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ABSTRACT
This paper presents a volcanic plume simulation and image genera
tion framework, alongside a method for the tomographic reconstruc
tion of volcanic ash plumes. The simulation framework facilitates the 
generation and processing of imagery analogous to that produced 
by real-world multi-spectral infrared observations of volcanic emis
sions. With this required imagery simulated, methods for the tomo
graphic reconstruction of volcanic plumes can be tested. This 
simulation approach was undertaken due to the lack of suitable real- 
world multi-spectral and multi-angle imagery, and the difficulties 
and dangers of arranging multiple ground-based cameras or operat
ing UASs in proximity to an active volcano. The efficacy of the 
simulation framework is demonstrated through a series of sensitivity 
analyses, assessing the change in reconstruction accuracy when 
modifying simulation variables such as the number and distribution 
of images, spatial resolution, and camera pointing inaccuracy. It is 
proposed that the results of these analyses can be used to inform the 
design and optimization of real-world observation campaigns.
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1. Introduction

Volcanic eruptions can pose significant hazards across a wide range of domains. These 
hazards can extend from the local environment through to airspace thousands of kilo
metres away. Beyond direct volcanic hazards such as pyroclastic and lava flows, tephra, 
and lahars, volcanic ash suspended in the atmosphere can pose a longer lasting and more 
widespread risk (Auker et al. 2013). Ash can cause acute health impacts to humans at tens 
to hundreds of kilometres distance, and damage to aircraft airframes or engines at up to 
1000 km (Durand and Grattan 2001; Guffanti, Casadevall and Budding 2010). Following 
the Eyjafjallajökull eruption in 2010, the UK Civil Aviation Authority approached aircraft 
engine manufacturers to determine volcanic ash concentration thresholds for safe aircraft 
operation. As a result, the Rolls-Royce Safe-to-Fly chart was produced, using evidence 
from historical aircraft volcanic ash encounters and test flights during the 2010 eruption 
(Clarkson, Majewicz and Mack 2016). The main result derived from this investigation was 
a guideline indicating safe operation up to ash concentrations of 2 mg/m3.
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However, more recent re-evaluation of the incidents used to inform this initial opera
tional limit suggested that the historical events may have occurred at much lower ash 
concentrations than previously thought. Additionally, it was suggested that a dosage- 
based approach, incorporating both ash concentration and duration of exposure, should 
be considered going forward (Clarkson, Majewicz and Mack 2016). This was further 
reinforced by Rolls-Royce’s Volcanic Ash and Aviation Position Statement, stating that 
all Trent and RB211 engine types operating in ash concentrations of 2 mg/m3 for up to 2 h, 
translating to a dose of 14.4 g s/m3, would not experience significant reductions in flight 
safety margins (Rolls-Royce 2017). As such, the measurement and forecasting of volcanic 
ash concentrations in the atmosphere is vitally important. This is generally performed 
through the use of remote sensing, usually satellite-based, and atmospheric transporta
tion and dispersion modelling handled by local Volcanic Ash Advisory Centres (Jones et al. 
2007; Thomas and Watson 2010).

Remote sensing of volcanic plumes can provide ‘snapshots’ of the current state of 
a target plume. This is generally performed by utilizing measurements from a variety of 
regions of the electromagnetic spectrum. For volcanic ash this is usually imaging with 
visible, ultraviolet or infrared light (Thomas and Watson 2010). Of particular interest is the 
use of multi-spectral infrared remote sensing, taking advantage of volcanic ash’s unique 
spectral response in the Thermal Infrared (TIR) region. By measuring the difference in 
brightness temperature of a target plume at two narrow-band TIR wavelengths (11 μm 
and 12 μm), multi-spectral analysis facilitates the identification and discrimination of ash 
from meteorological clouds (Prata 1989) and quantitative retrieval of particle sizes, mass 
loading, and optical depths (Wen and Rose 1994). Dispersion modelling allows the 
forecasting of the location and movement of volcanic ash clouds days into the future. 
These models make use of the remote sensing snapshots and derived eruption source 
parameters, such as plume height, mass eruption rate, and particle size distributions to 
inform their predictions (Webley, Stunder and Dean 2009). Under real-world conditions, 
these parameters can be poorly defined, leading to large uncertainties in longer term 
forecasting (Mastin et al. 2009).

One proposed method to advance the monitoring of volcanic ash clouds is the use of 
multi-angle imagery to provide 3-dimensional information about a target plume. The use 
of a multi-spectral infrared imaging system along with the quantitative retrieval of ash 
properties would facilitate a tomographic three-dimensional reconstruction of a volcanic 
ash cloud, including internal ash concentration distributions (Prata and Bernardo 2009, 
2014; Wood et al. 2019). This reconstruction would act as both an invaluable snapshot of 
ash contaminated airspace and provide a source for more well-defined inputs into 
dispersion models. Additionally, with three-dimensional ash concentration distributions, 
it would be possible to accurately route aircraft through areas of lower concentration, 
taking into account the safe ash dosage limits of each individual aircraft.

However, there is very limited availability of real-world data to develop these three- 
dimensional reconstruction methods. This is, namely, due to the lack of suitable multi- 
spectral and multi-angle satellite imagery, along with the significant dangers of operating 
multiple ground-based cameras or unoccupied aerial systems (UASs) in proximity to an 
active volcano. Additionally, the geometrical constraints imposed by both local geogra
phy and satellite orbits can limit the available viewing angles. As such, this paper details 
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the development of a Blender-based volcanic plume simulation and image generation 
framework capable of producing the required imagery. The framework facilitated the 
development and testing of an initial tomographic reconstruction scheme.

A review of previous related work is provided in Section 2, describing the quantitative 
retrieval methods and previous stereoscopic and three-dimensional reconstructions. 
Following this is a description of both the Blender simulation framework and the tomo
graphic reconstruction method in Section 3. Reconstruction results of an idealized ‘Shepp- 
Logan’ style test case (Gach, Tanase and Boada 2008) are presented in Section 4 as a series 
of sensitivity analyses, investigating the effects of a range of observation parameters of 
reconstruction accuracy. The performance of the reconstruction method, along with the 
efficacy of the simulation environment are discussed in Section 5, with conclusions and 
future work detailed in Section 6.

