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Surface wrinkling in stiff-film/soft-substrate bilayers
is a common phenomenon in biological systems and
is increasingly being exploited in thin-film technology.
While the onset of surface wrinkling in end-
compressed bilayers is well understood, questions
remain with regards to the evolution of the wrinkling
pattern in the intermediate and deep post-wrinkling
regimes, especially when the substrate is strongly
pre-compressed. Here, we explore the bifurcation
landscape of end-compressed bilayers with strongly
pre-compressed substrates, using hyperelastic, plane
strain finite-elements and generalized path-following
algorithms. After bifurcating from a flat into a
sinusoidally wrinkled state, bilayers undergo further
n-tupling bifurcations into stable wrinkling patterns
of longer wavelength whose periodicity n = {4, . . . , 8}
is a function of overall bilayer length. These
five n-tupling wrinkling patterns are shown to be
independent localizations of the deformation mode
and are accordingly identified as stable ‘building
blocks’ that govern the intermediate post-wrinkling
regime. Additional end-shortening into the deep
post-wrinkling regime then leads to further period
doubling and coalescence of the building blocks.
Beyond a certain length threshold, a bilayer can
form a combinatorial side-by-side arrangement of
the five building blocks. In the limit of an infinitely
long bilayer, this leads to the phenomenon known
as spatial chaos with the emergence of an infinite

2022 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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set of possible wrinkling patterns. In reality, though, the precise side-by-side arrangement of
the building blocks is governed by the initial conditions. We show that the morphological
evolution of the wrinkling pattern can be programmed by a judicial placement of
manufactured dents in the thin film, creating new manufacturing capabilities for textured
bilayers.

1. Introduction
Owing to their intrinsically low elastic modulus, soft materials and structures are highly
susceptible to instabilities in response to internally or externally applied stimuli [1]. Instabilities
in the form of wrinkling, folding and creasing can be critical for function in biological systems
[2–5]. Malformation of such instabilities may lead to abnormal evolution of tissues or organs,
which is often related to disease. Simultaneously, instability-induced morphologies are being
used in advanced technologies, such as photovoltaic devices [6], flexible electronics [7], metrology
methods [8] and microlens arrays [9]. Therefore, an understanding of morphological instabilities
in soft materials not only facilitates the characterization of morphogenesis in biological systems,
but also serves as a basis for the design of novel soft engineering systems [10]. In this paper,
we focus on the nonlinear wrinkling behaviour of initially flat, stiff-film/soft-substrate bilayer
systems with a pre-compressed substrate. Particular attention is given to the advanced post-
wrinkling regime.

(a) Wrinkling onset
Extensive research has been conducted on the onset of wrinkling in end-compressed bilayers
with different pre-strain levels applied to the substrate [11–14]. Closed-form equations have been
derived to determine the compressive strain for which the bilayer transitions from an initially flat
state to a periodic sinusoidal one (primary wrinkling/critical state), for cases where the stiffness
ratio between the stiff film and the soft substrate is large [15,16]. The accuracy of these analytical
solutions has been verified using finite-element (FE) methods [17]. The analytical solutions have
also been used to back-calculate the material constants of bilayers in experimental tests [18] and
for precision measurements [8].

(b) Post-wrinkling regime
With further compression beyond the primary critical state, the sinusoidal wrinkling mode loses
stability at further bifurcations. Pre-strain in the substrate changes a bilayer’s bifurcation diagram
beyond the first (critical) bifurcation point in a significant way, particularly when the pre-strain
level is high [18,19].

(i) No substrate pre-strain

For the case where the substrate is not pre-strained, the sinusoidal wrinkling pattern doubles
in period at secondary supercritical bifurcations [16,20–24]. These sequential period doubling
bifurcations as shown in figure 1a—i.e. period doubling followed by periodic quadrupling,
etc.—have also been comprehensively described and reproduced using analytical [21,25] and FE
methods [15,26–28].

Note that in all equilibrium manifolds shown we adopt the reaction force at the top right corner
as the vertical axis instead of the widely used wrinkling mode amplitude. The reaction force
correlates with the formation of a valley or a ridge in the wrinkling pattern. Specifically, when
a valley forms and deepens, the reaction force increases, and when a valley becomes shallower,
the reaction force reduces. Alternative measures, such as the amplitude of the wrinkling pattern,
were considered less intuitive for depicting the pattern formation. For example, in the case
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Figure 1. Schematic equilibrium diagram (reaction normal stress at the right corner of the top edge of the film versus
compression u) of bilayers under end-compressionwith (a) unstrained substrate and (b) pre-compressed substrate. For bilayers
with unstrained substrate, the post-wrinkling regime is governed by sequential supercritical bifurcations that double the
wrinkling period. For bilayers with pre-compressed substrate, the equilibrium path destabilizes shortly after the first period
doubling bifurcation, leading to irregular symmetry-breaking patterns shown in (c). Depending on bilayer length, restoration
of stability leads to different period n-tupling modes n= {4, . . . , 8}, which are here defined as stable ‘building blocks’.
The end-compression region over which the building blocks are stable is defined as the intermediate post-wrinkling regime.
Additional compression beyond this leads to further period doubling, and for longer bilayers, coalescence of smaller building
blocks (defined as the deep post-wrinkling regime). (c) Irregular wrinkling patterns due to symmetry breaking at B3 in
(b). The irregular patterns correspond to period n-tupling mode n= {4, . . . , 8}. (d) Selected stable wrinkling patterns in
the intermediate post-wrinkling regime of a very long bilayer. The long bilayer can break into different combinations of the
n-tupling building blocks identified in (b). The arrangement of different building blocks of varying length is strongly affected
by initial imperfections, which explains the seemingly ‘chaotic’ wrinkling patterns observed in experiments. (Online version
in colour.)

