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Wake Preservation Using a Coupled Eulerian-Lagrangian Solver

Christopher Wales ∗ Dorian J. Jones † and Ann L. Gaitonde‡

University of Bristol, Bristol, BS8 1TR, United Kingdom

A new vortex particle approach seeding approach for a coupled Vortex Particle Method-
Computational Fluid Dynamics solver. The vortex particles are seeded based on the vortcity
flux through a 2D slice in the mesh. Results are presented for a wingtip vortex for the coupled
approach on a coarse mesh and standard CFD on a fine mesh. The affect of particle seeding
resulting on the level of vorticity captured are investigated.

I. Introduction
Accurate predicting the flows with strong shed vorticity are important in several cases; such as helicopter blade-vortex

interaction, propeller wakes and aircraft wakes in take-off and landing. Blade-vortex interaction occurs when the trailing
wake from a helicopter rotor interacts with the oncoming blade causing unsteady loading on the blades and aerodynamic
noise [1]. The wake from a wing mounted propeller has a strong influence on the flow over wing and tailplane effecting
the aircraft loads, especially the aircraft moments. Wingtip vortices that are generated on aircraft take-off and landing
can persist for a long time. This determines the required separation distance to ensure the safety of following aircraft.
The ability to accurately predict these types of flows represents a challenge in fluid simulation methods. The literature
shows that Lagrangian, Eulerian and hybrid Eulerian/Lagrangian Computational Fluid Dynamics (CFD) techniques
have been applied to these kinds of flows.

Grid based Eulerian CFD methods are widely used for modelling viscous flows in aerospace applications, typically
using an unsteady Reynolds Averaged Navier-Stokes (URANS) framework with a turbulence model. Eulerian methods
suffer from two sources of numerical dissipation which typically causes the tip vortex to diffuse prematurely, making
long term simulations of the wingtip vortex difficult. The first source of numerical dissipation is the intrinsic numerical
dissipation related to the local grid spacing. The second source is the artificial dissipation used to stabilise the commonlly
used central difference schemes. Refining the mesh in regions of high flow gradients, such as regions of high vorticity,
increases the accuracy of the solution. This results in a requirement for a fine mesh and thus very large computational
cost. An other approach, which avoids the mesh refinement is to use a higher order method. Eulerian CFD methods
have been successful applied to modelling the long term behaviour of the wake behind a full aircraft [2]. A hybrid
scheme was used in [3] where a 2𝑛𝑑 order finite volume scheme was used near the aircraft and 6𝑡ℎ order finite difference
scheme to resolve the vortex away from the aircraft.

Lagrangian vortex particle approaches are mesh free method where the vorticity is carried by particles that are
transported by the flow field. The particles are convected without the non-linear terms encountered in Eulerian methods
making them suitable for long term simulations of compact vortical structures. A range of different vortex particle
methods have been used to model aircraft wakes and tip vorticies; a vortex filament method was used in [4] to model a
simplified wake structure, a vortex panel method in [5] for the same purpose and a vortex particle method with a billion
particles to model the aircraft wake [6].

Applying the viscous boundary conditions is harder to implement in VPM then in the Eulerain frame work. This has
lead to the idea of using a hybrid approach, where an Eulerain frame work is used close to the surface where viscous
effects dominate. A Lagraigain approach is then used away from the surface to convect the vorticity. Most methods also
employ an ’overlap’ region to couple the two methods where both solvers are used and the solutions are interpolated
between each other. The first example of this is by Sitaraman [7] who coupled a RANS solver to a Particle Vorticity
Transport Method (PVTM) to simulate rotor wakes. Anusonti-Inthra and Floros [8] extend this to a viscous PVTM to
model the flow in isolated wing wakes. Zhao et al. [9] employ a viscous vortex particle method together with two
different RANS solvers to investigate rotor wake flow. Pahla et al. [10] take a slightly different approach. Whilst the
domain is still decomposed into regions, the Lagrangian method is applied to the entire domain whilst the Eulerian
solver is only applied to the region close to the solid boundary. Essentially, the CFD is used to correct the particle
method in the near-field.
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In this work, we apply a hybrid method that couples a RANS solver with a Vortex Particle Method. The domain is
not decomposed into regions; instead the VPM is used to correct the CFD. This is done by including the influence of the
particles in the CFD solution through the Split Velocity Method, which has previously been used in the simulation of
gusts [11, 12]. This approach has been previously implemented in [13, 14]. The seeding approach was found to be
numerically ill-conditioned. In this paper a new approach for seeding the vortex particles will be presented and applied
at capturing a wing tip vortex.

