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Abstract In this study, the numerical bifurcation
analysis of a shimmyingwheel is performedwith a non-
smooth, time-delayed model of the tyre-ground con-
tact. This model is capable of reproducing the bistable
behaviour often observed in experiments: a stable equi-
librium and a stable periodic orbit coexisting for the
same set of system parameters, that the simpler quasi-
steady tyremodels fail to capture. In the bistable param-
eter domain, there also exists an unstable periodic orbit
within the separatrix between the domains of attrac-
tions of the two stable steady-state solutions. Although
this solution never appears in a real-life system, one
may still gain valuable information from tracing it as
it gives an indication about the level of perturbation
that would drive the system from one stable solution
to the other. However, the complexity of the laws gov-
erning partial sticking and sliding in the tyre-ground
contact makes the numerical bifurcation analysis with
the traditional, collocation-based techniques infeasible.
Instead, this study is based on numerical simulations
and the technique of control-based continuation (CBC)
to track the stable and unstable periodic solutions of the
system allowing for the assessment of the accuracy of
the non-smooth, delayed tyre model in replicating the
dynamics observed in experiments. In the meantime,
the physics-based model provides an insight into the
relationship between the sticking and sliding regions
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appearing in the tyre-ground contact and the global
dynamics of the system.
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1 Introduction

Understanding the tyre-ground contact is probably
the most essential prerequisite of developing accurate
models for road vehicles since the contact patches,
roughly the size of human palms, provide the interface
for the energy-transmission between the ground and the
vehicle. The importance of tyre dynamics motivated a
multitude of studies on tyre modelling.

Depending on the application, onemay follow either
a more theoretical or a more empirical approach when
choosing a tyre model. In his book [1], providing an
extensive summary on the subject, Pacejka considers
four categories of tyre models. At the experimental
end of the scale, there are the models relying purely
on experimental data or using similarity methods. The
most famous among these models is the widely used
magic formula [2] tyre model. While empirical mod-
els can be tuned to be highly accurate, they provide
little insight into tyre behaviour as they disregard the
actual phenomenon of the dynamic force generation in
the tyre-ground contact. At the other end of the scale,
one finds the sophisticated physics-based tyre models,
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such as the FTire [3] model or finite-element-based
approaches [4,5]. Provided that the model parame-
ters are accurately identified, these models can also
reach a high level of quantitative accuracy. However,
due to their complex formulation and/or large number
of model parameters, these models are also prone to
losing insight to the underlying force-generation phe-
nomenon.

The simpler physical tyre models: the brush and
the stretched-string models [1] and the single contact-
point creep-force type models [6] are around the mid-
dle of the empirical-theoretical spectrum. Their main
advantage is that they are built from relatively simple
mechanical elements, require only a few parameters
and the resulting force in the tyre-ground contact is
derived from first principles. Therefore, even though
they provide less quantitative accuracy, they are ideal
for the qualitative analysis of the tyre behaviour. The
insight gained from these models then can be taken
into account in the empirical or the more sophisticated
mechanical models as well.

An important element of the tyre models is the slid-
ing model taking into account the saturation of the tyre
force for larger values of lateral or longitudinal tyre-slip
which is essential for characterising tyre behaviour in
the nonlinear domain. Even though physics-based tyre
models tend to result in piecewise-smooth systems, the
recent advances in investigating such dynamical sys-
tems [7] enable a rigorous bifurcation analysis provid-
ing qualitative insight to these model’s behaviour. In
[8], a towed wheel is studied using a single contact-
point model leading to a system with codimension-2
discontinuity allowing for the study of the interaction
between lateral and longitudinal sliding.

By considering a finite contact domain rather than
a single contact point, the brush and stretched string
models are also capable of capturing partial sticking-
sliding conditions in the tyre ground contact. The defor-
mation of the sticking part(s) of the contact is described
by a nonlinear partial differential equation (PDE) for
which a travelling wave solution involving distributed
time delay can be provided [9,10]. This formulation
might be seen unnecessarily complex in some appli-
cations, therefore it is common to use a quasi-steady
state approximation of the deformation leading to tyre
force and self-aligning moment characteristics. This
approach is usually adequate in applications consider-
ing vehicles running at a higher speed. However, it fails
to capture possible instabilities arising at lower speeds

as demonstrated for wheel shimmy[9], the single-track
model of a car [10] and the car-trailer combination [11],
respectively. Moreover, there is also a marked differ-
ence in the nonlinear behaviour of thesemodels. By the
bifurcation analysis of a towed wheel using the brush
tyremodelwith time delay and lateral sliding, a bistable
parameter domain with a coexisting stable rectilinear
motion and large amplitude periodic solution was iden-
tified that is missed by the simplified brush/stretched-
string typemodels using quasi-steady-state approxima-
tions for the tyre deformation [12].

These results motivated a similar study on the non-
linear dynamics of wheel shimmy using the stretched
string model with sliding. Studies investigating the
linear stability of a towed wheel’s rectilinear motion
revealed that the structure of the stable and unsta-
ble parameter domains predicted by the brush and
stretched-stringmodels are qualitatively identical.Nev-
ertheless, by considering tyre deformation outside the
contact region, the stretched-string models provide
more accurate results when compared tomeasurements
[9].

