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A B S T R A C T   

Decision Trees (DT) describe a type of machine learning method that has been widely used in the geosciences to 
automatically extract patterns from complex and high dimensional data. However, like any data-based method, 
the application of DT is hindered by data limitations, such as significant biases, leading to potentially physically 
unrealistic results. We develop interactive DT (iDT) that put humans in the loop to integrate the power of experts’ 
scientific knowledge with the power of the algorithms to automatically learn patterns from large datasets. We 
created an open-source Python toolbox that implements the iDT framework. Users can interactively create new 
composite variables, change the variable and threshold to split, prune and group variables based on their 
physical meaning. We demonstrate with three case studies how iDT overcomes problems with current DT thus 
achieving higher interpretability and robustness of the result.   

1. Introduction 

In the past few decades, our ability to collect, store and access large 
volumes of earth systems data has increased at unprecedent rates thanks 
to improved monitoring and sensing techniques (Hart and Martinez, 
2006; Butler, 2007; Karpatne et al., 2017; Zhou et al., 2017), ever 
growing computational power (Washington et al., 2009), and the 
development of simulation models that produce large datasets at 
increasing domain scale and resolution. An example is the CMIP-5 
dataset of the Climate Model Intercomparison Project (which contains 
various climatological variables at daily resolution (1980–2300) with 
global coverage and over 3 petabytes in size) that has been used 
extensively for scientific groundwork towards climate assessments 
(Reichstein et al., 2019). This ‘data deluge’ has paved the way for the 
systematic processing and analysis of observational and simulation data, 
often using Machine Learning or other statistical methods (Reichstein 
et al., 2019; Karpatne et al., 2019; Sun et al., 2022). 

Machine Learning (ML), a term defined by Samuel (1959), is a 
branch of artificial intelligence (AI) and computer science which focuses 
on discovering patterns hidden in complex datasets (Bzdok et al., 2017; 
Reichstein et al., 2019) by imitating the way that humans learn (IBM, 
2020). The main purpose of ML is to develop algorithms that can learn 
from historical data and perform tasks (e.g. predictions and 

classification) on new input data. The capability of ML methods to 
automatically extract patterns from large volumes of complex and 
high-dimensional data have made them an important part of research in 
many fields, including the geosciences (Bergen et al., 2019; Sun et al., 
2022). 

In this paper we focus on a method called Decision Tree (DT) 
(Breiman et al., 1984), a supervised ML method that is widely used in the 
geosciences. A DT model is developed through an automatic algorithm 
that recursively partitions the space of input variables into subspaces 
using a set of hierarchical decisions. In Fig. 1, we show a DT with a 
schematic representation of the recursive partitioning of the dataset 
along with basic terms used in this paper. A DT model is a hierarchical 
tree structure that comprises nodes and branches. Each node is associ-
ated with a logical expression, i.e. a “split”, which consists of the vari-
able and threshold to split, e.g. “Xi smaller than Xi,j”. Each node will lead 
to two branches that correspond to the different possible outcomes of the 
split. The terminal nodes are called leaves and are associated to either a 
class or a specific value for the output. DT are thus commonly used for 
(Flach, 2012):  

• Classification: The DT is trained on output data that are categorized 
under different classes (discrete values or non-numerical categories) 
and can predict classes for unseen data. 
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• Regression: The DT is trained on continuous output variables, and it 
predicts continuous values instead of classes. 

Examples of DT applications in the geosciences include, catchment 
classification (Sawicz et al., 2014; Kuentz et al., 2017), land cover 
classification (Gislason et al., 2006), studying uncertain factors of 
simulation models (Almeida et al., 2017; Sarrazin, 2018), analyzing 
rainfall-runoff relationships (Iorgulescu and Beven, 2004; Singh et al., 
2014), empirical streamflow simulation (Shortridge et al., 2016), soil 
mapping (Grimm et al., 2008; Hengl et al., 2017), regionalizing hydro-
logical signatures (Addor et al., 2018). 

DTs are quite appealing in the geosciences because geophysical 
processes often reveal hierarchical structures of controlling variables, 
and the hierarchical structure of DT with nodes, branches and splits is a 
straightforward way to capture this. In geoscience applications, DT are 

particularly appealing for the purpose of organizing spatially distributed 
entities, such as rivers, catchments or other landscape units, thus 
demonstrating how large-scale (e.g. climatic) controls interact with 
small-scale (e.g. land use or geology) controls (Sawicz et al., 2014; 
Addor et al., 2018). 