II. Methodology
The Navier-Stokes equations govern the motion of fluid flow. These equations can be solved either in an Eulerian or

a Lagrangian formulation. The Eulerian approach is typically used in CFD where the flow quantities are considered a
function of the spatial locations as they change in time. Eulerian solvers require a fine mesh throughout the regions of
interest to accurately capture the flow gradients. This leads to large numbers of mesh cells and thus high computational
costs. Lagrangian vortex particle methods are an alternative method for transporting vorticity through the flow domain
without having to refine the mesh. In this work vorticity passing through a 2D region in the flow is identified and turned
into equivalent vortex particles. The velocity influence of these particles is then subtracted from the CFD solution.
The vortex particles are convected using a Lagrangian solver modified by the surrounding CFD solution. This allows
a coarser CFD mesh to be used without the vorticity being dissipated. The VPM has been coupled with the CFD
solver using the SVM method using the implementation similar to that defined in [13]. Details of the VPM and SVM
implementation are repeated in this paper along with the new seeding approach.

The coupling process is shown in Fig. 1. There are four main stages per timestep. The first is to identify and vorticity
in the seeding region of the domain and add the vorticity to new particles, this step is described in section II.A.3. Next,
the particles are updated for one timestep of the vortex particle method, see section II.A. Then the velocities induced by
the vortex particles on the CFD mesh are calculated. Finally these velocities are injected into the CFD solution using
the SVM method, as described in section II.A.1, and the CFD flow field is solved for one timestep.

A. Vortex Particle Method
Vortex Particle Methods discretises the flow into particles, with strengths related to the vorticity over the particle

volume, and are convected using a transport equation in a Lagragian framework. The vorticity is related to the velocity
field by

𝜔 = ∇ × 𝑢. (1)

Taking the curl of the Euler equations leads to the resulting equations for the evolution of the vorticity

𝜕𝜔

𝜕𝑡
+ U.∇𝜔 = 𝜔.∇U (2)

Using a point vortex can lead to numerical problems due to sigularities at the point voticies. Instead regularized vortex
particles are used, which have a finet core size, given by

𝜔(x, 𝑡) =
𝑁∑︁
𝑖=1

Γ𝑖 (𝑡)𝜁𝜎𝑖
(x − x𝑖 (𝑡)) (3)

where Γ𝑖 is the strength of particle 𝑖, 𝜁𝜎 is the regularized smoothing kernel [15] and 𝜎𝑖 is the radius of particle 𝑖. A
constant particle radius has been used, so 𝜎𝑖 = 𝜎. For a three-dimensional case, the regularized smoothing kernel is
given by

𝜁𝜎 =
1
𝜎3 𝜁

(
|x|
𝜎

)
(4)

where 𝜁 (𝜌) is the smoothing or cutoff function. The cutoff function should be smooth and accurate [16] and several
choices are listed in the paper by Wincklemans and Leonard [17]. In this work the second-order 3D gaussian smoothing,
given by Eq. (5), is used.