The non-smooth delayed tyre model, as an exten-
sion of the stretched-string model and capable of cap-
turing lateral sliding, has been investigated in [13]. It is
demonstrated that, similarly to the brush tyremodel, the
non-smooth delayed stretched-string model captures
bistable parameter regions where for the same set of
parameters stable straightline motion and a stable limit
cycle coexist. However, this study is incomplete in the
sense that while finite dimensional piecewise-smooth
systems and smooth delay differential equations can
be both studied by software packages for bifurcation
analysis (e.g. COCO [14], DDEBiftool [15]), the com-
plex nature of the sliding model made the use the
collocation-based algorithms for tracing the periodic
solutions in the system infeasible. Instead, relying on
numerical simulations, only the stable solutions were
found.

Although an unstable periodic orbit is ‘invisible’ in
experiments or open-loop simulations, it carries valu-
able information about the resilience of the stable solu-
tions to perturbations as it is attached to the separatrix
between the domains of attractions of the stable recti-
linear motion and the stable periodic orbit. This means
that the amplitude of the unstable limit cycle can serve
as an estimation for the tolerable perturbation level that
will not lead to a solution that is divergent froma locally
stable orbit.
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The issue of finding unstable steady-state solutions
can be resolved by the technique of control-based con-
tinuation (CBC) [16–18]. This technique has been orig-
inally developed to trace periodic orbits in experi-
ments, but, being compatible with numerical simula-
tions solving initial value problems, it is also capa-
ble of identifying periodic solutions in numerical mod-
els that are too complex to be handled with the more
standard techniques of numerical bifurcation analysis.
Although the original version could be used for sys-
temswith periodic forcing only, themethod can be used
to study autonomous systems by considering phase-
locked solutions as control target as shown in [19]
where the self-excited vibrations of an aerofoil were
studied experimentally.

The aimof this study is to provide further insight into
the relationship between the nonlinear dynamics of the
towed wheel and the dynamically changing sticking-
sliding regions in the tyre-road contact in the context
of self-excited oscillations in the yaw angle (wheel
shimmy). This is achieved by using the physics-based,
non-smooth delayed stretched string tyre model, fol-
lowing up the earlier work on this model [13]. The
main novelty of the present study is that, using the
CBC technique, thus treating the numerical model as
a black-box-type system, it circumvents the issue of
the complexity of the model formulation that make the
use of collocation based techniques infeasible. Thus,
the unstable limit cycles of the system can be surveyed
allowing for a more thorough study of the nonlinear
behaviour compared to previous studies where only
stable steady-state oscillations are captured. The suc-
cessful use of CBC in this problem also highlights the
versatility of themethod even though CBCwas primar-
ily developed with physical experiments in mind.

The assessment of the theoretical results is also com-
plemented by showing experimental results of a towed-
wheel running on a treadmill, exhibiting qualitatively
similar nonlinear behaviour [12], where the amplitudes
of the unstable limit cycles were estimated by identify-
ing the critical initial angular velocity corresponding to
the separatrix between the domains of attractions of the
stable rectilinear motion and the large amplitude limit
cycle of the system.

The rest of the paper is organised as follows. In Sect.
2, the mechanical model of the towed wheel with the
non-smooth delayed stretched-string model is intro-
duced. Then, in Sect. 3, the control-based continuation
(CBC) technique used to trace the unstable periodic

orbits of the system is described. In Sect. 4, the results
of the analysis are discussed, while the conclusions are
summarised in Sect. 5.

2 Mechanical model

2.1 Equation of motion of the towed wheel

The mechanical model of the towed wheel is shown
in Fig. 1. The model consists of a rigid caster, which
can rotate about the vertical axis including the cen-
tre A of the king pin. A viscous torsional damping
of bt is considered in the king pin while we assume
that the bearing has negligible torsional stiffness. Two
coordinate-systems are considered to describe the state
of the model: the ‘global’ coordinate-system (X,Y, Z )
fixed to the ground and the ‘local’ coordinate-system
(x, y, z) moving together with the tyre-ground contact
patch. The orientation of the caster is described by the
yaw angle ψ (deflection angle with respect to the X -
axis). The wheel which consists of a rigid wheel-rim
and an elastic thread and carcass, can freely rotate in
the caster.

Fig. 1 Top panel: The model of the towed wheel, bottom panel:
the stretched-string tyre model
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The equation of motion of the open-loop (uncon-
trolled) system can be expressed as

JA�̇(t) + bt�(t) = −l Ftyre + Mtyre, (1)

where JA denotes the mass moment of inertia of the
system with respect to the vertical axis including the
king pin centre A, and with the yaw rate � defined by

ψ̇(t) = �(t). (2)

2.2 The delayed tyre model

The effect of tyre deformation is considered by the
force Ftyre and the self-aligning torque Mtyre, which
are the result of the distributed force-system acting on
the wheel in the contact patch. The delayed tyre model
[13] is capable of capturing both the dynamic effects
in the tyre-ground contact and the varying sticking and
sliding regions as the wheel is oscillating. The contact
model, shown in the bottom panel of Fig. 1, is based on
the stretched-string tyre model, and the corresponding
standard modelling assumptions [1,9]. This is an in-
planemodel of the contact patch and its neighbourhood,
referred-to as ‘relaxation zones’. The model takes into
account the compliance of the tyre tread and the carcass
as a stretched string with elastic support. The string is
considered to be infinite; thus, oscillations that might
travel around the wheel are not taken into account. As it
is usually negligible compared to the lateral dynamics,
we do not calculate with the longitudinal deformation
of the tyre either, i.e. the elastic elements are assumed
to have lateral compliance only.