Despite these advantages, they have limitations (see Fig. 2) which 
make their use in the geosciences challenging. We highlight three main 
challenges that are important to our discussion:  

1) Like any statistical tool, DT methods rely on data and consequently 
their credibility is dependent on the quantity and quality of data 
available. DT require large amounts of data for training which are 
not always available (Kirchner et al., 2020). When available, data in 
geosciences can be biased, complex, uncertain, noisy, heterogeneous 
and with changing properties (e.g. due to changes in measurement 

Fig. 1. Left: A schematic representation of the recursive partitioning of the data space performed by a Decision Tree development algorithm. Middle: A typical 
Decision Tree. Right: Terminology. 
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instruments or the data processing algorithms) (Solomatine and 
Ostfeld, 2008; Faghmous and Kumar, 2014; Beven et al., 2018; 
Karpatne et al., 2019). Therefore, the accuracy of DTs deteriorates 
with decreasing size or quality of the training dataset (Pal and 
Mather, 2003). 

2) DT development relies on statistical metrics and algorithmic de-
cisions aim at statistical optimality, usually measured in terms of 
classification rate or regression accuracy. However, such statistical 
optimality does not guarantee that the outcome is physically 
consistent (Roscher et al., 2020). By physical consistency we mean 
that a DT should not violate scientific principles (such as conserva-
tion of mass), or overlook known physical characteristics of the 
system investigated. For example, some input variables may have 
physically meaningful threshold values that may be missed by the DT 
because other threshold values might produce a statistically better 
result for the (noisy and biased) dataset used for training. Moreover, 
most DT algorithms use split rules based on a single variable at each 
node, whereas combinations of multiple variables may play a sig-
nificant role in partitioning the data space (Loh, 2014; Almeida et al., 
2017).  

3) DT complexity may decrease their interpretability and consequently 
limit their usefulness in geosciences applications. By interpretability 
we mean the ability by a human expert of making sense of the ob-
tained model (Molnar, 2020), understand how the model works and 
reaches a specific decision. Decision Trees are easier to interpret if 
they are small. The greater the number of terminal nodes, the deeper 
the tree and the more difficult it becomes to interpret. (Molnar, 2020; 
Lipton, 2018). Visualization could also help increase the interpret-
ability of DTs. However, existing visualization techniques mainly 
focus on displaying information related to the statistical properties of 
the DT (e.g. impurity, node data points), whereas they do not support 
the display of information related to the physical properties of the 
variables – something that would potentially be more useful for 
geosciences applications (Almeida et al., 2017). 

Integration of human experts in the DT development process – and 
hence of their domain knowledge and their cognitive ability to formu-
late hypotheses and theories – may help overcome some of these chal-
lenges. For example, experts may have very good knowledge of the 
physical processes, quantities and phenomena under study and hence be 
able to define physically meaningful splitting variables and thresholds, 

or discard DT branches that are physically unrealistic. An example is 
given in Stein et al. (2020) where a DT model to classify river flood 
generating processes is built purely based on domain knowledge. In 
addition, experts can define combinations of input variables that they 
believe interact in controlling outputs, where current algorithms would 
not allow for the detection of such combinations. An example is given in 
Almeida et al. (2017), where expert knowledge enabled integrating 
multiple variables into a new and physically meaningful factor. More-
over, experts can learn patterns from few datapoints because they have a 
certain expectation of relevant causal relationships, so they could guide 
the algorithm to learn from smaller amounts of data, or dataset where a 
particular output class is under-represented (“imbalanced dataset” 
(García and Herrera, 2009). Inclusion of domain knowledge in the 
model building process can also increase trust in the modelling results 
(Solomatine and Ostfeld, 2008). Incorporating scientific knowledge into 
ML models to improve their physical realism and interpretability has 
been highlighted as a major challenge and opportunity for ML applica-
tions in the geosciences (Read et al., 2019; Sun et al., 2022). 