of subcritical bifurcations that lead to mode interaction and non-symmetric, irregular-looking
wrinkling patterns, a single wrinkling amplitude is not informative in quantifying the wrinkling
pattern.

(ii) Substrate pre-tensioning

Pre-tension in the substrate biases the stiff film to deflect outwards, leading to the formation
of localized ridges [13,19,29]. Pre-tension also delays the onset of secondary bifurcations, i.e.
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the sinusoidal wrinkling mode remains stable over a larger region of applied compressive
strain [18,30]. Indeed, if the pre-tension strain is sufficiently pronounced, the sinusoidal
wrinkling pattern eventually transitions to localized ridges directly, without the formation
of period doubling bifurcations [13,31]. By adopting an FE model of length 9× the critical
wrinkling wavelength with symmetric boundary conditions applied at both ends, Jin et al. [13]
reproduced the transition of sinusoidal wrinkling to localized ridges that were observed in
experiments.

(iii) Substrate pre-compression

A pre-compressed substrate biases the stiff film to deflect inwards, leading to the formation
of folds [18]; see figure 1b. Moreover, pre-compression leads to a closer spacing of higher-
order bifurcations on the fundamental equilibrium path (the locus of flat, purely compressed,
solutions), resulting in mode interaction, imperfection sensitivity and patterns with a variety of
interacting periodicities. As a result of the difficulty in predicting the evolution of wrinkling
patterns into the deep post-wrinkling regime, and of the observed pronounced sensitivity to
initial conditions, the literature describes the pattern formation of pre-compressed bilayers as
‘chaotic’ [18], independently of their length.

The origin of this seemingly ‘chaotic’ wrinkling response is difficult to pinpoint experimentally
or using the nonlinear implicit solvers embedded in commercial FE packages. This is because,
in order to trace post-wrinkling equilibrium paths with standard implicit/explicit FE solvers,
possible bifurcation points need to be known a priori and either specific geometric imperfections,
specific boundary conditions, or specific system lengths enforced to trigger the desired wrinkling
mode. An improper choice of the perturbation profile or amplitude can lead to unrealistic
wrinkling modes [32]. Therefore, an analysis based solely on standard FE solvers cannot provide
the complete wrinkling landscape of pre-compressed bilayer systems.

Although a complete exploration of a bilayer’s post-wrinkling stability landscape under
substrate pre-compression is difficult, research has been conducted to understand the mechanics
underlying their equilibrium manifolds, bifurcations and ‘chaotic’ pattern formation. Auguste
et al. [18] adopted FE models with specific cell sizes, boundary conditions and geometric
perturbations to accommodate certain wrinkling modes. The strain energy density corresponding
to each wrinkling mode was computed and the wrinkling mode with the lowest energy then
treated as the most favourable. Computational results revealed that the strain energies of period
tripling and period quadrupling modes are comparable in the post-wrinkling regime, and this
was suggested as a possible explanation for the coexistence of these two wrinkling modes
in experiments. Xu et al. developed latticed models [33] and an asymptotic modelling and
resolution framework [34] to trace the post-wrinkling behaviour of bilayers with pre-strained
substrate. A period-tripling mode is observed when the substrate is highly pre-compressed.
Note that the depth ratio between the film and substrate in these numerical models is less than
60. However, it is unclear if this ratio is sufficient to satisfy the infinite-depth assumption of
the substrate. In the authors’ experience, period tripling is a possible stable wrinkling pattern
for shallower substrates, but vanishes as the substrate depth is increased (see the electronic
supplementary material). Liu & Bertoldi [17] developed a numerical approach based on Bloch
wave analysis to detect successive bifurcations on the equilibrium path of an infinitely long,
end-compressed bilayer. Compared with standard nonlinear FE simulations performed on finite-
size models, the method only requires a single unit cell, making the approach computationally
efficient. With this method, Liu and Bertoldi found that the strains of the first few critical
modes are very closely spaced and period quadrupling and period quintupling modes could
form when the substrate is sufficiently pre-compressed. However, the convergence of the
method is reported to be slow and the approach is invalid when the periodicity in the
wrinkling mode is lost. To trace irregular wrinkling responses beyond certain bifurcations,
path-following methods applied to systems longer than a single unit cell are therefore
required.
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(c) Research aims and outcomes
The analysis limitations highlighted in §1b(iii) above lead to the conclusion that robust path-
following techniques that can detect critical points and automatically branch-switch onto
secondary paths without recourse to initial imperfections are needed to explore the stability
landscape of wrinkling bilayers with pre-compressed substrates and of generic length. Therefore,
the objective of the research presented in this paper is to perform such explorations using
the generalized path-following solver developed in [35,36], coupled with a hyperelastic, plane
strain FE model. By performing said explorations, we uncover new phenomena and meet
our aim of justifying currently unexplained experimental results on the end-compression of
stiff-film/soft-substrate bilayers with pre-compressed substrates. That is