Based on the assumptions above, the lateral tyre
force and the self-aligningmoment can be calculated by
integrating the lateral deformation q(x, t) of the string,
yielding to the integral formulae

Ftyre =
∫ ∞

−∞
kq(x, t) +

∫ ∞

−∞
b
d

dt
q(x, t) , (3)

Mtyre =
∫ ∞

−∞
kxq(x, t) +

∫ ∞

−∞
bx

d

dt
q(x, t) . (4)

where k and b are the distributed lateral stiffness and
damping of the tyre [9].

In the tyre-ground contact region (x ∈ [−a, a]), if a
tyre particle sticks to the ground it is assumed to have
zero relative velocity (vP = 0). From this kinematic
constraint, time delayed formulae can be derived for

the lateral deformation q(x(τ ), t) of the tyre particles
in contact.

q(x, t) =V τ sinψ(t) − (a − l) sin(ψ(t) − ψ(t − τ))

+ q(a, t − τ) cos(ψ(t) − ψ(t − τ)),
(5)

whereas the function x(τ ) describes the material flow
in the contact-patch fixed frame of reference

x(τ ) = − V τ cosψ(t) + (a − l) cos(ψ(t) − ψ(t − τ))

+ q(a, t − τ) sin(ψ(t) − ψ(t − τ)).

(6)

In case of the straight-line motion, a position of an
arbitrary particle can be given by the formula x =
a − V τ , where the time delay τ refers to the time
elapsed since the particle entered the sticking region of
the contact. Note that in case of the rectilinear motion,
the whole contact region is assumed to be sticking.

In Eqs. (5) and (6), the deformation q(a, t) of point
L, the leading point of the contact region where the
tyre particles come into contact with the ground, also
appears as a state variable. By assuming that no ‘kink’
can arise at the leading point L, i.e. the first derivative of
the lateral deformation function q(x, t) is continuous at
x = a, one can derive an ODE describing the variation
of the leading point deformation in time

q̇(a, t) =V sinψ(t) + (a − x)ψ̇(t)

+ q(a, t)

σ

(
q(a, t)ψ̇(t) − V cosψ(t)

)
,
(7)

where σ is the so-called relaxation length while the
derivative of the deformationwith respect to coordinate
x at the leading point is given by

q′(a, t) = −q(a, t)

σ
. (8)

Outside the contact region, exponentially decaying
lateral deformation is assumed which can be given by
the formulae

q(x, t) = q(a, t)e
a−x
σ for x ∈ [a,∞), (9)

q(x, t) = q(−a, t)e
a+x
σ for x ∈ (−∞,−a). (10)
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2.3 Sliding model

The lateral sliding of the tyre is one of the most impor-
tant factors affecting the nonlinear dynamics of the sys-
tem.While one may neglect the effect of sliding during
linear stability analysis assuming small vibrations, it is
essential for the bifurcation analysis to capture the satu-
ration in the tyre force as sliding becomes more promi-
nent in the contact region at larger vibration amplitudes.
The assumptions made to construct the sliding model
build on the studies reported in [13,20].

The deformation of the stretched string is governed
by a PDE of second order in space and first order
in time. Unfortunately, this equation is very stiff, as
such, obtaining the deformation in the sliding regions
by integrating the full PDE is very time-consuming
[20]. Therefore, to simplify the algorithm, the material
damping of the tyre is neglected (b = 0) when calcu-
lating the deformation in the sliding parts. This reduces
the governing equation of the deformation to an ordi-
nary differential equation (ODE) for which analytical
solutions are provided. Thus, the material damping of
the tyre is considered in Eqs. (3) and (4) by using the
time derivative of the tyre deformation derived from
the travelling wave solution

d

dt
q(x, t) = V sinψ(t) + (l − x)ψ̇(t). (11)

Clearly, this is a simplification prioritising practical
considerations in the simulation rather than the rigorous
handling of the sliding model. Nevertheless, the study
in [20] investigating the time-delayed stretched string
model with material damping considered while estab-
lishing the deformation in the sliding regions suggests
that this simplification does not lead to a qualitative
difference in the nonlinear behaviour.

To model sliding, it is common practice to assume
a parabolic vertical force distribution in the contact
region [1]. This model is a simple way of taking into
account the drop of the distributed normal force near
the contact boundaries while assuming the maximum
in themiddle. It isworthmentioning that studies aiming
to establish the pressure distribution with experimental
techniques [21] or numerical models [22,23] indicate
that the parabolic distribution may not be a very accu-
rate model in all scenarios. Specifically, for larger con-
tact lengths a flatter pressure distribution was found in
themiddle part of the contact region [21]. Nevertheless,

we stick to the parabolic model in this study to keep
the formulae as simple as possible. By usingCoulomb’s
dry friction model, this can be converted into parabolic
boundaries for the lateral distributed force system gen-
erated by the deforming tyre

pr+(x) = 3Fzμ0

4a3
(a2 − x2), (12)

pr−(x) = −3Fzμ0

4a3
(a2 − x2), (13)

where Fz is the vertical tyre loadwhileμ0 is the friction
coefficient for adhesion (see the top panel of Fig. 2).
The lateral force distribution corresponding to a given
state of deformation is given by the formula

p(x, t) = kσ 2q ′′(x, t) − k(x, t), (14)

with the primes referring to derivatives with respect
to x . Based on the assumptions above, one can infer
the necessary condition of rolling that the lateral force
distribution should be within the limiting parabolae

pr−(x) <= p(x, t) <= pr+(x). (15)

