intensity	
Factor	solution	

Wide	Plate	
Surface	Cracked	Tension	(SCT)	 P.c.]	 M.a.]	
Centre	Cracked	Tension	(CCT)	 P.a.]	 M.`.]		

Extended	Surface	Crack	Tension	(ESCT)	 P.c.d	 M.a.`	

Closed	Cylinder	
Axial	Flaws	 External	Surface	(AES)	 P.i.a	 M._.d.a	

Through	Thickness	(ATT)	 P.i.]	 M._.d.]	
Circumferential	

Flaws	
External	Surface	(CES)	 P.f.a	 M._.`.a	

Through	Thickness	(CTT)	 P.f.]	 M._.`.]	

Curved	Shell	
Axial	Flaws	 Internal	Surface	(AIS)	 P.i.d	 M.g	

External	Surface	(AES)	 P.i.a	 M.g	
Circumferential	

Flaws	 Internal	Surface	(CIS)	 P.f.d	 M.g	

	

Concerning	 the	 reference	 stress	 solutions	 used	 for	 the	 assessment	 of	 axially	 flawed	

cylinders	or	curved	shells	(Clause	P.i.],	P.i.d,	P.i.a),	the	de]`	version	of	BS	_f]e	included	

a	multiplication	factor	of	].d	on	the	membrane	stresses.	As	explained	in	[fg],	this	factor	is	

empirical	and	was	most	likely	transferred	as	a	measure	of	consistency	from	plate	solutions	

where	it	was	initially	used.	It	provides	added	conservatism	thus	not	being	necessary	for	a	

safe	 assessment	 and	 is	 omitted	 in	 the	de]f	 version	 and	here	 from	 the	 reference	 stress	

solutions	implemented	in	the	analyses	of	axially	flawed	cylindrical	geometries.	Detailed	

assessments	with	and	without	this	factor	can	be	found	in	[f_].	

Regarding	tensile	properties	they	were	in	many	cases	given	at	room	temperature	rather	

than	 the	 temperatures	 at	 which	 the	 specimens	 were	 tested.	 BS	 _f]e	 (Clause	 _.].`.a)	

provided	guidance	for	the	estimation	of	the	properties	at	the	correct	temperatures	and	

was	used	as	follows.	

• For	 tests	 conducted	 above	 room	 temperature	 the	 yield	 stress	 de-rating	 graph	

shown	in	Figure	̀ .]	combined	with	the	yield	stress	to	ultimate	tensile	strength	ratio	

were	used	to	calculate	the	corresponding	properties.	This	is	considered	as	a	safe	
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assumption	 in	 high	 temperatures	 given	 the	materials	 in	 this	 study	 it	 does	 not	

however	fully	mirror	reality	

• For	tests	conducted	below	room	temperature	the	yield	stress	and	ultimate	tensile	

strength	were	translated	from	the	room	temperature	properties	using	Equation	`.]	

and	Equation	`.d	respectively		

	

Figure 3.1: Yield Stress De-rating for C-Mn Steels. Adapted from [1, Fig. 7.10] 

𝜎&	(.z{]	]z|szV}]bVz) = 𝜎&	(	V��|	]z|szV}]bVz) +
10�

(491 + 1.8T)
− 189 Equation 3.1 

𝜎y.l	(.z{]	.z|szV}]bVz) = 𝜎y.l	(V��|	]z|szV}]bVz) × ½0.7857 + 0.2423𝑒𝑥𝑝 ¸−
T

170.646¹
Á Equation 3.2 

Where	 T	 was	 the	 temperature	 (in	 ˚C)	 at	 which	 the	 properties	 were	 calculated.	 This	

guidance	is	of	empirical	nature	and	supporting	evidence	for	its	origin	and	validity	are	given	

in	[_e].	

Some	of	the	original	reports	of	the	axially	flawed	pipes	provided	Charpy	impact	test	values	

rather	than	valid	fracture	toughness	measurements.	A	conservative	estimate	of	𝐾|}]	can	

be	calculated	from	Charpy	measurements	with	the	use	of	Annex	J,	where	equations	based	

on	the	empirical	correlation	of	the	two	are	given.	The	equations	used	from	the	annex	in	

this	study	are	given	here	as	Equation	`.`	and	Equation	`.a,	while	background	for	these	can	

be	found	in	[_e]	and	[]ee].	The	latter	was	used	for	low	sulphur	steels	on	the	upper	shelf	

and	provided	 a	 fracture	 toughness	 estimate	 at	e.dmm	of	 ductile	 crack	 extension,	 thus	

calculating	𝐾|}]U.!.		

𝐾|}] = 0.54𝐶� + 55	 Equation 3.3 
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𝐾|}]U.! = 𝐾�U.! = Ù𝐸(0.53𝐶�b{
".!�)I0.2U."77�#$%".'()K

1000(1 − 𝑣!)
 Equation 3.4 

Where	𝐶�	was	 the	 lower	bound	Charpy	V-notch	 impact	 energy	 at	 the	 temperature	 for	

which	𝐾|}]	was	calculated,	𝐶�b{	was	the	upper	shelf	energy.		

In	the	cases	where	residual	stresses	were	included,	these	were	treated	according	to	the	

guidance	of	BS_f]e	(Clause	_.].]e).	In	five	analyses,	where	there	were	enough	information	

available,	non-uniform	residual	stress	profiles	were	included	with	the	use	of	the	annex	that	

provided	guidance	on	residual	stress	profiles	for	assessing	flaws	in	as-welded	joints	(Annex	

Q).	The	rest	of	the	welded	specimens	were	studied	assuming	a	uniform	stress	profile.	For	

the	as-welded	specimens,	the	residual	stresses	were	calculated	with	Equation	`.c,	while	

for	 the	 post-weld	 heat-treated	 (PWHT)	 they	 were	 estimated	 with	 respect	 to	 flaw	

orientation	and	heat	treatment	parameters	from	Clause	_.].]e.`,	which	dealt	with	residual	

stresses	of	PWHT	structures.	Further	explanation	of	the	guidance	the	standard	provided	

on	residual	stresses	can	be	found	in	[]e]].	

𝑄| = 𝑚𝑖𝑛 �𝜎�1 , ½1.4 −
𝜎Vzr
𝜎r1

Á𝜎�1 � Equation 3.5 

 

Where	𝑄|	was	 the	membrane	residual	stress,	𝜎�1 	and	𝜎r1	were	 the	yield	stress	and	 flow	

strength	of	the	parent	material	respectively	and	𝜎Vzr	was	the	calculated	reference	stress.		

The	current	exercise	validated	all	the	above	parameters	that	were	calculated	during	ECA	

as	well	as	their	synergy	with	each	other.	It	 is	worth	noting	that	this	exercise	shows	the	

validity	of	the	procedure	and	builds	confidence	in	using	it,	however,	it	is	expected	that	the	

conservative	estimation	of	many	of	the	parameters	(e.g.	Charpy	fracture	toughness)	can	

dominate	 the	 outcome.	More	 detailed	 and	 accurate	 assessments	 would	 require	 better	

material	characterization	testing	and	fracture	testing,	which	is	not	available	for	the	steels	

studied	here	and	did	not	allow	for	Option	d/`	assessments	to	be	made.		

 Tests analysed 

The	assessments	in	this	study	have	been	conducted	on	wide	plates	and	closed	cylinders	

from	a	variety	of	steels.	All	the	wide	plates	were	loaded	in	tension.	The	cylinders	were	in	

most	cases	closed	with	end	caps	and	loaded	under	internal	pressure,	while	in	other	cases	
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had	tensile	or	bending	loads	applied.	The	flaw	geometries	included	in	the	study	consist	of	

surface	breaking	 flaws	and	 through	 thickness	 flaws.	A	schematic	of	 the	wide	plate	 test	

geometries	can	be	found	in	Figure	`.d,	while	the	cylinder	flaw	geometries	are	shown	in	

Figure	`.`.	

Wide	 plates	 and	 cylinders	 under	 tension	 were	 considered	 uniaxially	 loaded	 with	 a	

biaxiality	ratio	of	k=e.	Cylindrical	geometries	with	circumferential	flaws	and	axial	flaws	

loaded	only	with	pressure	had	biaxiality	ratios	of	k=d	and	k=e.c	accordingly,	while	when	

bending	was	also	applied	with	pressure	k	was	between	e	and	e.c.		

Each	test	analysed	has	been	given	an	ID	which	is	in	line	with	the	overall	validation	exercise	

conducted	within	TWI.		A	summary	of	the	tests	analysed	and	their	respective	IDs,	is	shown	

in	Table	̀ .d,	where	the	tests	have	been	categorized	by	specimen	geometry	and	source	from	

which	their	data	was	gathered.	The	test	data	was	collected	from	the	original	reports,	where	

possible,	while	for	some	cases	for	which	the	reports	could	not	be	retrieved,	it	was	taken	as	

reported	in	previous	validation	work	[`],[a],[fi].			

	

	 	 	

(a) Surface Crack Tension 
(SCT) 

(b) Centre Crack Tension 
(CCT) 

(c) Extended Surface Crack Tension 
(ESCT) 

Figure 3.2: Wide Plate Tests Geometry 

Overall,	 there	 were	 d]d	 tests	 included	 in	 the	 analyses.	 Thirty-seven	 (`_)	 of	 the	 tests	

concerned	wide	plates	while	the	rest	of	the	specimens	(]_c)	were	of	cylindrical	geometry.		

In	some	cases,	the	geometry	of	the	pipe	laid	outside	the	geometrical	limits	of	𝐾	solutions	

for	 cylinders,	 given	 in	 BS	_f]e.	 These	 limits	 concern	 either	 the	 component	 or	 flaw	

dimensions	and	margins	vary	according	to	flaw	orientation.	In	these	cases,	curved	shell	

solutions	were	used	instead.		For	each	flaw	geometry	and	respective	cylinder	equation,	the	
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limiting	validity	parameters	and	the	specimens	which	did	not	comply	with	the	margins	

along	with	the	parameter	value	of	these	specimens	are	shown	in	Table	`.`,	where	B	and	ri	

refer	to	the	thickness	and	the	internal	radius	of	the	specimens	respectively.	Oriented	per	

ID	and	 reference,	Table	 `.a	 includes	 the	 cylindrical	 specimens	which	were	 assessed	 as	

curved	shells.		

It	should	be	noted	that,	out	of	the	`_	wide	plate	tests	analysed,	]d	did	not	reach	failure	

during	testing	and	one	was	not	certain	to	have	failed,	however	they	have	been	included	in	

the	analyses.		

Further	 details	 about	 each	 set	 of	 tests	 examined	 including,	 their	 material,	 geometric	

properties	and	loading	conditions,	as	well	as	the	interpretation	and	implementation	of	this	

data	is	given	in	the	member	report	[f_]	where	all	the	original	assessments	are	included.	It	

is	pointed	out	that	the	original	report	includes	data	that	would	have	been	more	properly	

analysed	with	the	newest	addition	of	Annex	V	of	the	standard	that	includes	a	strain-based	

assessment	technique.	Given	that	 this	exercise	was	 initially	done	with	the	de]`	version	

that	 data	 has	 been	 filtered	 out	 here.	 This	 filtering	 has	 excluded	 all	 specimens	 whose	

applied	stress	to	yield	stress	ratio	was	higher	than	].].	

	 	

(a) Axial Through Thickness (d) Circumferential Through 
Thickness 

	 	

(b) Axial Internal Surface (e) Circumferential Internal Surface 



	

g_	

	 	

(c) Axial External Surface (f) Circumferential External 
Surface 

Figure 3.3: Flaw geometries for cylindrical specimens 

Table 3.2: Tests analysed 

Specimen	
Geometry	 Reference	 ID	 Flaw	Geometry	

No.	of	
Specimens	
Analysed	

W
ide	Plate 	

[]ed]	 `ed-`eg	
SCT	 ]	
CCT	 d	
ESCT	 d	

[]e`]–
[]eg]		

_ed-_]g	 SCT	 g	

[]e_]	 dce_-
dcai	 SCT	 da	

C
losed	C

ylinder 	

[]ei]–[]]e]	 _d]-_di	 Axial-External	Surface	 i	

[i`]	 ]ee]-
]ee`	 Axial-External	Surface	 `	

[i`]	 ]]e]-]]e_	
Axial-External	Surface	 `	
Axial-Internal	Surface	 d	

Axial-Through	thickness	 ]	
[]]]]	 ]de]-]d]d	 Axial-Through	thickness	 ]d	

[]]d]	 ]ce]-
]ce`	 Axial-External	Surface	 `	

[]]`]	 ]ge]-
]gea	 Axial-External	Surface	 a	

[]ed]	 d]e]-
d]ed	

Axial-External	Surface	 ]	
Axial-Through	thickness	 ]	

[""#]	

d]e`-
d]]a	

Axial-External	Surface	 _	
Axial-Internal	Surface	 ]	

Axial-Through	thickness	 a	

d]]g-
d]``	

Circumferential-External	Surface	 g	
Circumferential-Internal	Surface	 ]	

Circumferential-Through	
Thickness	 `	

[]]c]		

dde]-
ddfd	
d`e]-
d`ac	

Axial-Through	thickness	 ii	

Axial-External	Surface	 ``	
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Table 3.3: Validity limiting parameters of BS 7910 solutions for cylindrical geometries, 
specimens which exceed them and their parameter values 

Flaw	geometry	 Cylinder	
Equation	 Limiting	parameter	 Parameter	value	

Specimens	
exceeding	

limits	

Axial-External	Surface	 M._.d.a	
e.]≤B/ri≤e.dc	 e.ed-e.ei	

_dd-_di,	]ce]-
]ce`,	]ge]-]gea,	
d]e],	d`e]-d`ac	

a/B≤e.i	 e.ie-e.i]	 d]eg,	d]]d,	d]]a	
e.ec≤a/c≤]	 ≈e.eai	 d]e_,	d]ei,	d]]e	

Axial-Internal	Surface	 M._.d.d	 a/B≤e.i	 e.i]	 d]ef	
Circumferential-
Internal	Surface	 M._.`.d	 e.]≤a/c≤]	 e.ec	 d]dc	

	

Table 3.4: Cylinders assessed as Curved Shells 

ID	 Reference	 Flaw	Geometry	 Specimens	
Analysed	

_dd-_di	 []ei]–[]]e]	 Axial-External	Surface	 _	
]ce]-]ce`	 []]d]	 Axial-External	Surface	 `	
]ge]-]gea	 []]`]	 Axial-External	Surface	 a	
d`e]-d`ac	 []]c]	 Axial-External	Surface	 ``	

d]e]	 []ed]	 Axial-External	Surface	 ]	
d]eg-d]ei,	d]]e,	

d]]d,	d]]a	
[]]a]	

Axial-External	Surface	 g	

d]ef	 Axial-Internal	Surface	 ]	
d]dc	 Circumferential-Internal	Surface	 ]	

	

 Results  

The	following	sections	contain	the	results	from	all	d]d	analyses.	They	are	divided	in	two	

categories	 according	 to	 the	 component	 geometry,	 i.e.	 wide	 plates	 and	 cylinders.	 Each	

category	 includes	 `_	 and	 ]_c	 specimens	 analysed,	 respectively.	 	 The	 assessments	were	

made	with	a	single	value	of	fracture	toughness	or	with	the	use	of	a	tearing	resistance	curve	

(R-curve),	depending	on	the	available	data.		

Each	different	material,	and	each	test	 temperature,	correspond	to	a	different	set	of	𝜎&,	

𝜎y.l	values.	Given	that	an	FAL	corresponds	to	a	specific	set	of	𝜎&,	𝜎y.l	values,	this	would	
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result	in	a	high	number	of	FALs	and	FADs.		In	pursuit	of	brevity,	the	FADs	presented	in	

this	section	include	two	curves	which	correspond	to	the	upper	and	lower	limit	of	all	the	

FALs	of	the	specimens	included	in	the	graph.		These	were	calculated	by	extracting	from	

all	 the	 FALs,	 at	 each	 value	 of	 Lr,	 the	 maximum	 and	 minimum	 value	 of	 Kr	 that	 was	

calculated.	There	was	no	distinction	between	continuous	and	discontinuous	yielding	in	

these	 graphs	 since	 the	 main	 aim	 was	 to	 show	 that	 the	 assessment	 points	 of	 failed	

specimens	lied	outside	the	safe	zone	of	the	FALs.		

Following	the	assessment	results	is	the	comparison	of	modelling	error	for	different	levels	

of	biaxiality	as	that	was	calculated	for	the	different	tests.	Modelling	error	calculations	were	

conducted	with	the	use	of	each	specimen’s	FAL.		

Detailed	reporting	of	the	results	of	the	analyses,	the	calculated	values	for	the	assessments	

and	separate	FADs	for	each	set	of	tests	can	be	found	in	[f_].	

 Wide Plates 

The	results	of	the	wide	plate	assessments	are	shown	in	Figure	`.a,	where	the	blue	and	red	

markers	 refer	 to	 specimens	 which	 had	 surface	 flaws	 and	 through	 thickness	 flaws,	

respectively.	The	wide	plates	came	from	a	variety	of	experimental	programs	and	steels,	

while	as	explained	previously	some	of	the	specimens	included	in	the	analyses,	were	either	

reported	to	not	have	reached	failure	or	it	was	not	clear	whether	the	last	values	recorded	

during	 testing	 corresponded	 to	 failure,	 these	 were	 given	 as	 “unfailed	 specimens”	 and	

“uncertain	failure”	respectively.		

In	Figure	`.a,	all	 the	assessment	points	 lied	outside	the	minimum	Option	]	FAL,	while	

specimens	which	didn’t	fail	during	testing	showed	a	clear	trend	of	being	closer	to	the	safe	

zone.	These	was	a	single	specimen	(ID:dc]i),	that	has	been	annotated	and	circled	in	Figure	

`.a,	which	 lied	 inside	the	maximum	FAL.	To	address	any	 initial	concern	regarding	this	

specimen,	 Figure	 `.c	 gives	 the	 FAD	 containing	 the	 FAL	 that	 derives	 from	 the	 tensile	

properties	of	the	material	of	dc]i	at	the	respective	test	temperature.	Figure	`.c	shows	that	

it	was	assessed	safely	with	the	specimen	lying	outside	the	FAL	in	the	unsafe	zone.	
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Figure 3.4: FAD of wide plate test data 

	

	

Figure 3.5: FAD of specimen 2518 
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 Cylinders 

3.2.4.2.1  Axially flawed 

The	assessment	of	all	the	axially	flawed	components	has	been	conducted	with	the	use	of	

the	 reference	 stress	 equations	 of	 the	 de]f	 version	 of	 the	 standard	 []].	 A	 comparison	

between	the	results	using	the	equations	from	the	de]`	and	de]f	revisions	of	BS	_f]e	is	

given	 here	 in	 Figure	 `.g,	 showing	 the	 decrease	 of	 conservatism	 between	 the	 different	

solutions,	with	the	de]f	assessment	points	shifting	closer	to	the	FAL	but	remaining	on	the	

“unacceptable/unsafe”	 zone	of	 the	FAD.	The	decrease	 in	 conservatism	comes	 from	 the	

decrease	of	the	calculated	Lr	by	approximately	de%,	while	the	exact	difference	varies	with	

the	different	values	of	Kr.	This	comparison	can	be	seen	in	more	detail	in	[fg],	[f_].		

Figure	`._	includes	the	results	of	this	set	of	assessments	conducted	with	the	de]f	version	

of	 the	 standard.	 There,	 the	 blue	 and	 red	 points	 correspond	 to	 surface	 breaking	 and	

through	 thickness	 flawed	 specimens,	 respectively.	 Additionally,	 the	 open	 and	 closed	

points,	denoted	as	“Charpy”	and	“Kmat”	indicate	whether	fracture	toughness	values	came	

from	 the	 use	 of	 Charpy	 measurements	 or	 fracture	 toughness	 testing,	 respectively.	

Following	 the	 conservatism	 in	 the	 formula	 used	 to	 calculate	 fracture	 toughness	 from	

Charpy	measurements,	 it	 is	 observed	 in	 Figure	 `._	 	 that	 the	majority	 of	Charpy	 based	

fracture	toughness	assessments	lie	further	out	from	the	FAL,	in	comparison	to	those	based	

on	fracture	toughness	testing.	

In	Figure	`._	there	is	a	single	(circled)	point	lying	in	between	the	minimum	and	maximum	

of	the	FALs,	which	corresponds	to	specimen	]ged.	This	point	together	with	the	single	R	

curve,	 of	 specimen	 d]]`,	 lying	 very	 close	 to	 the	 FAL	 are	 given	 in	 Figure	 `.i	 a	 and	 b	

respectively.	 	Figure	`.i	shows	the	assessment	of	the	two	specimens,	i.e.	]ged	and	d]]`,	

made	using	their	respective	tensile	properties,	where	the	assessment	point/line	lie	outside	

both	 continuous	 and	 discontinuous	 yielding	 FALs.	 All	 of	 the	 above	 rendered	 the	

assessment	 procedure	 with	 the	 updated	 equations/reference	 stress	 solutions	 for	

pipes/curved	shells,	included	in	the	de]f	version	of	the	standard,	safe.		

Using	curved	shell	SIF	for	cylinders,	that	lay	outside	the	geometrical	limits	of	the	latter’s	

𝐾	solutions	is	also	supported	in	[ff].	It	appears	from	the	results	presented	here	that	this	

action	 gave	 safe	 results	 without	 any	 trend	 of	 added	 conservatism.	 This	 could	 be	 an	

incentive	to	further	research	whether	the	limitations	of	the	cylindrical	geometry	equations	
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could	be	relaxed	and	still	give	safe	results,	however	this	would	require	a	further	parametric	

numerical	and	experimental	study.	

	
Figure 3.6: Comparison between BS7910 2013 and BS7910 2019 in assessing axially 

flawed cylinders 

	

Figure 3.7: FAD of axially flawed cylinders (assessed with BS 7910 2019 version) 
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Figure 3.8: FAD of specimen a)1602, b)2113 

3.2.4.2.2 Circumferentially flawed 

The	assessment	results	of	the	circumferentially	flawed	cylinders	are	shown	in	Figure	`.f,	

where	again	the	blue	and	red	coloured	 loci	of	points	correspond	to	surface	 flawed	and	

through	 thickness	 flawed	 specimens,	 respectively.	Here	all	 the	assessments	were	made	

using	tearing	resistance	curve	data,	which	resulted	in	a	locus	of	assessment	points	in	the	

form	 of	 a	 line,	 as	 explained	 in	 Section	 d.a.	 Again,	 all	 the	 assessment	 points/lines	 lied	

outside	the	FALs.	

	

Figure 3.9:  FAD of circumferentially flawed cylinders 

a) b)
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 Biaxiality-modelling error 

At	this	part	of	the	exercise	the	modelling	error	throughout	different	biaxiality	ratios	was	

calculated,	as	explained	in	Section	d.a	and	graphically	presented	in	Figure	d.f.		

It	was	expected	that	there	would	have	been	a	consistent	trend	between	error	and	biaxiality,	

which	 would	 in	 its	 turn	 allow	 for	 an	 investigation	 of	 the	 source	 of	 the	 error	 and	 the	

potential	of	using	historical	data	to	better	calibrate	the	existing	equations.		

The	experimental	dataset	was	originally	filtered	so	that	comparisons	could	be	made	only	

between	the	same	material,	given	the	material	dependency	of	plasticity	constraint.	This	

significantly	reduced	the	amount	of	available	data	for	comparison	since	multiple	of	the	

original	 sources	 focused	 on	 a	 single	 geometry	 with	 different	 flaw	 sizes,	 or	 different	

materials	with	a	specific	geometry	and	flaw	size.	The	dataset	now	included	`g	tests	whose	

ID,	material	 and	biaxiality	 ratios	 are	 shown	 in	Table	 `.c.	 The	dataset	 comprised	 three	

different	materials	whose	biaxiality	versus	modelling	error	are	given	in	Figure	`.]e.		

There	is	a	lot	of	inherent	scatter	for	all	three	materials.	This	is	explained	to	a	certain	degree	

from	the	nature	of	fracture	testing	which	includes	scatter	as	well	as	the	pooling	of	different	

flaw	orientations	(e.g.	surface	and	through	thickness)	together.	More	importantly	though	

this	 is	 due	 to	 the	 nature	 of	 the	 failure	 itself	 varying.	Here	 comparisons	 have	 included	

specimens	which	failed	with	considerably	more	plasticity	and/or	stable	crack	propagation	

as	well	as	tests	where	there	was	cleavage/brittle	fracture.	This	affected	the	modelling	error	

significantly	as	the	closer	the	failure	is	to	plastic	collapse	the	more	prominent	the	role	of	

the	reference	stress	solutions	and	thus	Lr	 is.	The	opposite	happens	for	brittle	fractures,	

where	 the	 stress	 intensity	 factor	 solutions	 and	 Kr	 play	 a	 more	 important	 role	 on	 the	

modelling	 error.	 Overall,	 the	 error	 calculated	 for	 deMnMoNi	 cc	 and	 NiMoCr-Melt	 is	

widely	 scattered	 with	 values	 ranging	 from	 d	 to	 g,	 thus	 rendering	 the	 data	 for	 these	

materials	not	trustworthy	to	capture	biaxiality	effects.	