2. Previous work

The use of multi-spectral infrared imaging in the monitoring and analysis of volcanic ash 
clouds was theorized in 1989 (Prata 1989) and has been in regular use since (Thomas 
and Watson 2010; Blackett 2017). Methods for the quantitative retrieval of ash proper
ties using similar multi-spectral infrared imagery were presented shortly afterwards, 
capable of generating per-pixel line-of-sight mass loading (Wen and Rose 1994). 
Demonstrations of this quantitative retrieval is less common, with many focusing on 
proof of concepts with prototype ground-based imaging systems (Prata and Bernardo 
2009, 2014).

Similarly, multi-angle imagery from space has previously been used to determine 
three-dimensional properties of volcanic plumes. However, these retrievals have generally 
been limited to simpler properties, such as cloud top heights rather than full three- 
dimensional reconstructions. These retrievals are mostly performed using two stereo
scopic images generated by satellite imaging payloads, such as the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER), Advanced Along Track Scanning 
Radiometer (AATSR), and the Sea and Land Surface Temperature Radiometer (SLSTR), with 
the limited viewing angles preventing more complex retrievals (Pieri and Abrams 2004; 
Virtanen et al. 2014; Fernandez-Moran et al. 2021).

More recently, the use of multi-angle imagery from ground-based cameras and UASs 
has been investigated (Wood et al. 2019; Albadra et al. 2020). Of note is a 2017 Volcán de 
Fuego field campaign, utilizing four nicAIR multi-spectral imaging systems arranged 
around the volcano and imaging simultaneously (Wood et al. 2019). However, all such 
work has been limited to the reconstruction of three-dimensional convex hull representa
tions of the target plumes. By making use of both multi-angle and multi-spectral imagery 
(from space or ground), tomographic methods would allow the three-dimensional recon
struction of the internal structure and concentration distributions of a volcanic ash plume. 
This method has been demonstrated using visible spectrum satellite imagery from the 
Multi-angle Imaging SpectroRadiometer (MISR) payload. This remote sensing instrument 
boasts nine independent sensors, each arranged at a different along-track viewing angle, 
and has been used to generate two-dimensional tomographic reconstructions of aerosol 
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plumes (Garay, Davis and Diner 2016). However, the visible spectrum imagery from MISR 
is unsuitable for volcanic ash tomographic reconstruction as it does not facilitate the 
required quantitative retrieval.

Similarly, Sulphur Dioxide (SO2) emissions, also present during volcanic eruptions as 
well as in many industrial plumes, are commonly targeted for observation. Line-of-sight 
retrievals of SO2 concentration can be acquired using differential optical absorption 
spectroscopy (DOAS), facilitating the tomographic reconstruction of atmospheric SO2 

(Frins et al. 2014). When considering volcanic SO2, the data collection methods share 
similar limitations to those introduced in Section 1, mainly the difficulties operating near 
active volcanoes and geometric constraints limiting viewing angles (Casaballe et al. 2020). 
As such, simulations have been used to aid the development of these methods, though 
both simulated and real-world reconstructions of SO2 have generally been limited to two- 
dimensional slices of the target plumes (Casaballe et al. 2017, 2020; Valente de Almeida, 
Matela and Vieira 2020). Whilst these reconstructions are based on DOAS observations of 
SO2, the tomographic methods employed are still relevant to volcanic ash reconstruction 
as the input data, the per pixel line-of-sight loading, is of a similar form. Generally, the 
tomographic methods employed to be used with DOAS observations are iterative recon
struction algorithms, usaully based on algebraic reconstruction techniques (ARTs) such as 
Simultaneous Algebraic Reconstruction Technique (SART) and Maximum Likelihood 
Expectation Maximization (MLEM) (Valente de Almeida, Matela and Vieira 2020). Other 
iterative methods, such as least-squares regression, are also employed (Casaballe et al. 
2017). More recently, advances in the miniaturization of DOAS devices are facilitating UAS 
mounted DOAS observations. Such a system would be capable of producing observations 
along many more viewing angles, allowing full three-dimensional reconstruction of the 
target plumes (Valente de Almeida, Matela and Vieira 2020).

3. Methodology

3.1. Plume simulation and image generation

This section describes the development of a volcanic plume simulation environment built 
in the 3D computer graphics software tool-set ’Blender’, facilitating the generation of 
imagery suitable for tomographic reconstruction. This simulation environment and the 
imagery it generated was used to aid in the development and testing of the tomographic 
method detailed below. A simulated approach to the problem of data collection was used 
due to the scarcity of suitable real-world imagery and the difficulties involved in collecting 
new imagery through field campaigns. A simulated approach also provided a reliable 
‘ground-truth’, generated by directly exporting the simulated plume from the Blender 
framework. This ground-truth was then used for comparison and evaluation of the 
tomographic reconstruction.

The Blender software package (version 2.93, Blender Foundation (2021)) was chosen 
due to its focus on physically accurate rendering and its built-in plume simulation. 
Blender’s path-traced rendering engine allows the generation of plume imagery with 
pixel intensities proportional to the line-of-sight mass loading through the plume that are 
required for tomographic reconstruction. The built-in plume simulation facilities the 
native generation and simple configuration of semi-realistic plumes to image. Blender 
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also has some heritage in this area, with smoke simulations being successfully used to 
generate training data for smoke detection algorithms (Zhang et al. 2018; Nguyen, Quach 
and Pham 2020).

3.1.1. Plume simulation
Blender offers two plume simulation methods: a relatively simple particle system 
simulation and a more advanced fluid simulation system based on the ‘mantaflow’ 
computational fluid dynamics framework. The particle system method is fairly compu
tationally inexpensive and capable of generating semi-realistic plumes, though it does 
not easily model internal density distributions and thus is not suitable for tomographic 
reconstruction. The mantaflow-based method uses a fluid dynamics solver to simulate 
fluid flow within a domain. This flow can then be sampled at divisions within the 
domain, allowing the extraction of data, such as the fluid density, velocity, or tempera
ture. As such, it is possible to model the internal structure and concentration of 
a simulated plume and extract this information for use as ground-truth for comparison. 
This process can then be repeated over a range of time-steps, simulating and extracting 
a ground-truth of a dynamically evolving plume if desired. In Blender, this mantaflow 
simulation is described as a ‘smoke’ simulation and will be referred to as such during 
this paper.