The parts of the contact region where condition (15)
is not met are assumed to be sliding. In this case,
the kinematic constraint of rolling is dropped. Instead,
we assume the lateral force distribution to be equal
to the upper or lower sliding limits p(x, t) = ps+ or
p(x, t) = ps−, which are considered as similar parabo-
lae to Eqs. (16) and (17).

ps+(x) = 3Fzμ

4a3
(a2 − x2), (16)

ps−(x) = −3Fzμ

4a3
(a2 − x2), (17)

where μ denotes the sliding friction coefficient. With
these considerations, the deformation in the sliding
regions can be obtained by solving the ODE given by
the lateral force formula (14)

q ′′
s (x, t) − 1

σ
qs(x, t) = ps±(x) (18)

with ps± referring to the relevant sliding limit for the
lateral distributed force system (either ps+ or ps−).
To solve the ODE above, two boundary- or continuity
conditions should be considered for each sliding region.
These are overviewed in the next subsection.
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Fig. 2 Top panel: Lateral force-distribution in the tyre-ground
contact region and the parabolic limits for sticking (continuous
curve) and sliding (dashed curve). Bottom panel: The assumed
regions in the vicinity of the contact region. The sticking region is
marked by green, the sliding regions by red shading, respectively

2.3.1 Sliding regions and boundary conditions

While the stretched-string model could exhibit an arbi-
trary combination of sticking/sliding regions, previous
studies [20] indicate that to capture the self-excited
vibrations of the towed wheel, it is sufficient to con-
sider one sliding region near the leading edge (x = a)
and another one at the rear edge (x = −a) of the
contact region. The appearance of these two sliding
regions can be expected for any nonzero deformation
since the parabolic sliding limits do not permit any lat-
eral force at the two ends of the contact domain. With
these considerations, a simplified sliding model was
proposed in [13] which is capable of reducing the com-
putational burden significantly compared to the more
general approach presented in [20]. In this study, the
sliding model given in [13] is adopted. Nevertheless,
the model description is repeated for clarity.

To see the full picture, it is worth considering the
two tyre relaxation regions outside the x ∈ [−a, a]
contact domain when listing the boundary and conti-
nuity conditions. Thus, overall, five different regions
are assumed in the contact as shown in Fig. 2. In the
order which a tyre particle would ‘travel’ through these
regions these are

• Relaxation zone next to the leading edge, x ∈
[a,∞) with the deformation function qrelL(x, t),

• Sliding region next to the leading edge, x ∈ [xL , a]
where the deformation is described by the function
qsL(x, t),

• Sticking region, x ∈ [xR, xL ]with the deformation
function qr (x, t),

• Sliding region next to the rear edge, x ∈ [−a, xR]
with the deformation function qsR(x, t),

• Relaxation zone next to the rear edge, x ∈
(−∞,−a) with the deformation function
qrel R(x, t).

Note that, as shown in [13], the Sliding region next to
the rear edge may be split into two sub-regions with
different sliding directions as indicated in Fig. 2. The
occurrence of the two different sliding regions can be
explained with the help of the boundary conditions that
have to be satisfied according to the assumptions made
by means of the delayed tyre model.

The first four conditions express the continuity of
the deformation between the neighbouring regions

qrelL(a, t) = qsL(a, t), (19)

qsL(xL , t) = qr (xL , t), (20)

qr (xR, t) = qsR(xR, t), (21)

qsR(−a, t) = qrel R(−a, t). (22)

Moreover, as mentioned above, we consider decaying
deformation outside the contact region, which we can
formulate as

lim
x→∞ qrelL(x, t) = 0, (23)

and

lim
x→−∞ qrel R(x, t) = 0, (24)

Studying formula (14) describing the lateral distributed
force system, it canbe also concluded, that at the bound-
aries of the five different regions, the derivative q ′(x, t)
has to be continuous too since a discontinuity would
result in aDirac-delta-like peak in the second derivative
term which would be incompatible with the parabolic
limits for the lateral force [13]. These ‘no kink’ condi-
tions are given by

q ′
relL(a, t) = q ′

sL(a, t), (25)

q ′
sL(xL , t) = q ′

r (xL , t), (26)

q ′
r (xR, t) = q ′

sR(xR, t), (27)

q ′
sR(−a, t) = q ′

rel R(−a, t). (28)

In total, we have 10 boundary and continuity conditions
for 4 second-order ODEs which means that the prob-
lem is over-constrained. To resolve this issue, the lat-
eral deformation in the two sliding and two relaxation
regions are obtained using conditions (19),(20),(21),
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(22), (23),(24),(25), and (28) while the limits between
the rolling region and the two sliding regions (xL and
xR) are handled as unknown parameters [13].

In each timestep in the numerical simulation of the
model, the deformation is calculated assuming pure
rolling in the contact first, then the limits between the
sliding regionswhere the conditions (26) and (27)man-
dating the continuity of the first derivative are satisfied
too, are found by iteration. It is assumed in general that
sR < sL . If this is not the case, i.e. the iteration pro-
vides limits where sL < sR , the sliding regions at the
leading and rear edges are merged and the full contact
region is considered sliding.

There is another special case, however, related to the
sliding region at the rear edge, which is not captured
by the model of 5 different regions along the stretched-
string. This is due to the fact that sliding at the rear end
of the contact is induced by two factors: the travelling
wave solution in the rolling region resulting in nonzero
lateral force in the end, and the same solution violating
the ‘no-kink’ condition at the rear end. If the two effects
induce sliding in opposite directions, the rear sliding
region is split into two parts with sliding in opposite
directions and the deformation is calculated with six
different regions.