In this paper, we propose a framework to develop “interactive De-
cision Trees” (iDTs) that put human experts in the development loop of 
Decision Trees. Our iDT framework establish a two-way interaction 
between the automatic DT development algorithm and the expert, 
allowing the expert to manually create new composite variables, 
changing nodes’ splitting variables and thresholds, manually pruning 
leaf nodes, and visualizing DTs in physically meaningful ways. Past at-
tempts at developing iDT include the works of Ankerst et al. (2000), Han 
and Cercone (2001), Teoh and Ma (2003), Fails and Olsen (2003), 
Solomatine and Siek (2004), Mickens et al. (2007), Do (2006), van den 
Elzen and van Wijk (2011), Estivill-Castro et al. (2020), Elia et al. 
(2021). Outside the scientific literature we found two commercial soft-
ware products that allow users to interact with the DT, Dataiku1 and IBM 
SPSS.2 We discuss briefly why the additional work presented here is 
warranted despite these previous efforts:  

1. To our understanding, the above tools were developed for general 
use and none of them was tested for geosciences applications. This 
puts into question whether their interactive functionalities will be 

Fig. 2. Left: Flowchart of the steps performed to develop a Decision Tree in a “Classical” analysis and with our proposed Interactive analysis. Right: Strengths and 
Limitations of Decision Trees Algorithms and experts. 

1 https://www.dataiku.com/.  
2 https://www.ibm.com/analytics/spss-statistics-software. 
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applicable and/or useful to overcome the specific challenges dis-
cussed above. For example, we ran the tool developed by van den 
Elzen and van Wijk (2011), but it could not handle the large datasets 
typical for geoscience applications. The tool by Solomatine and Siek 
(2004), which was tested on six hydrological datasets, allows for 
larger datasets, but it is not publicly available. 

2. To the best of our knowledge, none of the studies cited above pub-
licly shared the code to run their analyses and this might be one 
reason why they were not followed up by others or adopted by re-
searchers in our community. The exceptions are: (a) the web appli-
cation from Elia et al. (2021), which is freely available open source, 
but is designed for educational purposes; (b) the commercial soft-
ware Dataiku, which is freely available for academic purpose but not 
open-source; and (c) the IBM software, which is neither free nor 
open-source.  

3. Finally, in the above tools the main purpose for integrating human 
expertise in the DT development process is to improve the algorithm’ 
predictive performance. Here instead we argue that interpretability 
and robustness are at least equally important aspects in geosciences 
applications. Even to the point that users might accept a reduction in 
predictive performance if it comes with an increase in interpret-
ability and robustness given new datasets. Hence, we devise and 
demonstrate a number of visualization and interaction functional-
ities that are specifically aimed at increasing DT interpretability, and 
we also discuss how to measure interpretability (in the context of a 
specific application – see Case Study 2) beyond simply measuring the 
DT size (number of layers, number of leaf nodes) and training time 
(as done in previous studies). 

Alongside presenting our iDT framework, we thus also introduce a 
free, open-source Python package to implement the iDT framework, 
which we demonstrate using three case studies representatives of typical 
challenges encountered in the geosciences. In the first case study, we 
show how color-coding the tree nodes based on their physical meaning 
produce a physically meaningful visualization, and how the experts can 
create new composite variables in the training process to better capture 
existing interactions in the dataset, thus producing a smaller and more 
interpretable DT. In the second case study, we show how the expert can 
manually change the splitting threshold values of the tree nodes based 
on other sources of knowledge, again to increase the DT interpretability. 
Finally, in the third case study, we show how experts can manually 
change nodes’ splitting variables and thresholds to include under- 
represented classes in imbalanced datasets and make the DT physi-
cally consistent, robust and potentially even more accurate on new 
datasets. 

2. Methodology 

In this section we describe our framework for establishing in-
teractions between the expert and an automatic DT training algorithm to 
integrate scientific knowledge in DT development. Moreover, we 
describe the Python package and the Jupyter Lab Graphical User 
Interface we developed to implement the framework. Finally, we present 
our ideas on how to evaluate DT predictive and interpretive 
performance. 

2.1. A framework for interactive construction and analysis of decision 
trees 

Fig. 2 shows our framework for interactive construction and analysis 
of DTs and compares it to the classical approach of automatic develop-
ment. In the classical approach, the analyst prepares the dataset to feed 
to the ML algorithm, specifies the algorithm’s tuning parameters, exe-
cutes it, and obtains the classification/regression model. In the inter-
active framework, the analyst (expert) can input their prior knowledge 
and/or feedback. Specifically, the expert can:  

1) Organize and (pre-)process the input datasets, by grouping input 
variables in a physically meaningful way (such as climate variables, 
land surface properties, soil properties, etc.). The tree can then be 
colour coded based on this grouping. The user can also add new 
composite variables to the input dataset before or after the first al-
gorithm run.  