𝜁 (𝜌) =
(
2
𝜋

)1/2
exp

(
− 𝜌2

2

)
(5)
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Fig. 1 Flowchart of the coupled CFD-VPM solver

The equations of motion for a regularized vortex particle method are given by
𝑑

𝑑𝑡
x (𝑡) = u𝜎 (x (𝑡) , 𝑡) (6)

𝑑

𝑑𝑡
Γ (𝑡) = 𝜔 · ∇u𝜎𝑉 (7)

where 𝑉 is the volume associated with a single particle. The right hand side of Eq. (7) corresponds to stretching. The
velocity u𝜎 (x, 𝑡) is computed using the generalized Biot-Savart equation, which is

u𝜎 (x, 𝑡) = −
𝑁∑︁
𝑖=1

K𝜎 (x − x𝑖 (𝑡)) Γ𝑖 (𝑡). (8)

When written in terms of Green’s function for the Laplace equation this velocity is given by

u𝜎 (x, 𝑡) = −
𝑁∑︁
𝑖=1

∇𝐺 (x − x𝑖 (𝑡)) × 𝑔𝜎

( x
𝜎

)
𝚪𝑖 (𝑡) (9)
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where 𝑔𝜎 (𝜌) is defined as

𝑔𝜎 (𝜌) = 𝑒𝑟 𝑓

( 𝜌

21/2

)
−
(
2
𝜋

)1/2
𝜌 exp(−𝜌2/2) (10)

The Biot-Savart equation, Eq. (8), is solved twice. First it is used to calculate the velocities and gradients the
particles induce on each other. This velocity, along with velocity and gradients are interpolated from the CFD is used to
convect and stretch the vortex particles. Formally the velocity field in the VPM is formed as the summation of the CFD
and VPM and the local vorticity 𝜔 is assumed entirely captured by the VPM.

U = U𝐶𝐹𝐷 + U𝑉𝐿𝑀 (11)

Secondly, Biot-Savart is used to calculate the velocities induced by the particles at the CFD mesh nodes, which are then
used to couple the VPM method to the CFD solution using the Split Velocity Method. A fourth order Runge-Kutta
method is used to solve, Eq. (6), and update the particle positions.

Note that in this work the vortex particle method is assumed inviscid. Modifications to include the viscosity in the
VPM are possible but not explored here. The effects of viscosity are therefore assumed to be captured entirely by the
CFD.

1. Split Velocity Method
The derivation of the Split Velocity Method begins with the unsteady Navier-Stokes equations on a fixed mesh.

Then the velocity and energy are decomposed into prescribed components and an unknown component given by

𝑢 = 𝑢̃ + ˆ̂𝑢 𝑣 = 𝑣̃ + ˆ̂𝑣 𝑤 = 𝑤̃ + ˆ̂𝑤 𝐸 = 𝐸̃ + ˆ̃𝐸 + ˆ̂𝐸 (12)

where ˆ̂𝑢, ˆ̂𝑣 and ˆ̂𝑤 are the prescribed velocity components which in this case are the induced vortex particle velocity
components. The pressure remains unchanged, which means that the energy components are given by

𝐸 =
𝑝

𝜌(𝛾 − 1) +
1
2
(𝑢̃2 + 𝑣̃2) + 𝑤̃2)︸                                ︷︷                                ︸
𝐸̃

+ (𝑢̃ ˆ̂𝑢 + 𝑣̃ ˆ̂𝑣 + 𝑤̃ ˆ̂𝑤)︸              ︷︷              ︸
ˆ̃𝐸

+ 1
2
( ˆ̂𝑢2 + ˆ̂𝑣2) + ˆ̂𝑤2)︸                ︷︷                ︸

ˆ̂𝐸

(13)

The Navier-Stokes equations for the Split Velocity Method are then obtained by substituting the decompositions into
the unsteady Navier-stokes equations giving

𝜕
𝜕𝑡



𝜌

𝜌(𝑢̃ + ˆ̂𝑢)
𝜌(𝑣̃ + ˆ̂𝑣)
𝜌(𝑤̃ + ˆ̂𝑤)

𝜌(𝐸̃ + ˆ̃𝐸 + ˆ̂𝐸)


+ 𝜕

𝜕𝑥



𝜌(𝑢̃ + ˆ̂𝑢)
𝜌(𝑢̃ + ˆ̂𝑢)2 + 𝑝

𝜌(𝑢̃ + ˆ̂𝑢) (𝑣̃ + ˆ̂𝑣)
𝜌(𝑢̃ + ˆ̂𝑢) (𝑤̃ + ˆ̂𝑤)
(𝜌(𝐸̃ + ˆ̃𝐸 + ˆ̂𝐸)) (𝑢̃ + ˆ̂𝑢)