The fundamentals of this smoke simulation in Blender are described in the Blender 
Reference Manual and so will not be covered here (Blender Documentation Team 2021). 
Of note however, are some specific requirements for the smoke density settings. These 
settings are necessary to generate suitable semi-transparent plumes that represent the 
images of ash clouds produced via multi-spectral TIR imaging. Valid values for the 
smoke density for the specific setup utilized in this work were found to be between 0.1 
and 3 ‘Blender units’, with the material rendering density at 0.1 ‘Blender units’. The 
lower end of these values produces a fairly optically thin plume, with the upper end of 
these values produces an optically thick, but not yet opaque, plume. Increasing either 
of these values further would lead to saturation, where the plume becomes optically 
opaque. At this point, any further increase in the amount of smoke, either through 
increased density or increased line-of-sight depth, would result in no change to the 
measured pixel intensities, thus making any further internal structure indistinguishable. 
Whilst saturated plumes were avoided for during this study, the simulation environ
ment is capable of modelling them by simply increasing these simulation densities 
further.

3.1.2. Image generation
Once a plume has been simulated, images can be rendered. Again, the fundamentals of 
this task are detailed in the Reference Manual (Blender Documentation Team 2021). This 
rendering process and the subsequent post processing detailed below aims to produce 
final imagery equivalent to that produced during the infrared multi-spectral retrieval 
process introduced above. Whilst the simulated rendering process currently does not 
consider proper radiative transfer calculations or other atmospheric effects, the output 
images do successfully mimic the key features of actual multi-spectral retrievals, namely 
a per-pixel line-of-sight mass loading. As such, the simulated imagery can be used to test 
and develop tomographic methods.
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The Blender based rendering process produces images with pixel intensities propor
tional to, but not equal to, the line-of-sight mass loadings that are needed for reconstruc
tion. An additional processing step is thus required before the rendered images can be 
used for tomographic reconstruction. As such, a transfer function relating the rendered 
pixel values to smoke column loading, i.e.; the total mass of smoke within the column 
defined by the pixel’s line-of-sight, was required. To generate this transfer function, 
a Blender scene was set up to render a series of images of a domain with a precisely 
controlled smoke column loading. This was achieved by simulating a ‘column’ of smoke 
and varying both the length of the column and density of the smoke. Figure 1(a) presents 
a schematic of this Blender scene. An image metric was then measured for each loading 
value, defined by the current smoke density and column length. Pixel transparency was 

Figure 1. (A) Schematic of Blender scene allowing rendering of images with precisely controlled 
smoke column loading. The rectangles on the left represent a column of smoke with variable length 
and smoke density (represented by colour). The triangles on the right represent the cameras and their 
field of view. For this setup, the second and third examples would have greater mass loading than the 
first. (b) Smoke column loading (in ‘Blender units’) against measured pixel transparency. (c) Theoretical 
optical depth against measure brightness temperature for a volcanic ash plume with constant particle 
effective radius (extracted from Figure 2 in (Wen and Rose 1994)).
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chosen for this image metric. Figure 1(b) shows the relationship between pixel transpar
ency and mass loading, with pixel transparency reducing non-linearly to near saturation 
with increasing mass loading.

This mimics the phenomenon predicted in volcanic ash clouds where, once a plume is 
optically saturated, unambiguous retrieval of microphysical properties is no longer pos
sible (Prata 2001). Figure 1(c) presents a data set, showing the same non-linear effect, 
extracted from Figure 2 of Wen and Rose’s theoretical radiative transfer calculations for 
volcanic ash plumes (Wen and Rose 1994). For these calculations, Wen and Rose found 
measured ash mass loading to be dependant on particle density, effective particle radius, 
and optical depth. Thus, with a constant particle density and a theoretical plume with 
a uniform effective particle radius, optical depth is directly proportional to ash mass. The 
specific values plotted in 1c for optical depth and the corresponding brightness tempera
ture at 11 μm were retrieved for a constant particle radius of 2 μm. This shows the same 
non-linear decrease in the observed value, in this case brightness temperature, with 
increased mass loading, in this case directly proportional to optical depth.

With the relationship between pixel response and smoke mass of the simulated 
Blender imagery displaying a similar non-linear trend to the theoretical volcanic ash 
response, the images generated from the Blender-based image simulation process can 
be used as substitutes for the quantitative retrieval process used on real-world TIR 
imagery. An exponential curve of best fit was calculated for the simulated Blender data 
to be used as a transfer function in the following reconstructions. The units for the 
calculated mass loading are in Blender’s internal unit system, which is consistent with 
the extracted ground-truth. The output images produced using this processing step share 
the same form as the quantitative retrievals of actual volcanic ash clouds, namely the per- 
pixel line-of-sight mass loading. The data also mimics the real world non-linear response 
to increased mass loading apparent in actual volcanic ash clouds.

Figure 2. (A) Idealised test case comprising of a larger sphere with three smaller internal inclusions 
displayed in Blender. (b) Extracted ground truth for the same test case, with lower density outer voxels 
shown as transparent.
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An additional real-world consideration is the fact that at least two images are required 
for real-world multi-spectral retrieval, one in each of the narrow-band TIR wavelengths. As 
such, either two adjacent cameras would be required, or one camera with a filtering 
mechanism taking two separate images. This could in theory introduce either a positional 
or temporal displacement between the two narrow-band images making up the single 
processed image. An additional temporal effect is the time synchronization between 
cameras at different viewpoints distributed around the target volcano. For the positional 
displacement, it is reasonable to assume that the distance between the cameras would be 
negligible compared to the distance to the target plume, leading to no significant effect 
on the output images. For the temporal effects two timescales are important (a) the time it 
takes to move the filter wheel in any given camera and (b) the accuracy of synchronization 
between different cameras. Current filter wheel mechanisms can operate fairly rapidly, 
leading to the different individual wavelength images likely being separated by under 2 
s (Thomas and Prata 2018). At typical distances between the vent and the camera (on the 
order a few kilometres), and the fairly low spatial resolutions possible with TIR cameras, 
plume movement and structural change is negligible at this scale and on these timescales. 
Additionally, clock synchronization between cameras at different viewpoints, either from 
an internet connected device such as a laptop or smartphone, or though GNSS timing 
signals, allows for images from different cameras to be acquired within a second of one 
another.