— Beyond the initial sinusoidal wrinkling regime, bilayers undergo n-tupling bifurcations
into stable wrinkling patterns of longer period, with the periodicity n being a function
of the overall bilayer length; see figure 1b. Five different n-tupling patterns are possible
(n = {4, . . . , 8}), which are here denoted as stable ‘building blocks’ of the intermediate
post-wrinkling regime.

— While period doubling and period-quadrupling bifurcations in bilayers with an
unstrained substrate are stable supercritical events, a pre-compressed substrate leads to
subcriticality and irregularity, i.e. non-periodic patterns with broken left-right symmetry;
as indicated in figure 1c. These irregular patterns represent intermediate transition
modes that eventually, for increasing end-compression, connect to regular periodic
solutions. Furthermore, for some levels of compression, the irregular patterns coexist
with the periodic solutions. In other words, the system may display multistability, thereby
explaining the seemingly ‘chaotic’, but actually just irregular and multivalued, response
of the wrinkle formations observed in previous experiments [18].

— Beyond a threshold length, a long bilayer bifurcates into a specific side-by-side
arrangement of the five stable building blocks. Of all possible permutations of building
blocks that can tessellate the bilayer’s extension, the sequence observed experimentally
is defined by the initial conditions. Hence, the morphological evolution of the wrinkling
pattern is deterministic but exceedingly imperfection sensitive as the bilayer length
increases. Long, perfect bilayers can then actually be said to behave in a spatially chaotic
manner [37].

— As a corollary, the evolution of the wrinkling pattern for increasing end-compression can
be programmed by controlling the initial conditions, e.g. through small localized dents in
the thin film.

The remainder of the paper is structured as follows. Section 2 provides a brief background of
the FE formulation for the two-dimensional plane strain elements for compressible hyperelastic
materials, considering pre-strain effects. In §3, we present the effects of bilayer length on
the wrinkling landscape. Further insights are shed in §4. Section 5 presents a method to
tailor the post-wrinkling behaviour of bilayers using localized dents. Finally, conclusions are
drawn in §6.

2. Methods

(a) Finite-element formulation and generalized path-following technique
An in-house nonlinear FE program [36] is used to investigate the response of bilayers comprised
of a stiff, thin-film mounted on a soft, pre-compressed substrate. A plane strain condition in the
width direction of the bilayers is assumed and therefore planar finite-elements used to discretize
the length and transverse dimensions (figure 2). Both film and substrate are modelled using
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Figure 2. (a) Geometry and loading condition of the film/substrate bilayer system. (b) Boundary conditions of the bilayer
system in the FE model. (c) The geometry of the compliant substrate and stiff film before pre-compression of the substrate.
(Online version in colour.)

a compressible Neo-Hookean hyperelastic material model [38]. A ‘nearly’ incompressible Neo-
Hookean material (with incompressibility enforced using a penalty constraint [38]) was also
implemented, with minor quantitative and no qualitative changes to the bifurcation manifolds.
The Neo-Hookean material features parameters that are recognized from a familiar linear elastic
material model. The Helmholtz free energy of the compressible Neo-Hookean material is given by

Φ = μ

2
(IC − 3) − μlnJ + λ

2
(lnJ)2, (2.1)

where IC = tr C and J2 = detC, with C = F�F being the right Cauchy–Green deformation tensor
derived from the deformation gradient tensor F. Lamé’s first parameter is given by λ = Eν/[(1 +
ν)(1 − 2ν)] and the shear modulus is expressed as μ = E/[2(1 + ν)], with E and ν representing
Young’s modulus and Poisson’s ratio, respectively.

Pre-strain in the substrate is modelled using a multiplicative decomposition of the deformation
gradient tensor F = FeFΘ . This decomposition represents a stress-free expansion/contraction of
the substrate into an intermediate state (e.g. through growth, swelling or thermal expansion)
via FΘ , followed by an additional elastic and stress-inducing deformation via Fe that ensures
compatibility with the attached film. In this paper, a thermal representation of the multiplicative
decomposition is chosen for convenience, i.e. FΘ represents free thermal expansion of the
substrate. The detailed theoretical derivation and the verification of the finite-element formulation
can be found in §1 of the electronic supplementary material.