Splitting the rear sliding region into two subregions
also modifies the iteration finding the boundaries of
the sliding regions, as, for the rear sliding region, we
look for two boundaries: the position xR2 where slid-
ing changes direction and the boundary of the rear slid-
ing domain xR. The candidate solutions that satisfy the
‘no-kink’ condition at xR lie on a curve in the (xR, xR2)
plane. The simulation algorithm selects the point clos-
est to the boundaries in the previous timestep as the
new location of the boundaries.

3 Control-based continuation

A standard open-loop simulation of the mechanical
model described in Sect. 2 is only capable of tracing
the stable steady-state solutions of the system, while
the unstable ones remain hidden. In the special case of
a 2-dimensional model, one could overcome this issue
by reversing the time. This is due to the fact that the
variational system corresponding to an unstable peri-
odic orbit in a two-dimensional autonomous system
has one unstable and a neutral direction. These can be
characterised by the Floquet multipliers ν1 = 1 and

ν2 ∈ R, |ν2| > 1 corresponding to the neutral and
unstable directions, respectively [24]. This feature is
preserved if such a periodic orbit exists in a higher-
dimensional system while all other directions are sta-
ble |νk | < 1, k = 3, 4, .... Reversing the time in the
systemwould reverse the stability of each direction, i.e.
if there were any stable directions in the original sys-
tem, these would become unstable in the reverse-time
system. Thus, capturing an unstable limit cycle by sim-
ulating the system with reverse time is only possible if
there are no extra (stable) directions in the state space.
As a result, this approach would not work in case of
our infinite dimensional time-delayed model, as even
though this would turn the unstable directions in the
variational system of an unstable solution stable, all
the infinitely many, originally stable, directions would
become unstable.

Another approach would be to use a shooting algo-
rithm [24] to find the initial-conditions (including the
relevant time-history) that are ‘spot on’ the unstable
periodic orbit in an iterative way. This method however
can be very inefficient in case of time-delayed systems
as the initial function is difficult to find and the domain
of convergence of the root-finding algorithm may be
very narrow.

In contrast, control-based continuation (CBC) is
capable of tracing both stable and unstable periodic
solutions in a robust, and more efficient way. The idea
of the method is to apply a stabilising and non-invasive
control to the system. That is, the control-law has to
be selected such that the system converges to a steady-
state periodic solution while a root-finding algorithm
has to ensure that the steady state control error, i.e.
the difference of the target and the realised solutions,
thus the steady-state control force imposed on the sys-
tem is zero. If these conditions are satisfied, the reg-
istered steady-state behaviour of the controlled sys-
tem is identical to the original, uncontrolled system
whereas the transient behaviour, as intended, to ensure
a stable behaviour even around the originally unstable
solutions, is changed. In practice, the condition of non-
invasiveness is only ensured to the accuracy determined
by the number of harmonic components considered in
the solution and the tolerance of the iteration. Never-
theless, we accept these solutions as the limit cycles in
the open-loop system.

It is worth pointing out that CBC is a local method in
the sense that its aim is to capture a single limit cycle at
a time. This is due to the fact that even in a parameter-

123



S. Beregi

Fig. 3 Block diagram of
the control-based
continuation method
applied to the numerical
model of the caster-wheel
system. The flowchart of the
root-finding algorithm is
shown in Fig. 4

domain where the original system has multiple steady-
state solutions, the control target ensuring non-invasive
control is different for each solution. It also needs to
be noted that for capturing an unstable limit cycle in
the original system, only local stabilisation around this
solution is required. Thus, it is not investigated whether
other stable or unstable steady-states exist in the con-
trolled system.

In this study, a control-torque is applied to the towed
wheel realising a proportional-derivative (PD) control-
law using the deflection angle ψ and the yaw rate �

Mctrl = kp (ψt(t) − ψ(t)) + kd
(
ψ̇t(t) − �(t)

)
, (29)

where kp and kd are the proportional and derivative con-
trol gains, whereas ψt(t) is the control target function.
The block diagram of the control approach is presented
in Fig. 3. Thus, the governing equations of the closed-
loop system can be expressed as

JA�̇(t) + bt�(t) = −l Ftyre + Mtyre + Mctrl, (30)

ψ̇(t) = �(t), (31)

q̇L(t) =V sinψ(t) + (a − x)ψ̇(t)

+ qL(t)

σ

(
q(a, t)ψ̇(t) − V cosψ(t)

)
.

(32)

In order to find the limit cycle of the open-loop sys-
tem in an iterative way, the control target has to be
considered in a form using a finite number of param-
eters. In CBC-algorithms, this is typically realised by
considering the truncated Fourier series of the target
and the registered signals.

The challengewith autonomous systems is that if the
limit cycles are related to self-excited oscillations rather
than forced vibrations, one has no a priori knowledge
about the frequency ω. One may treat the frequency as
a variable among with the amplitudes of the harmonic
components; however, this increases the complexity of
the root-finding algorithm considerably. An efficient

way to overcome this issue is to infer the frequency
from the captured solution and use a control target,
which is phase-locked to the registered deflection angle
[19]. To obtain such a target, we use the instantaneous
phase calculated from the deflection angleψ(t) and the
yaw rate �(t)

φ(t) = arctan (�(t), ωψ(t)) , (33)

where the angular frequency ω of the vibration is mea-
sured (in practice, this can be done, e.g. studying zero-
crossings in the captured time profile of the yaw rate
�(t)). Then, the control target is considered in the form