+ 𝜕

𝜕𝑦



𝜌(𝑣̃ + ˆ̂𝑣)
𝜌(𝑣̃ + ˆ̂𝑣) (𝑢̃ + ˆ̂𝑢)
𝜌(𝑣̃ + ˆ̂𝑣)2 + 𝑝

𝜌(𝑣̃ + ˆ̂𝑣) (𝑤̃ + ˆ̂𝑤)
(𝜌(𝐸̃ + ˆ̃𝐸 + ˆ̂𝐸)) (𝑣̃ + ˆ̂𝑣)


+ 𝜕

𝜕𝑧



𝜌(𝑣̃ + ˆ̂𝑣)
𝜌(𝑤̃ + ˆ̂𝑤) (𝑢̃ + ˆ̂𝑢)
𝜌(𝑤̃ + ˆ̂𝑤) (𝑣̃ + ˆ̂𝑣)
𝜌(𝑤̃ + ˆ̂𝑤)2 + 𝑝

(𝜌(𝐸̃ + ˆ̃𝐸 + ˆ̂𝐸)) (𝑤̃ + ˆ̂𝑤)


+ 𝜕
𝜕𝑥



0
𝜎𝑥𝑥

𝜎𝑥𝑦

𝜎𝑥𝑧

(𝑢̃ + ˆ̂𝑢)𝜎𝑥𝑥 + (𝑣̃ + ˆ̂𝑣)𝜎𝑥𝑦 + (𝑤̃ + ˆ̂𝑤)𝜎𝑥𝑧 + 𝑞𝑥


+ 𝜕

𝜕𝑦



0
𝜎𝑥𝑦

𝜎𝑦𝑦

𝜎𝑦𝑧

(𝑢̃ + ˆ̂𝑢)𝜎𝑥𝑦 + (𝑣̃ + ˆ̂𝑣)𝜎𝑦𝑦 + (𝑤̃ + ˆ̂𝑤)𝜎𝑦𝑧 + 𝑞𝑦


+ 𝜕
𝜕𝑦



0
𝜎𝑥𝑧

𝜎𝑦𝑧

𝜎𝑧𝑧

(𝑢̃ + ˆ̂𝑢)𝜎𝑥𝑧 + (𝑣̃ + ˆ̂𝑣)𝜎𝑦𝑧 + (𝑤̃ + ˆ̂𝑤)𝜎𝑧𝑧 + 𝑞𝑧


= 0

(14)
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where,

𝜎𝑥𝑥 = 2
3

𝜇

𝑅𝑒

(
2 𝜕𝑢̃
𝜕𝑥

− 𝜕𝑣̃
𝜕𝑦

− 𝜕𝑤̃
𝜕𝑧

)
+ 2

3
𝜇

𝑅𝑒

(
2 𝜕

ˆ̂
𝑢

𝜕𝑥
− 𝜕

ˆ̂
𝑣

𝜕𝑦
− 𝜕

ˆ̂
𝑤
𝜕𝑧

)
𝜎𝑦𝑦 = 2

3
𝜇

𝑅𝑒

(
2 𝜕𝑣̃
𝜕𝑦

− 𝜕𝑢̃
𝜕𝑥

− 𝜕𝑤̃
𝜕𝑧

)
+ 2

3
𝜇

𝑅𝑒

(
2 𝜕

ˆ̂
𝑣

𝜕𝑦
− 𝜕

ˆ̂
𝑢

𝜕𝑥
− 𝜕

ˆ̂
𝑤
𝜕𝑧

)
𝜎𝑧𝑧 =

2
3

𝜇

𝑅𝑒

(
2 𝜕𝑤̃

𝜕𝑧
− 𝜕𝑢̃

𝜕𝑥
− 𝜕𝑣̃

𝜕𝑦

)
+ 2

3
𝜇

𝑅𝑒

(
2 𝜕

ˆ̂
𝑤
𝜕𝑧

− 𝜕
ˆ̂
𝑢

𝜕𝑥
− 𝜕

ˆ̂
𝑣

𝜕𝑦

)