2) Directly manipulate the structure of the DT model, by changing node 
variables and split threshold values, or by manually pruning the DT 
or changing leaf node class. This can be useful when the expert is 
aware of physically meaningful threshold values for certain variables 
(for example thresholds for climate variables that are used to classify 
different climate zones) to improve the DT’s physical interpret-
ability. Another reason to manipulate the DT structure is the case of 
an imbalanced dataset, where a certain class is under-represented in 
the dataset and thus an automatic algorithm may not separately 
represent that class in the DT. Different tactics have been proposed to 
overcome this problem, such as resampling (García and Herrera, 
2009), synthetic generation (Chawla et al., 2002) or penalized 
models, although they often are time consuming to implement (Zhou 
et al., 2017). iDT offers an easier way to overcome the problem by 
allowing the expert to force the tree to include the under-represented 
class by manually changing nodes’ variable and thresholds to split 
and/or leaves nodes classes. 

2.2. A python package and graphical user interface in jupyter lab for 
interactive construction and analysis of decision trees 

To maximise the reusability, replicability and reproducibility of our 
proposed approach (Gil et al., 2016; Hutton et al., 2016) we developed 
and shared an open-source Python package and a GUI in Jupyter Lab for 
implementing the IDTs framework. The code is available at.3 We used 
the sklearn library of scikit-learn package in Python (Pedregosa et al., 
2011) that contains the implementation of the tree algorithm (for more 
details see Supplementary material) as a basis for our interactive tools. 
We created a new package, called “InteractiveDT”, which consists of (1) 
an “iDT” module containing the functions that enable the expert to 
interact with the DT or the dataset, and (2) an “iDTGUIfun” module 
which incorporates these functions into widgets, which are then used in 
the Jupyter Lab script called “InteractiveDecisionTrees” to create the 
user interface. Further details about this GUI are also provided in the 
Supplementary material. 

2.3. Evaluating DT predictive and interpretive performance 

Decision trees are generally used as predictive tools for classification 
or regression. Therefore, their evaluation is typically based on statistical 
metrics of their predictive ability (Lipton, 2018). Examples of such 
metrics include classification accuracy, confusion matrices, precision, 
recall, accuracy rate, root mean squared error metrics, and mean error 
metrics (Pedregosa et al., 2011). However, in geosciences applications, 
we often would like the DT to be not just a good predictor, but also to be 
interpretable (Lipton, 2018). In contrast to predictive performance, 
interpretability is a less well-defined concept and metrics to measure 
interpretability are not yet well established (Doshi-Velez and Been, 
2017). A widely used proxy for interpretability is the complexity of the 
tree, as it can be reasonably assumed that a less complex tree is easier to 
interpret (Molnar, 2020; Lipton, 2018). The complexity of a DT can be 
easily quantified through the number of leaf nodes and/or the depth of 
the tree (Molnar, 2020). We adopted these simple metrics to evaluate DT 
interpretability in our first case study. 

The need for interpretability is often linked to the use of models to 
assist scientific understanding (Doshi-Velez and Been (2017)). The 
evaluation of interpretability for scientific understanding though is 

3 https://github.com/Sarailidis/Interactive-Decision-Trees. 
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Fig. 3. Decision Tree (top) for Case study 1 with the conventional nodes coloring approach, which is based on node impurity. The same tree is shown in the bottom 
with the proposed alternative nodes coloring, which is based on groups of variables proposed by the user. With this node coloring option, it is evident what kind of 
variables dominate the tree. The figure also shows a screenshot of the InteractiveDT tool developed to achieve this alternative visualization. 
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context specific. In our second case study, we will give an example of a 
case-specific definition of interpretability, based on the consistency of 
the DT partitioning with an existing independent classification system of 
some of the input variables. 