ψt(t) = A0
t + A1

t cosφ(t). (34)

where A0
t and A1

t are constant coefficients. This leads to
a fixed point iteration for the angular frequency ω, i.e.
always the last measured frequency is used in the for-
mula of the instantaneous phase. It is expected though
that this iteration generally converges. The higher har-
monic Fourier coefficients were omitted from the for-
mula above as they tend to show considerable fluc-
tuation during the simulation of the non-smooth sys-
tem. As such, they are difficult to capture with good
accuracy. Note that the formula in (34) already con-
tains higher harmonic components as the instantaneous
phase φ(t) is a nonlinear function of the time. Never-
theless, to simplify our formulae, its time derivative is
approximated with the angular frequency as φ ≈ −ωt .
Thus, the derivative of the control target reads

ψ̇t(t) = ωA1
t sin φ(t). (35)
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3.1 Root-finding

If the control gains kp and kd are appropriately cho-
sen, the control-law in Eq. (29) stabilises the system
around a periodic solution ψ∗(t), which is also con-
sidered with the help of the instantaneous phase φ, the
static deflection A0∗ and the vibration amplitude A1∗

ψ∗(t) ≈ A0∗ + A1∗ cosφ(t). (36)

Note that there is no general method providing con-
trol gains ensuring stabilisability. Nevertheless, the
simplicity of the PD control law usually allows for a
relatively quick tuning of the control gains by trial and
error. A general rule of thumb that one can rely on is
that if the control is strong enough to bring the system
to a steady state which is within a domain of attraction
of a different steady-state solution of the uncontrolled
system from where the experiment was started, then
usually the control law is strong enough to stabilise the
system around an unstable limit cycle.

Let us suppose that the open-loop system has a limit
cycle ψp(t) which is considered in a similar form

ψp(t) ≈ A0 + A1 cosφ(t). (37)

The task is to find the control target ψt(t) with coeffi-
cients A0

t and A1
t which result in the system converging

to the limit cycle

lim
t→∞ ψ(t) = ψt(t) = ψp(t). (38)

In the control target, the index κ refers to the number
of iteration step.

In the root-finding algorithm, a fixed-point iteration
is applied to obtain a steady-state static deflection

A0κ+1
t := A0∗κ , (39)

leaving only the vibration amplitude ψ1
t the only

unknown parameter. To form a zero problem, the error
between the target and measured amplitudes is consid-
ered as


(A1
t
) = A1

t
− A1(A1

t
). (40)

The zero of this function yields to the amplitude of the
limit-cycle in the open-loop system.

As in this case, the non-smooth nature of the system
may prohibit the implementation of a derivative-based
(e.g. Newton-like) root finding algorithm, a mesh in
the target vibration amplitudes is considered such that
it includes the suspected amplitude of the limit cycle

A1
t −�A = A1

t1 < A1
t2 < ... < A1

t N = A1
t +�A. (41)

Then, by simulating the system with these control tar-
gets, the corresponding amplitude errors are obtained.


k = 
(A1
tk), k = 1, ..., N . (42)

These samples are used to fit a degree M polynomial
to the univariate error function (
(A1

t
) ≈ p(q j , A1

t
))

where the polynomial coefficients q j , j = 0, .., M are
fitted using a least mean squares algorithm, and root-
finding is performed on this surrogate model. In this
study, a uniform mesh in the target amplitude A1

t with
7 nodes and a degree 3 polynomial is used as a surrogate
model (N = 7, M = 3).

3.2 Continuation

The algorithm in Sect. 3.1 is capable of finding either a
stable or an unstable periodic solution for a given set of
parameters. To obtain the bifurcation diagram, one has
to trace the branch of limit cycles as one of the system
parameters, the bifurcation parameter, is varied. In case
of wheel shimmy, the towing speed V is a natural selec-
tion as bifurcation parameter, as in practice, shimmy is
often triggered by a change in vehicle-speed. Thus, by
considering the towing speed as a variable, the zero
problem in Eq. (40) will have two arguments


(V, A1
t
) = A1

t
− A1(V, A1

t
). (43)

One can take advantage from the fact, that there are no
local extrema in the vibration amplitude in the unsta-
ble part of the solution-branch. Thus, the branch can be
traced by gradually increasing or decreasing the target
vibration amplitude A1

t and dealing with the error func-
tion
 on Eq. (43) as a univariate function of the towing
speed V . In the meantime, the same fixed-point itera-
tion is applied to the static deflection as indicated in
Eq. (39). Again, to avoid the inaccuracies that the non-
smooth nature of the system may cause in the calcula-
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tion of derivatives, a uniform mesh with seven nodes
(N = 7) in the towing speed interval, where the solu-
tion is suspected, is considered.

V − �V = V1 < V2 < ... < VN = V + �V . (44)

Then, by simulating the system with these control tar-
gets, the corresponding amplitude errors are obtained.


k = 
(Vk, A
1
t ), k = 1, ..., N . (45)

Then a third-degreepolynomial (
(V, A1
t
) ≈ p̂(q̂ j , V )

with j = 0, ..., M , M = 3) is fitted to the results
and the towing speed corresponding to the periodic
orbit of the open-loop system is found by using this
surrogate model. If no solution is found within V ∈
[V − �V, V + �V ], then the interval size may be
increased considering a larger �V to repeat sampling
and root finding on a newmesh. The continuation algo-
rithm is illustrated by the flowchart in Fig. 4.