𝜎𝑥𝑦 =
𝜇

𝑅𝑒

(
𝜕𝑢̃

𝜕𝑦
+ 𝜕𝑣̃

𝜕𝑥

)
+ 𝜇

𝑅𝑒

(
𝜕 ˆ̂𝑢
𝜕𝑦

+ 𝜕 ˆ̂𝑣
𝜕𝑥

)
𝜎𝑥𝑧 =

𝜇

𝑅𝑒

(
𝜕𝑢̃

𝜕𝑧
+ 𝜕𝑤̃

𝜕𝑥

)
+ 𝜇

𝑅𝑒

(
𝜕 ˆ̂𝑢
𝜕𝑧

+ 𝜕 ˆ̂𝑤
𝜕𝑥

)
𝜎𝑦𝑧 =

𝜇

𝑅𝑒

(
𝜕𝑤̃

𝜕𝑦
+ 𝜕𝑣̃

𝜕𝑧

)
+ 𝜇

𝑅𝑒

(
𝜕 ˆ̂𝑤
𝜕𝑦

+ 𝜕 ˆ̂𝑣
𝜕𝑧

)

𝑞𝑥 = − 𝜇

𝑃𝑟
1
𝑅𝑒

1
(𝛾−1)𝑀2

∞

𝜕𝑇
𝜕𝑥

𝑞𝑦 = − 𝜇

𝑃𝑟
1
𝑅𝑒

1
(𝛾−1)𝑀2

∞

𝜕𝑇
𝜕𝑦

𝑞𝑦 = − 𝜇

𝑃𝑟
1
𝑅𝑒

1
(𝛾−1)𝑀2

∞

𝜕𝑇
𝜕𝑧

𝑇 =
𝛾𝑀2

∞𝑝

𝜌

𝑃𝑟, 𝜇 and 𝑅𝑒 are the Prandtl number, dynamic viscosity and Reynolds number respectively. Separating the induced
velocities from the rest of the solution and after some manipulation of the terms, the Navier-Stokes equations can be
rewritten as