3. Results 

3.1. Case study 1 – color-coding groups of variables and constructing new 
composite variables to reduce the DT complexity and increase 
interpretability 

The first case study is based on a dataset from a computational 

Fig. 4. Initial DT (top) for Case study 1, in which interactions between variables emerged. In the middle, the scatter plots of the interacting variables are shown, 
coloured according to whether the associated slope fails (black dots) or not (grey). The iDT in the bottom is the new tree after creating two composite variables based 
on the detected interactions. 
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landslide study by Almeida et al. (2017), which includes 10,000 com-
binations of 28 input variables of a slope stability model (the list is given 
in Table S1 in the supplementary material). These variables are model 
inputs characterising landscape attributes such as slope geometry, soil 
and design storm properties and initial hydrological conditions. The 
model output is the slope factor of safety (FoS), which is typically used to 
separate the model outputs into two results regarding the stability of a 
landscape position regarding landslide hazard risk: “stable”, when FoS is 
above 1, and “failure” otherwise. In Almeida et al. (2017) a standard 
CART algorithm was used to identify dominant drivers of slope insta-
bility. We applied our iDT procedure to the same dataset to demonstrate 
two functionalities of our iDT toolbox: (a) How to increase the visual 
interpretability of the DT by colour coding variables based on their 
physical meaning. (b) How to better capture interactions between var-
iables by creating new composite variables. 

Fig. 3 shows the statistically optimal DT delivered by the automatic 
DT algorithm. Nodes are coloured based on Impurity, a default choice in 
many software packages. Fig. 3 also shows the graphical interface of the 
InteractiveDT tool, which enables the user to define groups of input 
variables and colour code the nodes accordingly. Through this new 
visualization, it is evident that the first three levels of the tree are 
dominated by “geophysical properties” and “slope geometry variables”, 
while levels 4 and 5 are mainly dominated by “design storm properties”. 
Furthermore, the colour coding helps spotting a repetition of four var-
iables - cohesion (c_0), thickness of topsoil (H0), rainfall intensity (I) and 
duration (D) - at various levels of the tree. Such a repetition suggests that 
these variables may be interacting with one another to produce slope 
failures (the tree tries to mimic this interaction). Indeed, a scatterplot of 
c_0 versus H0 (left hand side in Fig. 4) shows that combinations of high 
H0 and low c_o (bottom right) lead to slope failure (black dots). More-
over, we expect rainfall intensity and duration to interact. Specifically, 
combinations of high-intensity/short-duration and low-intensity/long- 
duration rainfall will more likely result in slope failure. This relation-
ship is confirmed in the (log-scale) scatterplot on the right-hand side of 
Fig. 4. To capture these interactions, the user may create two composite 
variables: Soil Ratio, which is the ratio of cohesion and thickness of 
topsoil (Soil Ratio = c_0/H0), and Storm Ratio, which is the ratio of the 
logarithms of rainfall intensity and duration (Storm Ratio = -log10(D)/ 
log10(I)). The bottom part of Fig. 4 shows the new DT delivered by the 
algorithm when fed by a training dataset including these two composite 

variables. Overall, the new DT is “better” than the original one because it 
is smaller (21 nodes instead of 57, and a depth of 5 layers instead of 8) 
and hence easier to interpret, and it is more accurate in predicting slope 
failure (higher number of true slope failures and lower number of false 
slope stabilities) for both training and test datasets. Evaluation and 
comparison of the two DTs are summarised in Fig. 5. 

3.2. Case study 2 – Increasing interpretability by changing splitting 
threshold values based on other relevant knowledge sources 

The second case study is based on a version of groundwater recharge 
dataset created by Sarrazin (2018) which includes 17,000,000 simula-
tions of 34 input variables of a hydrological model. These variables are 
model inputs characterizing spatially distributed climate properties, 
land cover and soil properties of karst landscapes across Europe under 
current conditions and future climate scenarios. The model outputs are 
values of annual groundwater recharge, which are then grouped into 
four classes, namely, C1 (<20 mm/yr), C2 (20–100 mm/yr), C3 
(100–300 mm/yr) and C4 (>300 mm/yr). A DT is built to reveal the key 
controls of groundwater recharge. To increase the interpretability of the 
DT we used our iDT framework to manually change some of the nodes’ 
thresholds consistently with a simplified version of Holdridge’s life 
zones classification scheme (Holdridge, 1947). The Holdridge scheme 
provides a classification of land areas based on annual precipitation and 
aridity index (i.e. the ratio between potential evaporation and precipi-
tation; Figure S2 in the Supplementary material shows the original and 
our simplified scheme). By imposing that the threshold values for Pre-
cipitation (Pm) and Aridity index (AI) in the DT be the same as in the 
Holdridge chart thresholds, we wanted to explore whether a tree so 
constructed leads to leaf nodes that map into fewer Holdridge life zones, 
and as such may be more interpretable, and whether this gain in inter-
pretability comes with a significant loss in classification accuracy. 