3.2. Tomographic reconstruction methods

This section details the reconstruction approach to be applied to the simulated imagery. 
The approach utilizes a computed tomography (CT) scheme to retrieve the three- 
dimensional internal concentration distribution and structure of the target plume. 
Computed tomography is most commonly used in medical imaging as X-Ray computed 
tomography, but it also has other applications in astronomy, microscopy, and atmo
spheric science (Deans 2007).

The fundamental process of CT relies on the fact that a pixel’s line-of-sight loading 
(column loading) y, passing through a scalar field of voxels with masses x, can be 
calculated by  

y ¼ Sx (1) 

where S represents a ‘system matrix’ containing the path length of each line-of-sight in y 
through each of the voxels in x. The column loadings in y can be calculated from the 
measured pixel values by applying the transfer function described above. This is the 
equivalent step to the Infrared qualitative retrieval methods used for real-world imagery.

To calculate the system matrix, S, the voxels intersections for each line-of-sight in y 
must be calculated. To perform this calculation, a ray can be cast through the predefined 
voxel field for each relevant pixel within a given image. A voxel traversal algorithm is then 
applied, identifying the intersecting voxels for each ray. The traversal algorithm used in 
this work utilizes a Digital Differential Analyser (DDA) to march each ray through the field 
of voxels, identifying intersections. An adapted implementation of Amantides and Woo’s 
‘Fast Voxel Traversal Algorithm for Ray Tracing’ was used (Amanatides and Woo 1987; 
Mena-Chalco 2021).
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This process of calculating the system matrix can be very computationally expen
sive. In order to reduce the size of this problem, an initial Space Carving reconstruction 
stage was employed. This reconstruction stage takes the same input images and 
produces a convex hull representation of the target plume. This process is relatively 
computationally inexpensive and limits the number of voxels to be considered for the 
voxel traversal, and thus tomographic reconstruction, to only those actually in the 
plume. The Space Carving method has been used for a range of scenarios including 
industrial plume measurement (Rusch and Harig 2010), meteorological cloud tracking 
(Peng et al. 2015), and recently convex hull volcanic plume reconstructions (Wood et al. 
2019).

By taking this calculated system matrix S, along with the known set of line-of-sight 
loadings y, the inverse of Equation 1 can be calculated to solve for the unknown voxel 
values x. There are many ways to solve this general inversion problem for tomographic 
reconstruction, mainly focused around the iterative reconstruction algorithms mentioned 
in Section 2. For atmospheric tomography, these methods can be tuned, making use of 
prior information and assumptions regarding boundary conditions, gas distributions, and 
spatial derivatives within the target plume. These can be applied as constraints, weight
ings, and regularization parameters, ideally resulting in smoother and more accurate 
reconstructions (Casaballe et al. 2020).

However, as the main goal of this paper is the demonstration of a simulation environ
ment to aid the development and optimization of volcanic plume tomographic recon
struction methods, a simple bounded variable least-squares (BVLS) method was chosen as 
an initial proof of concept (Garay, Davis and Diner 2016). This method allows upper and 
lower limits to be placed on the voxel values in x, before solving the constrained least- 
squares problem to determine an optimum solution to the inversion problem. For this 
simulated reconstructions, the bounds were based on the known minimum and max
imum voxel masses. With the simulation environment in place, more advanced recon
struction methods and additional tuning steps can be evaluated going forward, allowing 
optimized solutions to be developed.

3.3. Idealized ‘Shepp-Logan’ style test case

For this initial test of the simulation environment and reconstruction method, an idealized 
test case was used. Inspiration for the test case was taken from the standard ‘Shepp- 
Logan’ phantom developed in 1974 for early computed tomography development 
(Shepp and Logan 1974). This two-dimensional model utilized a set of ellipses of varying 
sizes and grey-levels (analogous to density) distributed to mimic the geometric and x-ray 
attenuation properties of a human head. Three-dimensional models have since been 
developed for testing of three-dimensional reconstruction schemes (Gach, Tanase and 
Boada 2008). However, as the Shepp-Logan phantom was designed with medical imaging 
in mind, the boundaries between the ellipses representing different densities are, gen
erally, very sharp. This mimics the boundaries found in the human body, for example, 
between bone and brain-tissue, but is not necessarily a good representation of a aerosol 
plume, such as a volcanic ash cloud. Aerosols or gas concentrations, which are far from 
their sources generally have low spatial gradients, indicating smooth density changes 
(Price et al. 2001).
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As such, the Shepp-Logan phantom was adapted to develop a simple test case suited 
to the problem of volcanic ash reconstruction. This test case consisted of a large 
spherical volume with three smaller internal spherical inclusions with differing smoke 
densities. These spheres acted as smoke sources, the smoke density for each being 
allowed to diffuse outwards. The diffuse sphere radius was roughly twice that of the 
source sphere with the density decreasing by around 10% over that range. The loca
tions, radii, and densities of the spheres are presented in Table 1, the density values are 
given in Blender’s internal unit system, denoted as Blender Units (BU). Figure 2 shows 
this three-dimensional test case used during the initial tests and development of the 
reconstruction scheme.

With this test case and the corresponding ground-truth, the accuracy of the tomo
graphic reconstruction, the simulated plume can be evaluated for a variety of user 
generated observation setups. These setups can vary the number of cameras, and thus 
the number of viewpoints, along with the position of each camera and its optical proper
ties, such as sensor size and resolution or lens focal length. These variables can be chosen 
to meet the requirements of any individual study. The view direction for each camera is 
tracked to the centre of the Shepp-Logan plume using Blender’s ‘Track To’ object 
constraint.

Within the Blender simulation, the specific scale of both the plume test case and the 
camera distances is not important as the results are normalized as a percentage of the 
voxel size of the reconstruction. Additionally, the apparent plume size or ‘pixels on target’ 
for the final image depends on both the target size and distance. Imaging a target twice as 
large but twice as far away will produce a similar image. As such, smaller numbers were 
use during this investigation for modelling simplicity. This assumption would need to be 
re-evaluated, however, if atmospheric effects were being considered in the image render
ing and processing stages.