Apart from standard arc-length continuation methods, the in-house FE implementation
features additional functionality for pinpointing limit and branching points directly, branch-
switching at bifurcation points, and tracing critical points through parameter space. For
completeness, a relatively concise but self-contained outline of the generalized path-following
technique is also presented in §1 of the electronic supplementary material. A detailed exposition
can be found in references [35,36]. With this nonlinear solver, we can explore the bifurcation
landscape of the bilayer in a robust way without pre-existing knowledge of branching events.
More importantly, we can trace certain critical and non-critical equilibria in parameter space, e.g.
bilayer length and depth, directly, rather than conducting expensive parametric studies.

(b) FE model set-up
In this study, we consider bilayers as shown in figure 2a, discretized by 16-noded, isoparametric
plane strain elements. The mesh is most dense towards the interface of the film/substrate and
gradually coarsens towards the bottom of the substrate. The applied boundary conditions are
shown in figure 2b. Horizontal displacement restraints are applied on the left end and horizontal
compression is applied on the right end, leading to symmetry-enforcing boundary conditions at
both ends. Vertical displacement restraints are applied on the bottom of the substrate. In order
to satisfy the assumption that the substrate is infinitely thick and to guarantee that the influence
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of the vertical restraint of the substrate’s bottom edge on the system overall is negligibly small,
the substrate depth needs to be as large as possible while balancing the associated computational
cost.

Currently, there seems to be no consensus in the literature on the appropriate substrate depth
to satisfy the infinite-substrate assumption. Specifically, Liu & Bertoldi [17] suggest a substrate
depth 30 times the critical wrinkling wavelength—i.e. the wavelength, Lcrw, at the transition from
the flat to the sinusoidally wrinkled state—while Cao & Hutchinson [15] recommend 10Lcrw.
Conversely, Auguste et al. [18] suggest a substrate depth of 50 times the film thickness. Using the
generalized path-following solver, a sensitivity study was conducted on the bilayer’s response to
varying substrate depth in the advanced post-wrinkling regime. Unsurprisingly, we found that
the depth of the substrate required to satisfy the infinity assumption is dependent on the purpose
of the analysis. If the deep post-wrinkling behaviour is of interest, a larger substrate depth
is required compared with when only the critical wrinkling state or the initial post-wrinkling
behaviour is of interest. A model with an insufficiently deep substrate not only gives inaccurate
predictions of the post-wrinkling behaviour, but more importantly, leads to significant changes in
the bifurcation structure. Therefore, alongside a classic mesh density study, a sensitivity study on
the depth of the discretized bilayer is an essential pre-requisite for accurate FE analyses. Our
analysis suggests that for the present model, and our goal of exploring the intermediate and
deep post-wrinkling regimes, a substrate depth of 30 times the critical wrinkling wavelength
is appropriate. The details of the depth sensitivity analysis can be found in §2 of the electronic
supplementary material.

Pre-compression in the substrate is modelled by imposing free thermal expansion in the
horizontal direction using orthotropic expansion coefficients, and then bonding the freely
expanded substrate to the stiff film; see figure 2c. The mismatch in the free lengths of the film
and the substrate places the substrate in compression before further mechanical end-shortening
is applied. The details of the initial thermal loading step to pre-compress the substrate can be
found in §1.3 of the electronic supplementary material. Further, the FE models were verified
using existing numerical and experimental results from [18] and the mesh was refined until good
convergence with these benchmark solutions was obtained. This verification of the FE model is
also presented in §1.5 of the electronic supplementary material.

3. Effect of bilayer length on the post-wrinkling behaviour
Previous work has focused on the critical wrinkling formation of bilayers with a specific length
and suitably applied symmetry conditions at the left and right extremities, where the total length
of the system was taken to be an integer multiple of the critical wrinkling wavelength, Lcrw. As is
shown in this paper, geometric and material imperfections introduced during manufacturing can
divide long bilayers with strongly pre-compressed substrates into several segments of defined
lengths that deform independently. As compression is increased, these deformation patterns
of finite length evolve and may coalesce, seeding the formation of humps separated by fold
localizations. Owing to the latter considerations, a length sensitivity study is important to
understand the mechanics of bilayers in the intermediate and deep post-wrinkling regimes.

Table 1 presents the geometry and material properties of the film/substrate bilayer system
in this length sensitivity study. The parameters chosen are identical to those by Brau et al. [21].
The pre-compression level, λpre, in the substrate is set as 0.7, i.e. λpre = L0/L0

0 = 0.7, where L0
is the length of the bilayer after pre-compression and L0

0 is the initial length of the substrate
before pre-compression. These geometric parameters are depicted schematically in figure 2c.
For the chosen level of pre-compression, seemingly ‘chaotic’ wrinkling patterns were observed
experimentally [18].