4 Results

4.1 nonlinear dynamics of the numerical studies

In this study, the bifurcation analysis of the towedwheel
with the non-smooth delayed tyre model is carried out
choosing the towing speed V as bifurcation parameter
(see Fig. 5). First, the critical speed corresponding to
the linear stability boundary of the rectilinear motion
(ψ(t) ≡ 0, q(x, t) ≡ 0) is established. It is assumed
that the linear stability of the equilibrium is unaffected
by the sliding effects. Even though this assumption is
not rigorously proven, numerical simulations indicate
that this consideration does not introduce a significant
error into our calculations. It is also worth mentioning
that this assumption was proven to be correct for the
simpler, but in many ways similar, brush tyre model in
[12].

The system parameters used in the numerical study
were selected to represent the experimental rig shown
in the right panel of Fig. 6. The inertia of the caster-
wheel system and lengths of the tyre-ground contact
and the caster were measured manually whereas the
stiffness, and damping parameters, as well as the tyre
relaxation length were identified from measured fre-
quency responses. The friction coefficients were esti-

mated by pulling a rubber-sample on the treadmill and
using a mechanical force gauge. Note that the sliding
limits are also affected by the vertical tyre load which
was tuned such that the numerical model provides real-
istic vibration amplitudes. It also needs to be noted that
this experiment was already used in previous studies.
Therefore, we do not repeat all details of the parameter
identification procedure which can be found in [13].

As indicated by previous studies on the brush and
stretched string models [12,13], the example presented
here is generally representative for the self-excited
vibration (wheel shimmy) occurring at different param-
eter combinations when material damping is consid-
ered in the system (i.e. there is a single linearly unstable
speed region).

The control gains were selected by trial and error
and provided an adequately stabilising control for the
continuation algorithm. It isworthmentioning that even
though the negative control gain used here may appear
counter-intuitive, this is possible for CBC and was also
reported in [16].

With the model parameters given in Table 1 one
obtains V ≈ 1.9 m/s for the critical speed of the caster-
wheel system. Below this towing speed the rectilinear
motion is linearly stable, while it is unstable for larger
speeds. The linearised system has a complex conju-
gate root-pair at the stability boundary indicating that
the nonlinear system undergoes a Hopf bifurcation.
However, this bifurcation is degenerate due to the non-
smooth nature of the system, i.e. it cannot be described
by the Hopf normal form for smooth systems.

The non-smooth nature of the system also makes it
challenging to start the exploration of the periodic solu-
tions at the critical equilibrium (HB). Instead, the sta-
ble periodic orbits in the system were traced first with
standard, open-loop simulations. This reveals a bistable
parameter-range where a stable equilibrium and a sta-
ble periodic orbit coexist in the phase-space.

Then, the unstable branch is found by applying CBC
and decreasing the target vibration amplitude with the
towing speedV beingfixed.The topologyof the steady-
state solutions ensures that this method finds the unsta-
ble periodic orbit ‘between’ the stable periodic solution
and the equilibrium. From this starting point, the unsta-
ble solution branch can be traced by varying the target
vibration amplitude and identifying the towing speeds
resulting in an amplitude error that is smaller than the
given tolerance.
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Fig. 4 Flowchart of the
employed continuation
algorithm
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Fig. 5 Bifurcation diagram of the towed wheel showing the
steady-state vibration amplitudes of the deflection angle ψ with
respect to the towing speed V . The blue curves correspond to
stable, while the red ones to unstable solutions, respectively

4.2 Nonlinear behaviour observed in the physical
experiment

Comparing the bifurcation diagram from the numer-
icalmodel (see Fig. 5)with the left panel Fig. 6, we find
that it is similar to the measured bifurcation diagram
from the experimental rig, shown in the right panel for
reference.

The experimental rig consists of a wheel with a rub-
ber tyre running on a treadmill. This setup is equivalent
to the scenario of thewheel being towedwith a constant
speed as is the case in the numerical model described in
Sect. 2. The caster-wheel system can rotate around the
king pin as is the case in the numerical model. The con-
trol panel of the treadmill is used to control its speed
which is also measured by a sensor sending a signal
to the data acquisition device after each full revolution
of the treadmill’s rubber belt for a more accurate mea-
surement. In the meantime, the deflection angle of the
caster is measured by an angle sensor built on the king
pin joint. This signal is also fed to the data acquisition
device and processed on a computer asynchronously.
Note that this experimental setup was also analysed
in [13] and [25] (capturing the stable solutions only),
whereas a similar diagram to Fig. 6 indicating the sus-
pected amplitude of the unstable limit cycles is used as
a motivating example in [12].

In the physical experiment, the unstable periodic
solution wasmeasured by varying the initial conditions
imposing different initial yaw rates on the caster. The
boundaries within which the unstable periodic solution
is suspected are inferred from the minimal initial angu-
lar velocity from where the system converged to the

stable periodic orbit and the maximum angular veloc-
ity fromwhere the system showed decaying vibrations.
One can also observe a slight fluctuation in the sta-
ble vibration amplitudes and nonzero amplitude where
a rectilinear motion would be expected which can be
explained by the noise excitation from the treadmill.
This effect made it infeasible to obtain information
about the unstable limit cycles at low vibration ampli-
tudes.