For	 the	API	cL	Xcg	steel,	 further	 filtering	could	be	applied	 to	distinguish	between	 the	

assessment	points	that	lied	in	the	collapse	and	the	fracture	dominated	region,	however	

this	would	allow	for	a	maximum	of	a	points	of	the	dataset	to	be	plotted.	This	number	of	

points	would	be	significantly	low	for	any	conclusion	to	be	drawn.		
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Table 3.5: Biaxiality and modelling error dataset 

ID	 Ref.	 Material	 Specimen	

Geometry	
Loading	 Biaxiality	ratio	k	 Modelling	

Error	

IJJ	 [KLM],	

[KKN]	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	

JL
	M

nM
oN

i	Q
Q	

Closed	Cylinder	

Internal	Pressure	

L.Q	 K.TK	
JKLU	 L.Q	 U.KM	
JKLN	 L.Q	 N.KT	
JKLQ	 L.Q	 N.LI	
JKLT	 L.Q	 Q.KN	
JKLI	 L.Q	 T.QT	
JKLM	 L.Q	 Q.NL	
JKLV	 L.Q	 N.TJ	
JKKL	 L.Q	 Q.MV	
JKKT	 J	 J.KN	
JKKV	 Bending	 L	 J.VQ	
JKJL	 L	 U.TK	
JKJK	

Internal	Pressure	+	

Bending	

L.JK	 U.IU	
JKJJ	 L.KN	 J.KQ	
JKJU	 L.JU	 J.MI	
JKJN	 L.KQ	 J.LT	
JKJQ	 L.KI	 J.KV	
JKJT	 L.JK	 J.LJ	
JKJI	 L.JU	 K.VI	
ULK	 [MJ],	

[KLJ],	

[KKT]	

	

	

	
	

A
PI
	Q
L	
X
QT

	

Wide	Plate	 Tension	

L	 K.KL	
ULJ	 L	 K.UK	
ULU	 L	 K.UT	
ULN	 L	 K.ML	
ULQ	 L	 K.KT	
ULT	 L	 K.UK	
JKLK	 Closed	Cylinder	 Internal	Pressure	 L.Q	 K.UN	
JKLJ	 L.Q	 K.UM	
JKKK	 [KKT]	

	

	

	

	

	

	

	

	
	

N
iM

oC
r-
M
el
t	

Closed	Cylinder	

Internal	Pressure	
L.Q	 T.JQ	

JKKJ	 L.Q	 N.QU	
JKKU	 L.Q	 K.QL	
JKKN	 L.Q	 Q.IU	
JKKI	 J	 J.NI	
JKJV	

Internal	Pressure	+	

Bending	

L.UU	 N.VU	
JKUL	 L.JJ	 J.UL	
JKUK	 L.KI	 J.UN	
JKUJ	 L.JV	 K.MI	
JKUU	 L.UK	 K.VL	
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a)	deMnMoNicc	 b)	NiMoCr-Melt	

	
c)	API	cL	Xcg	

Figure 3.10: Modelling error at different levels of biaxiality for tests on a) 20MnMoNi55 
b) NiMoCr - Melt and c) API 5L X56 steels 

 Summary 

From	the	results	presented,	BS	_f]e	and	in	particular	its	most	conservative	procedure,	i.e.	

Option	],	can	safely,	albeit	conservatively,	estimate	the	fitness	for	service	of	a	component	

and	 can	predict	 failure.	The	 level	 of	 this	 conservatism	 is	 something	 that	might	not	be	

desired	 but	 is	 necessary	 for	 the	 procedure	 to	 be	 used	 in	 a	 fast	 manner,	 and	

multifunctionality	of	the	procedure	is	mirrored	in	the	high	variation,	between	cases,	of	

distance	between	the	assessment	point	and	the	FAL.		
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It	 is	 important	 for	 procedures	 to	 be	 validated	 against	 experimental	 data,	 so	 they	 are	

calibrated	against	real	cases.	A	characteristic	example	of	the	benefits	of	validating	can	be	

noted	in	this	exercise.	That	was	the	pattern	of	unnecessary	conservatism	that	had	been	

observed	on	the	reference	stress	solutions	concerning	cylinders/curved	shells	with	axial	

through	 thickness,	 internal/external	 flaws.	 This	 regarded	 a	multiplication	 factor	 of	 ].d	

which	was	included	in	the	previous	version	of	the	standard		[_]]	and	has	been	amended	to	

]	 in	the	latest	one	[]],	 leading	to	a	decrease	of	the	calculated	Lr	by	approximately	de%,	

while	the	exact	difference	in	conservatism	values	varied	with	the	different	values	of	Kr.		In	

this	study	the	latest	version	of	the	reference	stress	solutions	has	been	used,	i.e.	the	factor	

has	been	].	Further	explanation	of	the	history	of	this	factor	and	the	respective	solutions	

included	in	other	standards	can	be	found	in	[fg],	while	comparative	results	including	both	

factors	can	be	found	in		[fg],	[f_].	

Regarding	 the	 trend	of	modelling	error	with	varying	biaxiality	 ratios,	 the	experimental	

database	 studied	 was	 not	 found	 to	 be	 consistent	 enough	 to	 be	 able	 to	 capture	 the	

phenomenon.	 Different	 sources	 included	 combinations	 of	 failure	 modes	 (collapse	 vs	

fracture),	materials,	testing	temperatures	and	flaw	geometries	(surface,	internal/external	

flaws)	leaving	very	limited	instances	for	comparison	after	careful	filtering	of	the	data.	This	

together	with	the	inherent	scatter	of	testing	itself	did	not	make	for	a	trustworthy	basis	on	

which	a	conclusion	could	be	drawn.	Nevertheless,	this	proved	the	importance	of	analysing	

a	consistent	database	with	specific	biaxiality	related	oriented	experiments,	included	in	the	

following	section.	

One	of	the	most	important	tasks	accomplished	here	was	re-gathering	the	experimental	

data.	The	data	used	here	had	been	tracked	back	to	the	original	reports	in	most	cases.	As	

expected,	some	reports	were	either	unavailable	or	did	not	provide	all	the	data	needed,	and	

data	from	earlier	validation	work	was	used	and/or	assumptions	were	accordingly	made.	

Given	 the	 limited	 availability	 of	 such	 studies	 in	 the	 public	 domain	 an	 experimental	

database	 like	 the	 one	 constituted	 here	 is	 of	 very	 high	 value	 since	 it	 can	 be	 used	 for	

validation	of	future	versions	of	both	existing	FFS	standards	and	their	constituents	as	well	

as	new	additions	to	them.	
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 TWI biaxial experiments 

 Introduction 

In	pursuit	of	better	understanding	and	more	accurately	assessing	the	effects	that	biaxial	

loading	 has	 on	 the	 integrity	 of	 a	 structural	 component,	 biaxial	 and	 uniaxial	 tests	

conducted	previously	in	TWI	[i]	are	analysed.	This	test	database	is	much	more	suitable	to	

capture	the	current	capabilities	of	FFS	on	biaxiality,	in	comparison	to	the	historical	data	

analysed	before,	given	the	tests	are	conducted	on	a	single	material,	are	high	in	number,		

include	 both	 surface	 breaking	 and	 through	 thickness	 flaws	 and	 have	 been	 tested	

throughout	a	spectrum	of	temperatures,	biaxiality	ratios	and	thicknesses.	[]]_]	

 Tests analysed 

Overall,	de	 large	scale	 tests	 including	uniaxial	and	biaxial	 loading	had	been	previously	

conducted	on	Ac``B	pressure	vessel	steel	plates	by	TWI.	From	these	tests,	six	that	failed	

in	the	fracture	dominated	region	of	the	FAD	are	analysed	here.	Two	of	these	tests	have	

surface	breaking	and	the	remaining	four	have	through	thickness	cracks.	

The	geometry	of	the	biaxially	loaded	plates	was	that	of	a	cruciform	specimen,	while	the	

geometry	of	the	uniaxially	loaded	was	similar	with	the	two	loading	legs	of	the	specimen	

removed;	a	schematic	of	the	specimens	is	shown	in	Figure	`.]].	

The	tests’	numbering	from	the	original	reports	[]]i]–[]d]]	and	the	one	used	in	previous	

analyses	and	here	[fa],	[]]_]	are	shown	in	Table	`.g,	along	with	the	thickness,	crack	size	

values	of	each	specimen,	test	temperatures,	biaxiality	ratios	and	failure	loads.		

The	two	tests	with	surface	breaking	flaws,	were	originally	numbered	as	Me]-`e,	Me]-ae	

[]d]]	 and	 are	 here	 referred	 to	 as	 #]c	 and	 #]g	 accordingly.	 These	 were	 conducted	 at	

approximately	 -]geoC,	 at	 the	 lower	 shelf	 of	 the	 fracture	 toughness,	 according	 to	 the	

information	 provided	 in	 [fa],	 	 with	 the	 surface	 cracks	 having	 been	 introduced	with	 a	

fatigue	 pre-cracked	 EDM	 notch.	 The	 testing	 of	 each	 specimen	 comprised	 sequential	

loading	 and	unloading	 at	 successfully	 lower	 temperatures;	 however	 the	original	 report	

denoted	that	no	plastic	deformation	or	warm-pre	stress	effects	have	occurred	prior	to	the	

failure	that	occurred	with	the	final	loading	[]d]].	Thus,	the	analyses	consider	only	the	final	

loading	and	temperature.	The	interest	in	analysing	these	tests	is	mainly	their	difference	

on	Kr	shown	in	[fa],	where	they	were	analysed	using	BS	_f]e	Option	]	assessments	and	



	

_f	

the	standard’s	SIF	an	reference	stress	solutions	for	uniaxially	loaded	plates.	Their	study	

thus	mainly	aims	to	answer	whether	the	difference	on	Kr	can	be	explained	with	the	effect	

of	biaxiality.		

Additionally,	four	wide	plate	tests	with	through	thickness	cracks	are	included	in	this	work.	

These	are	referred	to	here	and	in	[fa]	as	#ae,	#a],	#a](a)]	and	#a]a(d).	They	were	tested	

at	 -	]eeoC	which	 corresponds	 to	 the	 end	 of	 the	 lower	 transition	 of	 region	 of	 fracture	

toughness.	The	four	results	comprise	three	discrete	tests,	since	#a]a	did	not	reach	failure	

during	initial	loading	[#a]a(])],	where	a	biaxiality	ratio	k=:	was	applied,	and	was	reloaded	

to	 failure	 with	 a	 ratio	 k=;.=	 [#a]a(d)].	 The	 failure	 load	 reported	 in	 Table	 `.g	 for	 k=:	

corresponds	to	the	maximum	load	prior	to	unloading.	For	through	thickness	cracks	the	

easily	 applied	 limit	 load	 solutions	 proposed	 in	Meek	 et	 al	 and	 BS	 _f]e	 [_]],	 [_a]	 that	

incorporate	biaxiality	are	also	used.	Hence,	one	aspect	of	the	analysis	of	these	tests	was	to	

also	 test	 these	 solutions	 and	 compare	 it	 with	 the	 FEA	 analyses	 to	 check	 its	 validity.	

Additionally,	 at	 this	 temperature	 (-]eeoC),	 a	 fracture	 toughness	 -	 constraint	 curve	was	

available,	 which	 allowed	 for	 constraint	 corrected	 assessments	 according	 to	

BS	_f]e	:	Annex	N	[_]].	

	

	

Figure 3.11: Geometry of of (a) biaxially loaded, (b) uniaxially loaded specimens 
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Table 3.6: Geometric Properties, Test Temperatures, and failure loads of specimens 
assessed 

ID	in	

[>?]	

ID,	original	

work	

Crack	

Type	

Crack	Size	

(axGc	or	Ga)

,	mm	

Nominal	

Thickness,	

mm	

Test	

Temp.,	
oC	

Biaxiality	

Ratio,	k	

P"	

at	failure	

(kN)	

#OP	 MLK-UL	

Su
rf
ac
e	
	 JNxKNN.T	 QL	 -KQI	 L	 KLINI	

#OQ	 MLK-NL	 JJ.IxKUQ.V	 QL	 -KTU	 K	 KKKMV	

#?R	 MLK-JT	

Th
ro
ug

h	
th
ic
kn

es
s	
	 JLU	 QL	 -KLL	 K	 QTMT	

#?O	 MLK-JM	 JLL	 QL	 -KLL	 L	 MIKM	

#?Oa(O)	 MLK-JI	 JLJ.N	 QL	 -KLN	 J	 TUML	

#?Oa(G)	 MLK-JI	 JLJ.N	 QL	 -KLN	 L.Q	 TJVT	

	

	

 Material properties 

Tensile	properties		

Tensile	properties	for	the	tested	plates	were	originally	measured	only	at	+_eoC.	The	yield	

stress	and	ultimate	 tensile	 strength	values	 required	 for	 the	Option	 ]	assessments,	were	

calculated	in	accordance	with	the	standard	approach	of	BS	_f]e:de]`	and	are	shown	in	

Table	`._,	while	the	elastic	modulus	was	taken	as	d]dGPa.	

Option	`	analyses	require	full	tensile	curves	to	produce	the	FAL.	In	this	case	full	tensile	

curves	were	only	given	at	+_eoC	[i].	In	later	work	assessing	specimens	of	this	material	at	

lower	temperatures	[fa]	the	stress	strain	curve	was	shifted	upwards,	following	the	increase	

of	yield	strength	value	as	temperature	decreases,	to	a	temperature	of	-fc.coC.	This	curve,	

as	presented	in	[fa],	is	used	for	the	Option	̀ 	assessments	of	all	specimens	tested	at	-]eeoC,	

while	for	those	tested	at	-]geoC	the	same	methodology	of	shifting	the	curve	upwards	is	

used	 to	 offset	 to	 the	 yield	 stress,	 as	 calculated	 following	 the	BS	 _f]e	 guidance	 at	 that	

temperature.	The	original	stress-strain	curve	at	+_e	oC	along	with	the	shifted	curves	are	

shown	in		Figure	`.]d.	
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Table 3.7: Calculated Yield and Ultimate Tensile stresses (MPa) 

ID	 Biaxiality	Ratio,	k	 Test	Temp.,	oC	 σy,	at	Tfail	(MPa)	 σUTS,	at	Tfail	(MPa)	
#LM	 e	 -]c_	 __a	 ia`	
#LN	 ]	 -]g`	 iee	 icc	
#OP	 ]	 -]ee	 g]g	 _`i	
#OL	 e	

#OLa(L)	 d	 -]ea	 gd`	 _aa	
#OLa(Q)	 e.c	

	

	

Figure 3.12: Tensile properties at various temperatures 

	

Fracture	toughness		

Fracture	toughness	(Kmat)	for	this	material	had	been	measured	from	a	variety	of	specimen	

geometries	 (e.g.	 C(T)	 and	 Charpy)	 thicknesses	 and	 temperatures.	 The	 analysis	 of	 the	

existing	fracture	toughness	data	in	[fa]	allows	for	a	Master	Curve	approach.	The	reference	

temperature	of	the	Master	Curve,	T$=	-]c].`oC,	is	used	to	calculate	fracture	toughness	that	

correspond	to	the	c%	and	de%	probability,	i.e.	a	c%	and	de%	probability	of	the	toughness	
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to	be	 lower.	As	advised	by	BS	_f]e	 for	 lower	 shelf	 transitional	behaviour	based	on	 the	

Master	Curve,	 the	c%	values	are	used	 for	 the	Option	 ]	assessments	while	 for	 the	more	

detailed	Option	`	assessments	c%	and	de%	are	both	used	for	comparison.	All	the	values	

included	in	the	assessments	are	shown	in	Table	`.i.	

	

Table 3.8: Fracture toughness values, Kmat (MPa√m) 

Temperature	
-LMRoC	

(#&')	

-LNSoC	

(#&))	

-LPPoC	

(#OP,#OL)	

-LPOoC	

(#OL(a)L,OL(a)Q)	

QP%	Master	Curve	 ai.d	 ac.`	 ]`i.d	 ]df.i	

M%	Master	Curve	 gd.]	 c_.f	 ]ee.f	 fc.]	

MOTE	 -	 -	 ]e_.f	 fa.i	

	

For	 the	 specimens	 tested	 at	 -]eeoC,	 the	 relationship	 between	 fracture	 toughness	 and	

constraint	 was	 presented	 in	 terms	 of	 a	 curve	 which	 best	 fit	 high	 and	 low	 constraint	

experimental	data,	which	were	SENB	specimens	of	different	thickness,	in	[]dd]	and	is	used	

here	for	the	constraint	modified	Option	`	FALs	of	all	four	specimens	tested	at	-	]eeoC	and	

-]eaoC.	The	curve	follows	Equation	`.g	

𝐾|}]^

𝐾|}]
= [1 + 𝑎"(−𝛽𝐿V)A*]	 Equation 3.6 

	

where	𝐾|}]^ 	is	the	constraint	corrected	fracture	toughness,	𝐾|}]	is	the	fracture	toughness	

determined	 from	 standard	 high	 constraint	 tests,	 α$,	 k$	 are	 material	 and	 temperature	

dependent	constants	(α$=].f_,	k$=d.`g)	and	β	is	the	structural	constraint	parameter,	which	

remains	constant	throughout	the	load	(load	independent),	and	is	calculated	as,	

𝛽 =
𝑇

𝐿!𝜎"
	 Equation 3.7 

	

T	denotes	the	T-stress	which	was	extracted	with	ABAQUS	from	the	elastic	model	of	each	

specimen.	
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 Assessment of tests 

The	assessments	 include	FALs	created	with	Option	 ],	which	requires	knowledge	of	 the	

yield	stress	and	ultimate	tensile	strength	as	well	as	with	Option	`	which	is	a	tailor	made	

FAL	corresponding	 to	 the	material	 and	geometry	 studied	and	 is	 generated	via	FEA.	 In	

addition	to	the	Option	`	FALs,	for	the	tests	at	-]eeoC	a	constraint	modified	Option	`	FAL	

is	created	for	all	specimens	that	experience	constraint	relaxation.	

Option	E	assessments	

The	basic	Option	]	FAL	is	based	on	the	tensile	properties	from	Table	`._	and	yielding	is	

taken	as	discontinuous.	The	assessments	have	Lr	 and	Kr	 calculated	with	 the	use	of	 the	

analytical	solutions	included	in	BS	_f]e	and	Rg,	while	for	the	through	thickness	cracked	

plates	an	additional	solution,	partly	included	in	the	standards,	is	implemented.		

Option	G	assessments	

An	option	`	failure	assessment	line	is	given	by	Equation	`.i.	

𝑓(𝐿V) = Ù
𝐽z

𝐽z�$s�
	 Equation 3.8 

where	Je	is	the	value	from	the	J-integral	from	the	elastic	analysis	and	Jel-pl	is	the	value	from	

the	J-integral	from	the	elastic-plastic	analysis.	For	the	calculation	of	these	variables,	FEA	

is	invoked.	Overall,	three	FEA	are	run	for	each	specimen,	these	include:	

• an	elastic	analysis,	with	an	elastic	modulus	of	d]dGPa	and	a	Poisson	ratio	of	e.`,	

for	Je	

• an	elastic	plastic	analysis,	containing	the	whole	tensile	curve	included	in	Figure	

`.]d,	for	Jel-pl			

• an	elastic	perfectly	plastic,	with	the	properties	of	Table	̀ ._,	for	the	limit	load,	which	

was	extracted	from	the	last	step	of	loading	where	a	plastic	hinge	would	be	created	

and	model	would	stop	converging	

The	values	of	Lr	are	calculated	by	dividing	the	applied	load	at	failure	by	the	elastic	perfectly	

plastic	FEA	derived	limit	load	and	Kr	by	dividing	the	elastic	K	calculated	from	FE	with	the	

respective	fracture	toughness.	

Following,	the	analyses	and	their	results	are	given	for	each	different	set	of	temperature/	

flaw	geometry	tests.	
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 Surface breaking flaws|-160oC 

Option	E	assessments	

For	the	calculation	of	Lr,	Option	]	assessments	use	the	local	collapse	Rg	limit	load	solutions	

for	 plates	 with	 surface	 breaking	 flaws	 (Section	 IV.]._.d	 in	 [`]).	 Additionally,	 for	 the	

calculation	of	Kr	the	stress	intensity	factor	KI	is	calculated	using	the	solutions	for	surface	

flaws	in	plates	included	in	BS	_f]e	(Section	M.a.]).		The	cruciform	specimen	is	assessed	as	

a	plate	with	a	width	of	ceemm	and	a	thickness	of	ce	mm,	whilst	the	uniaxially	loaded	

specimen	(k=;)	is	treated	as	a	g``mm	wide	plate	of	similar	thickness.	

To	assess	the	specimens	as	plates,	the	applied	stress	used	for	the	Option	]	assessments	

corresponds	to	the	average	opening	stress	at	the	central	area	of	the	biaxial	specimen.	That	

stress	was	given	in	[]d]]	both	as	it	was	calculated	by	the	biaxial	strain	gauge	measurements	

as	well	 as	with	 its	 calculation	with	use	of	 a	 calibration	 factor,	 the	 latter	 is	used	 in	 the	

Option	 ]	 assessments	 here.	 As	 explained	 in	 []]_],	 this	 calibration	 factor	 correlated	 the	

applied	load	at	the	ends	of	the	specimen	to	the	stress	experienced	at	the	middle	of	the	

specimen	 and	 was	 validated	 with	 the	 use	 of	 experiments	 conducted	 at	 higher	

temperatures.	 It	 is	 interesting	 to	note	 that	 this	 calibration	 factor	 shows	a	 trend	of	 the	

biaxially	loaded	centre	having	lower	stresses	perpendicular	to	the	crack,	as	shown	below.		

• For	equibiaxial	loading:	𝜎s�}]z |
�

||'} = 27.3	 × 𝑙𝑜𝑎𝑑	𝑖𝑛	𝑎𝑟𝑚	(𝑀𝑁)	

• For	uniaxial	loading:	𝜎s�}]z |
�

||'} = 31	 × 𝑙𝑜𝑎𝑑	𝑖𝑛	𝑎𝑟𝑚	(𝑀𝑁)	

The	above	equations	show	that	a	uniaxially	loaded	specimen	will	translate	an	applied	load	

to	a	higher	crack	opening	stress	 in	the	central	area	of	the	specimen.	The	results	of	 the	

assessments	are	shown	in	Figure	`.]`.	In	this	figure	only	the	Option	]	FAL	of	specimen	#]c	

is	provided,	given	that	there	were	minor	differences	between	that	and	the	one	of	specimen	

#]g.		

Option	G	assessments	

To	create	 the	Option	`	FAL,	FEA	are	carried	out	with	 the	use	of	ABAQUS.	Due	to	 the	

double	symmetry	of	the	specimens	a	quarter	of	each	is	modelled,	as	shown	in	Figure	`.]a.		

The	models	are	loaded	in	uniaxial	or	biaxial	tension	according	to	the	geometry	and	the	

biaxiality	ratio	of	the	experiment.	The	loads	are	applied	on	the	loading	arms	in	the	form	

of	 a	 homogeneous	 stress	 that	 is	 calculated	 by	 dividing	 the	 applied	 load	 from	 the	



	

ic	

experiment	by	the	surface,	at	the	end	of	the	loading	arm,	i.e.,	the	thickness	multiplied	by	

the	width	of	the	loading	arm.		The	models	were	done	with	incremental	plasticity,	i.e.	using	

the	whole	tensile	curve	provided.	Since	not	a	 lot	of	deformation	happened	prior	to	the	

failure	 of	 the	 tests	 this	 was	 considered	 accurate	 enough	 while	 the	 Abaqus	 parameter	

NLGeom	was	not	applied.	

The	J	integral	is	calculated	automatically	by	ABAQUS	using	a	domain	integral	method.	To	

aid	the	contour	calculation	a	spiderweb	mesh	with	concentric	circles	of	elements	is	created	

around	the	crack	tip	and	extruded	throughout	 the	crack	 length.	The	 first	elements	are	

wedge	elements,	originally	hexahedral	elements	collapsed	 to	wedges.	The	nodes	at	 the	

crack	tip	are	constrained	to	move	as	a	single	node	in	the	elastic	analyses,	and	as	duplicate	

nodes	 in	 the	 elastic-perfectly	 plastic	 and	 elastic	 plastic	 analyses.	 The	 singularity	 is	

accounted	for	by	moving	the	mid-side	nodes	of	second	order	elements,	at	the	crack	edge,	

towards	the	crack	tip	at	a	distance	of		¼	of	the	element	edge,	as	suggested	for	elastic	and	

elastic-plastic	analyses	with	a	hardening	material	[]d`],	while	the	midsize	node	is	placed	

at	 ½	 the	 distance	 of	 the	 element	 for	 elastic	 perfectly	 plastic	 analyses.	 	 J-integral	 is	

calculated	over	_	contours,	whilst	J	values,	even	on	the	highest	plasticity	levels,	converges	

from	the	third	contour	onwards.	For	instance,	in	the	elastic-plastic	model	of	#]g,	on	the	

node	depth	where	the	maximum	J-integral	was	met,	the	first	contour	calculated	a	J	of	̀ g.e]	

whilst	 from	 the	 third	 onwards	 the	 values	 converged	 to	 `g.ad.	 	 The	 first	 contour	 was	

calculated	at	]	mm	from	the	crack	tip	gradually	extending	to	f	mm.		

The	biaxially	 loaded	 specimen’s	model	 comprises	df_ga	C`Di,d`]e	C`Dde	and	`ie`e	

C`D]e	elements,	while	the	uniaxial	model	comprises	de`ca	C`Di,	d`]e	C`Dde	and	ad]`i	

C`D]e	elements.	These	types	of	elements	were	assumed	to	be	able	to	capture	the	plasticity	

developed	accurately.	In	particular	collapsed	wedge	of	full	C`Dde	elements	were	used	to	

mesh	the	crack	tip,	C`D]e	elements	were	used	to	transfer	the	stress	and	strains	from	the	

crack	tip	to	the	rest	of	the	specimen,	while	C`Di	elements	were	used	to	account	for	the	

simple	loading	of	the	specimen.	

The	 models	 are	 validated	 with	 the	 comparison	 of	 the	 experimentally	 measured	 and	

modelled	stresses	at	the	centre	of	the	specimen.	The	creation	of	the	FAL	follows	the	same	

steps	described	previously	[]]_].		Jel	and	Jel-pl	are	extracted	from	the	deepest	point	of	the	

modelled	crack,	given	that	the	crack	driving	force	in	both	the	uniaxial	and	biaxial	models	

is	highest	there.		
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The	calculation	of	Lr	uses	the	limit	load	calculated	from	the	elastic-perfectly	plastic	FEA,	

while	for	KI	the	stress	intensity	factor	calculated	from	the	elastic	FEA	is	used.	The	results	

of	the	assessments	are	shown	in	Figure	`.]`.	

	

Figure 3.13: Option 1 and Option 3 assessments of specimens #15 (k=0) and #16 (k=1) 
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(a) FEA - Specimen #16 (top view) (b) FEA - Specimen #15 (top view) 

	 	
(c) FEA - Specimen #16 (angled view) (d) FEA - Specimen #15 (angled view) 

	
(e) FEA - Crack region 

Figure 3.14: FEA mesh of specimen #15 and #16 
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From	the	Option	`	FALs	in	Figure	`.]`	the	biaxially	loaded	specimen	has	a	flatter	curve	

denoting	the	effect	of	the	biaxial	loading	on	the	constraint.	In	other	words,	Jel-pl	is	closer	

to	the	values	of	Jel	in	the	case	of	the	biaxially	loaded	specimen	(#]g)	in	comparison	to	the	

uniaxial	specimen	where	plasticity	could	develop.		