To begin our analysis, a study of the critical wrinkling behaviour for varying bilayer length
is conducted to determine the critical wrinkling wavelength, Lcrw, and the critical wrinkling
strain, εcrw. The details of this analysis are presented in §3 of the electronic supplementary
material. For the bilayer with properties presented in table 1, Lcrw = 5.34 mm and εcr = 0.0163.
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Table 1. Material and geometric properties of the stiff film/compliant substrate system.

Ef (MPa) Es (MPa) νf νs hf (mm) hs (mm)

1.2 0.01 0.43 0.43 0.2 160
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

More importantly, we then proceed to exploring the post-critical behaviour of bilayers of different
lengths to unveil their bifurcation diagrams using the generalized path-following solver. These
analyses explore the evolution of the wrinkling pattern from the critical sinusoidal mode into
n-tupling patterns with pronounced downward localizations (folds) at one or both ends of
the bilayer, which eventually lead to an upward hump forming in-between. As an important
outcome, we show that there is a minimum and a maximum possible distance between two
adjacent localizations, i.e. a minimum and a maximum possible length for the n-tupling modes
that evolve into a hump. As such, any bilayer system longer than the upper bound ultimately
splits into an array of smaller ‘building blocks’ that fall within the allowable range. Detailed
bifurcation analyses on bilayers with lengths ranging from 3Lcrw to 9Lcrw were conducted, the
details of which can be found in §4 of the electronic supplementary material. For the sake of
concise illustration, here, we present the equilibrium path of a select three characteristic cases,
i.e. L0 = 5Lcrw, L0 = 9Lcrw and L0 = 4.445Lcrw, which exemplify the behaviour of bilayers with
overall length within and outside the domain of existence of the identified building blocks, and
of bilayers of length equal to a non-integer multiple of the critical wavelength. Note that the
full wrinkling stability landscape of bilayers features a large number of equilibrium paths due to
numerous successive bifurcations. For clarity and brevity, only those paths that lead to the final
stable hump mode with fold localizations at either or both boundaries are presented here.

(a) L0 = 5Lcrw
Figure 3a presents the bifurcation diagram of a bilayer with length L0 = 5Lcrw, plotted in terms
of engineering strain (�/L0) versus the reaction force at the top right node of the film in the FE
model, normalized by its value at the onset of wrinkling. The blue segment in the bottom left-hand
corner is the stable equilibrium path corresponding to the initially flat state. As compression is
increased, the flat state loses stability at a supercritical pitchfork bifurcation (point B1) and the
bilayer transitions onto the critical sinusoidal wrinkling mode with five full waves; see figure 3c,
which also features the rest of the salient deformation modes. The sinusoidal wrinkling mode is
stable up to the secondary bifurcation point B2. The critical eigenmode at B2 corresponds to a
period doubling bifurcation (figure 3b) that breaks left-right symmetry and leads to a wrinkling
mode similar to those in bilayers with no pre-strain in the substrate [22]. However, beyond B2,
the period doubling pattern quickly loses stability at a subsequent subcritical bifurcation denoted
as B3. Branch-switching at B3 leads to an unstable equilibrium path and the formation of an
inward localization at the right end of the bilayer, owing to the loss of periodicity and further
disruption of the left-right symmetry group. Stability is then restored and lost again at limit
points LP1 and LP2, respectively. Path-following further, the left-right symmetry is restored at
the pitchfork bifurcation point B4, which connects to a period quintupling mode. A further
period doubling sequence is triggered at bifurcation point B5, where period quintupling loses
stability and the wrinkling mode’s periodicity doubles again to become 10-fold. For the present
model, no additional mode changes are observed beyond this point, with a crease (contact across
a symmetry line) forming at the right end of the domain at the nominal compressive strain of
�/L0 = 0.1057.

Let us now focus with renewed attention on the region of the bifurcation diagram of
strain comprised between limit points LP1 and LP2. As mentioned above, the stable equilibria
connecting the limit points have an irregular—meaning non-periodic—wrinkling pattern.
Conversely, either side of this region the bilayer exhibits regular periodic deformation modes.
To the left, we find a simple periodic mode; to the right, one with localized boundary folds. It
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Figure 3. Equilibriumpath andwrinklingmodes of a bilayerwith length L0 = 5Lcrw andpre-compression strain in the substrate
of 0.7. (a) The normalized reaction force at the top node of the film Fa,FT/Fcra,FT versus compressive engineering strain�/L0. Fcra,FT
is the force at the top node at the critical wrinkling point B1. (b) Critical eigenmodes at bifurcation points, and (c) the wrinkling
modes at critical points. To aid visualization, thewrinklingmodes have been amplified by a factor of 5. The depth of the substrate
does not reflect the actual depth. Note that the full wrinkling stability landscape features significantly more equilibrium paths,
and only those paths that lead to the final stable wrinkling mode with a localization at either or both boundaries are presented
here. (Online version in colour.)

follows that the area with instabilities acts as a transition region separating two stable, periodic,
yet qualitatively different responses to end shortening. It should also be noted that, for these
values of end shortening, the system is multistable. The observed irregularity in the wrinkling
pattern coupled with the multistability of the system may account for the seemingly ‘chaotic’
behaviour observed in experiments [18], while, in fact, our results reveal the deterministic nature
of the bilayer’s response, which, owing to the multistability, simply depends on imperfections
and initial conditions.