4.3 Sticking and sliding regions

Figure 7 shows the typical phase-portraits, time-
profiles and sliding regions belonging to periodic orbits
from the stable and unstable branches. It can be seen
that even though our CBC algorithm is slightly simpli-
fied (not taking into account the higher harmonics in
the control target) the method can find a periodic orbit
that is very close to the control target, i.e. the control
is near non-invasive. The bottom panels, portraying the
variation of the sticking and sliding regions in time, also
point out why the non-smooth time-delayed stretched
string model is difficult to handle by more standard
techniques of numerical bifurcation analysis: we find
alternating uni- and bi-directional sliding regions at the
rear end of the contact region. One can also observe
that the size of the sliding regions grow with the vibra-
tion amplitude until we reach the amplitude where the
whole contact region is sliding for some part of the
period. Apparently, the critical amplitude where the
time-intervals with full sliding appear coincides with
theFold point (where the stability of the solution branch
changes). This fact explains the relatively sharp transi-
tion from the stable and unstable parts of the solution
branch.

Unfortunately, the simulation algorithm failed at
tracing the unstable solution branch back to the Hopf
bifurcation point as the simplified sliding algorithm,
which has been optimised to handle the sliding condi-
tions at larger vibration amplitudes, is prone to numeri-
cal errors at small amplitudes where the sliding regions
are small. This tends to result in misidentifying the
boundaries of the sliding regions leading to incorrect
solutions. One may overcome this issue by implement-
ing the sliding model without the simplifications [20].
However, since using this model with the iterative CBC
algorithm has an enormous computational burden, this
was not carried out in this study. It is worth to men-
tion that this part of the branch would also be difficult
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Table 1 Model parameters used in the simulations

Parameter Name Value Unit

2a Contact-region length 0.108 m

l Caster length 0.075 m

JA Mass moment of inertia w.r.t. king pin 0.1796 kgm2

s Distributed lateral tyre stiffness 43766 N/m2

b Distributed lateral tyre damping 22.91 Ns/m2

σ Tyre relaxation length 0.12 m

Fz Vertical tyre load 600 N

μ0 Friction coefficient for sticking 1.5 –

μ Friction coefficient for sliding 1.0 –

bt Torsional damping in the king pin 1.3 Nms

kp Proportional control gain −20.0 Nm

kp Derivative control gain 2.0 Nms

to trace in a real-life experiment as the random per-
turbations, that inevitably occur in physical systems,
disguise the Hopf bifurcation in the underlying deter-
ministic system. This effect is well known in stochastic
dynamical systems and has been previously demon-
strated experimentally in [26] for machine-tool vibra-
tions occurring during milling.

5 Conclusions

Using the technique of control-based continuation,
both stable and unstable limit cycles of a towed wheel
with the non-smooth delayed tyre model were traced.
Thus, we obtained a more complete image of the struc-
ture of the arising periodic solutions than it is possible
with open-loop simulations [13]. From this point of
view, one of the most important new finding is that

the appearance of a full-sliding interval in the period,
as the vibration amplitude grows, is strongly linked to
the saddle-node bifurcation of the periodic orbits. The
qualitative change in the solution also explains the rela-
tively sharp transition between the unstable and stable
part of the branches. This feature of the bifurcation
diagram is also observable in the experimental results.
This indicates a good qualitative agreement between
the mathematical model and the physical system even
though, as also concluded in [13], the slidingmodel pre-
sented here with the extent of the sliding regions being
governed by the first order continuity of the deformed
stretched-string, is too rigid. This results in a sensitivity
to even small changes in the control input which was
the main reason a polynomial surrogate model is used
for the iterations instead of a more direct approach.
Moreover, one needs to use unrealistically large fric-

Fig. 6 Left panel:
Measured bifurcation
diagram indicating the yaw
rate amplitudes
corresponding to the
identified steady-state
solutions. The blue markers
and curves correspond to
the stable, the red ones to
the unstable steady state
solutions, respectively.
Right panel: Experimental
rig with a towed wheel on
treadmill
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Fig. 7 Phase portraits, time-profiles and sticking/sliding regions
in the tyre–ground contact domain for the periodic orbits S, U1
and U2 (see Fig. 5). The blue curves correspond to the simulated
trajectories while the control target is shown in black (where
applicable). In the bottom panels, the white regions belong to
the sticking, while the grey ones to sliding parts of the tyre–
ground contact. The blue, red and green curves correspond to the
boundaries of the front and rear sliding regions: xL, xR and xR2,
respectively

tion coefficients or vertical load to find realistic vibra-
tion amplitudes. The latter issue could be potentially
resolved by considering separate compliances for the
tread and carcass by adding additional brush-like ele-
ments to the stretched-string [1] or by usingmore accu-
rate models of the vertical force distribution which are
out of scope of this study.

Another interesting result is that the unstable solu-
tion branch obtained with the stretched string model
seems to emerge in a more shallow angle initially than
is the case for the brush tyre model [12]. This means
that the rectilinearmotion in a physical systemmayper-

ceived to lose its stability at a significantly lower speed
than the deterministic models would indicate due to the
random excitation from the road-surface. As such, the
road-surface quality can have a significant impact on
the measured critical speeds.

Beside the aspects of tyre modelling, the presented
study can have another practical use, as it demonstrates
that control-based continuation can be performed by
applying torque-control on the caster-wheel system. A
similar control technique would be feasible in real-life
experiments as well, e.g. by using an electric motor
to provide the required control-torque at the king pin.
Realising the CBC algorithm for physical experiments
could potentially lead to further interesting results on
wheel shimmy or the dynamics of towed vehicles (trail-
ers, articulated buses), which are described by simi-
lar dynamical systems. Moreover, tracing the unstable
periodic orbits in these systems could help in the assess-
ment of the ‘robustness’ of the linearly stable motions
of these vehicles in bistable parameter regions, thus
contributing to the improvement of vehicle safety.
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