Regarding	Lr,	for	the	uniaxially	loaded	specimen	(#]c)	the	Rg	local	collapse	solution	and	

the	FEA	derived	 limit	 load	values	essentially	provide	the	same	results.	This	 is	expected	

firstly	because	the	geometry	of	specimen	#]c	is	that	of	a	plate	and	thus	the	Rg	solution	is	

accurately	 used	 and	 secondly	 because	 both	 FEA	 and	 analytical	 solutions	 address	 a	

uniaxially	loaded	specimen.	

On	the	other	hand,	for	the	equibiaxially	loaded	specimen	(#]g)	the	Rg	solution	provides	a	

lower	limit	load	than	that	of	the	FEA	and	thus	higher	Lr	values.	Even	though	this	difference	

could	be	due	to	the	geometry	of	the	specimen	not	being	exactly	that	of	a	wide	plate,	as	is	

the	one	of	the	analytical	solutions,	it	is	argued	to	be	mostly	due	to	the	analytical	solution	

not	considering	the	load	parallel	to	the	crack.	This	is	supported	by	literature	[124]	where	

the	limit	load	increases	non	monotonically	as	biaxiality	increases	from	k=e	to	k=];	and	it	

is	argued	that	this	trend	is	the	one	observed	here,	with	the	FEA	derived	limit	load	for	k=]	

being	higher	than	the	analytical	Rg	limit	load	for	k=e.	A	limit	load	that	includes	the	out	

of	plane	component	could	be	used	to	assess	these	tests,	however	these	were	analysed	to	

investigate	the	difference	in	Kr	and	would	be	out	of	scope.		

Additionally,	the	Kr	values	for	the	biaxially	loaded	specimen	(#]g)	are	lower	than	those	of	

the	uniaxial	specimen	(#]c),	showing	that	the	elastic	SIF	(stress	intensity	factor)	developed	

in	the	 former	 is	 the	 lowest	between	them.	That	 is	explained	partly	by	the	equibiaxially	

loaded	 specimen	having	 a	 shorter	 and	 shallower	 flaw	 (a	 x	 dc=dd._x]`c.fmm)	 than	 the	

uniaxial	 specimen	 (a	x	dc=dax]aa.g	 mm)	 but	 most	 importantly	 by	 the	 lower	 stresses	

experienced	 in	 the	 centre	 of	 the	 biaxial	 specimen.	 The	 latter	 argument	 might	 seem	

contradictory	with	 the	 failure	 loads	 recorded	during	 testing,	 since	 the	biaxially	 loaded	

specimen	 had	 a	 higher	 failure	 load,	 however	 the	 difference	 in	 the	 loading	 conditions	

results	to	both	experimentally	and	FEA	calculated	crack	opening	stresses	to	be	lower	in	

the	centre	of	the	equibiaxially	loaded	specimen.	As	explained	earlier	the	stresses	calculated	

by	the	two	directional	strain	gauge	measurements	recorded	during	the	experiments	[]d]]	

show	 higher	 stress	 values	 in	 the	 uniaxially	 loaded	 specimen	 in	 comparison	 to	 the	

equibiaxially	 loaded	specimen.	This	trend	is	also	seen	in	the	FEA	of	the	two	specimens	
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where	 the	 average	 crack	 opening	 stress	 in	 the	 uniaxial	 specimen	 is	 larger	 than	 the	

equibiaxially	loaded	specimen.		

To	 further	 understand	 this	 trend	 of	 biaxiality	 decreasing	 the	 crack	 opening	 stress,	 an	

additional	FEA	of	specimen	#]g	is	run.	This	time	the	cruciform	specimen	is	loaded	with	

the	same	(failure)	load	(]].d	MN)	but	only	at	one	direction,	i.e.	it	is	loaded	uniaxially.	This	

aims	to	clarify	whether	the	difference	in	stresses	is	due	to	the	slight	difference	in	geometry	

between	#]c	and	#]g	or	is	indeed	an	effect	of	biaxiality.		

The	analysis	is	run	assuming	an	elastic	material.	The	average	stresses	presented	here	are	

extracted	from	the	unnotched	side	of	the	specimen	at	points	A	and	C	which	are	shown	in		

Figure	`.]c.	The	opening	stresses	(σyy)	calculated	at	the	points	are	shown	in	Table	`.f.			

From	Table	`.f	the	previously	observed	trend	of	crack	opening	stresses	decreasing	when	

moving	from	a	uniaxially	loaded	to	an	equibiaxially	loaded	specimen	is	confirmed.	This	in	

its	turn	explains	the	difference	in	Kr	values	between	specimens	#]c	and	#]g.		

	

	

Figure 3.15: Visual of stress extraction points 
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Table 3.9: Extracted stresses at points A, C 

Point A (y=0, x=165) 
 

Point C (y=166, x=0) 

σyy – uniaxial (MPa) 305.2 σyy – uniaxial (MPa) 379.8 

σyy – biaxial (MPa) 262.2 σyy – biaxial (MPa) 312.9 

 

 Through thickness flaws|-100oC 

Option	E	assessments	

As	before,	the	basic	Option	]	FAL	is	based	on	the	tensile	properties	from	Table	`._	and	

yielding	is	taken	as	discontinuous.	The	assessments	have	Lr	and	Kr	calculated	with	the	use	

of	the	handbook	solutions	included	in	BS	_f]e	and	Rg.	From	the	available	solutions	the	

ones	used	here	concern	a	plate	with	a	through	thickness	flaw	loaded	in	uniaxial	tension.	

For	the	calculation	of	Lr,	two	solutions	for	the	limit	load	exist,	the	first	one	corresponds	to	

failure	under	plane	stress	using	either	the	Tresca	or	Von	Mises	failure	criterion	(or	plane	

strain	with	 the	use	of	Tresca).	The	 second	 solution	corresponds	 to	 failure	under	plane	

strain	with	the	use	of	the	Von	Mises	criterion.	Even	though,	BS	_f]e	highlights	the	first	

(Mises-plane	stress)	solution	given	its	more	conservative	results,	the	plane	strain	solution	

can	be	invoked	from	the	strength	mis-match	limit	load	solutions	assuming	a	plate	made	

wholly	out	of	parent	material.	Given	the	thickness	of	the	plates	assessed	here	(ce	mm)	

plane	strain	conditions	are	expected	in	the	middle	of	their	thickness	and	thus	the	Von	

Mises	plane	strain	solution	is	used.	The	stress	intensity	factor	solutions	for	the	calculation	

of	Kr	are	essentially	the	same	between	the	two	procedures.	The	difference	between	them	

is	considered	negligible	and	the	stress	intensity	factor	from	BS	_f]e	is	used.	The	fracture	

toughness	values	used	for	the	Option	]	assessments	are	the	c%	Master	Curve	values	shown	

in	Table	`.i.	These	assessments	are	designated	as	assessments	“A”.	

For	the	biaxially	loaded	tests,	an	additional	assessment	is	made,	where	Kr	is	calculated	as	

previously	and	Lr	 is	calculated	using	the	lower	bound	plane	strain	von	Mises	 limit	 load	

solution	(given	in	terms	of	limit	stress)	invoked	in	[]dc]	and	given	here	as	Equation	`.i.	

These	assessments	are	designated	as	assessments	“B”.	

It	 should	 be	 noted	 that	 Equation	 `.i	 gives	 the	 same	 results	 with	 the	 reference	 stress	

solution	 used	 in	 the	 constraint	 effect	 associated	 clauses	 of	 BS	_f]e	 (Annex	N)	 and	Rg	

(Section	IV.c),	for	both	centre-cracked	equibiaxially	and	uniaxially	loaded	plates.	In	the	
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uniaxial	case	it	 is	also	equivalent	to	the	Von	Mises	plane	strain	solution	used	for	the	A	

assessment	of	k=;.	

(𝜎!)��� =
2𝜎&
√3

𝑚𝑖𝑛 �
1
|𝑘|

,
(1 − 𝑎/𝑊)

|1 − 𝑘(1 − 𝑎/𝑊)|
�	 Equation 3.9 

	where	k	is	the	biaxiality	ratio,	α	is	half	of	the	crack	length	and	W	is	half	width	of	the	plate.	

As	for	the	surface	breaking	flawed	specimens;	here	the	cruciform	specimens	are	assessed	

as	plates	with	a	width	of	ceemm	and	a	thickness	of	ce	mm,	whilst	the	uniaxially	loaded	

specimen	(k=;)	is	treated	as	a	g``mm	wide	plate	of	similar	thickness.	The	failure	stresses	

invoked	for	the	assessments	are	the	average	stresses	that	had	been	calculated	from	the	

strain	gauge	measurements	of	the	original	reports.		

In	the	case	of	k=E	the	failure	stresses	experimentally	measured	are	very	low	and	do	not	

seem	 to	be	 fully	 responsible	 for	 the	 failure	 of	 the	 specimen.	According	 to	 the	 original	

report	the	specimen	had	an	inhomogeneous	temperature	field	across	the	crack	vicinity,	

which	was	assumed	to	have	resulted	in	secondary	thermal	stresses	of	]]e	MPa	magnitude,	

this	secondary	stress	 is	 included	in	the	analyses	here.	The	results	of	the	Option	]	basic	

assessments	are	shown	in	Figure	`.]g,	where	the	different	tests	are	annotated	with	their	

applied	biaxiality	ratio.	More	information	on	their	specific	ID	and	properties	can	be	found	

in	Table	`.g.	

	

	

Figure 3.16: Option 1, A & B assessments 
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For	biaxiality	ratios	of	k=E	and	k=;.=	the	B	assessments	significantly	decreases	values	of	Lr,	

while	 for	 k=:	 Lr	 increases.	 The	 latter	 case	 causes	 concern,	 since	 the	 limit	 load	 for	 a	

uniaxially	loaded	plate	might	not	give	safe	results	and	would	be	worth	exploring	further	if	

there	are	experimental	data	that	capture	failure	at	k=:.		

Overall,	apart	 from	the	specimen	 loaded	with	a	 ratio	of	k=:,	which	did	not	 fail	during	

testing	 (plotted	 with	 open	 symbols	 in	 Figure	 `.]g),	 all	 the	 failed	 specimens	 are	 safely	

predicted	to	be	in	the	unsafe	zone	of	the	FAD.	This	supports	the	use	the	conservative	c%	

Master	 Curve	 values	 for	 the	 calculation	 of	 Kr	 in	 Option	 ]	 assessments	 that	 disregard	

biaxiality.	Given	that	all	assessment	points	lie	in	the	fracture	dominated	zone	and	above	

the	FAL	there	cannot	be	a	definitive	conclusion	about	Equation	`.f	and	it	there	is	value	in	

testing	the	 limit	 load	equation	applied	on	the	B	assessments	on	tests	conducted	 in	the	

collapse	dominated	zone	(high	values	of	Lr).	

Option	G	assessments	

Given	that	the	crack	run	throughout	the	thickness	of	the	specimen	and	that	the	specimens	

were	thick	enough	to	be	under	plane	strain	in	the	middle,	two-dimensional	plane	strain	

FE	models	are	invoked.	Due	to	symmetry,	a	quarter	of	the	specimens	is	modelled.		

The	modelling	strategy	is	like	that	of	the	surface	breaking	flaw	models.	As	before,	the	load	

is	applied	as	a	homogeneous	stress	on	the	loading	arms	and	the	mesh	around	the	crack	tip	

is	 concentric	 circles,	 with	 the	 first	 line	 of	 elements	 being	 hexahedrons	 collapsed	 into	

wedges.	The	nodes	at	the	crack	tip	are	constrained	to	move	as	a	single	node	in	the	elastic	

analyses,	and	as	duplicate	nodes	in	the	elastic-perfectly	plastic	and	elastic	plastic	analyses.	

The	singularity	is	accounted	for	by	moving	the	mid-side	nodes	of	second	order	elements,	

at	the	crack	edge,	towards	the	crack	tip	at	a	distance	of		¼	of	the	element	edge,	as	suggested	

for	elastic	and	elastic-plastic	analyses	with	a	hardening	material	[]d`],	while	the	midsize	

node	is	placed	at	½	the	distance	of	the	element	for	elastic	perfectly	plastic	analyses.	 	J-

integral	is	calculated	over	_	contours,	whilst	the	J	values,	converge	from	the	third	contour	

onwards.	Following	are	the	J-integral	values	(Mpa	mm)	calculated	over	the	contours	of	the	

elastic-plastic	model	of	k=]	when	loaded	to	the	cut-off	value	of	Lr.		

Contour	]	-		gi`.c										Contour	d	-		gf`.`										Contour	`	-	gfg.i										Contour	a	-	gfg.f											

Contour	c	-	gf_.e										Contour	g	-		gf_.e										Contour	_	-	gf_.]					
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The	cruciform	and	the	uniaxial	quarter	models	comprise	`ead	and	dg`d	CPEi	elements	

respectively,	a	schematic	of	the	modelled	quarters	is	given	in	Figure	`.]_.		

	

	

Figure 3.17: FE mesh of quarter of (a) biaxially, (b) uniaxially loaded specimens 

	

The	 limit	 load	 values	 correspond	 to	 global	 collapse,	 the	 calculated	 values	 for	 each	

specimen/biaxiality	ratio	are	shown	in	Table	`.]e.	

Table 3.10: Global Collapse Limit loads from FEA 

k=;	 k=;.=	 k=E	 k=:	

]_.]d	MN	 ]f.a	MN	 ]f.i_	MN	 f.f`	MN	

The	experimental	failure	loads,	shown	in	Table	`.g,	are	applied	to	each	model	to	calculate	

Jel	 at	 failure.	 In	 addition	 to	 the	 applied	 load,	 the	 equibiaxially	 loaded	 specimen	 (k=E)	

experienced	an	inhomogeneous	temperature	field	during	testing,	which	was	assumed	in	

previous	assessments	to	have	resulted	in	a	stress	field	of	]]eMPa	magnitude.	To	produce	a	

stress	field	of	this	magnitude	at	the	centre	of	the	specimen	a	stress	of	]ga	MPa	is	applied	

at	the	end	of	the	loading	beams.	Whilst	the	factor	ρ	is	also	calculated	and	added	to	K	as	

proposed	in	BS	_f]e.		

Overall,	the	values	of	Lr	are	calculated	by	dividing	the	applied	load	by	the	FEA	limit	load	

and	Kr	 by	 dividing	 the	 elastic	K	 calculated	 from	FE,	which	 includes	 both	primary	 and	
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secondary	loads,	by	Kmat.	The	resulting	Option	`	FALs	with	their	respective	assessment	

points	are	shown	in	Figure	`.]i.	The	assessment	points	from	the	FEA	provide	safe	results	

for	all	biaxiality	ratios	when	the	c%	probability	of	fracture	Master	Curve	toughness	is	used,	

while	using	the	de%	Master	Curve	toughness	leads	to	k=;.=	lying	in	the	safe	zone.	

Regarding	 the	 failure	 assessment	 lines,	 when	 k	 exceeds	 ],	 the	 distribution	 of	 the	 load	

throughout	 the	 applied	 spectrum	 (e	 -	 Lr,max)	 shows	 geometry	 dependence	 and	 is	 not	

applied	consistently	on	the	crack	front.	This	means	that	plasticity	evolves	much	more	at	

the	fillet	of	the	cruciform	specimen	causing	loads	to	be	redistributed	and	Jel-pl	to	increase	

with	a	slower	rate,	acquiring	slightly	lower	values	than	the	corresponding	Jel.	Hence,	even	

though	 for	 k=:	 the	 FAL	 reaches	 values	 of	 Kr	 higher	 than	 one,	 this	 reflects	 geometry	

dependence.		

Disregarding	 the	 aforementioned	 geometry	 dependence,	 it	 is	 observed	 for	 values	 of	 Lr	

approximately	higher	than	e.c,	that	as	biaxiality	increases	and	so	do	the	limiting	values	of	

Kr	given	by	the	FAL.	This	means	that	as	the	biaxiality	ratio	increases,	the	energy	release	

rate	calculated	from	an	elastic	and	an	elastic	plastic	analysis	deviate	 less	thus	denoting	

higher	constraint	of	plasticity.	The	fact	that	higher	in	plane	constraint	(higher	k)	gives	an	

Option	`	FAD	with	a	 larger	 safe	 zone	 seems	counterintuitive	with	 the	perception	 that	

constrained	plasticity	favours	brittle	fracture	and	was	expected	at	lower	values	of	J.	Even	

though	this	is	excused	by	the	nondimensionalization	of	Jel	with	Jel-pl,	both	of	whose	values	

decrease	with	 increasing	biaxiality,	 it	 is	also	due	to	assessing	high	and	low	constrained	

specimens	with	the	use	of	the	same	lower	bound	fracture	toughness,	Kmat.	To	address	this,	

constraint	corrected	assessments	are	developed	using	the	guidance	of	BS	_f]e’s	Annex	N.			
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Figure 3.18: Option 3 FAD – Through thickness TWI plates 

	

	

Option	G	–	Constraint	Corrected	

A	constraint	corrected	FAL	is	generated	according	to	Equation	`.]e.	

𝐾V = 𝑓(𝐿V) ⋅ [1 + 𝑎(−𝛽𝐿V)A*]	 Equation 3.10 

BS	_f]e	 and	 Rg	 contain	 analytical	 solutions	 for	β	 and	 Lr	 in	 the	 case	 of	 uniaxially	 and	

equibiaxially	 loaded	plates,	however	the	current	cruciform	and	cut	cruciform	geometry	

does	not	directly	relate	to	a	plate	and	the	T-	stress	and	Lr	values	calculated	from	FEA	are	

used	for	the	determination	of	β	and	consequently	Equation	`.]e.	These	values	are	shown	

in	Table	`.]].		

Table 3.11: Structural constraint parameter (β) of specimens 

Biaxiality	ratio	 k=;	 k=;.=	 k=E	 k=:	

β	-		FEA	 -].]ca	 -e.g``	 -e.ec]	 e.cc]	
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From	Table	̀ .]],	biaxiality	increases	the	constraint	relaxation	decreases,	i.e.	𝛽	becomes	less	

negative,	leading	to	positive	T-stresses	and	no	constraint	relaxation	at	a	ratio	of	k=:.	The	

resulting	 graph	 with	 Option	 `-constraint	 corrected	 FALs	 along	 with	 the	 FEA	 derived	

assessment	points	are	shown	in	Figure	`.]f.	

	

Figure 3.19: Constraint modified Option 3 FALs – Through thickness | TWI plates 

Given	that	for	k=:	no	constraint	relaxation	is	experienced,	that	specimen	is	not	included	

in	 this	 analysis	 and	 in	 Figure	 `.]f.	Additionally,	 for	k=E	 constraint	 relaxation	 is	 almost	

insignificant,	 and	 the	 constraint	modified	 FAL	 lies	 on	 the	 original	Option	 `	 FAL.	 For	

biaxiality	ratios	of	k=;.=	and	k=;	the	constraint	correction	widely	increases	the	safe	zone	

of	the	FAD	in	accordance	with	k.	Using	a	very	conservative	estimate	of	fracture	toughness,	

i.e.	the	c%	probability	Master	Curve	value,	gives	safe	results	for	all	the	biaxiality	ratios.	

However,	with	the	de%	Master	Curve	toughness	values	both	k=;	and	k=;.=	assessment	

points	lie	in	the	safe	zone.	This	could	be	due	to	assumptions	included	in	the	definition	of	

the	constraint	dependent	fracture	toughness	curve	or	the	limited	dataset	out	of	which	the	

Master	Curve	 originated.	 It	 should	 be	 noted	 that	 the	 α	 and	 k	 values	 used	 are	 high	 in	

comparison	to	what	Seal	and	Sherry	[gc]	proposed,	and	future	use	of	mean	data	may	be	

useful.	 In	 any	 case	 it	 raises	 concern	 over	 the	 use	 of	 advanced	methods	 in	 assessing	 a	
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component	without	a	high	number	of	fracture	toughness	tests	or	a	conservative	definition	

of	Kmat.			

 Summary 

Biaxially	and	uniaxially	loaded	cruciform	tests	conducted	at	the	lower	shelf	of	the	fracture	

transition	curve	were	analysed	in	accordance	with	the	current	BS	_f]e	and	Rg	fracture	

assessment	procedures	as	well	as	with	the	use	of	tailor	made	FEA	analyses.		

Option	 ]	assessments	showed	that	high	constraint	 fracture	 toughness	data	can	provide	

safe,	 albeit	 conservative	 results.	 The	 amount	 of	 conservatism	 depended	 on	 both	 the	

biaxiality	and	thus	constraint	and	the	geometry	of	the	plates	analysed	here	being	different	

than	the	one	of	the	analytical	solutions	used.		

Use	 of	 alternative	 limit	 load	 solutions,	 for	 through	 thickness	 flawed	 plates,	 that	

incorporate	biaxiality	gave	safe	results	while	raising	concern	on	the	case	of	k=d	where	Lr	

increased	with	biaxiality.	The	 trends	noticed	 in	 the	 analytical	 solutions	 followed	 those	

derived	from	the	FEA	developed	here,	however	direct	comparison	between	the	limit	load	

values	of	the	two	could	not	be	made	directly	as	the	geometry	of	the	cruciform	specimens	

affected	plastic	collapse	significantly.	Such	robust	solutions	that	include	biaxiality	showed	

promise,	however	this	study	only	preliminarily	addressed	this,	as	plastic	collapse	was	not	

the	 governing	 failure	mechanism	 in	 these	 tests	 and	 no	 definitive	 conclusion	 could	 be	

drawn.		

For	surface	flaws	the	FEA	confirmed	the	experimentally	observed	trend	of	crack	opening	

stresses	 decreasing	 when	 moving	 from	 a	 uniaxially	 loaded	 to	 an	 equibiaxially	 loaded	

specimen.	In	other	words,	a	decreased	stress	field	was	needed	to	develop	around	the	crack	

for	the	equibiaxially	loaded	specimen	to	fail.		

The	FEA	derived	Option	`	assessments	provided	safe	results	for	a	conservative	definition	

of	Kmat.	The	Option	`	FALs	showed	that	for	biaxiality	ratios	lower	than	one,	as	biaxiality	

increased	so	did	the	limiting	values	of	Kr	with	increasing	Lr.	This	essentially	expressed	the	

suppression	of	plasticity	experienced	in	higher	constraint/biaxiality	ratios.	However,	for	

through	 thickness	 flawed	 specimens,	 with	 higher	 values	 of	 biaxiality	 (k	 >E)	 the	 FAL	

reached	values	of	Kr	higher	than	one,	capturing	geometry	dependence	and	the	creation	of	

a	plastic	arc	between	the	crack	and	fillet,	rather	than	the	biaxiality	effect.	
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For	 the	 tests	 conducted	 at	 -]eeoC,	 Annex	 N	 of	 BS	_f]e	 was	 followed	 to	 generate	 a	

constraint	corrected	Option	`	FALs	which	accounted	for	the	change	of	fracture	toughness	

in	relation	to	constraint.	As	expected	with	increasing	biaxiality	the	constraint	relaxation	

was	less,	leading	to	the	FAL	for	a	biaxiality	ratio	of	k=E	having	a	minimal	change	and	for	

k=:	having	none.	For	the	biaxiality	ratios	of	k=;.=	and	k=;	the	constraint	correction	widely	

increased	 the	 safe	 area	 below	 the	 FAL	 and	 non-conservative	 estimates	 of	 fracture	

toughness	 values	 provided	 unsafe	 results.	 This	 suggested	 that	 a	 conservative	 value	 of	

fracture	 toughness	 or	 a	 high	 number	 of	 tests	 should	 always	 follow	 the	 use	 of	 a	more	

advanced	procedure,	such	as	that	of	Annex	N,	to	ensure	safety.		

 Conclusions 

The	capabilities	and	accuracy	of	FFS	standards	(BS	_f]e,	Rg)	to	assess	uniaxial	and	biaxial	

specimens	have	been	validated	against	a	large	experimental	database.	

From	assessing	historical	data	on	commonly	tested	geometries	that	include	wide	plates	

and	pressurised	vessels	from	past	experimental	programs,	the	following	conclusions	are	

drawn:			

• BS	_f]e	Option	],	can	safely,	albeit	conservatively,	estimate	the	fitness	for	service	

of	a	component	and	can	predict	failure	

• The	importance	of	validating	against	experimental	data	allows	for	calibration	of	

the	procedure	and	its	clauses.	Here	this	was	manifested	with	recognizing	a	pattern	

of	 unnecessary	 conservatism	 on	 the	 reference	 stress	 solutions	 concerning	

cylinders/curved	shells	with	axial	through	thickness,	internal/external	flaws.	This	

was	included	in	the	previous	version	of	the	standard		[_]]	and	has	been	amended	

in	the	latest	one	[]],	 leading	to	a	decrease	of	the	calculated	Lr	by	approximately	

de%	

• Experimental	 programs	 that	 do	 not	 focus	 on	 biaxiality	 cannot	 provide	 for	 a	

consistent	database	(material,	 test	 temperatures,	 loading	conditions)	 to	observe	

trends	 of	 biaxiality	 but	 instead	 prove	 the	 importance	 of	 analysing	 a	 consistent	

database	with	specific	biaxiality	related	oriented	experiments	

Following	 this,	 fracture	 tests	 on	 biaxial	 and	 uniaxial	 specimens	 from	 a	 previously	

conducted	program	within	TWI	were	assessed.	The	key	conclusions	of	these	analyses	are:		
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• Option	]	assessments	using	high	constraint	fracture	toughness	data	and	uniaxial	

plate	solutions	provide	safe	and	conservative	results	

• Plastic	collapse	loads	show	a	trend	of	increasing	from	uniaxial	(k=e)	to	equibiaxial	

loadings	(k=]),	while	decreasing	again	for	higher	biaxiality	ratios	(k>])	

• Use	 of	 robust	 analytical	 limit	 load	 solutions	 that	 incorporate	 biaxiality	 show	

promise	and	agree	with	FEA	limit	load	trend.	Further	validation	of	such	solutions	

with	 data	 of	 specimens	 failing	 by	 plastic	 collapse	 is	 needed	 to	 draw	 a	 definite	

conclusion	

• FEA	 of	 surface	 breaking	 flaws	 show	 that	 equibiaxial	 loading	 results	 in	 crack	

opening	stresses	reducing	from	the	case	of	uniaxial	loading	at	similar	failure	loads.		