3.4. Evaluation metric

To evaluate the performance of the tomographic reconstructions, an evaluation metric 
was needed to compare the reconstructed model with the previously extracted ground 
truth. As perfect knowledge of the ground truth was available at the same voxel 
resolution as the reconstruction, a direct comparison on a voxel-by-voxel level was 
possible. The origins of both the ground-truth and the reconstruction were also con
sistent, negating the ‘double penalty problem’ that can occur with grid point-based 
evaluation metric, such as RMS (Wernli et al. 2008). This makes a root mean squared 
error calculation both accurate and straightforward and so was chosen for this 
investigation.

Table 1. Spheres making up idealized ‘Shepp-Logan’ style 
phantom test case.

Location [m] Radius [m] Density [BU/m3]

(0, 0, 0) 3.00 0.8
(1.75, 1.75, 1.75) 0.75 1.0
(−2.25, −1, −2) 0.75 1.2
(0, 0, 0) 0.75 1.4
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To calculate the RMS error (RMSE), the difference in mass between each reconstructed 
voxel and its corresponding ground-truth voxel was calculated as the absolute error. The 
sum of this absolute error for each voxel was then used to calculate the root mean 
squared error for the full reconstruction. Equation 2 presents this calculation, with xi 

equal to the ground truth mass of voxel i, ̂xi equal to the reconstructed mass, and N equal 
to the number of voxels within the plume. N will depend on both the size of the 
reconstructed plume and the voxel resolution decided on by the user. This metric was 
used to compare the performance of multiple reconstructions of the same ground truth 
when modifying variables such as the number or resolution of the cameras. 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 xi � x̂ij j

N

s

(2) 

4. Results

The power of the simulated environment is the ability to run many different reconstruc
tions with varied settings to assess performance over a wide range of conditions. For an 
initial test of the simulation environment, a reconstruction was performed using the 
idealized Shepp-Logan test case and simply varying the number and position of the 
cameras to assess the effect on reconstruction accuracy. Following this is a more general 
sensitivity analysis investigating the effect of changing a number of variables, such as the 
pitch angle of the cameras, the spatial resolution of the observations, and the effect of 
uncertainty in the measurement of camera attitude, specifically, the camera yaw angle. 
This generalized analysis facilitates the comparison with a variety of possible real-world 
observation geometries. A detailed discussion of each set of results is presented in 
Section 5. For all runs, a baseline camera setup was used, with a sensor resolution of 644�
512 pixels, a pixel size of 25 μm, and a lens focal length of 25 mm. The lenses were 
assumed to be perfect, with no (or perfectly corrected) optical aberration. These values 
were chosen to be similar to the specifications for portable microbolometer-based TIR 
imagers that have seen use in the field, such as the nicAIR cameras (Lopez et al. 2015).

4.1. Idealized Shepp-Logan test case

As an idealized initial test of simulation environment, this analysis investigated the effect 
of the number of unique viewpoints on the reconstruction accuracy of the Shepp-Logan 
test case. Eight runs were performed, with the number of viewpoints ranging from 3 to 10. 
In each of the runs, the cameras were positioned to be evenly distributed on a circle with 
a 100 m radius around the plume. Each of the cameras was fixed to the x � y plane with a 
z-axis coordinate of 0. Figure 3 presents the 3, 4, and 5 viewpoint camera layouts.

Images were then generated and a reconstruction performed for each run. Figure 4 
presents the three rendered and processed images for the three camera run. These 
images have been cropped to only show the central pixels containing the plume. These 
images, with pixel intensities equal to line-of-sight mass loading through the plume, are 
then used as inputs to the tomographic reconstruction process.
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With the rendered and processed images generated, the tomographic reconstruction 
of the plume can be calculated, providing estimates for the mass of each voxel within the 
plume. As this process produces a three-dimensional plume reconstruction, the results are 
presented as two-dimensional slices of this three-dimensional plume. Figure 5 presents 
these internal slices of both the ground-truth plume as well as slices for the runs with 3 
and 8 viewpoints.

Figure 6(a) presents the RMS error of the tomographic reconstruction against the 
number of viewpoints used for the reconstruction, with all viewpoints being evenly 
distributed around the plume as in Figure 3. The general trend is an increase in recon
struction accuracy with an increasing number of viewpoints; however, both the 4 and 6 
viewpoint runs have significantly worse performance than their immediate neighbours, 
with 8 and 10 showing the same effect to a lesser degree. The cause of this, a reduction of 
unique lines-of-sight when viewpoints were placed directly opposite one another, is 
discussed in greater detail in Section 5.1. To remedy this issue, an additional set of 
reconstructions were performed with offset camera positions shown in Figure 10. The 
results of these offset runs are shown in Figure 6b.

Figure 3. Camera positions for the 3, 4, and 5 viewpoint runs. The grey triangles indicate each cameras 
field-of-view as an exaggerated view frustum. The target plume is centred at the origin.

Figure 4. The three rendered and processed images from the three viewpoint run used as input to the 
tomographic reconstruction process. Each pixel represents the line-of-sight mass loading through the 
plume, with the mass units being ‘Blender Units’. Note these images are cropped to display only the 
central pixels containing the target plume.
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4.2. Camera pitch angle and spatial resolution

Whilst the analysis of the number of unique viewpoints presented above provides some 
useful insights into the distribution of viewpoints when planning an observation setup, in 
a real-world observation it is unlikely to have cameras perfectly level with the plume. Most 
ground-based volcanic observations will involve a camera positioned on the slopes of the 

Figure 5. Slices of the ground truth and reconstruction for the idealised Shepp-Logan test case, each 
column presents a slice at the x coordinates x ¼ � 2, x ¼ 0, and x ¼ 2 respectively. Each row presents 
a different reconstruction, with (a-c) the ground truth, (d-f) the reconstruction using 3 viewpoints, and 
(g-i) the reconstruction using 8 viewpoints.
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target volcano, some distance from the vent. For many volcanoes, this would leave the 
camera below the volcano vent, requiring some amount of pitch angle to frame a given 
plume.