Overall, the topology of the bifurcation diagram demonstrates the well-known tendency of
bilayers to lengthen their wrinkling period sequentially under increasing applied compressive
loads [21]. In contrast to bilayers without pre-compression, though—where the wrinkling
patterns are always periodic with periods lengthening consistently in the same manner
irrespective of the applied load, i.e. exclusively by sequential, supercritical, period doubling
bifurcations—the pre-compressed bilayer initially loses said tendency but reacquires it past a
certain level of compressive strain. In other words, the bilayer’s behaviour can be described as
having three post-wrinkling regimes: initial, intermediate and deep. To define the boundaries of
these regimes, we need to look qualitatively at the different dynamic responses of the system for
increasing end-compression.

The initial post-wrinkling regime is the region at low compressive loads where the bilayer
behaves qualitatively like a bilayer with no pre-compression, i.e. the period of the deformation
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mode lengthens by period doubling. Using this definition, in a quasi-static setting, the initial
regime would be identified as extending from �/L0 = 0 to B3. However, in reality, the bilayer
exhibits multistability, that is, intermediate-type behaviour with period lengthening caused
by traversal of regions of instability and non-periodic modes, from LP1. So, in conclusion,
considering the potential for dynamic shape transitions, the bilayer displays post-wrinkling
behaviour of the initial type from �/L0 = 0 to LP1. In other words, the initial post-wrinkling
regime ends even before the first period doubling bifurcation (B2) occurs.

The intermediate regime coincides with the portion of the bifurcation diagram where the
period of the deformation mode stops and then resumes lengthening exclusively by period
doubling. As explained above, this transition starts at LP1. From LP1 to LP2, the bilayer may
traverse the equilibrium manifold dynamically by jumping between different stable wrinkling
modes that are irregular and aperiodic. Eventually, with a snap onto the period quintupling
deformation mode after multistability is lost at LP2, left-right symmetry is also restored. The
advanced intermediate post-wrinkling regime for the bilayer with a pre-compressed substrate is
therefore governed by the stable period quintupling mode that forms an outward hump bounded
by two inward localizations at either end of the domain.

Once this stable period quintupling mode has formed fully (at B5), we enter the deep post-
wrinkling regime. The wrinkling pattern is periodic and again the periodicity doubles in length
at supercritical pitchfork bifurcations. The deformation pattern past B5 is delimited by one
localization at the right end of the domain only (see �/L0 = 0.07 in figure 3c). This deformation
mode is one half of a period-decupling wrinkling pattern. Hence, a system of twice the length
(L0 = 10Lcrw) may feature two adjacent period quintupling blocks merging into one larger period
decupling block in the deep post-wrinkling regime.

In conclusion, upon complete maturation of the period quintupling mode at B5, the bilayer
with pre-compressed substrate reflects the behaviour of the corresponding bilayer with an
unstrained substrate again, as it is governed by exclusively supercritical bifurcations that
double the wrinkling period. The differentiating factor between the two systems is therefore the
intermediate post-wrinkling regime (between LP1 and B5), where for a pre-compressed substrate,
the period doubling mode loses stability and symmetry, and finally restabilizes in a symmetric
period quintupling mode. The identified period quintupling mode (B4–B5) is here denoted as
the ‘building block’ that characterizes the bilayer’s behaviour in the intermediate post-wrinkling
regime. Similar building blocks, ranging from period quadrupling to period octupling, are
identified by modelling additional bilayer lengths extending from L0 = 4Lcrw to L0 = 8Lcrw (see
§4 of the electronic supplementary material). The general topology of the bifurcation manifold
is preserved in all cases—i.e. destabilization of the first period doubling mode; breaking and
restoring of periodicity and symmetry to form a period n-tupling mode; and further stable
doubling. The generic sequence is summarized schematically in figure 1b, where all possible
stable building blocks of the intermediate post-wrinkling regime are shown. The name ‘building
block’ encapsulates the defining attributes of these deformation patterns. A ‘building block’ has
finite length. In longer bilayers, different building blocks can emerge as distinct localizations—
reminiscent of wrinklons [39], the localized transition zones of merging wrinkles that form the
building blocks of two-dimensional wrinkling patterns in thin sheets—and interface to build
the deformation pattern over the full length of the bilayer. For greater applied strains, adjacent
building blocks may coalesce to form more extensive hump-type geometries.

Demonstrating the aforementioned behavioural attributes of building blocks in longer bilayers
is what we turn to next by studying a bilayer of length L0 = 9Lcrw.