• Option	`	assessments	provide	safe	results	with	high	constraint	fracture	toughness	

values		

• Option	`	FALs	reveal	the	direct	effect	of	biaxiality	on	the	elastic	plastic	J-integral,	

which	approximates	its	linear	counterpart	as	biaxiality	increases	up	to	equibiaxial	

loading	 (k=]).	 For	 biaxiality	 ratios	 higher	 than	 that	 (k=d)	 the	 FAL	 captures	

geometry	dependence	making	the	role	of	geometry	prominent		

• Constraint	corrected	Option	`	FALs,	result	in	safe	assessments	for	all	cases	when	

conservative	c%	Master	curve	fracture	toughness	values	are	used,	however	slightly	

higher	 values	 of	 fracture	 toughness	 can	 lead	 to	 unsafe	 predictions	 for	 through	

thickness	cracks	loaded	in	equibiaxial	tension	

• Caution	is	needed	on	the	amount	of	data	or	the	conservatism	in	fracture	toughness	

values	used	in	more	advanced	assessment	procedures	
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 Biaxial and uniaxial 
experiments  

 Introduction 

As	explained	in	the	previous	chapters	biaxiality	has	been	studied	mostly	in	combination	

with	 flaw	 depth.	 Even	 though	 this	 is	 a	 logical	 approach,	 given	 they	 are	mostly	 found	

together	in	practice,	it	is	difficult	to	quantify	the	extent	of	each	of	the	two	parameters	on	

constraint,	especially	in	a	way	that	could	be	implemented	in	an	ECA.	In	other	words,	it	is	

considered	beneficial	to	separate	the	two	constituents	found	in	practice	so	that	future	FFS	

standards	can	include	a	“fix”	for	biaxiality	that	can	disregard	the	effects	of	crack	depth.		

In	 order	 to	 achieve	 de-convoluting	 the	 effects	 of	 flaw	 depth	 and	 biaxiality,	 the	

experimental	program	designed	for	this	work	includes	uniaxial	and	biaxial	bends	on	two	

different	geometries,	i.e.	rectangular	and	cruciform	specimens,	accordingly,	which	include	

through	 thickness	 cracks.	 In	 this	 way	 no	 shallow	 flaw	 effects	 will	 be	 captured	 during	

testing.	Details	of	the	specimens	and	the	rig	design	are	given	in	Section	a.`.	The	through	

thickness	 cracks	 were	 created	 with	 fatigue	 cycles	 in	 tension,	 as	 described	 in	 detail	 in	

Section	a.g.	The	experimental	layout	was	validated	on	its	capability	to	capture	biaxiality	

with	conducting	initial	tests	on	PMMA	specimens,	explained	in	Section	a.`.d.	



	

]e]	

As	highlighted	by	the	analyses	of	Chapter	`,	capturing	the	effect	of	biaxiality	needs	a	very	

well	 characterized	 material	 and	 a	 consistent	 experimental	 database.	 The	 available	

experimental	data	in	literature	do	not	disclose	all	the	needed	information	for	additional	

investigations	 to	 be	 made,	 while	 the	 materials	 tested	 are	 not	 available	 for	 further	

characterization.	 Available	 plates	 of	 BS]ce]-dda	 diB	 C-Mn	 steel	 previously	 studied	 in	

[]dg]–[]di]	will	be	used	to	create	test	specimens.	Details	of	the	material	used	in	this	work	

and	the	existing	mechanical	properties	data	can	be	found	in	the	Section	a.d.	

Since	toughness	and	failure	mode	are	functions	of	both	temperature	and	loading	[]a],	the	

experimental	 program	aims	 to	 test	 the	 specimens	 throughout	 a	 temperature	 spectrum	

which	covers	from	lower	transition	to	upper	shelf	behaviour.	In	detail,	the	effect	of	biaxial	

loading	on	crack	tip	triaxiality	is	expected	to	be	negligible	at	extremely	low	temperatures	

that	 any	 loading	would	 result	 to	 a	minimum	and	unaffected	 fracture	 toughness.	Thus,	

elastic	response	indicates	that	the	temperature	of	testing	is	too	low	to	capture	a	biaxial	

loading	effect	[a]].	As	temperature	increases,	pure	cleavage	behaviour	is	outweighed	by	

accumulated	plasticity	and	a	balance	can	be	found	at	which	constraint	and	thus	biaxiality	

effects	on	toughness	can	be	evaluated,	however	at	a	very	high	temperature	only	its	effect	

on	plastic	collapse	might	be	able	to	be	investigated.	Further	explanation	on	the	testing	

temperatures	can	be	found	in	Section	a.c.	

Lastly,	 the	 results	 of	 the	 fracture	 tests	 are	 given	 for	 the	 different	 geometries	 tested	 in	

Section	a.f.		

 Material properties 

The	material	used	for	the	tests	is	extracted	from	BS]ce]-dda	diB	steel	plates.	The	material	

properties	are	collected	from	[]dg].	This	C-Mn	ferritic	steel	comprises	_f%	Ferrite	and	d]%	

Pearlite.	The	chemical	composition	of	the	material	is	shown	in	Table	a.].	

Table 4.1: Chemical Composition of C-Mn steel Plate BS1501-224 28B [126] 

C	 Si	 Mn	 Al	 P	 S	
e.]c	 e.di	 ].d_	 e.edd	 e.ee_	 e.eec	
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 Tensile properties 

The	tensile	properties	for	the	BS]ce]-dda	diB	plate	were	measured	in	[]dg]	for	both	the	

transverse	and	longitudinal	orientations.	The	results	for	the	different	temperatures	tested	

are	shown	in	Table	a.d	and	graphically	in	Figure	a.].	

Table 4.2: Tensile properties of BS1501-224 28B from [126] 

Specimen	
Test	Temperature	

(oC)	

Yield	Strength	

(MPa)	

Tensile	Strength	

(MPa)	

Young's	Modulus	

(GPa)	

SUALK	 -KJL	 NIK.II	 TJM.Q	 JLL.JT	
SUALJ	 -KTL	 TLJ.IU	 IUL.MV	 JLJ.K	
SUALU	 -ML	 UVJ.JT	 QIM.KK	 KVU.JK	
SUALN	 -KLL	 NJT.NQ	 QVQ.LU	 JLL.QM	
SUALQ	 -KJL	 NQI.KI	 TJT.UQ	 JLK.M	
SUALT	 -KNL	 QKJ.NQ	 TML.LK	 JLJ.IU	
SUALI	 -KTL	 TKN.MU	 IJT.TM	 JLI.LV	
SUALM	 -KLL	 NJQ.VU	 TLN.LT	 KIM.KT	
SUALV	 -KTL	 QVQ.LU	 TVM.VM	 JJN.JM	
SUAKL	 -KJL	 NMJ.KU	 TNQ.LN	 KMQ.MJ	
SUAKK	 -ML	 UMI.NV	 QMJ.IU	 -	
SUAKJ	 JL	 ULU.KJ	 NMI.LK	 KVI.NK	
SUBLK	 -KTL	 QVT.IT	 IJU.K	 KVN.VV	
SUBLJ	 -KNL	 QUN.N	 TII.LV	 JLN.VQ	
SUBLU	 -KJL	 NIV.MM	 TNL.IT	 KVJ.QU	
SUBLN	 JL	 UJT.LM	 NMQ.TN	 KVU.QK	
SUBLQ	 -KTL	 TKQ.LM	 IJT.UV	 JKL.VN	
SUBLT	 -ML	 UMK.MV	 QVU.JQ	 JKU.K	
SUBLI	 -KJL	 NTQ.VN	 TJM.JT	 JLL.LJ	
SUBLM	 JL	 UJJ.VK	 NMJ.V	 KMQ.KQ	
SUBLV	 -KLL	 NUM.NQ	 TKU.JU	 KMV.MM	
SUBKL	 -KNL	 QUL	 TMU.U	 KMI.VJ	
SUBKK	 -KTL	 TLJ.NJ	 IKV.TQ	 KMT.T	
SUBKJ	 -KJL	 NNN.NM	 TJI.UN	 KVV.IV	

 
Additionally,	full	tensile	stress-strain	curves	were	provided	in	previous	work	([]dg]–[]di]),	

at	-	]ge	oC,	-]de	oC	and	room	temperature.	
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Figure 4.1: BS1501-224 28B - Tensile properties at different temperatures 

	

 Fracture toughness 

In	 regard	 to	 fracture	 toughness	 values,	 previous	 work	 ([]dg]–[]di])	 includes	 multiple	

fracture	toughness	test	results.	The	tests	were	conducted	on,		

• dc	 mm	 thick	 compact	 tension	 (C(T))	 specimens,	 that	 were	 either	 EDM-

notched	or	fatigue	pre-cracked	

• ]e	mm	thick	single	edge	bend	(SE(B))	specimens,	that	were	fatigue	pre-cracked	

Concerning	 the	 C(T)	 specimens	 testing	 temperatures	 varied	 from	 -]geoC	 to	 room	

temperatures	for	the	EDM-notched	specimens,	while	fatigue	pre-cracked	C(T)	specimens	

were	 tested	 at	 -]geoC	 and	 -]deoC.	 The	 majority	 of	 C(T)	 specimens	 were	 tested	

approximately	at	-]geoC.		SE(B)	specimens	were	only	tested	at	-]c_	oC.	The	nominal	crack	

length	 to	 specimen	width	 ratio	 (a/W)	was	 approximately	e.c	 for	 both	C(T)	 and	 SE(B)	

specimens.		

An	overview	of	the	fracture	toughness	values	calculated	for	fatigue	pre-cracked	specimens	

at	[]dg]–[]di]	is	given	in	Table	a.`.	
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Table 4.3: BS1501-224 28 fracture toughness measurements for fatigue pre-cracked 
specimens 

Reference	 Specimen	No.	
Test	Temperature	

(oC)	 KJC	(MPa√m)	

		 1T	(25mm)	C(T)	fatigue	pre-cracked	

Derreck	Van	
Gelderen	
[]dg]	

S3A04	 -160	 57	

S3A07	 -160	 64.1	

S3B07	 -160	 35.43	

S3A03	 -120	 129.9	

S3A06	 -120	 158.68	

S3B01	 -120	 128.92	

Karin	Rosahl	
[]d_]	

10	 -140	 90.2	

11	 -140	 85.2	

14	 -140	 75.5	

17	 -140	 96.4	

22	 -140	 78.1	

24	 -140	 53	

26	 -140	 50.8	

29	 -140	 61.9	

Balart	&	
Knott	[]di]	

1	 -157	 37.4	

2	 -157	 38	

3	 -157	 39.9	

4	 -157	 41	

5	 -157	 41.4	

6	 -157	 44.3	

7	 -157	 44.9	

8	 -157	 49.5	

9	 -157	 51.1	

10	 -157	 53.3	

11	 -157	 53.6	

12	 -157	 57.9	

13	 -157	 58.8	

14	 -157	 61.1	

15	 -157	 61.2	

16	 -157	 64	

17	 -157	 71.2	
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0.4T	(10mm	thick)	SEN(B)	–	fatigue	pre-cracked	

1	 -157	 39.2	

2	 -157	 44.1	

3	 -157	 44.9	

4	 -157	 52.4	

5	 -157	 53.5	

6	 -157	 54.5	

7	 -157	 56.7	

8	 -157	 57.5	

9	 -157	 58.4	

10	 -157	 58.7	

11	 -157	 58.8	

12	 -157	 60	

13	 -157	 61.9	

14	 -157	 63.7	

15	 -157	 67.4	

16	 -157	 68.8	
	

The	results	of	these	tests	were	used	in	[126]	to	calculate	the	reference	temperature	(T$)	

and	 draft	 a	Master	 Curve	 according	 to	 ASTM	 E]fd]	 [129].	 For	 the	wire	 EDM-notched	

specimens	 T$=-]_c	 oC	 while	 for	 fatigue	 pre-cracked	 specimens	 T$=	-	]`]	 oC.	 This	 in	

combination	with	the	transition	curve	developed	for	this	material	in	Section	a.d.a	are	used	

to	decide	on	the	testing	temperatures	of	the	biaxial	and	uniaxial	bend	tests	of	this	study.		

 Metallography of material 

The	existing	BS]ce]-dda	di	plates	that	are	used	for	this	experimental	program	had	been	

cut,	in	the	past,	in	a	rectangular	shape,	thus	not	making	it	easy	to	distinguish	between	the	

rolling	 and	 the	 transverse	 direction.	 Fractography	 results	 obtained	 from	 Rosahl	 []d_]	

showed	that	grains	were	fairly	uniform	in	arrangement	and	in	size	in	both	directions	and	

was	 thus	 expected	 that	 performing	 fracture	 toughness	 experiments	 on	 L-T	 and	 T–L	

specimens	would	not	yield	any	significant	differences	in	fracture.		

Additional	 investigation	 carried	 out	 by	 Van	 Gelderen	 []dg],	 which	 included	 fracture	

toughness	 and	 tensile	 tests	 on	 specimens	 from	 both	 directions	 of	 the	 plate	 and	 from	

different	 plates	 supported	 this.	 The	 results	 of	 fracture	 toughness	 tests	 on	 fatigue	 pre-
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cracked	specimens	and	tensile	tests	showed	that	there	is	no	trend	of	mechanical	properties	

being	different	with	orientation	[]dg,	p.	a]i]	[]dg,	p.	`ia].		

Additional	metallographic	work	is	conducted	in	this	work,	with	small	samples	being	taken	

from	 the	 three	different	 surfaces	 of	 each	plate,	 i.e.	A,B,C,	 as	 shown	 in	Figure	a.c.	The	

samples	were	grinded	and	polished	before	being	placed	under	the	optical	microscope.	All	

six	plates	exhibit	the	same	microstructure.	Here	only	the	images	of	plate	d	are	presented	

in	Figures	a.]	–	a.`.	The	figures	show	there	is	no	clear	indication	regarding	rolling	direction	

and	that	pearlite	bands	are	more	prominent	towards	the	middle	of	the	specimen.	In	light	

of	the	latter,	test	specimens	are	extracted	from	near	the	surfaces	to	ensure	microstructural	

homogeneity.			

	

Figure 4.2: Microstructure of face A, Plate 2 

	

	
(a)	

	
(b)	

	
(c)	

Figure 4.3: Microstructure of face B, Plate 2 at (a) the surface, (b) quarter thickness, (c) 
mid-thickness 
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(a)	

	
(b)	

	
(c)	

Figure 4.4: Microstructure of face C, Plate 2 at (a) the surface, (b) quarter thickness, (c) 
mid-thickness 

	

 Transition Curve 

 Charpy specimen design 

Given	the	constraint	phenomena	that	are	addressed	in	this	work,	 it	 is	crucial	to	have	a	

clear	 image	of	 the	 ferritic	 steel’s	 transition	curve.	To	obtain	 this	 small	Charpy	V-notch	

specimens	were	extracted	from	one	of	the	BS]ce]-dda	diB	plates	(plate	number	d).	

The	specimens	complied	to	BS	EN	ISO	]ai-]:de]e	[]`e]	and	were	designed	according	to	its	

specifications.	

Charpys	were	 extracted	 from	near	 the	 top	and	bottom	surfaces	of	 the	plate	where	 the	

microstructure	is	similar	as	shown	in	Section	a.d.`.	The	Charpy	notches	all	had	the	same	

orientation	in	regard	to	the	rolling	direction,	however	it	is	not	certain,	due	to	the	lack	of	

information	whether	their	orientation	is	L-T	or	T-L.		

The	specimens	were	handed	to	TWI	Ltd.	 for	testing,	where	they	were	tested	at	various	

temperatures	to	obtain	the	transition	curve	of	the	steel.	Overall,	de	specimens	were	cut	

and	tested.	This	provides	a	means	to	correlate	the	toughness	in	the	later	interpretations	

of	Chapter	c,	to	see	how	reliable	that	data	is.	

 Charpy test results - Transition curve 

The	results	of	Charpy	tests	are	presented	graphically	along	with	a	transition	curve	that	was	

fitted	using	a	Burr	distribution,	as	advised	in	[]`]],	in	Figure	a.c.		

From	Figure	a.c	 the	 lower	 shelf	 is	 reached	at	approximately	 -]eeoC,	while	 the	 fracture	

mode	is	transitioning	from	brittle	to	ductile	between	-]ee	and	-ae	oC.	
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Figure 4.5: BS1501-224 28B Charpy test results & Transition Curve 

	

 Design of experiments 

 Test setup 

To	 capture	 solely	 the	 effect	 of	 biaxiality,	 uncoupled	 from	 any	 shallow	 flaw	 effects	 this	

experimental	program	includes	uniaxial	and	biaxial	bending	applied	to	specimens	with	

through	thickness	cracks	of	rectangular	and	cruciform	sections,	respectively.		

The	experimental	rig	with	a	cruciform/c	Point	Bend	(cPB	–	equibiaxially	bent)	specimen	

and	a	rectangular/`	Point	Bend	(`PB	-	uniaxially	bent)	specimen	are	shown	in	Figure	a.g	

and	 Figure	 a._	 respectively.	 Their	 engineering	 drawings	 with	 dimensional	 details	 are	

shown	in	Figure	a.i	and	Figure	a.f.	The	initial	thickness	of	the	specimens	was	designed	

to	be	dc	mm,	same	as	the	specimen	thickness	of	the	PMMA	samples	that	were	used	to	test	

the	rig,	shown	in	Section	a.`.d,	however	the	limited	material	available	allowed	for	]e	mm	

thick	specimens	to	be	cut.	The	nominal	width	(W)	of	the	specimens	is	considered	as	that	

of	the	central	area	tested,	i.e.	disregarding	the	loading	legs	of	the	cruciform	specimens	and	

equal	to	the	width	of	the	rectangular	specimens	which	was	ce	mm.	All	specimens,	both	

rectangular	 and	cruciform,	 are	designed	 to	contain	a	 through	 thickness	with	a	desired	

crack	 length	 to	 nominal	 width	 ratio	 (da/W)	 of	 e.c.	 Details	 on	 the	 preparation	 of	 the	

samples	and	the	fatigue	pre-cracking	of	the	steel	specimens	are	given	in	Sections	a.a	and	

a.g.	
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Regarding	the	experimental	rig,	it	consists	of:	

• a	base,	in	the	shape	of	a	hollow	cylinder,	shown	in	Figure	a.]e	

• a	smaller	solid	cylinders	lying	on	the	indentations	of	the	base	and	on	which	the	

specimens	will	be	placed,	allowing	relative	rotation	to	their	central	axis,	Figure	a.]]	

• a	semi-spherical	punch,	which	will	apply	the	load,	shown	in	Figure	a.]d	

After	 the	 specimens	are	placed	on	 the	base	as	 shown	 in	Figure	a.g	 for	 the	 rectangular	

shaped	 specimens	 and	 Figure	 a._	 for	 the	 cruciform	 specimens,	 the	 punch	 is	 pushed	

downwards	 from	 the	 hydraulic	 press	 generating	 a	 three-point	 bend	 in	 the	 case	 of	 the	

rectangular	shaped	specimens	and	a	five-point	bend	in	the	case	of	the	cruciform	ones.	The	

biaxiality	ratios	(k)	included	in	this	study	are	controlled	by	the	geometry	of	the	setup	and	

are	 𝑘 = 0,	 i.e.	 uniaxial,	 for	 the	 rectangular	 shaped	 `PB	 specimens	 and	 𝑘 = 1,	 i.e.	

equibiaxial,	for	the	case	of	the	cruciform	cPB	specimens.		

	

	 	

Figure 4.6: Basic setup of 3 Point bend Figure 4.7: Basic setup of 5 Point bend 
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Figure 4.8: Engineering drawing of a rectangular specimen 

	

Figure 4.9: Engineering drawing of a cruciform specimen 
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Figure 4.10: Hollow cylinder base of experimental rig 

	

	

Figure 4.11: roller of rig Figure 4.12: semi-spherical punch of rig 
  

It	 should	be	noted	here	 that	 the	punch,	 the	 rig	and	 the	 rollers	were	all	used	 in	earlier	

research	 and	 were	 not	 fully	 redesigned	 from	 scratch.	 Even	 though	 the	 punch	 has	 a	

relatively	small	diameter	the	low	temperature	of	testing	was	expected	to	create	a	brittle	

behaviour	 allowing	 for	minimum	 indentation	before	 fracture.	Additionally	 preliminary	

FEA	had	ensured	that	the	fillet	of	the	cruciform	specimens	had	a	radius	which	ensured	no	

stress	concentration	there	higher	than	the	crack	area.		
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 Testing the setup 

The	experimental	setup	was	initially	tested	with	the	use	of	PMMA	samples,	expecting	that	

its	linear	elastic	behaviour	approximates	that	of	the	steel	in	the	lower	transition	region	

and	 the	crack	propagation	between	the	PMMA	and	the	steel	 specimens	will	be	similar	

when	fracture	happens	in	brittle	manner,	i.e.	when	no	significant	ductile	tearing	occurs.		

The	setup	was	the	same	as	that	described	in	the	previous	section	for	the	steel	specimens.	

The	 tests	 were	 conducted	 at	 room	 temperature	 using	 a	 dcekN	 Instron	machine.	 The	

measured	values	during	testing	were	the	load	and	displacement	recorded	by	the	Instron	

machine	as	well	as	the	crack	mouth	opening	displacement	measured	by	a	CMOD	(Crack	

Mouth	Opening	Displacement)	gauge.	The	CMOD	gauge	was	placed	on	knife	edges	that	

were	glued	on	the	specimens	at	a	distance	of	approximately	i	mm	either	side	of	the	crack	

mouth.		

The	PMMA	specimen	database	comprises	two	rectangular	shaped	specimens	which	have	

the	geometry	of	Figure	a.]`	and	two	cruciform	specimens	with	the	geometry	of	Figure	a.]a.	

The	specimens	were	loaded	in	displacement	control	(e.d	mm/min)	to	the	point	of	fracture.	

 

Figure 4.13: 3 Point Bend Specimen 
(dimensions in mm) 

 

Figure 4.14: 5 Point Bend Specimen (dimensions in 
mm) 

Figure	 a.]c	 shows	 a	 uniaxial	 specimen	 post	 fracture	 and	 Figure	 a.]g	 shows	 a	 biaxial	

specimen.	 It	 is	observed	 in	 the	 latter	 that	 the	 fracture	 trajectory	has	an	 “S”	 shape,	 this	

effect	of	the	curved	crack	has	been		noted	in	literature	[18]	as	an	effect	of	biaxiality.	Hence,	

the	 trajectory	 of	 the	 crack	 observed	 in	 these	 specimens	 provides	 confidence	 that	 the	

current	setup	captures	biaxiality.	Additionally,	the	Load-CMOD	curves	captured	during	
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the	experiments	 for	all	a	specimens	are	shown	 in	Figure	a.]_,	where	only	 linear	elastic	

behaviour	was	met	during	the	test	and	the	fracture	was	purely	brittle.	

	

	

a) Base view b) Projected view 
Figure 4.15: PMMA Uniaxial - 3PB specimen - Post fracture 

	

	
	

a) Base view b) Projected view 
Figure 4.16: PMMA Biaxial - 5PB specimen - Post fracture 
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Figure 4.17: Experimentally measured Load - CMOD for PMMA specimens 

It	 is	 apparent	 from	 Figure	 a.]_	 that	 the	 cruciform	 specimens	 require	 higher	 loads	 to	

fracture	in	comparison	to	the	uniaxially	loaded	specimens.	This	can	be	partly	explained	by	

the	fact	that	the	uniaxial	specimens	have	smaller	width,	however	this	is	mostly	due	to	the	

biaxially	 loaded	specimen	being	 loaded	in	a	c-point	bend.	In	other	words,	a	significant	

fraction	of	the	load	applied	by	the	punch	is	consumed	for	the	in-plane	loading.		

 Steel specimens 

As	denoted	in	Section	a.`.]	the	thickness	of	the	steel	specimens	was	]e	mm.	The	specimens	

were	extracted	from	near	the	surface	of	the	plates	to	ensure	microstructural	consistency	

between	 the	 samples,	 similarly	 to	 the	 extraction	 of	 the	 Charpy	 specimens	 in	 Section	

a.d.a.].	An	engineering	drawing	of	the	rectangular	and	cruciform	specimens	can	be	seen	

in	Figure	a.i	and	Figure	a.f	respectively.	

All	specimens,	both	rectangular	and	cruciform,	contain	through	thickness	EDM	notches	

of	demm	length,	made	with	a	e.]	mm	EDM	wire,	which	are	then	fatigue	pre-cracked	to	

ensure	a	sharp	crack	is	developed.	The	initially	desired	crack	length	to	nominal	width	ratio	

(da/W)	was	e.c.	Details	on	the	preparation	of	the	samples	and	the	fatigue	pre-cracking	are	

given	in	Section	a.g.	
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 Test temperature 

As	observed	in	[]a]	toughness	is	a	function	of	both	temperature	and	biaxial	loading,	i.e.	as	

temperature	 increases,	uniaxially	 loaded	 specimens	experience	a	 loss	of	 constraint	and	

consequently	high	toughness	values.	However,	biaxially	loaded	specimens	keep	their	high	

constraint	levels	up	to	the	higher	temperatures	[]a].	To	capture	constraint	effects	due	to	

biaxiality	during	testing,	the	tests	should	be	conducted	at	temperatures	which	are:	

]. Low	enough,	at	the	lower	region	of	the	transition	curve,	so	that	plasticity	does	not	

develop	throughout	the	ligament,	leading	to	its	plastic	collapse	but	instead	a	small-

scale	yielding	condition	is	approached	

d. High	 enough	 for	 some	 plasticity	 to	 be	 developed	 so	 that	 its	 relationship	 with	

constraint	and	how	it	affects	it	can	be	studied		

This	experimental	program	originally	attempted	to	capture	the	effect	that	biaxiality	has	

on	the	plastic	collapse	load	and	the	change	of	the	governing	failure	mechanism	from	small	

scale	 yielding	 to	plastic	 collapse.	 It	was	 the	 intention	of	 the	 author	 for	 three	different	

temperatures	 variating	 from	 lower	 shelf	 to	 upper	 shelf	 to	 be	 tested.	 Unfortunately,	

COVID-]f	restrictions	did	not	allow	for	enough	experimental	cycles	to	be	conducted	and	

only	a	single	temperature	was	decided	to	be	tested.		