𝜕
𝜕𝑡


𝜌

𝜌𝑢̃

𝜌𝑣̃

𝜌𝐸̃


+ 𝜕

𝜕𝑥



𝜌(𝑢̃ + ˆ̂𝑢)
𝜌𝑢̃(𝑢̃ + ˆ̂𝑢) + 𝑝

𝜌𝑣̃(𝑢̃ + ˆ̂𝑢)
𝜌𝑤̃(𝑢̃ + ˆ̂𝑢)
𝜌𝐸̃ (𝑢̃ + ˆ̂𝑢) + 𝑝𝑢̃


+ 𝜕

𝜕𝑦



𝜌(𝑣̃ + ˆ̂𝑣)
𝜌𝑢̃(𝑣̃ + ˆ̂𝑣)
𝜌𝑣̃(𝑣̃ + ˆ̂𝑣) + 𝑝

𝜌𝑤̃(𝑣̃ + ˆ̂𝑣)
𝜌𝐸̃ (𝑣̃ + ˆ̂𝑣) + 𝑝𝑣̃


+ 𝜕

𝜕𝑧



𝜌(𝑣̃ + ˆ̂𝑣)
𝜌𝑢̃(𝑤̃ + ˆ̂𝑤)
𝜌𝑣̃(𝑤̃ + ˆ̂𝑤)
𝜌𝑤̃(𝑤̃ + ˆ̂𝑤) + 𝑝

𝜌𝐸̃ (𝑤̃ + ˆ̂𝑤) + 𝑝𝑤̃


+ 𝜕
𝜕𝑥



0
𝜎𝑥𝑥

𝜎𝑥𝑦

𝜎𝑥𝑧

𝑢̃𝜎𝑥𝑥 + 𝑣̃𝜎𝑥𝑦 + 𝑤̃𝜎𝑥𝑧 + 𝑞𝑥


+ 𝜕

𝜕𝑦



0
𝜎𝑥𝑦

𝜎𝑦𝑦

𝜎𝑦𝑧

𝑢̃𝜎𝑥𝑦 + 𝑣̃𝜎𝑦𝑦𝑤̃𝜎𝑦𝑧 + 𝑞𝑦


+ 𝜕

𝜕𝑧



0
𝜎𝑥𝑧

𝜎𝑦𝑧

𝜎𝑧𝑧

𝑢̃𝜎𝑥𝑧 + 𝑣̃𝜎𝑦𝑧𝑤̃𝜎𝑧𝑧 + 𝑞𝑧


+


0
𝑠𝑚 ( ˆ̂𝑢)
𝑠𝑚 ( ˆ̂𝑣) 𝑠𝑚 ( ˆ̂𝑤)
𝑠𝑒 ( ˆ̂𝑢, ˆ̂𝑣, ˆ̂𝑤)


= 0.

(15)

The resulting equations have the same form as the Navier-Stokes equations for a moving mesh, with some additional
sources terms. This means that the SVM method can be implemented in a moving mesh CFD solver by setting the mesh
velocities to the vortex particle induced velocities and modifying the code to include the source terms. In previous work
[11] on gust simulations it was found that the source terms only became important for gust lengths much shorter than
required for aircraft certification. For this work the source terms have been included and are given by

𝑠𝑚 (·) = 𝜌

{
𝜕·
𝜕𝑡

+ (𝑢̃ + ˆ̂𝑢) 𝜕·
𝜕𝑥

+ (𝑣̃ + ˆ̂𝑣) 𝜕·
𝜕𝑦

+ (𝑤̃ + ˆ̂𝑤) 𝜕·
𝜕𝑧

}
(16)
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𝑠𝑒 ( ˆ̂𝑢, ˆ̂𝑣, ˆ̂𝑤) = 𝑢̃𝑠𝑚 ( ˆ̂𝑢) + 𝑣̃𝑠𝑚 ( ˆ̂𝑣) + 𝑤̃𝑠𝑚 ( ˆ̂𝑤) + 𝑝

[
𝜕

ˆ̂
𝑢

𝜕𝑥
+ 𝜕

ˆ̂
𝑣

𝜕𝑦
+ 𝜕

ˆ̂
𝑤

𝜕𝑦𝑧

]
+ 𝜎𝑥𝑥

𝜕
ˆ̂
𝑢

𝜕𝑥
+ 𝜎𝑦𝑦

𝜕
ˆ̂
𝑣

𝜕𝑦
+ 𝜎𝑧𝑧

𝜕
ˆ̂
𝑤
𝜕𝑧

+ 𝜎𝑥𝑦

[
𝜕

ˆ̂
𝑣

𝜕𝑥
+ 𝜕

ˆ̂
𝑢

𝜕𝑦

]
+ 𝜎𝑥𝑧

[
𝜕

ˆ̂
𝑤

𝜕𝑥
+ 𝜕

ˆ̂
𝑢

𝜕𝑧

]
+ 𝜎𝑦𝑧

[
𝜕

ˆ̂
𝑤

𝜕𝑦
+ 𝜕

ˆ̂
𝑣

𝜕𝑧

] (17)

The terms are deemed as sources as they only involve derivatives of the induced velocities. It is noted that the stress
tensors, 𝜎, in SVM are calculated based on velocity derivatives for total velocities 𝑢 and 𝑣 meaning that they include the
induced vortex particle velocities for the calculation of viscous fluxes. This is to eliminate the introduction of dissipative
source terms arising from separating velocity derivatives.

Note also that the above is merely a rewriting of the Navier-Stokes equations. Any additional assumptions over
those usually made for RANS CFD solvers come from the VPM.

2. Fast Multipole Method
Calculating the induced velocity at each mesh point requires the valuation of, Eq (8), for each vortex particles. This

means that the cost of this step is O(𝑁𝑀), where 𝑁 is the number of particles and 𝑀 is the number CFD mesh points.
Similarly calculating the source terms, Eqs. (16) and (17), directly requires O(𝑁𝑀). The Fast Multipole Method
(FMM) [18] allows the cost of the velocity computation to be reduced to O(𝑁), details of the implementation of the
FMM for both the induced velocity and source terms can be found in [13].