We generated 15 datasets of 1000 samples each by randomly sam-
pling from the original dataset (of 17,000,000 samples). For each dataset 
we derived a statistically optimal (SO) and an interactive (iDT) decision 
tree. To derive the SO decision tree, we tried different combinations of 
the algorithm tuning parameters (splitting criterion based on “Gini im-
purity” or “entropy”, maximum number of leaf nodes varied from 15 to 
25, maximum impurity decreases of 10− 5, 10− 6, 10− 7) and retained the 
best SO tree based on 10-fold Cross Validation strategy. To derive the 

Fig. 5. Evaluation and comparison of the statistically optimal and interactive DTs for Case Study 1 based on classification performance and interpretability.  
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corresponding iDT, we used the iDT framework to manually change all 
the splitting thresholds for Pm and AI to the closest Holdridge chart 
threshold values. The closest threshold could sometimes be quite far, 
and the choice of changing it, is subjective. But in some other cases even 
a small change e.g., changing AI threshold from 1.1 to 1, could make a 
big difference in terms of interpretability. 

Fig. 6 shows an example of a statistically optimal DT (top) and the 
corresponding iDT (bottom), focusing on the specific branch where we 
manually changed the thresholds for Precipitation (Pm) and Aridity 
index (AI), and hence the resulting leaf nodes. Next to the tree branches, 

we show the Holdridge life zones (HLZs) that the leaf nodes are mapped 
into. In the statistically optimal DT (top), the three leaf nodes map into 
13 and 5 HLZs respectively. In the iDT (bottom), the number of HLZs is 
reduced to 4, 2 and 5 after changing one precipitation threshold from 
229.82 to 250 and another one from 527.54 to 500 (in line with the HLZ 
classification). Of particular interest is the leaf nodes labelled C2, which 
define conditions under which groundwater recharge is low. In the 
statistically optimal tree, such conditions appear in 13 different climatic 
zones, while in the iDT they can only appear in two climates: thorn/ 
steppe or thorn woodland. This drastic reduction opens up the 

Fig. 6. Detail of the statistically optimal DT (top) for Case Study 2 and of the iDT (bottom) after manually changing the thresholds for Precipitation (Pm) and Aridity 
index (AI). For the leaves nodes of each DT we plotted the Holdridge scheme and highlighted the diamonds that the leaves can be mapped to. 
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opportunity for the expert to find meaningful explanations of why those 
two particular climatic zones exhibit lower recharge and the implica-
tions of this finding. While it is beyond the scope of this paper to go into 
such explanation, our argument is that the opportunity to develop it in 
the first place would have not been present if using the statistically 
optimal tree. Since class C2 was associated to a variety of different cli-
matic zones. 

Fig. 7 shows the classification and interpretability performance of all 
15 statistically optimal DTs (one per each of the 15 datasets sub- 
samples) and associated iDTs (each obtained from the statistically 
optimal DT by changing Pm and AI thresholds). Regarding classification 
performance, the differences are not pronounced, which means the 
changes made by the expert did not lead to a significant loss of perfor-
mance. As expected, the statistically optimal DTs always show a slightly 
higher classification accuracy in the training sets. Interestingly though, 
the iDTs outperform the statistically optimal trees in most cases (9 out of 
15) in the test sets. Interpretability performance was quantified through 
the number in climatic zones classes C2 and C3 classes can be mapped 
to. Overall, the plot shows that the number of HLZs associated to leaf 
nodes of classes C2 and C3 tends to decrease. In conclusion, this example 
shows that incorporating other knowledge sources in the DT develop-
ment by manually changing the splitting thresholds produces iDTs with 
a clearer link to that knowledge, and hence higher interpretability po-
tential, at no significant loss in classification accuracy. 