Additionally, for a real-world observation setup the possible positions of the cameras, 
and thus the distances from camera to the target plume, will be heavily influenced by the 
local geography. This can have a significant influence on the spatial resolution of the 
observations. The spatial resolution, or spatial sampling distance (SSD), is a measure of the 
size of an individual pixel when projected over the distance from the camera location to 
the target. The SSD can also be controlled by camera and lens properties, such as the 
sensor pixel size and the lens focal length. As such, multiple of these variables can all be 
approximated by a single SSD variable, with the current consideration that atmospheric 
effects of increased viewing distances are not considered. The SSD can be calculated by 
first calculating the instantaneous field of view (iFoV) of a single sensor element (pixel) 
using Equation 3, with d as the pixel size and f the lens focal length. This iFoV can then be 
projected over the distance to the target plume using Equation 4, with h as the distance to 
the plume. 

iFoV ¼ 2 arctan
d
2f

� �

(3) 

SSD ¼ 2h tan
iFoV

2

� �

(4) 

Thus, a sensitivity analysis investigating the effect of both the camera pitch angle and 
the SSD can cover a wide range of plausible real-world observation setups. For this 
sensitivity analysis, the four viewpoint run with offset cameras, introduced in 
Section 4.1 and presented in Figure 10b, was chosen as a starting point. Each camera 
was pitched up by a specified angle and then repositioned downward, maintaining the 
baseline distance of 100 m, to emulate a position on the slopes of a volcano. The pitch 

Figure 6. Reconstruction RMS error for a range of input viewpoints. (a) Viewpoints are evenly 
distributed, leading to ‘mirrored’ viewpoints on even number runs. (b) Viewpoints on even number 
runs are offset to provide unique views.
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angles were ranged from 0° to 25°, with examples of the 0° and the 25° configurations 
presented in Figure 7. For each pitch angle, the lens focal length was then changed with 
all other camera properties remaining fixed. Focal lengths were ranged from 550 mm to 
provide a range of SSDs from 0.05 to 0.5 m at the target distance of 100 m.

To generalize these results, the SSDs were then normalized as a percentage of the 
reconstructed voxel resolution of 0.3125 m. This reconstructed voxel resolution is the side 
length of an individual cubic voxel in the final reconstruction, that is, the smallest feature 
size of the reconstruction. For example, a SSD of 0.1 m would normalize to 32% of the 
reconstruction resolution of 0.3125 m. This same normalization can then be used on 
different scales, for example, a SSD of 10 m and a reconstruction resolution of 31.25 m 
would also normalize to 32%. Figure 8 presents RMS error against the normalized SSD. 
Each of the pitch angles investigated is presented as a separate line. Generally, the pitch 
angle has little effect on the reconstruction accuracy. Each SSD line has a fairly consistent 
RMS error up to roughly 50% of the reconstruction resolution, at which point the 
reconstruction accuracy starts to diminish, indicating that there are diminishing returns 
on improving the SSD beyond around 50% of the desired reconstruction resolution. 
Further discussion is presented in Section 5.2, along with the application of this general
ized set of results to a real-world observation setup.

4.3. Camera pointing inaccuracy

For a real-world setup, the measurement of camera location and attitude is an important 
consideration. Over the distances generally required for volcanic observations, even small 
pointing inaccuracies can lead to large offsets in the assumed and actual location of a pixel 
when projected onto the target plume. For this analysis, the effect of inaccuracy in camera 

Figure 7. Camera pitch angles of (a) 0° and (b) 25°. the grey triangles indicate each cameras field-of- 
view as an exaggerated view frustum. The target plume is centred at the origin.
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pointing measurements was investigated, specifically, the measurement of each camera’s yaw 
angle. The baseline camera setup discussed in Section 4 was utilized, with five viewpoints 
distributed as discussed in Section 5.1. A range of rotations from 0° to 0.75° were applied to 
the camera’s yaw angle after the images had been rendered for each run. The modified 
camera attitude was then used in the reconstruction, simulating an error in measurement.

The size of this pointing error, equal to the size of the assumed and actual pixel 
location offsets at the target, was then normalized by calculating this offset dis
tance and taking it as a percentage of the reconstruction resolution. For example, 
at the 100 m range used in this simulation, a pointing inaccuracy of 0.2° produces 
an angular offset of roughly 0.35 m which is around 110% the reconstructed voxel 
resolution of 0.3125 m. Similarly, at a range of 10 km and with a reconstruction 
resolution of 31.25 m, the same 0.2° error would also be calculated as 110%, even 
though the actual pixel offset is now roughly 35 m. Figure 9 shows the RMS error 
plotted against this normalized pointing inaccuracy. The RMS error can be seen to 
be fairly constant at low pointing errors. For pointing errors between 0% and 50% 
of the reconstruction resolution, the RMS error is essentially constant. There is 
a very slight rise in RMS error between 50% and 150%, and then a dramatic rise 
beyond 150%. This sharp threshold can be used as an effective maximum pointing 
error for a given observation setup that depends on both the distance to target 
and the desired reconstruction resolution. Further discussion is presented in 
Section 5.3, along with the application of this generalized set of results to a real- 
world observation setup.

Figure 8. Reconstruction RMS error for a range of pitch angles and SSDs normalised as a percentage of 
reconstructed voxel resolution. The circle marked ‘Fuego 2017’ indicates the rough simulated equiva
lent to the real-world observation setup utilised during a 2017 field campaign to Volcán de Fuego 
(Wood et al. 2019).
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5. Discussion

The goal for the development of the Blender-based simulation environment described 
above was to provide a tool to aid the development and refinement of tomographic 
reconstruction methods for volcanic plumes. Additionally, the tool could be used to aid 
the set-up and optimization of real-world volcanic observations. Blender was chosen as 

Figure 9. Reconstruction RMS error for a range of camera pointing inaccuracies normalised as 
a percentage of reconstructed voxel resolution.

Figure 10. Camera positions and exaggerated view frustums for a 4 viewpoint run, with the target at 
the origin. (a) Evenly distributed camera positions. (b) Camera positions with two cameras offset to 
provide unique views.
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the basis for the simulation environment as it natively provides both semi-realistic plume 
simulation and the path-traced rendering required to produce imagery suitable for 
tomographic reconstruction.