The	test	temperature	would	need	to	be	one	at	which	experimental	data	already	existed	

and	be	close	to	the	lower	shelf	but	allowing	for	limited	amounts	of	plasticity.	The	existing	

fracture	 testing	data	of	 []dg]	were	used	as	guidelines.	 In	particular,	 the	material	had	a	

reference	temperature	was	T$=-	]`]oC,	calculated	with	the	data	of	full	thickness	(dc	mm)	

C(T)	pre-cracked	specimens	that	were	tested	between	-]ge	oC	and	-	]deoC.	It	was	seen	from	

the	Load-CMOD	curves	of	the	-]ge	oC	and	-]de	oC	pre-cracked	C(T)	specimens,	shown	in	

[]dg,	p.	̀ ad]	and	[]dg,	p.	̀ ac]	respectively,	that	almost	fully	elastic	behaviour	was	observed	

at	-]geoC	while	some	plasticity	was	developed	at	-]de	oC.	Since	the	specimens	tested	here	

are	 thinner	 and	have	 lower	 out-of-plane	 constraint	 some	plasticity	 can	be	 expected	 at	

-	]geoC.	 This	 in	 addition	 with	 the	 high	 number	 of	 data	 available	 (fracture	 toughness,	

tensile	properties)	at	-]geoC	designated	this	temperature	as	appropriate	for	testing,	where	

the	toughness	values	from	the	literature	varied	from	`c	to	_]	MPa√m.	

To	achieve	testing	at	cryogenic	temperatures	the	rig	is	placed	inside	a	well-insulated	Zwick	

cooling	 chamber	 of	 ]]_e	 mm	 length	 cfc	 mm	 width	 and	 iee	 mm	 depth	 with	 a	 wall	
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thickness	of		ie	mm.	At	the	opening	of	the	chamber	Thermalfleece	Cosywool	is	used	to	

seal	 the	 two	 parts,	while	 inside,	 surrounding	 the	 rig,	 polystyrene	 rings	 and	 blocks	 are	

added.	The	setup	of	the	chamber	is	presented	visually	with	the	chamber	open	and	closed	

in	Figure	a.dg	(a)	and	(b)	respectively.		Cooling	is	achieved	with	the	use	of	liquid	nitrogen	

that	is	provided	to	the	chamber	shown	in	Figure	a.dg	(c).	A	Eurotherm	controller	is	used	

to	 control	 the	 temperature.	 To	 ensure	 that	 all	 the	 specimen	 has	 reached	 the	 desired	

temperature	 and	 that	 no	 thermal	 gradients	 exist,	 once	 its	 surface	 reaches	 that	

temperature,	it	is	left	for	another	`e	mins	in	the	chamber	before	testing	commences.	

 Fatigue pre-cracking 

From	fabrication	the	specimens	have	a	de	mm	long	through	thickness	notch	made	with	

wire	EDM	cutting	using	a	wire	of	e.]	mm	radius.	To	grow	a	sharp	crack	from	the	EDM	

notch	 prior	 to	 fracture	 testing,	 the	 specimens	 are	 fatigue	 pre-cracked	 in	 tension.	 The	

fatigue	pre-cracking	setup	of	a	rectangular	shaped	specimen	can	be	seen	in	Figure	a.]i.		

There	 are	 two	 stages	 included	 in	 fatigue	 pre-cracking	 the	 specimens.	 The	 first	 one	 is	

specimen	preparation.	The	specimens	are	first	polished	using	a	hand	polisher	until	a	good	

surface	finish	is	achieved.	The	specimens	have	an	appropriate	surface	finish	only	from	the	

one	side,	hence	only	one	side	can	be	polished	and	prepared	for	visual	observation	of	the	

fatigue	pre-cracking.	Following,	at	a	distance	from	each	end	of	the	EDM	notch	two	lines	

are	scratched	using	a	scribe.	The	first	of	these	lines	represents	the	crack	length	(a=]].cmm)	

at	which	the	load	will	be	adjusted	to	avoid	creating	a	plastic	wake	ahead	of	the	crack	during	

pre-cracking	and	the	second	one	represents	the	desired	crack	length	(a=]d.c	mm).		

The	second	stage	is	the	stage	of	the	actual	fatigue	pre-cracking.	The	specimen	is	clamped	

at	both	 legs,	 that	are	perpendicular	to	the	crack,	by	the	machine	and	is	 loaded	 in	 load	

controlled	cyclic	tension.	To	monitor	the	crack	growth	a	high-resolution	camera	is	used	

to	observe	the	crack	opening.	Loading	continues	until	the	crack	reaches	the	scribed	lines	

adjusting	the	load	as	needed	during	the	procedure.	The	scribed	lines	and	crack	growth	as	

observed	by	the	camera	can	be	seen	in	Figure	a.]f.	



	

]]_	

	

Figure 4.18:Setup of Fatigue pre-cracking a rectangular shaped specimen 

	

Figure 4.19: Crack growth as observed from camera 

The	frequency	of	loading	was	restricted	by	the	hydraulic	system	at	]cHz.		

The	applied	 loads	 for	 fatigue	pre-cracking	are	calculated	using	 the	guidance	of	ASTM-

E`ff	 []`d].	 To	 ensure	 that	 a	 sharp	 crack	 is	 being	 tested	 Annex	 i.`.`	 advises	 that	 a	

minimum	fatigue	produced	crack	length	is	reached.	This	length	for	the	case	of	notches	

ending	in	a	hole	is		

max	(0.5𝐷, 1.3	𝑚𝑚)	

With	D	being	the	diameter	of	the	hole.	The	EDM	notch	is	created	using	a	wire	of	e.]mm	

diameter,	and	the	end	hole	is	considered	of	e.dmm	diameter.	This	means	that	the	fatigue	
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pre-crack	length	should	be	larger	than	].`	mm,	hence	the	desired	length	of	d.cmm	satisfies	

the	condition.		

Additionally,	 Annex	 i.a.d	 and	 i.a.`	 of	 	 ASTM-E`ff	 []`d]	 suggest	 that	 the	 for	 main	

duration	of	the	procedure	the	maximum	stress	intensity	factor	(Kmax)	reached	during	the	

cycling	loading	should	be	lower	than	ie%	of	the	fracture	toughness	(KQ)	of	the	material,	

while	 for	 the	 latest	 stages	 Kmax	 should	 be	 reduced	 to	 <e.g	 KQ.	 However,	 Annex	 i.a.a	

suggests	that	if	fatigue	pre-cracking	is	conducted	at	a	temperature	T%	and	testing	is	to	be	

conducted	at	a	temperature	T0	then	𝐾f8*	(.*)	shall	not	exceed	the	limits	of	Equation	a.].	

𝐾f8*	(.*) < 	0.6	(𝜎&{(.*)/𝜎&{(.'))𝐾�(.')	 Equation 4.1 

where	𝜎&{	is	the	yield	stress	at	the	respective	temperature.	The	latter	condition	is	used	to	

calculate	the	maximum	loads	that	are	applied	during	fatigue	pre-cracking.	Even	though	

testing	is	done	at	different	temperatures,	the	properties	of	the	lowest	temperature	(-]geoC)	

are	 used	 for	 the	 calculations	 of	 the	 fatigue	 pre-cracking	 loads.	 There	 are	 no	 existing	

fracture	 data	 for	 the	 specimen	 geometries	 that	 are	 fatigue	 pre-cracked/tested	 here,	

however	 previous	 work	 on	 the	 same	 batch	 of	 material	 []dg],	 []di]	 includes	 fracture	

toughness	values	that	have	been	calculated	from	testing	C(T)	and	SEN(B)	specimens	at	-

]ge	oC	(-]c_oC).	Additionally	 []dg],	 []di]	 include	 tensile	properties	at	 -]ge	oC	and	room	

temperature,	which	are	used	for	the	calculations.	The	yield	stress	at	the	two	temperatures	

is,	

• 𝜎&{(`.) = 317	𝑀𝑃𝑎	at	room	temperature		

• 𝜎&{($"�U) = 532	𝑀𝑃𝑎	at	-]ge	oC	

Table	a.a	shows	the	values	of	fracture	toughness	for	the	two	specimen	configurations	and	

the	 maximum	 allowable	 stress	 intensity	 factors	 that	 are	 calculated	 for	 them	

(𝐾|}#	𝐶(𝑇), 𝐾|}#	𝑆𝐸𝑁(𝐵))		according	to	[]`d].	

Table 4.4: Upper limit K values for fatigue pre-cracking 

Specimen 
Type average KQ [128] (MPa √m) Kmax < 60% (σys(RT)/σys(-160)) KQ (MPa √m) 

SEN(B) 56.3 𝐾|}#	𝑆𝐸𝑁(𝐵)	=	15.8 
C(T) 44.3 𝐾|}#	𝐶(𝑇) = 20.1 
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To	translate	applied	load	to	stress	intensity	factor	values,	the	BS	_f]e	[_]]	stress	intensity	

factor	solution	for	a	centrally	cracked	plate	in	tension	is	used.	This	is	also	given	here	as	

Equation	a.d.	

𝐾+ = 𝑃|[sec(𝜋𝛼 𝑊⁄ )]U.�√𝜋𝑎	 Equation 4.2 

Where	𝑃|	is	the	applied	tensile	load.	The	specimen	width	W	is	considered	as	ce	mm	for	

the	 rectangular	 specimens	 and	 ]ce	 mm	 for	 the	 cruciform	 specimens.	 The	 maximum	

fatigue	 pre-cracking	 loads	 (Pmax)	 are	 selected	 so	 that	 they	 won’t	 exceed	 neither	 of	

𝐾|}#	𝐶(𝑇)	and	𝐾|}#	𝑆𝐸𝑁(𝐵)	at	any	stage	of	crack	growth.		

Higher	loads	are	initially	used	up	to	a	crack	length	of	a=]].cmm.	Then	the	load	is	decreased	

and	cycling	loading	continues	until	a	length	of	a=]d.cmm	is	reached.	The	maximum	(Pmax)	

and	minimum	(Pmin)	 loads	applied	during	pre-cracking	as	well	 as	 their	 load	 ratio	 (𝑅 =

𝑃|��/𝑃|}#)	are	shown	in	Table	a.c.		

Table 4.5: Loads used for fatigue pre-cracking   
Rectangular specimens 

For a≤11.5 For 11.5≤a≤12.5 
Pmax (kN) 36 30 
Pmin (kN) 3.6 3 

R= 0.1 0.1 
 Cruciform specimens 

For a≤11.5 For 11.5≤a≤12.5 
Pmax (kN) 40 35 
Pmin (kN) 4 3.5 

R= 0.1 0.1 
	

The	stress	intensity	factor	value	of	the	maximum	load	(Ke(Pmax))	calculated	at	each	crack	

length	is	shown	together	with	𝐾|}#	𝐶(𝑇)	and		𝐾|}#	𝑆𝐸𝑁(𝐵)	in	Figure	a.de	and	Figure	a.d]	

for	the	rectangular	and	cruciform	specimens	respectively.	The	resulting	pre-fatigue	crack	

shape	is	identified	later	in	Chapter	c	as	it	will	be	used	for	the	FEA	analyses.		
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Figure 4.20: Maximum stress intensity factor values during pre-cracking of rectangular 
specimens 

	

Figure 4.21: Maximum stress intensity factor values during pre-cracking of cruciform 
specimens 

I
I
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 Instrumentation 

During	testing	four	different	physical	quantities	are	measured,	i.e.		

]. Displacement	

d. Load		

`. Temperature	

a. CMOD	

Load	and	displacement	values	are	recorded	directly	from	the	Dartech	cee	kN	machine	

that	is	used.	The	remaining	two	quantities	are	measured	from	separate	instruments	and	

all	of	the	values	are	gathered	using	a	Vishay	System	ceee	data	acquisition	system.	

Temperature	is	measured	with	the	use	of	type	K	thermocouples	(Chromel-Alumel).	Type	

K	thermocouples	can	measure	temperatures	from	-dee	to	aeoC.	They	comprise	a	nickel-

chromium	positive	leg	and	a	nickel-aluminium	negative	leg	which	are	twisted,	and	spot	

welded	at	their	end.	Each	specimen	has	d	thermocouples	whose	end	is	spot	welded	on	the	

specimen.	A	 representative	 sketch	of	 a	uniaxial	 `PB	and	biaxial	 cPB	 specimen	and	 the	

places	where	 the	 thermocouples	 are	 attached	 is	 shown	 in	 Figure	a.dd	 and	Figure	a.d`	

respectively.	

	

Figure 4.22: Schematic showing the thermocouple positions on a 3PB specimen 
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Figure 4.23:Schematic showing the thermocouple positions on a 5PB specimen 

CMOD	values	were	measured	using	an	Epsilon	`ca]	–	eecM	–	]deM	–	LT	COD	gauge.	This	

has	an	initial	gauge	length	of	c	mm	and	can	measure	accurately	between	]ee	and	-d_eoC.	

To	attach	the	clip	gauge	on	the	specimens	knife	edges	are	designed	following	the	guidance	

of	[]`d].		A	schematic	of	the	knife	edges	can	be	seen	in	Figure	a.da.	To	attach	the	knife	

edges	on	the	specimens,	the	latter	are	drilled	and	taped	on	each	side	of	crack	notch,	as	

shown	in		Figure	a.dc	for	the	`PB	specimens.		

	

Figure 4.24: Knife edges to attach COD gauge 
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Figure 4.25: 3PB specimen with holes for the knife edge attachment 

 Testing procedure 

Each	test	began	with	the	spot	welding	of	the	thermocouples	on	the	specimen.	Then	the	

knife	edges	were	screwed	on	each	side	of	the	crack.	Following	the	semi-spherical	punch	

was	lubricated	using	a	low	temperature	bearing	lubricant	and	mechanical	grease.		

The	CMOD	gauge	was	then	attached	at	the	knife	edges	and	the	specimen	was	placed	on	

the	rig.	Alignment	of	the	specimen	with	the	punch	was	accomplished	by	visual	observation	

and	markings	on	the	specimen	and	the	polystyrene	insulation	blocks.	The	final	setup	of	a	

uniaxial	experiment	with	the	chamber	open	is	shown	in	Figure	a.dg	(a).	

Once	alignment	was	assured,	the	wiring	from	the	CMOD	gauge	and	the	thermocouples	

was	guided	out	through	the	side	of	the	chamber	and	the	chamber	was	shut.	To	ensure	

proper	sealing	of	the	chamber	two	straps	were	used	to	keep	it	firmly	shut,	as	seen	in	Figure	

a.dg	(b),	while	aluminium	tape	was	placed	at	the	“lips”	of	the	chamber	to	avoid	any	leaks.	

The	liquid	nitrogen	supply	was	then	opened,	and	the	temperature	controller	was	set	to	-

]geoC.		

Once	the	thermocouples	read	a	steady	temperature	of	approximately	-]geoC	the	specimen	

was	left	for	an	additional	`e	minutes	at	this	temperature.	This	time	sufficed	to	ensure	no	

temperature	gradients	through	its	thickness.		

Finally,	the	crosshead	was	moved	to	meet	the	specimen	and	the	test	began.	Testing	was	

conducted	under	displacement	control	at	a	rate	of	e.d	mm/min.		
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(a)	

	
(b)	

	
(c)	

Figure 4.26: Photographs of experimental setup (a) face view with open chamber (b) face 
view with closed chamber and (c) side view 

After	the	end	of	each	experiment	the	post	fracture	surfaces	were	photographed	using	an	

optimax	stereoscope	and	the	exact	length	of	the	fatigue	pre-crack	was	measured.	The	latter	

was	 then	digitised	using	 a	 python	 code.	An	 example	 of	 a	 post	 fracture	 surface	 and	 its	

digitised	counterpart	is	shown	in	for	equibiaxially	loaded	specimen	cPB	a_B_]	in	Figure	
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a.d_	(a)	and	(b)	respectively.	In	the	latter,	the	measured	EDM	notch	length,	as	well	as	the	

average	fatigue	crack	length	throughout	the	thickness	and	the	average	fatigue	crack	length	

on	the	tensile	side	of	the	bend	are	noted.	

	
(a)	

	
(b)	

Figure 4.27: Post fracture (a) image of the fracture surface (b) digitised fatigue pre-crack 
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 Experimental results 

 Room temperature tests 

Overall,	two	room	temperature	tests	were	conducted,	both	on	cruciform	specimens.	The	

first	 test	 aimed	 to	 check	 the	 soundness	 of	 the	 setup.	 It	 was	 conducted	 on	 specimen	

cPB	`_BB_]	which	was	 rejected	 for	 proper	 testing	due	 to	 a	 thickness	 gradient	 from	 its	

fabrication	and	was	not	 fatigue	pre-cracked.	The	test	was	stopped	at	a	CMOD	value	of	

approximately	]	mm	after	clearly	entering	the	plastic	zone	of	the	Load-CMOD	curve.		

Once	this	test	was	completed,	a	fatigue	pre-cracked	specimen,	i.e.	cPB	g_B_],	was	tested	

to	check	the	shape	of	the	Load-CMOD	produced	with	this	layout.	This	test	was	loaded	to	

a	 much	 higher	 CMOD	 however	 was	 stopped	 after	 a	 certain	 amount	 of	 applied	

displacement	due	to	the	punch	being	too	low	and	the	rollers	that	support	the	specimen	

potentially	being	shot	off	the	rig.	Specimen	cPB	g_B_]	is	shown	post	testing	in	Figure	a.di.		

The	results	of	the	two	tests	are	presented	in	Figure	a.df.	As	expected,	also	shown	with	the	

experiments	in	the	work	of	[]dg],	at	this	temperature	the	difference	of	the	notch	tip	acuity	

plays	an	important	role	and	changes	the	shape	of	the	Load-CMOD	curve,	with	the	EDM-

notched	specimen	reaching	much	higher	loads	for	the	same	crack	mouth	opening.		

The	limitation	of	being	able	to	further	load	the	specimen	and	the	shape	of	the	curve	in	

Figure	 a.df,	 which	 does	 not	 show	 a	 clear	 maximum,	 did	 not	 allow	 for	 further	 room	

temperature	tests	to	be	conducted.		

	
(a)	

	
(b)	

Figure 4.28: Specimen 5PB 6B1 post testing (a) top view (b) bottom view 
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Figure 4.29: Load-CMOD of room temperature tests 
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 Lower shelf tests | -160oC 

This	 section	 includes	 the	 results	of	all	 the	 remaining	specimens,	not	 rejected	 from	the	

fatigue	pre-cracking	phase,	which	were	tested	at	-]geoC.	This	temperature	corresponds	to	

lower	shelf	fracture	toughness.	A	matrix	of	the	experimental	database	is	given	in	Table	a.g.	

Table 4.6: Experimental database 

Specimen	ID	

Uniaxial	-	3	Point	bend	
Biaxial	-	5	Point	

bend	
3PB_1_U_1	 5PB_1_B_1	
3PB_1_U_2	 5PB_1_B_2	
3PB_1_B_1	 5PB_1_BB_1	
3PB_3_U_1	 5PB_1_BB_2	
3PB_3_U_2	 5PB_3_B_1	
3PB_3_B_1	 5PB_3_B_2	
3PB_4_U_1	 5PB_3_BB_2	
3PB_4_B_1	 5PB_4_B_1	
3PB_4_B_2	 5PB_4_B_2	
3PB_5_U_1	 5PB_4_BB_1	
3PB_5_U_2	 5PB_4_BB_2	
3PB_5_B_1	 5PB_5_B_2	
3PB_6_U_1	 5PB_5_BB_1	
3PB_6_U_2	 5PB_5_BB_2	
3PB_6_B_1	 5PB_6_B_2	

	 5PB_6_BB_1	

	 5PB_6_BB_2	
 

Overall,	 ]c	`-point	bend	tests	were	conducted	on	rectangular	specimens	and	]_	c-point	

bend	 tests	on	cruciform	specimens.	Throughout	 the	 testing	at	 low	 temperatures	many	

specimens	exhibited	some	form	of	friction.	This	can	be	seen	in	the	Load-CMOD	graph	of	

specimen	`PB_]_U_d	shown	in	Figure	a.`e.	Additionally,	during	experiments	the	window	

of	the	chamber	became	frosty,	as	shown	in	Figure	a.dg,	prohibiting	visual	observation	and	

not	 allowing	 for	 the	 exact	 source	of	 the	 friction	 to	be	 traced.	 It	 is	 speculated	 that	 the	

friction	 came	 between	 the	 rollers	 and	 the	 specimens	 or	 the	 hollow	 cylinder	 base.		

Unfortunately,	no	visual	accessibility	and	complexity	of	the	experimental	layout	did	not	

allow	for	a	more	detailed	understanding	of	the	source	of	friction.		
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Figure 4.30: Load - CMOD of 3PB 1_U_2 

	

 Uniaxial fracture tests 

From	the	]c	`-point	bend	tests,	two	were	rejected	(`PB_a_U_],	`PB_g_U_])	due	to	very	

high	friction.	The	remaining	]`	are	presented	in	Figure	a.`]	while	the	experimental	matrix	

including	the	average	test	temperature,	the	failure	loads,	the	post	fracture	average	crack	

length	calculated	throughout	the	thickness	and	the	average	crack	length	for	the	tensile	

side	is	given	in	Table	a._.	

Figure	a.`]	shows	that	some	tests	exhibited	a	Load-CMOD	curve	going	way	past	linearity	

into	the	plastic	zone.	In	light	of	this	the	tests	were	separated	into	two	categories,	the	ones	

that	failed	elastically,	i.e.	without	lots	of	ductile	tearing,	and	those	which	had	considerable	

plasticity.		
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Figure 4.31: Load-CMOD of 3PB tests 

	

	

Table 4.7: Experimental matrix of Uniaxial specimens 

Specimen	ID	
Test	

Temperature	
(oC)	

Failure	
Load	(kN)	

Fatigue	crack	length	-	
through	thickness	

average	(mm)	

Fatigue	crack	
length	-	tensile	side	

average	(mm)	
3PB_1_U_1	 -157	 1.9	 2.4	 2.8	
3PB_1_U_2	 -158	 2.1	 2.6	 2.7	
3PB_1_B_1	 -158	 2.7	 3.4	 3.4	
3PB_3_U_1	 -157	 1.1	 2.4	 2.8	
3PB_3_U_2	 -158	 1.5	 1.6	 2.3	
3PB_3_B_1	 -159	 1.5	 2.9	 3.0	
3PB_4_B_1	 -162	 1.4	 2.2	 2.6	
3PB_4_B_2	 -157	 1.8	 1.8	 2.5	
3PB_5_U_1	 -159	 2.3	 2.1	 2.3	
3PB_5_U_2	 -158	 1.3	 1.8	 2.5	
3PB_5_B_1	 -160	 1.8	 2.1	 2.5	
3PB_6_U_2	 -158	 2.3	 1.5	 2.0	
3PB_6_B_1	 -160	 1.7	 4.5	 3.9	

	

	

	



	

]`]	

The	 post	 fracture	 surface	 of	 specimen	 `PB	 ]_U_d,	 shown	 in	 Figure	 a.`d	 (a),	 was	 a	

characteristic	example	with	lots	of	ductile	tearing.	Figure	a.`d	(b),	includes	red	markings	

denoting	 the	 ductile	 tearing	 zones,	 which	 appear	 to	 be	 more	 than	 e.dmm	 which	 is	

considered	 as	 the	 threshold	 of	 tearing,	 for	 calculation	 of	 initiation	 fracture	 toughness	

values.	Contrary	to	`PB	]_U_d,	specimen	`PB	g_B_]	which	failed	at	a	lower	CMOD,	did	

not	appear	to	have	ductile	tearing	as	seen	in	Figure	a.``.		

From	the	above	observations	and	the	trend	observed	Figure	a.`],	it	was	decided	the	cut-

off	 value	 for	 elastically	 failed	 specimens	 to	be	e.`	mm	of	CMOD,	 except	 for	 specimen	

`PB	]_U_d	which	failed	at	a	CMOD	of	approximately	e.dc	mm	but	exhibited	lots	of	tearing.	

The	 two	 categories	 consist	 of	 c	 tests	 for	 the	 plastic	 ones	 and	 the	 remaining	 ]]	 for	 the	

elastically	failed.		

The	experimental	results	for	each	of	the	two	categories	separately	are	shown	here	in	Figure	

a.`a	 and	 Figure	 a.`c.	 Separate	 Load-CMOD	 curves	 for	 each	 specimen	 are	 given	 in	

Appendix	 ].	 Friction	 from	 low	 to	 high	 amounts	 was	 present	 in	 most	 of	 the	 tests,	

nevertheless	 a	 trend	 was	 observed	 in	 the	 two	 categories	 regarding	 failure	 loads	 and	

CMODs.	The	differences	between	the	elastic	specimens	can	also	be	partly	explained	by	the	

inherent	scatter	in	brittle	fracture.	

	
(a)	

	
(b)	

Figure 4.32: 3PB 1_U_2 post-fracture surface (a) as taken (b) with highlighted ductile 
tearing zones. 
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Figure 4.33: 3PB 1_U_2 post-fracture surface 

Even	 though	 the	 tests	 were	 conducted	 at	 a	 nominal	 temperature	 of	 -]geoC,	 which	

corresponds	to	lower	shelf	fracture	toughness,	high	levels	of	plasticity	were	achieved	in	

the	plastic	category	specimens.	This	denotes	that	crack	tip	constraint	of	this	experimental	

layout	could	be	lower	than	what	was	originally	intended.		

	

Figure 4.34: Load-CMOD curve of elastic 3PB tests 
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Figure 4.35: Load-CMOD curve of plastic 3PB tests 

	

 Biaxial fracture tests 

Similar	to	the	uniaxial	tests,	biaxial	tests	also	included	friction	in	many	instances.	This	was	

more	prominent	for	the	c-point	bends.	Given	there	were	a	points	of	contact	with	rollers	

in	this	setup	the	argument	that	friction	originated	from	the	rig-roller-specimen	surface	

interactions	is	further	supported.	Here	a	specimens	were	rejected	as	having	a	significant	

amount	of	friction,	i.e.	cPB	]_BB_],	cPB	`_B_],	cPB	a_BB_],	cPB	g_BB_].	

Ten	of	the	tests	had	pop-ins	events	during	loading,	shown	in	Table	a.i.	These	events	were	

considered	as	the	failure	event.	A	characteristic	example	was	that	of	cPB	`_B_d,	whose	

Load-CMOD	curve	is	given	in	Figure	a.`g.		