(b) L0 = 9Lcrw
Figure 4 presents the equilibrium path, as well as the wrinkling modes and critical eigenmodes
at selected equilibria, for a bilayer with L0 = 9Lcrw. With the comprehensive parameter sweep
presented in §4 of the electronic supplementary material, we found that a bilayer of this length
breaks with the generic bifurcation structure occurring for L0 = [4, . . . , 8]Lcrw and described
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Figure 4. (a–c) Equilibrium path and wrinkling modes of a bilayer with length L0 = 9Lcrw and pre-compression strain in
the substrate of 0.7. Detailed annotations in the figure are as described in figure 3. The path leading to period nonupling
bifurcates from BH2. The equilibria between B1 and BH2 are unstable. Hence, under natural loading (monotonically increasing
end-shortening), the bilayer bifurcates at B1 and follows the stable primary path with nine sinusoidal wrinkling waves (see the
dashed blue curves in the inset). Note that the bifurcation structure in the dashed rectangle is essentially the same as the case
with L0 = 4.445Lcrw in figure 5. (Online version in colour.)

in the previous section. That is to say, a bilayer of length L0 = 9Lcrw does not form a stable
period nonupling mode as a result of symmetry-breaking and -restoring in the intermediate
post-wrinkling regime, but rather separates into shorter building blocks.

Indeed, figure 4 shows that a stable wrinkling mode forms in the intermediate post-wrinkling
regime that is period octupling rather than period nonupling—intermediate-type behaviour
occurring in this case between B1 and LPH31—and it is this octupling mode that then leads to the
formation of the full hump in the advanced post-wrinkling regime. In particular, as seen at points
BH4 and BH5 of the equilibrium manifold, the period octupling deformation pattern separates
into two period quadrupling modes (albeit unstable ones), which eventually coalesce into the
stable period nonupling mode at LPH3. Hence, the period nonupling mode does not have the
characteristics of a building block, but rather forms as a result of the coalescence of two shorter
period quadrupling building blocks entering the deep post-wrinkling regime.

The inset of figure 4a shows that the nonupling equilibrium stems from the fifth bifurcation
point BH2 on the fundamental path through an eigenmode with eight full waves. Left to right, the
five bifurcation points on the fundamental path from B1 to BH2 correspond to critical eigenmodes
with 9, 9.5, 8.5, 10 and eight full waves. These branching points are important because they offer
the possibility for other combinations of building block localizations to form and then recombine
into the final stable n-tupling hump. For instance, another possible loading path to a stable
regular wrinkling pattern comprising building blocks is illustrated by branch-switching from
point B1 (see the dashed blue line in the inset of figure 4a). This bifurcation leads to a stable

1H denotes critical points on the equilibrium path branching from higher-order bifurcation points on the fundamental path.
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Figure 5. (a–c) Equilibrium path and wrinkling modes of a bilayer with length L0 = 4.455Lcrw and pre-compression strain in
the substrate of 0.7. Detailed annotations in the figure are as described in figure 3. The path leading to period quadrupling
bifurcates from the second bifurcation point on the fundamental path BH2. Under natural loading (monotonically increasing
end-shortening), the bilayer bifurcates at B1 and follows the primary path to B2. (Online version in colour.)

wrinkling mode with nine waves, which then evolves into stable period sextupling (one and a
half humps over the length of the domain) in the intermediate strain regime (see figure 14 in
the electronic supplementary material for more details). As B1 represents the lowest bifurcation
point on the fundamental path, assuming a perfect system, this loading path to period sextupling
would thus be the natural wrinkling evolution under monotonically increasing end-compression.
In summary, the bilayer of length L0 = 9Lcrw does not form period nonupling as a result of
sequential symmetry-breaking and -restoring in the intermediate strain regime but rather forms
period n-tupling modes of lower order, which then merge to form period nonupling in the deep
post-wrinkling regime.

(c) L0 = 4.455Lcrw
In the preceding two subsections, we explored the bifurcation diagrams of bilayers with length
equal to an integer multiple of the critical wrinkling wavelength. In practice, the length of bilayers
is rarely exactly an integer multiple of Lcrw. Moreover, the symmetry boundary conditions
adopted at both ends of the bilayer also accommodate half waves along the bilayer length.
Therefore, it is also important to understand the wrinkling behaviour of bilayers with lengths
equal to a non-integer number of the critical wavelength.
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Here, a bilayer with L0 = 4.455Lcrw is selected and figure 5 presents its equilibrium path. The
bifurcation structure is similar to the previous case of L0 = 9Lcrw in figure 4, with the caveat
that in the shorter case certain symmetry-breaking bifurcation points vanish. This is because the
boundary condition at one end of the shorter bilayer is effectively located at the mid-length of the
longer system, which, in contrast, is devoid of restraints. Hence, the longer system is free to break
symmetry about its mid-length, while the shorter system cannot about its boundary. The first
two bifurcation points on the fundamental equilibrium path of the flat bilayer feature 4.5 and 4
sinusoidal waves, see points B1 and BH2 in figure 5, respectively. Branch-switching from the first
(critical) bifurcation point B1 leads to a stable periodic wrinkling mode with 4.5 waves. However,
further branch switching along the ensuing sinusoidally wrinkled equilibrium path does not lead
to additional stable wrinkling patterns.