As mentioned in section 3.1.2, the pixel intensities of the simulated images rendered by 
Blender are proportional but not equal to the required line-of-sight mass loadings. The 
transfer function presented in Figure 1 is thus used to convert from the rendered pixel 
values to mass loading, analogous to the real-world quantitative retrieval process starting 
from measured brightness temperatures. This transfer function, and its similarity to the 
theoretical non-linear response of volcanic ash clouds presented in Figure 1c is essential for 
the simulation environment to be useful in aiding real-world observation set-ups. It was 
vital that the simulated transfer function had a similar non-linear response to the real-world 
process, with measured values tending to a limit as the plume becomes optically saturated.

With the simulation environment producing responses similar to real-world imaging, 
the reconstruction accuracy of some real-world scenarios could be evaluated. The sensi
tivity analyses presented in the results and discussed below provides some useful insights 
and suggestions into optimizing a real-world observation campaign.

5.1. Number and distribution of viewpoints

This analysis, presented in Section 4.1, investigated the effects of the number of unique 
viewpoints on the tomographic reconstruction accuracy. This is important as it is a significant 
investment, or sometimes impossible due to local geography, to set up multiple ground- 
based cameras to provide unique viewpoints for volcanic observations. Optimizing the 
number of cameras needed is thus worth-wile. This is less of an issue if utilizing the 
manoeuvrability of a UAS or satellite to provide multiple viewpoints, though optimizing 
a UAS’s flight path or the desired number of images to capture would still prove useful.

The predicted trend for this analysis was that an increasing number of viewpoints 
would result in an increase in reconstruction accuracy, up to some limit of diminishing 
returns. As the number of images from unique viewpoints increases, the amount of 
unique information captured about the internal density distributions within the plume 
increases. This assumed trend is confirmed in Figure 6a, with diminishing returns being 
reached at around 8 to 10 viewpoints for this setup.

However, the figure shows some outliers, most notably for the 4 and 6 viewpoint runs, 
though also at 8 and 10 runs to a lesser degree. It was theorized that these outliers were 
the result of having some of the viewpoints mirrored, thus reducing the number of truly 
unique viewpoints. With two viewpoints directly opposite one another, many of the lines- 
of-sight of the two viewpoints will essentially be identical or very similar, just mirrored.

With the viewpoints evenly distributed on a circle around the origin, the runs with an 
even number of viewpoints end up with half their viewpoints being perfectly mirrored (e.g. 
four viewpoints would be evenly distributed 90° apart from one another, two at ½�100; 0; 0�
and two at ½0;�100; 0�, see Figure 10a). This issue does affect the 8 and 10 viewpoint runs, 
though by that point there are enough unique views to somewhat compensate. By shifting 
one viewpoint in each opposing pair, a truly unique view from each of the viewpoints can 
be guaranteed, see Figure 10b. Figure 6b presents the RMS error for a set of runs in this 
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configuration, with the 4, 6, 8, and 10 viewpoint runs having half their viewpoints shifted so 
they are not opposite each other. The results for these shifted viewpoint runs are clearly an 
improvement and follow the general trend more closely.

Whilst this issue should be considered for similar real-world configurations of 
cameras, it is unlikely that the perfectly mirrored alignment provided by the simula
tion would be replicated in the field, even if no consideration is taken for it. Due to 
the difficult geographical conditions around many volcanoes, imposing constraints on 
ground-based observation locations, a single optimum configuration for the distribu
tion of the cameras would not be much use. Instead, the simulation framework would 
be used on a case-by-case basis to optimize for a specific volcano or field campaign.

5.2. Pitch angle and spatial resolution

This analysis investigated the effects on the reconstruction accuracy of varying both the 
pitch angle and the spatial resolution of the imagers. These were modified together as 
both the spatial resolution, or spatial sampling distance, and the camera pitch angle are 
likely to be proportional to the camera’s distance from the target volcano. The SSD is 
also proportional to camera’s sensor pixel size and the lens focal length, meaning 
a single variable can be used to model a variety of observation configurations, with 
the current consideration that atmospheric effects of increased viewing distances are 
not considered. The SSD is also especially important for volcanic observations with 
infrared imagers as generally these have much lower resolutions than visual spectrum 
imagers.

For the pitch angle, the predicted trend for varying this property was uncertain. At very 
extreme and unrealistic pitch angles (e.g. beyond 60° or 70°) it is clear that the viewpoints 
of each would become less unique, with a 90° pitch angle essentially requiring all cameras 
to be at a similar location directly below the target. However, it was unclear whether these 
effects would appear at more realistic angles up to around 25°. Figure 8 does show a small 
but consistent increase in reconstruction error as pitch angle increased, though this 
increase is much smaller than the other sources of error investigated in this paper, 
indicating that other properties such as the distribution of viewpoints and viewing 
distances are of more concern.

The predicted trend for the change in SSD was similar to the ‘number of view
points’ analysis. As the spatial resolution improves, meaning the SSD decreases, the 
reconstruction accuracy was expected to improve, up to a limit of diminishing returns 
where any improvement in spatial resolution would have no further impact on 
reconstruction accuracy. This trend can be seen to be confirmed in Figure 8. The 
point at which diminishing returns is reached can be seen to be when the SSD, the 
size of a pixel when projected from the camera sensor to the target, is roughly 50% 
that of the reconstructed voxel resolution. It is assumed that with a SSD larger than or 
close to the desired voxel resolution, it is likely that a single projected pixel will 
overlap multiple voxels. As such, it is impossible to determine unique values for these 
voxels, requiring the pixel value to be ‘blurred’ across them. With a SSD roughly 50% 
of the voxel resolution, it is guaranteed that each voxel will have unique information.
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With this information, an optimum SSD requirement of at least half the desired 
reconstruction resolution can be derived. The reverse is also possible. If SSD is fixed due 
to constrained imager properties or locations, the optimum minimum reconstruction 
resolution can be taken as double this fixed SSD. The effects of camera pitch angles, 
when constrained to realistic values, can generally be considered negligible compared to 
other considerations.