The	Load-CMOD	curves	of	all	the	tests	up	to	the	failure	events	considered,	are	shown	in	

Figure	a.`_,	while	 separate	Load-CMOD	curves	of	 the	whole	 experiment	 and	until	 the	

fracture	 event	 are	 given	 in	 Appendix	 ].	 The	 experimental	 matrix	 of	 the	 biaxial	 tests	

including	the	average	test	temperature,	the	failure	loads,	the	post	fracture	average	crack	

length	calculated	throughout	the	thickness	and	the	average	crack	length	for	the	tensile	

side	is	given	in	Table	a.f.	
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Table 4.8: 5-point bend failure conditions 

Specimen	ID	 pop-in	event	 CMOD	>	0.5	mm	
5PB_1_B_1	 x	

	

5PB_1_B_2	 x	
	

5PB_1_BB_2	
	

x	
5PB_3_B_2	 x	

	

5PB_3_BB_2	 x	
	

5PB_4_B_1	 x	
	

5PB_4_B_2	 x	
	

5PB_4_BB_2	
	

x	
5PB_5_B_2	 x	

	

5PB_5_BB_1	 x	
	

5PB_5_BB_2	 x	
	

5PB_6_B_2	 x	
	

5PB_6_BB_2	
	

x	
	

	

	

Figure 4.36: Load-CMOD of 5PB 3_B_2 
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Table 4.9: Experimental matrix of Biaxial specimens 

Specimen	
ID	

Test	
Temperature	

(oC)	

Failure	
Load	(kN)	

Fatigue	crack	length	-	
through	thickness	

average	(mm)	

Fatigue	crack	
length	-	tensile	side	

average	(mm)	
5PB	1_B_1	 -161	 39.5	 2.2	 2.5	
5PB	1_B_2	 -161	 48.0	 2.5	 2.6	
5PB	1_BB_2	 -161	 56.6	 2.7	 2.7	
5PB	3_B_2	 -162	 50.3	 3.4	 3.4	
5PB	3_BB_2	 -161	 34.0	 1.6	 2.1	
5PB	4_B_1	 -164	 53.8	 2.5	 2.7	
5PB	4_B_2	 -163	 55.1	 2.1	 2.2	
5PB	4_BB_2	 -162	 54.6	 2.8	 2.9	
5PB	5_B_2	 -158	 42.2	 2.9	 3.1	
5PB	5_BB_1	 -161	 47.3	 3.1	 3.0	
5PB	5_BB_2	 -162	 48.6	 2.3	 2.6	
5PB	6_B_2	 -162	 45.0	 2.4	 2.3	
5PB	6_BB_2	 -160	 55.3	 2.1	 2.5	

	

	

Figure 4.37: Load-CMOD of 5PB tests 

	

Again,	 tests	varied	 in	the	amount	of	plasticity	reached	before	 failure.	The	post	 fracture	

surface	of	specimen	cPB	`_B_d,	shown	in	Figure	a.`i(a),	had	significant	ductile	tearing.	

Figure	a.`i	(b),	includes	red	markings	denoting	the	ductile	tearing	zones,	which	are	longer	
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than	e.d	mm.	In	this	case	and	given	the	pop-in	event	of	the	specimen	it	is	not	clear	what	

amount	of	tearing	happened	prior	to	the	pop	in.		

	

	
(a)	

	
(b)	

Figure 4.38: 5PB 3_B_2 post-fracture surface (a) as taken (b) with highlighted ductile 
tearing zones. 

Even	though	fracture	surfaces	did	show	tearing	was	present,	the	separation	between	the	

plastically	(showing	lots	of	tearing)	and	elastically	collapsed	specimens	here	is	made	based	

on	the	trends	observed	in	Figure	a.`_.	There	is	a	clear	separation	between	tests	where	the	

crack	propagated	are	lower	load	and	CMODs	and	these	where	the	curve	reached	well	into	

the	plastic	zone.	The	CMOD	cut-off	value	for	the	separation	between	the	two	categories	

here	was	selected	to	be	e.c	mm.		

This	led	to	three	tests	falling	into	the	plastically	(showing	lots	of	tearing)	failed	category,	

shown	 in	Table	 a.i.	 The	 remaining	 ]a	 tests	were	 considered	 to	have	 failed	 either	 in	 a	

complete	brittle	manner	or	with	limited	plasticity.	In	the	cases	where	the	pop-ins	were	not	

at	 a	high	CMOD	value	 these	 tests	have	been	 considered	 to	 fail	with	 limited	plasticity.	

Separate	graphs	of	the	elastic	and	plastic	failed	specimens	are	shown	in	Figure	a.`f	and	

Figure	a.ae	respectively.	Full	curves	until	the	final	loading	of	the	specimens	are	given	in	

Appendix	]	along	with	pictures	of	the	specimen	post-failure	and	the	fracture	surface	of	

each	specimen.		
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Figure 4.39: Load-CMOD curve of elastic 5PB tests 

	

Figure 4.40: Load-CMOD curve of plastic 5PB tests 

	

	



	

]`i	

Considering	the	mode	of	fracture,	the	crack	path	did	change	direction	during	loading,	with	

the	 crack	 exhibiting	 from	 slight	 curvature,	 observed	 on	 specimen	 cPB	 ]_B_]	 shown	 in	

Figure	a.a]	(a),	to	the	characteristic	“S”	shape	observed	in	the	PMMA	specimens	and	here	

on	specimen	cPB	]_B_d	shown	in	Figure	a.a]	(b).	

	
(a)	

	
(b)	

Figure 4.41: Post fracture pictures of (a) 5PB 1_B_1 and (b) 5PB 1_B_2 

This	 confirms	 that	 biaxiality	 was	 indeed	 captured	 successfully	 with	 the	 experiments,	

however	with	specimens	exhibiting	high	amounts	of	plasticity	it	is	again	argued	that	the	

levels	 of	 constraint	 captured	 were	 potentially	 lower	 than	 those	 of	 high	 constrained	

experiments	such	as	C(T)	specimens.		

 Conclusions 

An	experimental	program	has	been	designed	to	target	biaxiality	and	its	effect	on	constraint	

and	failure.		

Two	geometries	were	designed,	a	rectangular	specimen	loaded	in	a	`-point	bend	and	a	

cruciform	specimen	loaded	in	a	c-point	bend.	The	geometries	had	through	thickness	crack	

and	attempted	to	decouple	surface	flaw	effects	from	biaxially	induced	constraint.	

The	experimental	 layout	was	initially	validated	with	the	use	of	PMMA	samples.	PMMA	

exhibited	completely	linear	elastic	behaviour	breaking	in	a	brittle	manner.	The	fracture	

trajectory	of	the	cruciform	equibiaxially	loaded	(c-point	bends)	had	an	“S”	shape,	known	

to	be	an	effect	of	biaxiality,	providing	confidence	 that	 it	was	 captured	 from	 the	 setup.	
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Cruciform	specimens	 required	higher	 loads	 to	 fracture	 in	 comparison	 to	 the	uniaxially	

loaded	 specimens	due	 to	 a	 significant	 fraction	of	 the	 load	 applied	by	 the	punch	being	

consumed	for	the	in-plane	loading.		

Steel	 specimens	 were	 cut	 out	 of	 a	 well	 characterized	 ferritic	 steel,	 whose	 fracture	

toughness	and	tensile	properties	were	known	for	a	wide	temperature	spectrum.	Limited	

material	availability	allowed	for	thinner	than	PMMA	specimens	to	be	cut.		

During	 testing,	 further	 displacement	 was	 required	 on	 steel	 in	 comparison	 to	 PMMA	

specimens	to	reach	failure.	To	ensure	safety	during	testing	and	avoid	parts	of	the	layout	

shooting	 off,	 a	 limitation	 on	 the	 maximum	 displacement	 was	 imposed.	 Within	 this	

displacement	threshold	room	temperature	tests	showed	extensive	plasticity,	while	Load-

CMOD	curves	were	not	able	to	reach	a	maximum	before	the	test	was	stopped.	This	did	

not	allow	for	further	experiments	at	this	temperature.	

A	 single	 temperature	 that	 corresponded	 to	 the	 lower	 shelf	 of	 the	 transition	 curve	was	

tested.	To	decide	 the	 exact	 temperature	Charpy	 tests	were	 conducted	 and	a	 transition	

curve	 for	 this	material	was	drafted.	This	 in	 combination	with	 the	 existing	data	on	 the	

material	 designated	 -]geoC	 as	 an	 appropriate	 testing	 temperature,	 where	 highly	

constrained	geometries	exhibited	very	limited	plasticity	during	fracture	tests.		

Like	the	PMMA	specimens	the	fracture	trajectory	of	the	equibiaxially	 loaded	cruciform	

specimens	appeared	to	be	deviating	from	a	straight	line	exhibiting	from	slight	curvature	

to	an	“S”	shaped	curve,	ensuring	that	biaxiality	was	again	captured	by	the	experimental	

layout.	Cruciform	specimens	in	many	cases	experienced	pop-in	events	which	were	treated	

as	failure	events,	while	the	failure	loads	of	the	cruciform	specimens,	were	as	in	the	PMMA	

samples,	higher	than	the	rectangular	specimens,	this	time,	by	an	order	of	magnitude.	

In	 both	 geometries	 tested,	 specimens	 exhibited	 varying	 levels	 of	 plasticity	 with	 some	

having	 Load-CMOD	 curves	 going	 way	 past	 linearity	 into	 the	 plastic	 zone	 and	 the	

remaining	deviating	very	little	from	linear	behaviour.	The	tests	were	thus	separated	into	

two	categories,	the	ones	that	failed	elastically,	and	those	which	had	lots	of	ductile	tearing.	

The	separating	criterion	between	the	two	categories	was	a	specific	value	of	CMOD	chosen	

for	each	geometry	with	the	aid	of	the	trend	of	the	Load-CMOD	curves	and	the	observed	

ductile	 tearing	 on	 the	 fracture	 surfaces.	 The	 existence	 of	 plasticity	 at	 such	 a	 low	

temperature	denoted	that	the	desired	high	constraint	effect	attempted	to	be	captured	by	

this	setup	might	have	not	succeeded.	



	

]ae	

	

 Finite element analyses 

	

 Introduction 

The	innovative	experimental	program	of	Chapter	a	gave	valuable	 insight	on	biaxiality’s	

effect	 on	 failure	 loads	 and	 the	 plasticity	 developed,	 however	 it	 was	 not	 possible	 from	

experiments	alone	to	calculate	values	of	paramount	importance	like	fracture	toughness	or	

constraint	measures.	This	is	due	to	the	geometry	and	the	loading	of	the	specimens	and	in	

particular	 the	 cruciform	 specimens,	 for	 which	 no	 analytical	 solutions	 exist	 for	 the	

calculation	of	the	effective	fracture	toughness	and	the	structural	constraint.		

In	 pursuit	 of	 calculating	 stress	 intensity	 factors	 at	 failure	 and	 T-stresses	 for	 the	 two	

geometries	FEA	models	have	been	developed.	These	values	will	be	able	 to	 indicate	 the	

constraint	effects	captured	with	this	experimental	program	and	assist	 in	concluding	on	

the	effect	of	biaxiality	on	through	thickness	flaws,	i.e.	when	decoupled	from	surface	flaw	

effects.		

The	following	sections	provide	the	methodology	used	for	modelling	the	PMMA	and	steel	

specimens	included	in	the	experimental	program	and	explain	the	modelling	strategy	for	
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the	two	different	geometries,	i.e.	cruciform	and	rectangular	specimens.	Lastly,	the	results	

of	the	models	follow	for	both	materials.	

 Model methodology 

 PMMA models 

 Geometry 

The	model	consists	of	three	instances,	namely	

]) the	test	specimen	(PMMA)	

d) the	loading	punch	

`) a	 boundary	 surface	 that	 prohibits	 intersection	 of	 the	 compressive	 sides	 of	 the	
bending	along	the	crack	front	

The	PMMA	specimens,	both	rectangular	and	cruciform,	were	assumed	to	be	symmetrical	

along	the	mid-width	of	the	specimen	and	the	crack	front,	thus	a	quarter	was	modelled,	

where	symmetry	boundary	conditions	were	assumed	in	the	respective	planes.	An	overview	

of	 the	 FEA	 layout	 is	 given	 for	 the	 `	 and	 c-point	 bends	 in	 Figure	 c.]	 and	 Figure	 c.d	

respectively.	

	

Figure 5.1: PMMA 3PB FEA Assembly 
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Figure 5.2: PMMA 5PB FEA Assembly 

The	dimensions	of	the	PMMA	test	specimens	in	the	FEA	were	the	same	given	in	Chapter	

a			for	the	experiments	and	the	crack	length	for	all	models	was	da=dc	mm	(]d.c	mm	in	the	

modelled	quarter).	The	mesh	of	 the	 rectangular	 and	 cruciform	 specimens	 consisted	of	

g]`aa	and	]a_gee	C`Dde	quadratic	hexahedral	elements,	shown	in	Figure	c.a	(a)	and	(b),	

while	a	focused	mesh	was	designed	around	the	crack	tip	as	explained	in	Section	c.].d.`.	

Merge	 convergence	 is	 ensured	 from	 the	 use	 of	 dceee	 elements	 onwards,	 as	 shown	 in	

Figure	c.`	where	the	displacement	at	the	tensile	surface	of	the	PMMA	cruciform	specimen	

model	 is	 shown	against	 the	number	of	elements	used	with	an	applied	displacement	of	

e.i_	mm	by	the	punch.		

	

Figure 5.3: Displacement at centre of specimen vs # of elements 
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The	semi-spherical	punch	was	an	analytic	rigid	shell	surface	with	a	radius	of	de	mm,	same	

as	 the	 experimental	 punch	 and	 required	 no	 meshing	 given	 its	 analytical	 closed	 form	

solution	hence	no	further	discussion	will	be	made	on	the	meshing	of	the	punch.		

The	boundary	surface	was	a	discrete	rigid	surface	of	dimensions	dc	x	]d.c	mm	covering	the	

modelled	crack	front.	Its	mesh	consisted	of	iid	R`Da	linear	quadrilateral	elements,	shown	

in	 Figure	 c.a	 (c).	 Both	 rigid	 bodies,	 analytic	 and	 discrete	 experienced	 no	 deformation	

during	loading	and	required	no	material	specification.			
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(a)	

	
(b)	

	
(c)	

Figure 5.4: Meshed instances of PMMA models (a) 3PB specimen (b) 5PB specimen (c) 
boundary surface 
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 Material 

PMMA	 was	 considered	 to	 exhibit	 only	 linear	 elastic	 behaviour	 up	 to	 failure	 with	 no	

plasticity	 included.	The	material	properties	used	for	the	elastic	model	were	taken	from	

literature	[]``]	and	were,	

• Young’s	Modulus	E	=	dfee	MPa	

• Poisson	Ratio	v=e.`i			

The	remaining	two	parts	of	the	FEA	assembly	were	assumed	as	rigid	bodies	and	did	not	

require	 any	 material	 specification.	 Given	 the	 current	 runtime	 of	 the	 models	

(approximately	de-`e	hours	on	i	cores	and	ga	GB	ram)	adding	material	and	meshing	to	

the	remaining	d	parts	would	not	allow	any	computational	and	time	efficiency.		

 Crack tip modelling 

Sharp	cracks	have	a	 strain	singularity	at	 the	crack	 tip.	 In	FEA,	 sharp	 this	 is	commonly	

addressed	with	focused	meshes.	The	singularity	at	the	crack	tip	is	incorporated	in	small-

strain	analysis	with	the	choice	the	correct	element	types	and	refinement	of	the	mesh	[]d`].	

This	 singularity	 relies	 on	 the	 amount	 of	 plasticity,	 and	 thus	 material	 properties,	 that	

develops	during	loading.	

For	the	models	developed	here,	a	radial	mesh	around	the	crack	tip	was	generated.	At	the	

crack	tip	the	hexahedral	elements	were	collapsed	into	wedges,	shown	in	Figure	c.c.	Given	

that	the	analyses	for	the	PMMA	specimens	will	be	elastic,	the	nodes	at	the	tip	were	merged	

to	 a	 single	node.	 	The	 singularity	was	 accounted	 for	by	moving	 the	mid-side	nodes	of	

second	order	elements6,	at	the	crack	edge,	towards	the	crack	tip	at	a	distance	of	¼	of	the	

length	of	the	wedge,	as	suggested	for	elastic	analyses	[]d`].		

The	first	and	second	row	of	elements	at	the	crack	tip	had	a	length	of	e.c	mm	which	was	

then	increased	to	e._	extending	radially,	while	there	were	ai	elements	tangentially	placed	

along	each	of	the	semicircles.	Overall,	_	contours	of	J-integrals	were	calculated,	and	the	

mesh	was	sufficient	for	the	values	to	converge	from	the	`rd	contour	onwards.	

	
6	Second	order	element:	an	element	with	additional	midside	nodes	where	quadratic-second	order	
interpolation	can	take	place	for	the	calculation	of	the	values	at	the	element	from	its	nodes.	
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Figure 5.5: Crack-tip mesh of PMMA specimens 

 Boundary conditions, contact properties & loading 

Both	`PB	and	cPB	PMMA	specimens	had	similar	boundary	conditions	as	shown	in	Figure	

c.g	 and	 Figure	 c._	 respectively.	 X	 and	 Y	 symmetry	 were	 assumed	 due	 to	 the	 quarter	

specimen	 modelled,	 not	 allowing	 displacements	 on	 the	 symmetry	 axis	 and	 relative	

rotations	to	the	other	two	axes.	The	interaction	with	the	rollers	was	incorporated	with	the	

use	of	a	boundary	condition	at	the	point	of	contact	which	prohibited	displacement	on	the	

Z	(load)	axis.	As	described	later	for	the	steel	models	the	stresses	developed	at	the	roller	

contact	were	reasonable	(just	above	yield	for	the	steel	models)	and	thus	the	mesh	and	the	

approach	selected	were	deemed	appropriate.		

For	the	spherical	punch	analytical	surface,	a	kinematically	coupled	reference	point	was	

defined.	The	point,	and	thus	the	surface,	were	constraint	to	have	zero	displacement	along	

the	x	and	y	axis	and	any	relative	rotations	while	being	allowed	to	move	along	the	z	axis	

(loading	direction).	Loads	were	applied	to	the	specimen	via	application	of	displacement	

on	the	reference	point	of	the	punch.	 

For	 the	boundary	 surface,	 it	was	 tied	 to	 a	 reference	point	 and	 fixed	 there	 allowing	no	

displacement	or	rotations.	In	essence	it	acted	as	a	symmetry	boundary	condition	along	the	

crack	front	which	prohibited	intersection	between	the	compressive	sides	of	the	bend	while	

allowing	displacement	of	the	PMMA	surface	on	the	tensile	side	of	the	bend.	

Contact	was	defined	between	the	specimen	and	the	punch	as	well	as	the	specimen	and	the	

boundary	surface,	while	no	interaction	was	considered	between	the	boundary	surface	and	

the	 punch.	 The	 contact	 properties	 for	 both	 were	 a	 friction	 coefficient	 of	 e.`	 for	 the	
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tangential/shear	stresses	and	hard-contact	was	used	for	the	pressure	applied	in	the	normal	

direction.		

	

Figure 5.6: Boundary conditions of 3PB PMMA specimen 

	

Figure 5.7: Boundary conditions of 5PB PMMA specimen 
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 Steel models 

 Geometry 

The	methodology	 for	 the	 BS	 ]ce]-dda	 steel	models	was	 the	 same	 to	 that	 used	 for	 the	

PMMA	 specimens.	 Again,	 the	 model	 consisted	 of	 three	 geometries/parts,	 the	 test	

specimen,	which	had	a	thickness	of	]e	mm,	the	same	semi	spherical	punch,	which	applied	

the	load	and	a	boundary	surface	that	prohibited	intersection	of	the	compressive	sides	of	

the	bending	along	the	crack	front	with	a	reduced	length	of	]e	mm	to	match	the	thickness	

of	the	specimen.		

The	crack	length	of	steel	specimens	in	the	FEA	was	the	average	crack	length	on	the	tensile	

side	of	the	bend,	as	it	was	measured	from	the	optometer	and	presented	in	Appendix	].	

Given	the	extensive	time	required	for	the	analyses	of	the	PMMA	specimens	it	was	expected	

that	 the	 elastic-plastic	 behaviour	 of	 the	 steel	material	would	 extend	 the	 time	 for	 each	

model	beyond	acceptable	timeframes.	Considering	this	reduced	integration	elements	were	

used	 for	 the	 steel	 models.	 In	 particular	 the	 mesh	 of	 the	 rectangular	 and	 cruciform	

specimens	consisted	of	]f`_]	and	d]aga	C`DdeR	reduced	integration	quadratic	hexahedral	

elements,	shown	in	Figure	c.i	(a)	and	(b),	while	as	before	a	focused	mesh	was	designed	

around	 the	 crack	 tip,	 explained	 in	 Section	 c.d.d.`.	 The	 difference	 on	 the	 J-integrals	

calculated	 and	 load-CMOD	 curves	 between	 reduced	 and	 full	 integration	 elements	 is	

shown	for	a	uniaxial	and	a	biaxial	specimen	loaded	to	failure	in	Figure	c.f	and	Figure	c.]e	

respectively.	 The	 Load-CMOD	 curves	 are	 identical,	 while	 for	 the	 J-integral	 minimal	

differences	are	seen.	The	above	render	the	mesh	as	a	good	balance	between	computational	

efficiency	and	model	integrity.		

The	semi-spherical	punch	was	an	analytic	rigid	shell	surface	with	a	radius	of	de	mm,	same	

as	 the	 experimental	 punch	 and	 required	 no	 meshing	 given	 its	 analytical	 closed	 form	

solution.		

The	boundary	surface	was	a	discrete	rigid	surface	of	]e	mm	length	and	width	equal	to	that	

of	the	crack	modelled.	Its	mesh	consisted	of	]ca	R`Da	linear	quadrilateral	elements.		
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(a)	

	
(b)	

Figure 5.8: Meshed instances of steel models (a) 3PB specimen (b) 5PB specimen 
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(a)	
	

	
(b)	

Figure 5.9: Effects of element choice on (a) Load-CMOD (b) J-integral at failure 
calculation for specimen 3PB 5_U_2 
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(a)	
	

	
(b)	

Figure 5.10: Effects of element choice on (a) Load-CMOD (b) J-integral at failure 
calculation for specimen 5PB 5_B_2 

 Material 

The	material	 properties	used	 for	 the	 steel	 analyses	were	 experimentally	 obtained	 from	

[]dg]	at	-	]ge	oC.	For	the	elastic	behaviour	the	following	properties	were	used:		

• Young’s	Modulus	E	=	dea	GPa	

• Poisson	Ratio	v=e.`	
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For	the	plastic	behaviour	of	the	specimen	the	exact	tensile	curve	was	taken	from	[]dg]		and	

shown	for	completeness	here	in	Figure	c.]].	Here	it	should	be	noted	that	the	tensile	curve	

includes	Luders	strains	that	are	generally	a	result	of	tensile	loading	in	a	small	specimen	

(such	 as	 a	 tensile)	 and	not	 typically	 considered	 for	 larger	 specimens	 and	 components,	

especially	under	bending.	Inclusion	of	this,	results	in	lower	crack	resistance	curves	[]`a],	

however	given	the	resulting	model	curves	in	the	following	section	being	higher	than	the	

experimental	 ones	 and	 the	 small	 Lüders	 plateau	 seen	 in	 Figure	 c.]],	 including	 them	 is	

assumed	to	be	correct.	

	
Figure 5.11: BS1501-224 28B Stress Strain Curve recreated from [LQN] 

The	remaining	two	parts	of	the	FEA	assembly	were	assumed	as	rigid	bodies	and	did	not	

require	any	material	specification.		

Regarding	 geometric	 nonlinearities,	 parametric	 analyses	 with	 the	 parameter	 that	

addresses	that	in	Abaqus,	i.e.	nlgeom,	are	found	in	Appendix	d	and	specifically	in	Figure	

Ad.	]e.	The	comparison	shows	that	nlgeom	on/off	affects	mostly	the	non-linear	part	of	the	

load	CMOD	curve.	Since	specimens	that	go	past	this	linear	part	are	omitted	from	these	

analyses	either	choice	would	give	accurate	results.	Since	typically	calculating	J	should	not	

be	considered	with	nlgeom	on	as	it	can	lead	to	spurious	results	based	on	stresses	near	the	

crack-tip	nlgeom	was	considered	as	off	for	all	the	analyses.		

0

100

200

300

400

500

600

700

800

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

St
re

ss
   

( M
Pa

)

Strain



	

]c`	

 Crack tip modelling 

For	the	steel	models,	a	radial	mesh	around	the	crack	tip	was	generated.	At	the	crack	tip	

the	hexahedral	elements	were	collapsed	into	wedges,	shown	in	Figure	c.]d.	The	nodes	at	

the	tip	of	the	wedges/crack	were	merged	to	a	single	node	(wedges)	since	elastic-plastic	

analyses	would	be	run.	The	singularity	was	accounted	for	by	moving	the	mid-side	nodes	

of	second	order	elements,	at	the	crack	edge,	towards	the	crack	tip	at	a	distance	of	¼	of	the	

element	length,	as	suggested	for	elastic-plastic	analyses	with	a	hardening	material	[]d`].		

For	the	models	developed	here,	a	radial	mesh	around	the	crack	tip	was	generated.		

The	first	and	second	row	of	elements	at	the	crack	tip	had	a	length	of	e.c	mm	which	was	

then	increased	to	]	extending	radially.	There	were	ai	elements	tangentially	placed	along	

each	of	the	semicircles.	Overall,	_	contours	of	J-integrals	were	calculated,	a	characteristic	

example	of	contour	convergence	is	given	for	each	geometry,	i.e.	`PB	c_U_d	for	uniaxial	

and	cPB	c_B_d	 for	biaxial	 specimens,	 in	Table	c.].	There	 the	 J	 values	 calculated	at	 the	

failure	 load	are	given	 for	 the	depth	of	 the	crack	where	 J	 is	maximum	(ZMax-J).	Table	c.]	

includes	the	value	for	each	contour	showing	that	values	converge	from	the	ath	contour	

onwards	 while	 having	 less	 than	 c%	 difference	 between	 them	 and	 hence	 the	 mesh	 is	

considered	sufficient.	