3.3. Case study 3 manually changing nodes’ variables and threshold 
values to include under-represented classes in imbalanced datasets 

This case study is an example of application of iDT in cases where 
certain classes are under-represented in a dataset, a situation known as 
“imbalanced datasets”. We again used the dataset from Sarrazin (2018) 
as in Sec. 3.2, and randomly generated 5 subsample datasets of 
increasing sizes (1000, 5000, 10000, 50000 and 100000 samples). We 
then split each subsample dataset into a training and a test set (75% and 
25% of the dataset size respectively) and randomly removed data points 
that belonged to class C2 from the training dataset. Therefore, the 
training sets contained only few data points of class C2 (<2%). Similarly, 
to Sec. 3.2, for each dataset we trained a Statistically Optimal (SO) de-
cision tree and then derived an iDT by manually changing the nodes’ 
variables and thresholds until the iDT included the unrepresented class 
C2 in some of its leaf nodes. In some cases, we also manually changed the 
class of a leaf node to class C2. For example, in Fig. 8 on the left we show 
a part of the SO tree obtained for sample dataset 2. We know from 
Sarrazin (2018) that low recharge class C2 should appear for low pre-
cipitation values, but the algorithm fails to include the C2 class in the SO 

tree as the class is under-represented in the training dataset. Hence, 
based on the splitting variables and thresholds of the DT found in Sar-
razin (2018) we manually changed the threshold in the split node 
“Pm<=639.075” to “Pm<=300” and the node variable in the split 
“Vr<=201.14” to “Pm<=65” in our DT, so to create a branch in the 
tree that specifically explore low precipitation cases. In response to these 
manual changes, the algorithm created a leaf node for class C2 in the iDT 
(top right of Fig. 8). The change induced a loss of classification accuracy 
in the training dataset (see Fig. 8, case ‘2’) but an increase in perfor-
mance on the test dataset against unseen data. Moreover, the confusion 
matrices indicate that iDT is more capable in correctly classifying data 
points into Class C2 as shown in Fig. S3 in the Supplementary material. A 
similar trend is found for all other datasets: as expected, SO trees 
perform better in the training sets but iDTs outperform SO trees in in test 
set, particularly for smaller datasets. 

4. Conclusions 

How we can incorporate scientific knowledge into ML models to 
improve their physical realism, their robustness and their interpret-
ability remains a major challenge and opportunity for ML applications in 
the geosciences (Read et al., 2019; Sun et al., 2022). To address this 
problem, we propose a framework for the construction and analysis of 
interactive decision trees (iDTs) for application in the geosciences. We 
created an open-source implementation of iDT in Python and Jupyter 
Lab, which we hope will encourage the use of iDT in future research 
applications. We demonstrated the iDT approach in three case studies 
that represent typical challenges encountered in applications of de-
cisions trees in the geosciences. We found that our proposed iDT 
framework supports the development of decision trees that are easier to 
visualise and interpret in a physical sense. In our second case study, we 
find that manual adjustment of splitting thresholds can lead to a more 
physically meaningful tree with almost no loss in classification perfor-
mance. In the third example, we show how experts can build a more 
robust and physically consistent DT in cases of imbalanced datasets that 
can generalize better on unseen data. Even though manually changing 
the nodes’ variables and threshold values based on domain knowledge 
to consider an under-represented class deteriorated the classification 
accuracy in training sets, it improved it in test sets. 

An important direction for future geoscience research is to achieve 
closer interaction between human experts and machine learning algo-
rithms by including domain knowledge in algorithmic form (Solomatine 
and Ostfeld, 2008). For example, experts could force the algorithm to 
search for thresholds in a specific range of values for selected variables, 
or they could define constraints on variable selection to eliminate 

Fig. 7. Evaluation and comparison of the statistically optimal and interactive DTs for Case Study 2 based on their classification performance and interpretability.  
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Fig. 8. Detail of the statistical optimal DT (top left) for Case Study 3 and interactive DT (right) for the sample dataset 2. In the iDT, the variables and threshold values 
in italic are those manually changed by the user, and those marked with an asterisk are changed by the DT algorithm in response to the manual changes. The bottom 
panel shows the classification accuracies on the training and test sets, and the distribution of the four output classes (C1–C4), in each of the 5 datasets (bottom). 
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unrealistic sequence of variables to split. Another area for future 
improvement would be to expand the range of visualization techniques 
(e.g. partial dependence plots, accumulated local effects, feature inter-
action; see for example application in Shortridge et al. (2016)) that 
could be used in parallel to further enhance DT interpretability. 

We hope that this paper will contribute to foster the development 
and use of interactive decision trees and, more broadly, of methods to 
better integrate domain knowledge in ML, which is particularly relevant 
for geoscience applications. 
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