Additionally, this generalized set of results can be used to perform an initial compar
ison with real-world observation setups, for example, the November 2017 field campaign 
at Volcán de Fuego in Guatemala, presented by Wood et al. (2019). This field campaign 
utilized four nicAIR cameras distributed fairly evenly around the target volcano, though 
with no perfectly mirrored viewpoints. The cameras all had pitch angles between 15° and 
20°, and SSDs between 5.7 m and 11.5 m. Whilst tomographic reconstruction has yet to be 
attempted on the data recorded during the campaign, a simpler Space Carving recon
struction was performed, producing a convex hull model of the plume. The reconstruction 
resolution selected for this process was 25 m, giving 46% as a worst case SSD, normalized 
by reconstruction resolution. These values can then be compared with the results pre
sented in Figure 8 as the circle marked ‘Fuego 2017’. This comparison indicates that, for 
a tomographic reconstruction using the same dataset, the same reconstruction resolution 
of 25 m ideal. This result could also be used to indicate that for a future field campaign, 
the SSD would likely need to be improved if a finer reconstruction resolution was desired, 
with additional ‘bespoke’ simulations allowing further optimization.

5.3. Camera pointing inaccuracy

This analysis investigated the effects of simulating inaccuracy in the measurement of the 
camera attitude. In the simulation framework, it is possible to extract perfect attitude 
information but for real-world observations this is a significant challenge (Wood et al. 
2019). Position measurement is also prone to real-world error but with modern GNSS 
systems it is possible to achieve accuracies of less than a metre (Dabove and Di Pietra 
2019). At the distances generally required when observing volcanic ash and the spatial 
resolutions generally available with TIR imagers over these distances, errors in the 
measurement of a cameras position on this scale will have a negligible effect on recon
struction. As such, this analysis only focused on the camera pointing errors, specifically, 
the yaw angle.

The predicted trend for this analysis was a fairly rapid rise in reconstruction inaccuracy 
as pointing error increased. Figure 9 confirms this trend, though indicates a distinct 
threshold below which reconstruction accuracy is not significantly effected. As the 
apparent size of the offset arising from a given pointing error depends on the distance 
to the target, these results were normalized. The final pointing error was calculated as the 
offset of assumed vs. actual pixel locations, taken as a percentage of the reconstructed 
voxel resolution.

From Figure 9, it can be seen that an apparent offset of up to roughly 150% of the 
reconstruction resolution has only a small effect on reconstruction accuracy. However, 
beyond this point the error rises sharply. At low pointing errors with offsets below 50%, it 
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is assumed that the small offset in the position of each pixel when projected onto the 
plume does not dramatically change which voxels the pixel’s line-of-sight intersects. Thus, 
the system matrix S is not dramatically changed, leading to a similar reconstruction 
accuracy. For offsets up to around 150%, the calculated pixel line-of-sight intersections 
will start to change compared to the ‘deal’ case of zero offset, though usually by only 
a single voxel. However, beyond this point it is assumed that the offset will always result in 
the pixel’s calculated line-of-sight differing from the ideal. The maximum offset a pixel can 
have and still be centred on the correct voxel would be the diagonal of size of the voxel. 
For a square sided voxel, this would be equal to 

ffiffiffi
2
p

of the voxel resolution, or roughly 
140%. Additionally, beyond 150% the line-of-sight intersections will generally be offset by 
multiple voxels, further worsening the reconstruction accuracy.

With this information, a limit on the maximum viewing angle measurement error can 
be calculated. For example, an acceptable attitude measurement error can be calculated 
for the 2017 Fuego field campaign, described in Section 5.2. With a desired reconstruction 
resolution of 25 m and the normalized acceptable pixel offset at the target of 150%, an 
actual pixel offset limit of 37.5 m can be defined. This displacement, at a range of roughly 
10 km, means an acceptable viewing angle measurement error of around 0.21°, a level of 
accuracy, generally, only possible with specialist surveying instruments such as 
a Theodolite (Piwetz et al. 2018; Wood et al. 2019). One potential workaround, however, 
is the pre-processing of recorded data to reduce this error. An example of this kind of pre- 
processing is the alignment of the skyline captured in real-world imagery with simulated 
skylines generated though the use of a high-accuracy digital elevation model of the target 
(Wood et al. 2019). Other examples could include alignment using observations of 
a common geographical feature visible to all cameras. Either way, the very strict pointing 
accuracy requirement for accurate tomographic reconstruction should be considered 
when planning a real-world field campaign.

6. Conclusions and future work

This paper has demonstrated the simulation, rendering, and tomographic reconstruction 
of an idealized volcanic plume. The Blender-based simulation and rendering framework 
has been described, along with the definition of a transfer function mapping the rendered 
pixel values onto the column mass loading needed for tomographic reconstruction. 
A Shepp-Logan inspired test case suitable for volcanic plume reconstruction was also 
defined and used in subsequent sensitivity analyses.

The tomographic reconstruction method used has been detailed. The line-of-sight, and 
thus voxel intersections, of each target pixel were calculated using a voxel traversal algorithm. 
These intersections, along with the column-mass-loadings, are then used in a bounded 
variable least squares (BVLS) solver to determine the smoke mass in each of the target voxels.

The simulated approach has facilitated the direct comparison of results with a perfect 
ground truth model extracted separately from the Blender model. This allowed the 
accurate and precise quantification of the performance of the tomographic reconstruc
tion algorithm. The simulated approach also enabled easy configuration of the recon
struction settings. This allowed multiple sensitivity analyses to be performed, 
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investigating the affect of variables, such as the number and distribution of observation 
viewpoints, the spatial resolution and pitch angles of the simulated cameras, and the 
uncertainties in the measurement of camera attitude.

The configurable environment will enable further work including simulations and 
reconstructions emulating previous real-world observation setups. This will aid in 
further developing and optimizing the reconstruction process to be used on real- 
world datasets. The simulation environment can also be used to aid future real-world 
observation campaigns by optimizing variables such as the distribution and number 
of cameras before entering the field. Some initial investigations into this kind of 
optimization are presented. Some further improvements to the model are also 
suggested, such as the modelling of atmospheric effects in the image generation 
process and the development and testing of more advanced tomographic recon
struction methods.

It is hoped that this simulation framework will aid the further development of 
tomographic reconstruction methods for use with volcanic plumes. It is also hoped 
that the planning and execution of similar real-world attempts to image and recon
struct volcanic plumes can be informed by the results of further sensitivity analyses, 
facilitating the optimization of variables, such as camera positioning before entering 
the field.
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