	

Figure 5.12: Crack-tip mesh of steel specimens 

	

	



	

]ca	

Table 5.1: J values (MPa mm) at each contour calculated at ZMax-J depth  

	 3PB	5_U_2	 5PB	5_B_2	
Contour	1	 44.79	 59.23	
Contour	2	 45.41	 60.45	
Contour	3	 46.39	 61.64	
Contour	4	 46.93	 61.66	
Contour	5	 46.96	 61.62	
Contour	6	 46.92	 61.48	
Contour	7	 46.87	 61.48	

	

 Boundary conditions, contact properties & loading 

The	boundary	 conditions	 for	 the	 steel	 specimen	models	were	 the	 same	 applied	 to	 the	

PMMA	 specimens	 as	 shown	 in	 Figure	 c.g	 and	 Figure	 c._	 respectively.	 Again,	 X	 and	 Y	

symmetry	 were	 assumed	 due	 to	 the	 quarter	 specimen	 modelled,	 not	 allowing	

displacements	 on	 the	 symmetry	 axis	 and	 relative	 rotations	 to	 the	 other	 two	 axes.	 The	

interaction	with	the	rollers	was	incorporated	with	the	use	of	a	boundary	condition	at	the	

point	of	 contact	which	prohibited	displacement	on	 the	Z	 (load)	axis.	For	 the	model	of	

specimen	cPB	]_BB_d,	which	is	used	for	all	parametric	analyses	shown	in	Appendix	d,	with	

an	 applied	 displacement	 of	 a.d	mm	 the	 stresses	 developed	 at	 the	 roller	 contact	 were	

ranging	 from	 `ae	MPa	 on	 the	 free	 surface	 to	 gae	MPa	 (just	 above	 yield	 for	 the	 steel	

models)	 in	 the	middle	 of	 the	 specimen	 at	 the	 symmetry	 condition.	 These	 stresses	 are	

reasonable	given	the	high	displacement	applied	and	relate	to	the	experiments	where	some	

plasticity	was	also	seen	at	the	roller	interaction.	This	in	combination	with	the	complexity	

of	the	model	deem	the	approach	and	mesh	applied	accurate	enough	for	the	purposes	of	

this	work.			

For	the	spherical	punch	analytical	surface,	a	kinematically	coupled	reference	point	was	

defined.	The	point,	and	thus	the	surface,	were	constraint	to	have	zero	displacement	along	

the	x	and	y	axis	and	any	relative	rotations,	while	being	allowed	to	move	along	the	z	axis	

(loading	direction).	Loads	were	applied	to	the	specimen	via	application	of	displacement	

on	the	reference	point	of	the	punch.	 

For	 the	boundary	 surface,	 it	was	 tied	 to	 a	 reference	point	 and	 fixed	 there	 allowing	no	

displacement	or	rotations.	In	essence	it	acted	as	a	symmetry	boundary	condition	along	the	

crack	front	which	prohibited	intersection	between	the	compressive	sides	of	the	bend	while	

allowing	displacement	of	the	PMMA	surface	on	the	tensile	side	of	the	bend.	
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Contact	was	defined	between	the	specimen	and	the	punch	as	well	as	the	specimen	and	the	

boundary	surface,	while	no	interaction	was	considered	between	the	boundary	surface	and	

the	punch.	After	running	parametric	analyses,	given	in	Appendix	d,	a	friction	coefficient	

of	 e.`	was	 used	 for	 the	 tangential/shear	 stresses,	while	 hard	 contact	was	 used	 for	 the	

pressure	applied	in	the	normal	direction.		

 Modelling results 

 PMMA models 

The	PMMA	models	had	displacement	applied	until	they	reached	the	experimental	CMOD	

at	failure.	There	two	values	were	of	significance,	fracture	toughness	and	T-stress	values.	

Fracture	toughness	 in	MPa√m	values	were	calculated	assuming	plane	strain	conditions	

from	the	J-integral	extracted	from	the	FEA.		

The	modelled	load-CMOD	curves	of	the	uniaxial	and	the	biaxial	PMMA	experiments	are	

shown	in	Figure	c.]`	and	Figure	c.]a	respectively.		

The	aim	of	the	calibration	of	the	models	was	to	match	the	elastic	compliance	generated	

from	the	FEA	to	that	from	the	experimental	Load-CMOD	curves.	To	achieve	these	multiple	

parametric	 analyses	were	 run,	 shown	 in	Appendix	d	 for	 the	 steel	 specimens,	while	 the	

resulting	best	parameters	were	also	used	for	the	PMMA	specimens.	The	parameters	that	

were	studied	were	the	friction	coefficient	ranging	from	values	of	e.]	to	e.g,	displacement	

of	the	rollers	with	displacements	ranging	from	-`	to	]e	mm	for	the	rollers	parallel	to	the	

crack	and	e	to	i	mm	for	the	rollers	perpendicular	to	the	crack.	Despite	the	authors	best	

effort	full	matching	of	the	elastic	compliances	was	not	achieved.	The	elastic	compliances	

calculated	for	the	experiments	and	FEA	of	the	two	geometries	and	are	shown	in	Table	c.d.	

The	models	matched	the	experimental	compliances	by	__%	and	ff%	for	the	uniaxial	and	

biaxial	 cases	 accordingly.	 It	 is	 not	 certain	 why	 there	 is	 a	 d`%	 divergence	 between	

experimental	and	modelled	compliance,	however	for	the	case	of	the	PMMA	specimens,	

material	properties	were	taken	from	literature	and	the	author	argues	that	this	could	be	an	

important	reason.		

For	the	uniaxial	specimens,	failure	occurred	at	the	same	experimental	Load	and	CMOD,	

so	a	single	model	with	an	applied	 load	of	e._ea	mm	was	sufficient	to	reach	the	failure	

CMOD	of	e.]c	mm.		
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For	 the	 biaxial	 specimens,	 experiment	 BI	 -]	 had	 a	 non-traditional	 Load-CMOD	 curve,	

shown	in	Figure	c.]a,	and	was	disregarded.		Hence	a	single	model	was	developed,	which	

with	an	applied	displacement	of	e.i`	mm	reached	the	failure	CMOD	of	specimen	BI-d	at	

e.]ai	mm.		

Table 5.2: PMMA elastic compliance in mm/kN 
	

Uniaxial	 Biaxial	

Experimental	 e.]]c	 e.e`cc	

FEA	 e.ef]	 e.e`c_	

%	Difference	 d`%	 e.g%	

	

	

Figure 5.13: Uniaxial PMMA FEA and Experimental Load-CMOD 
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Figure 5.14: Biaxial PMMA FEA and Experimental Load-CMOD 

At	the	final	step	of	the	model,	where	the	failure	CMOD	was	reached,	the	J-integral	values	

along	the	crack	front	were	extracted	from	the	uniaxial	and	biaxial	models	and	are	given	

here	graphically	in	Figure	c.]c	and	Figure	c.]g	accordingly.	While	the	T-stresses	calculated	

along	the	Z-axis	are	shown	in	Figure	c.]_	and	Figure	c.]i	respectively.		

	

Figure 5.15:  Uniaxial PMMA FEA - J-integral along crack front 
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Figure 5.16: Biaxial PMMA FEA - J-integral along crack front 

	

Figure 5.17:  Uniaxial PMMA FEA - T-stress along crack front 
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Figure 5.18: Biaxial PMMA FEA - T-stress along crack front 

In	the	above	figures,	Z	is	the	distance	from	the	surface	where	the	maximum	tensile	stresses	

are	 found.	 In	 other	words,	 the	maximum	 tensile	 stresses	 are	 located	 at	 Z=e.	 For	 both	

geometries	the	maximum	J	values	were	found	at	Z=e._	mm,	in	Figure	c.]c	and	Figure	c.]g	

with	values;	

• Jfailure-uniaxial=e.fa	·	]e-B	MPa·m		

• Jfailure-biaxial=].a`	·	]e-B	MPa·m	

These	 values	were	 translated	 to	 stress	 intensity	 factor	 values	 under	 the	 assumption	 of	

plane	stress	since	plane	stress	conditions	occur	at	the	surface	where	the	crack	propagation	

initiates.	The	fracture	toughness	values	calculated	are	shown	in		Table	c.`,	along	with	the	

fracture	toughness	calculated	analytically	for	the	uniaxial	specimens	using	the	SIF	solution	

included	in	BS	_f]e	(M.`.]	in	[_]])	for	plates	in	bending	with	through	thickness	flaws.		

Table 5.3: Fracture toughness values for PMMA specimens in MPa√m 
	

Uniaxial	 Biaxial	
Analytical	 ].g	 -	

FEA	 ]._	 d.]	
T-stresses	were	extracted	from	the	FEA	and	used	to	calculate	the	structural	parameter	β,	

which	 is	 a	 non-dimensional	 form	of	 T-stress.	Here	 the	 form	proposed	 in	 [d_]	 is	 used,	

shown	in	Equation	c.].		
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𝛽 =
𝑇{]Vz{{√𝜋𝑎

𝐾+
	 Equation 5.1 

The	β	values	calculated	corresponded	to	the	same	Z	(height)	at	which	the	maximum	stress	

intensity	factor	was	calculated,	i.e.	Z=e._	mm	and	are	shown	in	Table	c.a.	

 
Table 5.4: Structural parameter β values calculated for PMMA specimens in MPa√m 

	
Uniaxial	 Biaxial	

β	 -e.f]	 e.]	
	

From	Table	c.a,	it	was	concluded	that	some	constraint	relaxation	was	experienced	in	the	

uniaxial	specimens.	Even	though	the	difference	between	the	two	values	did	not	seem	great,	

it	 is	 worth	 revisiting	 Section	 `.c.a.d	 and	 Figure	 `.]f,	 where	 a	 β	 of	 value	 -e.g``	 had	 a	

significant	effect	on	the	FAL	of	a	steel	plate	loaded	with	a	biaxiality	ratio	of	k=e.c.	It	is	

worth	 noting	 that	 the	 values	 of	 beta	 calculated	 corresponds	 well	 to	 that	 in	 Rg	 for	 a	

through-wall	defect	in	a	plate	under	tension,	which	assumes	this	location	is	equivalent	to	

a	tensile	stress	for	a	unique	point.	It	should	be	noted	that	models	here	use	the	average	

crack	 length	 of	 the	 tensile	 side	 of	 the	 crack	 during	 modelling	 which	 for	 the	 PMMA	

specimens	was	relatively	straight.	This	is	due	to	no	prior	fatigue	pre-cracking	and	gives	

confidence	in	using	the	β	values	calculated.		

The	fracture	toughness	values	above	did	not	reflect	the	behaviour	that	was	expected,	i.e.	

uniaxial	specimens	having	lower	elastic	fracture	toughness	values	than	the	biaxial	ones.	It	

is	argued	that	it	was	due	to	the	brittle	nature	of	PMMA	and	not	due	to	a	lack	of	constraint	

effects.	In	particular,	the	lack	of	almost	any	plasticity	developing,	was	accompanied	by	a	

lot	of	scatter	 in	fracture	toughness	testing	and	it	was	expected	that	 if	a	higher	number	

were	tested	the	fracture	toughness	values	between	the	two	configurations	would	converge.	

Additionally,	the	capture	of	constraint	effects	was	supported	by	the	β	parameter	having	

negative	values	at	the	case	of	the	uniaxial	specimen	and	denoting	constraint	relaxation,	

that	when	combined	with	higher	levels	of	(moderate)	plasticity	could	play	an	important	

role	on	the	effective	fracture	toughness.	

 Steel models 

The	steel	models	were	loaded	in	the	same	way	as	the	PMMA	ones,	i.e.	had	displacement	

applied	on	the	punch	until	they	reached	the	experimental	CMOD	at	failure.	To	calibrate	



	

]g]	

the	 models	 the	 linear	 part	 of	 the	 Load-CMOD,	 known	 as	 elastic	 compliance,	 was	

attempted	to	match	for	the	experiment	and	the	models	of	the	two	geometries.		

Specimen	cPB	]_BB_d	was	used	as	a	reference	given	its	very	smooth	Load-CMOD	curve	

and	its	straight	fatigue	crack	profile.	Its	experimental	and	FEA	Load-CMOD	are	given	here	

in	Figure	c.]f.	

	

Figure 5.19: Specimen 5PB 1_BB_2; Experimental and FEA Load-CMOD curve 

A	 lot	 of	 different	parametric	 analyses	were	 run	 to	 study	how	compliance	 changes,	 the	

parameters	included	were:	

]) Friction	coefficient	

d) Crack	Length	

`) Roller	displacement	

a) Young’s	Modulus	

All	details	of	the	parametric	simulations	and	their	results	are	presented	in	Appendix	d.		

From	the	four	parameters	studied	the	only	one	which	was	able	to	bring	the	elastic	part	of	

the	 model’s	 Load-CMOD	 curve	 was	 Young’s	 Modulus,	 however	 that	 required	 to	 be	

decreased	down	to	]ce	GPA,	which	diverges	significantly	from	the	dea	GPa	experimentally	

measured.		

Given	 the	 innovative	nature	of	 experiments	as	well	 as	 the	noise	and	 friction	 that	were	

included	 in	many	 of	 them	 it	was	 decided	 that	 the	 results	 from	 the	 FEA	 analyses,	 and	
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consequently	 the	 fracture	 toughness	 values	 calculated	 (from	 the	 J-integral),	 would	 be	

treated	in	a	qualitative	way.	Hence,	the	modelling	parameters	chosen	were		

]) A	friction	coefficient	μ=e.`	between	the	punch	and	the	specimen		

d) A	modelled/half	crack	length	equal	to	the	average	of	both	crack	sides	above	the	
neutral	axis	where	tensile	stresses	were	applied,	as	measured	from	the	optometer		

`) Zero	roller	displacement	

a) A	Young’s	modulus	of	dea	GPa	

As	explained	in	Chapter	a	some	of	the	specimens	did	not	break	in	a	brittle	manner	but	

instead	developed	considerable	amounts	of	plasticity	that	could	no	longer	encompass	the	

effect	of	biaxiality	on	the	effective	fracture	toughness.	The	specimens	that	did	not	have	a	

sudden	crack	extension	as	well	as	those	rejected	due	to	extreme	conditions	of	friction	were	

not	analysed	here.	The	simulated	specimens	are	shown	in	Table	c.c.		

Table 5.5 : Steel specimens simulated 

Biaxial	
Specimen	ID	

Uniaxial	
Specimen	ID	

5PB_1_B_1	 3PB_1_U_1	
5PB_1_B_2	 3PB_3_U_1	
5PB_3_B_2	 3PB_3_U_2	
5PB_3_BB_2	 3PB_3_B_1	
5PB_4_B_1	 3PB_4_B_1	
5PB_4_B_2	 3PB_5_U_2	
5PB_5_B_2	 3PB_5_B_1	
5PB_5_BB_1	 3PB_6_B_1	
5PB_5_BB_2	 	
5PB_6_B_2	 	

The	results	extracted	from	the	FEA	were	the	Load-CMOD	curves	and	the	J-integral	values	

along	the	crack	front,	shown	in	Appendix	̀ .	Given	the	qualitative	approach	that	the	results	

of	 these	 analyses	 provided	 it	 was	 decided	 that	 no	 constraint	measurements	 would	 be	

extracted	 from	 the	 FEA.	 Considering	 this	 T-stresses	 were	 calculated	 only	 for	 one	

representative	 specimen	 from	 each	 geometry.	 These	 analyses	 considered	 only	 elastic	

material	behaviour	and	the	specimens	were	loaded	with	the	same	displacement	at	which	

they	 reached	 the	 failure	CMOD	 in	 the	 elastic-plastic	models.	 The	most	 representative	

specimens	were	`PB_c_U_d	for	the	uniaxial	specimens	and	cPB_c_B_d	from	the	biaxial	

specimens,	given	their	load	CMOD	curve	including	little	indication	of	friction.	
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For	`PB_c_U_d	the	Load-CMOD	curve,	 J-integral	and	T-stress	are	presented	 in	 	Figure	

c.de	(a),(b)	and	(c)	respectively,	while	for	cPB_c_B_d	these	are	presented	in	Figure	c.d].	

The	compliances	were	calculated	 for	 the	experimental	and	FEA	Load-CMOD	curves	of	

these	tests	and	are	shown	in	Table	c.i.	In	comparison	with	the	PMMA	compliances,	shown	

in	Table	c.d,		both	of	the	steel	geometries	included	an	additional	de%	divergence	between	

experimental	and	FEA	compliances.	This	led	to	an	agreement	between	experimental	and	

FEA	of	cc%	for	uniaxial	specimens	and	_i%	for	biaxial	specimens.		

Table 5.6: Steel tests elastic compliance in mm/kN 
	

Uniaxial	 Biaxial	

Experimental	 e.e]]]	 e.ee`f	

FEA	 e.ee_	 e.ee`]	

%	Difference	 ac%	 dd%	

	

For	both	geometries	 the	maximum	J	was	maximum	at	a	 similar	distance	 from	the	 free	

surface	of	the	tensile	stress	side	of	the	bend,	i.e.	Z=].``	mm	for	the	uniaxial	and	Z=].dc	for	

the	biaxial.	The	maximum	J-integral	values	were	considered	as	the	fracture	toughness	Jmat	

and	Kmat	was	calculated	from	them.		

At	the	same	distance	where	J	was	maximum	the	T-stresses	for	the	two	specimens	were:		

• k=-,	𝑇#$%&##=	-012	MPa	

• k=",	𝑇#$%&##=	-"52	MPa	

These	 stresses	 were	 translated	 to	 structural	 parameter	 β	 following	 Equation	 c.].	 The	

structural	constraint	parameters	calculated	are	shown	in	Table	c._.	

Table 5.7: Structural parameter β values calculated for steel specimens in MPa√m 
	

Uniaxial	 Biaxial	
β	 -d_.d	 -]e.a	

	

These	values	are	very	large	in	comparison	to	the	β	values	calculated	in	Section	`.`.a.d	for	

the	TWI	biaxial	plates	which	for	k=e,]	had	a	β	value	of	-].]ca	and	-e.ec]	respectively.	These	

values	are	large	enough	that	allow	to	disregard	the	divergence	of	model	and	experiments	

in	arguing	that	the	current	specimens	didn’t	achieve	high	levels	of	constraint.	Given	the	

change	of	 the	T-stress	distribution	from	the	PMMA	specimens,	seen	 in	Figure	c.]c	and	



	

]ga	

Figure	c.]g,	to	the	steel	specimens,	Figure	c.de	and	Figure	c.d],	it	is	believed	that	thickness	

of	the	specimens	played	an	important	role	on	the	levels	of	constraint	reached.	

	
(a)	

	
(b)	
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(c)	

Figure 5.20: Specimen 3PB 5_U_2 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front, (c) T-stress from elastic analysis 

	

	

	

	
(a)	
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(b)	

	
(c)	

Figure 5.21: Specimen 5PB_5_B_2 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front, (c) T-stress from elastic analysis 

Jmat	and	Kmat	are	given	in	Table	c.i,	along	with	the	parameters	used	for	each	model,	i.e.	

crack	 length	and	applied	punch	displacement	and	 the	desired	CMOD	reached	 in	both	

model	 and	 experiment.	 From	Table	 c.i	 the	 average	 fracture	 toughness	 values	 of	 each	

geometry	can	be	calculated	and	are	for	a	biaxiality	ratio	of:	

• k=-,	𝐾'()*+,=	""-.55	MPa√m	

• k=",	𝐾'()*+-=	"95.#0	MPa√m	

This	information	is	also	presented	graphically	in	Figure	c.dd.		
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Table 5.8: FEA parameters and results 

Specimen	
ID	

CMODfailure	
(mm)	

FEA	half	crack	length,	
a	(mm)	

FEA	applied	
displacement	(mm)	

Jmat	FEA	
(MPa·m)	

Kmat			
(MPa	·√m)	

UNIAXIAL	
3PB_1_U_1	 0.266	 12.79	 1.87	 0.0933	 139.6	
3PB_3_U_1	 0.165	 12.76	 1.35	 0.0493	 101.5	
3PB_3_U_2	 0.255	 12.31	 1.85	 0.089	 136.3	
3PB_3_B_1	 0.242	 13.03	 1.74	 0.0825	 131.23	
3PB_4_B_1	 0.248	 12.62	 1.79	 0.0855	 133.65	
3PB_5_U_2	 0.182	 12.49	 1.46	 0.0569	 109.04	
3PB_5_B_1	 0.239	 12.47	 1.76	 0.0818	 130.65	
3PB_6_B_1	 0.287	 13.92	 1.9	 0.1016	 145.63	

BIAXIAL	
5PB_1_B_1	 0.16	 12.48	 1.08	 0.0368	 87.63	
5PB_1_B_2	 0.233	 12.7	 1.38	 0.0535	 105.68	
5PB_3_B_2	 0.397	 13.19	 1.99	 0.0892	 136.49	
5PB_3_BB_2	 0.139	 12.3	 0.98	 0.0316	 81.24	
5PB_4_B_1	 0.331	 12.68	 1.76	 0.0758	 125.82	
5PB_4_B_2	 0.262	 12.15	 1.5	 0.0611	 112.99	
5PB_5_B_2	 0.271	 12.83	 1.523	 0.0619	 113.7	
5PB_5_BB_1	 0.116	 13	 0.842	 0.0241	 71	
5PB_5_BB_2	 0.375	 12.79	 1.92	 0.0851	 133.3	
5PB_6_B_2	 0.414	 12.3	 2.08	 0.0952	 140.96	

	

Even	though	the	difference	between	the	average	fracture	toughness	values	was	not	large	

there	 was	 a	 clear	 trend	 according	 to	 Figure	 c.dd	 of	 biaxiality	 decreasing	 the	 effective	

fracture	toughness.	This	is	also	supported	by	the	decreased	constraint	loss	of	the	biaxial	

specimens	shown	in	Table	c._.	
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Figure 5.22: FEA derived fracture toughness values of the specimens analysed 

One	of	the	most	interesting	observations	was	that	all	specimens	from	both	geometries	had	

a	stress	intensity	factor	at	failure	that	was	significantly	higher	than	the	Kmat	for	the	SEN(B)	

and	C(T)	specimens	as	 they	were	tested	 in	[]dg],	 []di].	This	 is	also	seen	 in	Figure	c.dd	

where	the	average	Kmat	of	the	biaxially	loaded	specimens	was	more	than	twice	that	of	both	

the	 highly	 constrained	 SEN(B)	 and	 C(T)	 geometries.	 Even	 though	 the	 FEA	 analyses	

deviated	from	the	experiments,	this	deviation	was	not	expected	to	account	for	the	large	

difference.	

This	divergence	between	Kmat	along	with	the	structural	constraint	parameters	calculated	

and	 the	 fact	 that	 all	 these	 experiments	were	 conducted	on	 the	 lower	 shelf,	 allowed	 to	

conclude	 that	 in	 the	 experimental	 program	 there	 were	 not	 high	 levels	 of	 constraint	

achieved.		

Additional	FEA	modelling	of	the	biaxial	and	uniaxial	experiments	in	this	work	along	with	

]e	mm	 thick	 SEN(B)	 and	 dc	mm	 thick	 C(T)	 specimens	 from	 this	 batch	 of	 steel,	 were	

conducted	by	Chen	at	al	[]`c].	In	[]`c]	the	Q	fields	and	J	fracture	toughness	values	were	

calculated	for	the	four	different	geometries	and	are	shown	here	graphically	in	Figure	c.d`.	
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Figure 5.23: FEA derived fracture toughness values in J-Q space [LSM] 

Figure	c.d`	shows	that	levels	of	constraint	had	very	high	variation	within	this	experimental	

program	all	of	which	were	much	lower	than	that	observed	for	SEN(B)	and	C(T)	specimens	

of	the	same	or	higher	thickness.	This	can	help	explain	the	shape	of	the	experimental	Load-

CMOD	 curves	 and	 in	 general	 the	 always	 existing	 but	 variating	 amount	 of	 plasticity	

observed	throughout	the	experiments.	

 Conclusions 

Three-dimensional	FEA	have	been	conducted	to	obtain	values	that	could	not	be	gathered	

experimentally	or	analytically	from	the	specimens	tested.		

The	 PMMA	 FEA	 analyses	 were	 calibrated	 to	 match	 the	 elastic	 compliance	 of	 the	

experiments	 and	 reached	 good	 agreement	 for	 both	 geometries.	 The	 deviation	 was	

maximum	at	the	case	of	the	uniaxial	specimen	with	dd%	difference,	while	Kmat	values	from	

the	 uniaxial	 FEA	 agreed	 with	 the	 values	 analytically	 calculated,	 hence	 the	model	 was	

considered	accurate.	Overall,	from	the	analyses	of	the	PMMA	specimens	the	following	are	

concluded:		

• β	 structural	 constraint	 parameters	 calculated	with	 the	 extraction	 of	 	 T-stresses	

from	 the	 FEA	 showed	 biaxially	 loaded	 cruciform	 specimens	 had	 a	 positive	 β,	
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denoting	 no	 constraint	 loss	 as	 opposed	 to	 the	 uniaxially	 loaded	 rectangular	

specimens	which	had	a	negative	value	that	could	significantly	enhance	resistance	

to	fracture		

• Biaxiality	 increased	the	FEA	calculated	fracture	toughness.	Since	constraint	was	

captured	with	the	biaxial	tests,	this	was	due	to	the	brittle	nature	of	PMMA	which	

introduces	 scatter	 in	 fracture	 toughness	 testing.	 It	 is	 expected	 that	 a	 higher	

number	 of	 specimens	 tested	 would	 have	 converging	 fracture	 toughness	 values	

between	uniaxial	and	biaxial	tests	

For	the	steel	specimens’	FEA,	multiple	parametric	analyses	were	run	to	calibrate	the	model	

against	 the	 experiments.	 Calibration	 was	 based	 on	 matching	 the	 elastic	 compliance	

between	 the	 two	 and	was	 achieved	 at	 cc%	 for	 uniaxial	 specimens	 and	 _i%	 for	 biaxial	

specimens,	within	acceptable	thresholds	of	the	parameters	studied.		From	the	steel	FEA	

the	following	can	be	concluded:		

• A	trend	of	biaxiality	decreasing	the	effective	fracture	toughness	can	be	observed	

• Both	specimen	geometries	showed	large	constraint	loss,	which	expressed	in	terms	

of	 structural	constraint	parameters	were	orders	of	magnitude	 larger	 from	other	

available	values	on	similar	pressure	vessel	ferritic	steels	

• All	uniaxially	and	biaxially	loaded	specimens	had	a	stress	intensity	factor	at	failure	

that	was	significantly	higher,	almost	twice,	than	the	Kmat	for	the	SEN(B)	and	C(T)	

specimens	measured	for	this	batch	of	material	

• The	 large	divergence	between	 the	experiments	 conducted	 in	 this	work	and	 the	

high	constraint	geometries	tested	in	the	past,	as	well	as	all	of	them	having	been	

conducted	on	the	lower	shelf,	show	that	the	experimental	program	here	did	not	

achieve	high	levels	of	constrained	achieved	

• Additional	FEA	comparing	the	uniaxial	and	biaxial	experiments	with	SEN(B)	and	

C(T)	specimens	of	the	same	thickness	further	show	variating	levels	of	constraint	

that	 go	 all	 the	way	 to	 no	 constraint	 and	 explain	 the	 variating	 plasticity	 of	 the	

experiments.		
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 Conclusions 

 Conclusions 

Engineering	 components	 such	 as	 pressure	 vessels	 and	 piping	 are	 usually	 subject	 to	

pressure,	and	other	complex	loading	conditions	that	create	a	multiaxial	state	of	loading.	