The cost of the velocity influence on the CFD grid is also reduced using a localisation scheme where CFD points
beyond a set distance from any particle are assumed to have a negligible induced velocity. In this work it was found that
assuming a distance of 10 times the core radius made no measurable difference to the solutions.

3. Particle seeding
Vortex particles are initialised or "seeded" according to the circulation in the CFD solution. A 2D region is identified

and particles are seeded based on the circulation flux through the 2D plane. The 2D region is split up into a uniform
grid. A slice through the 3D mesh is taken where it intersects the 2D seeding plane, creating a 2D intermediate mesh.
The vorticity and velocity are then interpolated from the CFD solution onto the 2D mesh that results from the slicing.
Integrating the vorticity flux through each cell in the grid, as shown in the following equation, gives the particle strength

Γ𝑖 =

𝑁∑︁
𝑗

𝐴 𝑗𝜔 𝑗u 𝑗Δ𝑡, (18)

where 𝑖 is the cell index in the 2D grid, 𝑗 are the cells in the intermediate mesh that overlap with cell 𝑖 and 𝐴 𝑗 are the
associated cell areas. The uniform 2D grid spacing, ℎ, is set to

ℎ = 𝑢∞Δ𝑡 (19)

The particles are placed at the circulation moment centre given by

x𝑖 =
∑𝑁

𝑗 𝐴 𝑗𝜔 𝑗 (x 𝑗 + u 𝑗Δ𝑡)∑𝑁
𝑗 𝐴 𝑗𝜔 𝑗

, (20)

where x𝑖 is the particle seeding location and x 𝑗 is the centre of the intermediate cell 𝑗 . The particle radius, 𝜎, is then
calculated by

𝜎 =
ℎ

𝛽
(21)

where 𝛽 is the particle overlap ratio, which should be less than 1 to ensure that particles overlap [19].

III. Results
Reuslts are presented for modelling a wingtip vortex. The wing configuration studied was rectangular and had a

constant and untwisted NACA 0015 profile along the entire span. The wing had an aspect ratio of 6.6. Only half the
wing was simulated, with a symmetry plane. An angle of attack of 12° was used. The coarse mesh used for the VPM is
shown in Figure 2a. This mesh has some mesh refinement close to the wing tip to capture the initial wing tip vortex
formulation, then rapidly coarsen 0.4𝑐 behind the wing. The fine mesh CFD simulations are performed on a mesh
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(a) VPM coarse mesh (b) CFD fine mesh

Fig. 2 VPM and CFD meshes

which has been refined in the region of the wing tip vortex and the resulting mesh is shown in Figure 2b. For both the
CFD and SVM the DLR TAU code [20] was used, which is and unstructured solver with a cell-centred finite volume
scheme. The convective flux of the mean flow equations is approximated using a central difference scheme with matrix
dissipation. For the time integration a dual-timestepping method was used, where the time-derivative is discretised
using a second-order Backward Difference Formula (BDF). Each time step is converged using the Backward Euler
method in which the linear system is solved using the Lower-Upper Symmetric Gauss-Seidel (LUSGS) scheme. For the
turbulence model the Spalart Allmaras has been used.