This	work	aims	to	quantify	the	effect	of	the,	commonly	met,	two-directional	multiaxial	

loading	known	as	biaxial	loading	on	the	ECA	of	a	component	and	in	particular	the	effect	

on	failure	by	fracture.		

Current	 practice	 in	 industry	 is	 to	 disregard	 this	 loading	 effect	 and	 invoke	 uniaxially	

derived	values	to	investigate	the	fitness	for	service	of	a	component,	while	the	stress	fields	

in	biaxially	loaded	components	are	not	uniaxial	at	all.		

Existing	 research	 argues	 that	 assessing	 biaxially	 loaded	 components	 as	 uniaxial	 is	 not	

necessarily	a	safe	approach,	however	in	cases	it	can	be	not	only	safe	but	conservative,	thus	

causing	ambiguity	on	the	importance	of	this	effect.			

As	an	initial	approach,	the	author	wanted	to	find	how	omitting	biaxiality	from	ECAs	affects	

their	 accuracy,	 which	 in	 its	 turn	 could	 reveal	 patterns	 that	 can	 be	 addressed	 through	

changing	analytics	equations	currently	used	in	the	standards.	For	this,	tests	from	multiple	

experimental	programs	from	literature	were	analysed.	These	programs	were	not	focused	

primarily	on	biaxiality	and	could	not	provide	a	consistent	dataset	to	find	a	trend	between	

the	biaxiality	ratio	of	a	component	and	the	accuracy	of	the	uniaxial	solutions	included	in	

the	FFS	standards.	This	made	clear	that	any	further	approaches	should	focus	solely	on	a	

biaxiality	oriented	set	of	experiments.		

Following,	tests	from	a	biaxiality	focused	TWI	experimental	program	were	analysed.	These	

included	 a	 combination	 of	 surface	 and	 through	 thickness	 flawed	 specimens	 loaded	

uniaxially	and	biaxially	on	various	temperatures.	With	the	primary	focus	set	on	fracture,	

the	tests	analysed	were	conducted	on	the	lower	shelf,	with	very	limited	ductility	at	these	

temperatures.	The	analyses	showed:		

• For	the	surface	flawed	specimens:	

o 	treating	them	as	uniaxial	was	safe	in	all	the	cases	considered	
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o equibiaxial	 loading	resulted	 in	 the	crack	opening	stresses	reducing	 from	

the	case	of	uniaxial	loading	at	similar	failure	loads	

• For	the	through	thickness	cracked	specimens:	

o when	 analysed	 with	 an	 Option	 `	 assessment,	 minor	 differences	 in	 the	

interpretation	of	fracture	toughness	values	were	critical	for	the	verdict	of	

the	assessment	(i.e.	safe	or	unsafe)		

o using	 constraint	 corrected	 Option	 `	 assessments	 require	 a	 thorough	

investigation	 of	 what	 fracture	 toughness	 values	 can	 be	 used,	 as	 even	

slightly	non-conservative	values	led	to	inaccurate	safe	predictions	

The	above	findings	from	the	analyses	and	the	lack	of	through	thickness	flawed	biaxial	tests	

in	 literature,	 steered	 this	 work	 towards	 decoupling	 biaxiality	 from	 flaw	 depth	 and	

designing	an	experimental	program	that	would	capture	high	levels	of	constraint	through	

biaxially	loading	through	thickness	cracks.		

This	 program	 included	 testing	 of	 two	 geometries,	made	 from	a	 ferritic	 pressure	 vessel	

steel,	on	the	lower	shelf.	The	geometries	were	a	rectangular	specimen	loaded	uniaxially	in	

a	`-point	bend	and	a	cruciform	specimen	loaded	equibiaxially	in	a	c-point	bend.	During	

the	tests	both	geometries	exhibited	varying	levels	of	plasticity,	with	many	going	way	past	

linear	elastic	behaviour	and	exhibiting	extensive	ductile	tearing.	Hence,	it	was	argued	that	

high	constraint	was	not	achieved	during	testing.	

To	calculate	fracture	toughness	and	constraint	parameters	FEA	models	were	developed	

and	calibrated	to	allow	a	qualitative	approach.	From	the	analyses	the	following	trends	were	

observed	for	the,	

• Fracture	toughness	values:	these	were	found	to	be	lower	on	average	for	the	biaxial	

specimens.	However,	for	both	geometries	they	were	significantly	higher	from	the	

SEN(B)	and	C(T)	specimen	values	that	derived	from	tests	on	the	same	material	and	

temperature	

• T-stress	 and	 β	 structural	 constraint	 parameters:	 again,	 the	 same	 trend	 as	 the	

fracture	 toughness	 was	 followed	 and	 these	 were	 significantly	 large,	 orders	 of	

magnitude	larger	from	those	calculated	for	the	TWI	biaxial	tests.	
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Given	the	varying	levels	of	plasticity	seen	in	the	experiments	and	the	findings	from	the	

FEA	it	could	be	safely	concluded	that	high	constraint	was	not	achieved	in	this	program	

regardless	of	the	lower-shelf	temperature	at	which	specimens	were	tested.	

Further	 analyses	 allowed	 for	 a	 comparison	 of	 the	 uniaxially	 and	 biaxially	 loaded	with	

SEN(B)	and	C(T)	specimens,	of	the	same	and	increased	thickness,	in	the	J-Q	space.	There	

it	was	clearly	shown	that	all	constraint	levels	achieved	in	this	experimental	program	were	

very	 low.	 They	were	 orders	 of	magnitude	 lower	 than	 both	 SEN(B)	 and	C(T)	 specimen	

configurations,	which	regardless	of	the	thickness	difference	between	specimens	remained	

within	similar	constraint	and	fracture	toughness	levels.	

The	above	findings	play	a	very	important	role	on	how	biaxiality	should	be	treated	during	

real	life	applications	as	they	support	that	the	use	of	higher	values	of	fracture	toughness,	

when	 assessing	 components	 in	 similar	 loading	 conditions,	 could	 result	 to	 safe	 or	 even	

conservative	predictions.	Hence,	given	all	other	things	equal	regarding	failure	modes,	the	

findings	of	 this	work	 add	 confidence	 that	 greater	 lifetime	and	 load	 capabilities	 can	be	

expected	on	biaxially	loaded	components.	

 Future work 

It	 is	 important	 to	 keep	 in	mind	 the	main	motivation	 behind	 the	 continuation	 of	 this	

research.	Industry	has	been	long	treating	constraint	effects	conservatively	to	ensure	safety.	

This	 conservatism	 is	 an	 enabler	 for	 poor	 use	 of	 resources	 as	 it	 drives	 maintenance,	

inspection	and	design	costs	up,	while	not	allowing	for	an	accurate	 life	or	 load	capacity	

estimation.		The	following	propositions	aim	to	give	a	holistic	and	synergetic	approach	that	

will	develop	new	data	which	can	be	triangulated	with	the	current	findings	in	tackling	the	

unnecessary	conservatism.		

Regarding	the	effect	of	biaxiality	on	fracture,	a	lot	of	ground	was	already	covered	in	this	

work,	however,	 the	ambition	of	 the	experimental	program,	 i.e.,	 testing	 throughout	 the	

fracture	transition	temperature	spectrum	and	achieving	high	levels	of	constraint,	was	not	

achieved.	For	the	latter,	the	plasticity	developed	on	the	lower	shelf	as	well	as	the	fracture	

toughness	 and	 constraint	 values	 calculated,	 in	 both	 uniaxially	 and	 biaxially	 loaded	

geometries	on	the	lower	shelf,	showed	that	the	constraint	levels	achieved	were	very	low.		

Additionally,	something	that	is	important	but	was	not	covered	in	this	work	is	the	effect	of	

biaxiality	 on	 plastic	 collapse,	 it	 is	 crucial	 that	 more	 experiments	 are	 conducted	 on	
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materials	and	temperature	combinations	where	a	significant	amount	of	plasticity	can	be	

met.	These	experiments	will	both	help	identify	the	gaps	between	the	connection	of	the	

two	as	well	as	assist	in	validating	existing	analytical	limit	load	solutions	that	include	the	

effect	 of	 biaxiality.	 These	 solutions	 have	 derived	 from	 FEA	 analyses	 and	 experimental	

validation	is	important	before	they	can	reach	implementation	in	industry.	

It	is	therefore	recommended	that	additional	experimental	work	is	conducted	to	quantify	

the	 effect	 of	 biaxiality	 on	 both	 fracture	 and	 plastic	 collapse.	 It	 is	 advised	 that	 the	

experimental	program	includes	a	combination	of	the	following	parameters:	

]. Different	 thicknesses,	 to	 study	 the	 interaction	 of	 thickness	 (out-of-plane)	 and	

biaxiality	(in-plane	constraint).	This	allows	to	investigate	whether	the	constraint	

levels	 of	 biaxially	 loaded	 specimens	would	 be	 sensitive	 to	 thickness,	 as	well	 as	

whether	thickness	increase	could	raise	constraint	to	the	levels	seen	for	C(T)	and	

SEN(B)	specimens	

d. Variety	of	temperatures:	

a. Lower	 shelf	 temperature	 tests,	 would	 aim	 to	 investigate	 the	 effect	 of	

biaxiality	on	fracture	as	it	was	done	in	this	program	

b. Lower	transition	region	temperature	tests	would	focus	on	understanding	

the	 competition	 of	 ductile	 and	 brittle	 failure	 modes	 as	 temperature	

increases	

c. Upper	 transition	 region	 to	 upper	 shelf	 temperature	 tests,	would	 aim	 to	

identify	the	connection	between	biaxiality	and	plastic	collapse	and	could	

act	as	a	validation	benchmark	for	existing	analytical	solutions	that	include	

biaxiality	

`. Different	flaw	geometries	and	in	particular	a	limited	number	of	surface	breaking	

flaws,	 to	 investigate	 whether	 higher	 or	 even	 lower	 levels	 of	 constraint	 can	 be	

reached	with	a	shallow	flaw.	

All	the	above	combinations	would	require	an	extensive	experimental	program	with	good	

planning	beforehand	so	that	enough	of	the	same	batch	of	material	is	ensured	prior	to	its	

start.	This	might	be	costly,	but	it	is	of	paramount	importance	to	secure	enough	material	

not	only	for	the	current	program	but	also	for	future	tests	that	might	be	of	importance.	It	
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is	the	opinion	of	the	author	that	only	through	a	very	intensive	and	holistic	investigation	

can	we	reach	a	reliable	quantification	of	the	effect	of	biaxiality.	

Additionally,	the	above	proposed	experiments	would	provide	fertile	ground	for	multiple	

FEA	analyses	to	be	conducted.	Having	the	data	points	of	the	above	experiments	can	allow	

for	 not	 only	 validating	 existing	 analytical	 and	 numerical	 solutions	 but	 also	 build	 new	

approaches	towards	quantifying	biaxiality	or	constraint.		
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Appendix	–	=:		Experimental	results	

This	 appendix	 includes	 the	 detailed	 presentation	 of	 the	 results	 of	 the	 experimental	

program.	 For	 each	 test,	 the	 Load-CMOD	 curves	 are	 given	 along	 with	 pictures	 of	 the	

fracture	 surface	 post-test	 and	 a	 graph	 of	 the	 digitised	 post	 fracture	 crack	 length	

measurements.		
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(a)	
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Figure A1.1: Specimen 3PB 1_U_1 (a) Load-CMOD curve, (b)fracture surface, (c) digitized 
fatigue crack length 
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Figure A1.2: Specimen 3PB 1_U_2 (a) Load-CMOD curve, (b)fracture surface, (c) digitized 
fatigue crack length 
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Figure A1.3: Specimen 3PB 1_B_1 (a) Load-CMOD curve, (b)fracture surface, (c) digitized 
fatigue crack length 
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Figure A1.4: Specimen 3PB 3_U_1 (a) Load-CMOD curve, (b)fracture surface, (c) digitized 
fatigue crack length 
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Figure A1.5: Specimen 3PB 3_U_2 (a) Load-CMOD curve, (b)fracture surface, (c) digitized 
fatigue crack length 
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Figure A1.6: Specimen 3PB 3_B_1 (a) Load-CMOD curve, (b)fracture surface, (c) digitized 
fatigue crack length 
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Figure A1.7: Specimen 3PB 4_U_1 (a) Load-CMOD curve, (b)fracture surface, (c) digitized 
fatigue crack length 
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Figure A1.8: Specimen 3PB 4_B_1 (a) Load-CMOD curve, (b)fracture surface, (c) digitized 
fatigue crack length 
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Figure A1.9: Specimen 3PB 4_B_2 (a) Load-CMOD curve, (b)fracture surface, (c) digitized 
fatigue crack length 
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Figure A1.10: Specimen 3PB 5_U_1 (a) Load-CMOD curve, (b)fracture surface, (c) 
digitized fatigue crack length 
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Figure A1.11: Specimen 3PB 5_U_2 (a) Load-CMOD curve, (b)fracture surface, (c) 
digitized fatigue crack length 
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Figure A1.12: Specimen 3PB 5_B_1 (a) Load-CMOD curve, (b)fracture surface, (c) 
digitized fatigue crack length 
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Figure A1.13: Specimen 3PB 6_U_1 (a) Load-CMOD curve, (b)fracture surface, (c) 
digitized fatigue crack length 
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Figure A1.14: Specimen 3PB 6_U_2 (a) Load-CMOD curve, (b)fracture surface, (c) 
digitized fatigue crack length 
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Figure A1.15: Specimen 3PB 6_B_1 (a) Load-CMOD curve, (b)fracture surface, (c) 
digitized fatigue crack length  
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Figure A1.16: Specimen 5PB 1_B_1 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e)fracture 

surface, (f) digitized fatigue crack length  
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Figure A1.17: Specimen 5PB 1_B_2 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e)fracture 

surface, (f) digitized fatigue crack length  
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Figure A1.18: Specimen 5PB 1_BB_1 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e)fracture 

surface, (f) digitized fatigue crack length  



	

dea	

	
(a)	

	
(b)	

	
(c)	

	
(d)	

	
(e)	

	
(f)	

Figure A1.19: Specimen 5PB 1_BB_2 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e)fracture 

surface, (f) digitized fatigue crack length  
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Figure A1.20: Specimen 5PB 3_B_1 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e)fracture 

surface, (f) digitized fatigue crack length  
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Figure A1.21: Specimen 5PB 3_B_2 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e)fracture 

surface, (f) digitized fatigue crack length  
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Figure A1.22: Specimen 5PB 3_BB_2 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e)fracture 

surface, (f) digitized fatigue crack length  
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Figure A1.23: Specimen 5PB 4_B_1 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e)fracture 

surface, (f) digitized fatigue crack length  
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Figure A1.24: Specimen 5PB 4_B_2 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e)fracture 

surface, (f) digitized fatigue crack length   
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Figure A1.25: Specimen 5PB 4_BB_1 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e)fracture 

surface, (f) digitized fatigue crack length  



	

d]]	

	
(a)	

	
(b)	

	
(c)	

	
(d)	

	
(e)	

	
(f)	

Figure A1.26: Specimen 5PB 4_BB_2 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e) fracture 

surface, (f) digitized fatigue crack length  
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Figure A1.27: Specimen 5PB 5_B_2 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e) fracture 

surface, (f) digitized fatigue crack length  
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Figure A1.28: Specimen 5PB 5_BB_1 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e) fracture 

surface, (f) digitized fatigue crack length  



	

d]a	

	
(a)	

	
(b)	

	
(c)	

	
(d)	

	
(e)	

	
(f)	

Figure A1.29: Specimen 5PB 5_BB_2 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e) fracture 

surface, (f) digitized fatigue crack length  
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Figure A1.30: Specimen 5PB 6_B_2 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e) fracture 

surface, (f) digitized fatigue crack length  
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Figure A1.31: Specimen 5PB 6_BB_1 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e) fracture 

surface, (f) digitized fatigue crack length  
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Figure A1.32: Specimen 5PB 6_BB_2 (a) Full Load-CMOD curve, (b) Load-CMOD curve to 
fracture event, (c) post fracture top view, (d) post fracture bottom view (e) fracture 

surface, (f) digitized fatigue crack length  
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Appendix	–	@:	Steel	parametric	FEA		

This	appendix	 includes	 the	parametric	analyses	 run	 for	 the	validation	of	 the	 steel	FEA	

models.	 Biaxially	 loaded	 test	 specimen	 cPB_]_BB_d	 was	 assumed	 to	 have	 the	

representative	behaviour	of	the	average	test	given	its	smooth	Load-CMOD	curve	(lack	of	

noise	 in	 the	 data)	 and	 the	 straight	 fatigue	 pre-crack	 profile	 achieved.	 Details	 on	 this	

experiment	are	given	graphically	in	Appendix	]	

The	best	modelling	parameters	were		

c) A	friction	coefficient	μ=e.`	between	the	punch	and	the	specimen		

g) A	modelled/half	crack	length	a=]d._g	mm	as	measured	from	the	optometer		

_) An	applied	displacement	of	a.]ii	mm	from	the	loading	punch	

i) A	Young’s	modulus	of	dea	GPa,	as	measured	experimentally	at	-]geoC	

The	results	of	the	model	against	the	experimental	Load-CMOD	with	the	use	of	the	best	

parameters	are	given	in	the	following	graph	

	

Figure A2. 1: 5PB_1_BB_2 Experimental and FEA Load CMOD – best modelling 
parameters 

Following	are	the	analyses	that	investigate	the	effect	of	different	parameters	
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Effect	of	friction	coefficient	

Overall	a	different	friction	coefficients	were	used,	shown	in	Table	Ad.	].	

Table A2. 1: Friction coefficient of parametric study parameter values 

Punch	Friction	coefficient	μ	
e.g	
e.a	
e.`	
e.d	
e.]	

	

	

Figure A2. 2: 5PB_1_BB_2 Friction coefficient parametric FEA vs Experimental Load-
CMOD 

From	 the	 results	 shown	 in	 Figure	 Ad.	 d,	 within	 the	 reasonable	 threshold	 of	 friction	

coefficients	 for	 steel	 contact	 it	played	almost	no	effect	on	 the	overall	behaviour	of	 the	

specimen.		
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Effect	of	crack	length	

To	rule	out	the	effect	of	the	minor	tunnelling	observed	from	fatigue	pre-cracking	on	the	

validity	of	the	model	and	to	check	the	sensitivity	of	compliance	with	crack-length	different	

crack	lengths	were	assumed	in	the	analyses,	shown	in		Table	Ad.	d.	

Table A2. 2: Crack length parametric study parameter values 

Half	Crack	length	a	(mm)	
]e	
]]	

]d._g	(actual	length)	
]a	

	

 

Figure A2. 3: 5PB_1_BB_2 Crack length parametric FEA vs Experimental Load-CMOD 

From	the	results	shown	in	Figure	Ad.	̀ ,	compliance	changed	with	crack	length	as	expected	

however	 even	 for	 extreme	 half	 crack-length	 of	 ]a	 mm	 compliance	 did	 not	 reach	 the	

experimental	data.		

Effect	of	roller	displacement	

Given	 that	 the	 experiment	was	novel	 and	 conducted	with	 significant	 time	 constraints,	

minor	displacement	of	 the	 specimen	could	have	been	present	during	 the	experimental	

setup.	 In	 light	 of	 this,	 c	 different	 roller	 displacement	 scenarios	were	 run	 to	 study	 the	

sensitivity	of	the	model.		
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The	a	rollers	that	were	in	contact	with	the	specimen	are	divided	into	two	categories,		

f) Rollers	parallel	to	the	crack,	where	the	crack	opening	load	was	applied	

]e) Rollers	perpendicular	to	the	crack,	where	the	in-plane	loading	was	applied	

The	different	displacement	values	for	the	cases	are	shown	in	Table	Ad.	`	while	the	results	

for	each	case	are	shown	in	Figure	Ad.	a		to	Figure	Ad.	i.	

	

Table A2. 3: Roller Displacement parametric study parameter values 

Applied displacement in mm 
Rollers parallel to crack Rollers perpendicular to crack 

CASE 1 
3 

0 

1 
0.1 
0 

-0.1 
-1 
-3 

CASE 2 
0 

0 
4 
6 
8 

10 
CASE 3 

0 

0 
2 
4 
6 
8 

CASE 4 

8 

0 
2 
4 
6 
8 

CASE 5 

10 

0 
2 
4 
6 
8 
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Figure A2. 4: Roller displacement parametric study FEA vs experimental Load-CMOD - 
Case 1 

	

	

Figure A2. 5: Roller displacement parametric study FEA vs experimental Load-CMOD - 
Case 2 
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Figure A2. 6: Roller displacement parametric study FEA vs experimental Load-CMOD - 
Case 3 

	

	

Figure A2. 7: Roller displacement parametric study FEA vs experimental Load-CMOD – 
Case 4 
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Figure A2. 8: Roller displacement parametric study FEA vs experimental Load-CMOD – 
Case 5 

The	 results	 that	 Load-CMOD	 changes	 with	 applied	 roller	 displacement,	 in	 particular	

displacement	of	the	rollers	parallel	to	the	crack	have	an	effect	only	on	the	plastic	part	of	

the	curve,	while	compliance	is	mostly	affected	by	displacing	the	rollers	perpendicular	to	

the	crack.	However,	even	in	Case	c,	with	a	displacement	of	parallel	rollers	by	]e	mm	and	

of	 perpendicular	 rollers	 by	 i	 mm	 the	 desired	 compliance	 is	 not	 reached.	 Such	

displacements	are	considered	to	be	extreme	and	not	present	 in	any	of	the	experiments	

conducted	and	 it	 is	concluded	 that	 the	 roller	positioning	cannot	correct	 the	mismatch	

between	models	and	experiments.		

Effect	of	Young’s	Modulus	

Knowing	 that	 elastic	 compliance	 is	 directly	 affected	 by	 the	material	 properties	 and	 in	

particular	 the	 Young’s	 modulus	 selected,	 parametric	 analyses	 with	 different	 Youngs	

moduli	were	run	to	check	the	sensitivity	of	the	model.	The	parameter	values	are	shown	in	

Table	Ad.	a	and	the	results	of	the	analyses	in	Figure	Ad.	f.	

	

	

	



	

ddc	

Table A2. 4: Elastic modulus parametric study parameter values 

Young’s	modulus	E	(GPa)	
]ce	
]_e	
]ie	
]fd	

dea	(at	-]geoC)	
	

	

Figure A2. 9: Elastic modulus parametric study FEA vs experimental Load-CMOD 

As	expected,	elastic	compliance	is	sensitive	to	the	E	used.	For	the	model	compliance	to	

reach	the	experimentally	measured	compliance	the	elastic	modulus	needs	to	decrease	to	

]ce	GPa.	This	value	is	not	representative	of	a	mild	ferritic	steel,	and	it	is	concluded	that	

this	 parameter	 cannot	 be	 altered	 to	match	 the	 experimental	with	 the	modelled	 Load-

CMOD	values.		
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Effect	of	geometry	nonlinearity	

Given	that	plasticity	is	included	in	the	simulations	a	comparison	two	analyses	were	

run	 considering	 geometric	 nonlinearity	 (nlgeom=on)	 or	 disregarding	 it	

(nlgeom=off).	 The	 results	 are	 shown	 in	 Figure	 Ad.	 ]e	 below,	 where	 geometric	

nonlinearities	slightly	increase	the	Load	CMOD	curve,	however	this	is	in	the	zone	

where	significant	tearing	is	beginning.	In	this	experimental	program	occurrences	

of	 significant	 tearing	 are	 disregarded	 from	 the	 analyses,	 hence	 either	 choice	 of	

nlgeom	is	acceptable.	

	

Figure A2. 10: Geometric nonlinearity parametric study FEA vs experimental Load-CMOD 
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Appendix	–	B:	Steel	FEA	results	

This	 appendix	 contains	 all	 the	 results	 of	 the	 simulated	 steel	 biaxial/cruciform	 and	

uniaxial/rectangular	specimens.	

Uniaxial	–	`	Point	Bend	FEA	results	

	
(a)	

	
(b)	

Figure A3. 1: Specimen 3PB 1_U_1 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)	

	
(b)	

Figure A3. 2: Specimen 3PB 3_U_1 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)	

	

	
(b)	

Figure A3. 3: Specimen 3PB 3_U_2 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)	

	

	
(b)	

Figure A3. 4: Specimen 3PB 3_B_1 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)	

	

	
(b)	

Figure A3. 5: Specimen 3PB 4_B_1 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)	
	

	
(b)	

Figure A3. 6: Specimen 3PB 5_U_2 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)	
	

	
(b)	

Figure A3. 7: Specimen 3PB 5_B_1 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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	(a)	
	

	
(b)	

Figure A3. 8: Specimen 3PB 6_B_1 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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Biaxial	–	c	Point	Bend	FEA	results	

	
(a)	

	
(b)	

Figure A3. 9: Specimen 5PB 1_B_1 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)	

	
(b)	

Figure A3. 10: Specimen 5PB 1_B_2 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)	

	
(b)	

Figure A3. 11: Specimen 5PB 3_B_2 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)	

				 	
(b)	

Figure A3. 12: Specimen 5PB 3_BB_2 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)	

	
(b)	

Figure A3. 13: Specimen 5PB 4_B_1 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)		

	
(b)	

Figure A3. 14: Specimen 5PB 4_B_2 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 

	



	

da]	

	
(a)	

	
(b)	

Figure A3. 15: Specimen 5PB 5_B_2 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)	

	
(b)	

Figure A3. 16: Specimen 5PB 5_BB_1 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)	

	
(b)	

Figure A3. 17: Specimen 5PB 5_BB_2 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 
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(a)	

	
(b)	

Figure A3. 18: Specimen 5PB 6_B_2 (a) FEA and Experimental Load-CMOD curve, (b) J-
integral along the crack front 

	