The fine CFD mesh preserves the wingtip vortex well as shown in 4a, which shows vorticity contour plot through
the centre line of the wingtip vortex. However, running the CFD on the coarse mesh results in the vorticity dissipation
as soon as it reaches the unrefined region of the mesh as shown Figure 4b. The vortex particles are seeded in a region
0.3𝑐 behind the aerofoil as shown by the red line in Figures 4 to 5. As result of the vortex particles being isotropic the
grid spacing of the seeding region is set to Δ𝑇𝑈∞, this means that the number of particles inserted per timestep is a
function of the timestep size. Figure 4c show the vorticity contours for a VPM simulation for same timestep size as the
CFD. This shows that the lower vorticity levels are maintained into the the coarse mesh region, however the higher
levels of vorticity aren’t captured as well. Part of the reason for this is that the particles are seeded based on circulation
strength which has the effect of averaging the vorticity in the seeding grid, shown in Figure 3. This also results in the
vorticity being spreed over a larger area which can be seen from the vorticity iso surface show in Figure 5. Reducing
the time step to seed approximately double and quadruple the number of particle improves the results for the higher
levels of vorticity as show in Figures 4. Increasing the number of particles from 121 to 225 shows a large improvement
in capturing the high levels of vorticity with a smaller improvement going from 225 to 484 particles. To increase the
resulting solution resolution while keeping the timestep the same, one simulation was performed where the seeding box
size has halved in each direction and the vorticity flux though each box split between two particles in the local flow
direction. Compared to quartering the timestep to get a similar 2D seeding grid this approach matches the lower levels
of vorticity well as shown in 5e and 5f. At the higher levels of vorticity this approach of splitting the seeded vortex
particles initial captures the vorticity better then not splitting the vortex particles at the same timestep size as can be
seen by comparing Figures 4c and 4f. However, the higher levels of vorticity aren’t preserved as well as the smaller
timesteps simulations, Figures 4d and 4e. This indicates that a smaller time step is required for the VPM method to
preserve the higher levels of vorticity. Figures 6 and 7 show slices the tip vortex at 2 and 3 chords behind the seeding
region. The show that resolution of the seeding region better captures the core of the vortex region. Splitting the vortex
particles and seeding two particles per timestep for each seeding grid cell results in a more fragmented vortex core.

IV. Conclusion
The vorticity flux through a 2D seeding grid has been shown to be a viable approach for seeding particles into the

flow for a coupled CFD-VPM code. This approach works well for lower levels of vorticity. Higher resolution seeding
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Fig. 3 Vorticity at intersection between seeding grid and CFD mesh

grids are required to capture higher levels of vorticity. In the base line approach this requires reducing the timestep
increasing the simulation cost. Seeding multiple particles in the streamwise direction per timestep allows a finer seeding
grid to be used without changing the timestep and improves the initial capturing of high levels of vorticity. However the
higher levels of vorticity are not maintend as well as the small timestep cases. The next step would be to decouple the
timestep size used in the VPM from the CFD, to allow smaller timesteps in VPM without decreasing the CFD timestep.
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(a) CFD on fine mesh (b) CFD on coarse mesh

(c) CFD+VPM on coarse mesh, 121 particles per time
step

(d) CFD+VPM on coarse mesh, 225 particles per time
step

(e) CFD+VPM on coarse mesh, 484 particles per time
step (f) CFD+VPM on coarse mesh, split seeding

Fig. 4 Vorticity slice through the tip vortex calculated using CFD and VPM.
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(a) CFD on fine mesh (b) CFD on coarse mesh

(c) CFD+VPM on coarse mesh, 121 particles per time
step

(d) CFD+VPM on coarse mesh, 225 particles per time
step

(e) CFD+VPM on coarse mesh, 484 particles per time
step (f) CFD+VPM on coarse mesh, split

Fig. 5 Vorticity iso-surface calculated using CFD and VPM. Red line shows particle seeding location
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(a) CFD on fine mesh (b) CFD on coarse mesh

(c) CFD+VPM on coarse mesh, 121 particles per time
step

(d) CFD+VPM on coarse mesh, 225 particles per time
step

(e) CFD+VPM on coarse mesh, 484 particles per time
step (f) CFD+VPM on coarse mesh, split

Fig. 6 Vorticity slice through wake 1.3c behind wing tip
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(a) CFD on fine mesh (b) CFD on coarse mesh

(c) CFD+VPM on coarse mesh, 121 particles per time
step

(d) CFD+VPM on coarse mesh, 225 particles per time
step

(e) CFD+VPM on coarse mesh, 484 particles per time
step (f) CFD+VPM on coarse mesh, split

Fig. 7 Vorticity slice through wake 2.3c behind wing tip
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