Branch-switching from the second bifurcation point on the fundamental path (BH2) initially
leads to an unstable equilibrium path with four sinusoidal waves, but this sinusoidal wrinkling
mode stabilizes at the bifurcation point BH3. With further loading, period doubling initiates at
bifurcation point BH4 and remains stable up to bifurcation point BH5. The critical eigenvector of
point BH4 in figure 5b features the characteristic period doubling mode (two outwards humps),
which is added to the sinusoidal wrinkling state of point BH4 itself (figure 5c). Branch-switching
from the bifurcation point BH5 leads to sequential snap-back and snap-through instabilities, see
LPH1 and LPH2 in figure 5c, with associated irregular and non-symmetric wrinkling patterns.
The symmetry of the wrinkling mode is restored at bifurcation point BH6, where stable period
quadrupling—a stable building block—forms. Further loading into the advanced strain regime
then causes further period doubling, leading to a half hump with a fold localization at one end
(see �/L0 = 0.06 in figure 5c). Thus, the pattern formation for this bilayer with overall length
equal to a non-integer multiple of the critical wavelength Lcrw follows the same sequence as all
integer-length bilayers detailed in §4 of the electronic supplementary material and summarized
in figure 1b.

4. Building block mechanics, domain of existence, energetics and spatial chaos

(a) Wrinkling pattern progression summary and further insights
From all the analyses in the range L0 = [4, . . . , 9]Lcrw (which are discussed in §4 of the electronic
supplementary material for the sake of conciseness), a set of stable period n-tupling modes
were identified that are confined by inward localizations (folds) at either end of the wrinkling
pattern. These newly observed n-tupling modes (figure 1) are period quadrupling, quintupling,
sextupling, septupling and octupling, and are identified as the ‘building blocks’ that govern the
intermediate post-critical regime of long, pre-compressed bilayers beyond the initial wrinkling
regime, i.e. the sinusoidal or period doubling modes at small values of end compression. In
many cases, these n-tupling modes form through breaking and restoring of symmetry groups
in regions of intermediate values of end-compression with multiple stable equilibria, and it is
these transition modes, not ‘chaos’ [18], that help to explain the irregular patterns observed
in experiments. With further loading beyond the intermediate post-wrinkling regime and into
the deep post-wrinkling range, the individual n-tupling localizations—the building blocks—may
merge with their neighbouring ones through further period doubling events, until eventually a
crease forms through self-contact across imposed symmetry lines.

With no pre-compression in the substrate, the wrinkling pattern progression under end-
compression is sequential period doubling and the symmetry of the system is always preserved
[21,26]. Conversely, in cases with pre-strained substrates analysed here, period doubling
bifurcations are confined to the initial and deep post-critical regimes. Hence, pre-compressing
the substrate has an outsized effect on the intermediate post-wrinkling regime, highlighting the
importance of the identified building blocks.

The mechanics of period doubling bifurcations in a compressed bilayer with no pre-
compression in the substrate has previously been described using an analogous system
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comprising a beam on nonlinear elastic foundations (e.g. Brau et al. [21]). In this system,
the wrinkling pattern formation is governed by the leading-order linear stiffness term of the
foundation and a sinusoidally wrinkled state represents an energetic compromise between the
global Euler mode preferred by the stiff beam, and, on the other hand, the minimization of
the individual springs’ extensions/shortenings preferred by the foundation. As the amplitude
of the wrinkles increases with growing compression of the bilayer, the first nonlinear term
of the foundation stiffness starts to govern the mechanics. When the substrate is in a state
of compression, this is a quadratic nonlinear term [19] that corresponds to an up-down
asymmetry with preferential deformation into the substrate. This characteristic of the substrate
leads to a period doubling bifurcation, whereby the uniform distribution of bending energy
in the sinusoidal wrinkling state is replaced by concentrated bending energy in localized
inward folds and segments of reduced curvature in between. With further compression, this
phenomenon repeats at another period doubling bifurcation to form period quadrupling and
further concentration of bending energy in a smaller number of folds. Our analyses show that
pre-compressing the substrate intensifies the asymmetric up-down nonlinearity of the substrate
leading to immediate period n-tupling bifurcations. In this regard, the behaviour of a highly
strained stiff film on an elastic substrate approaches the behaviour of a stiff film on a liquid
substrate, whereby, in the latter case, the film immediately transitions into a single localized
inward fold [22]. While the foundation stiffness of a liquid substrate is sufficiently nonlinear to
allow for localizations to bifurcate from the flat fundamental state, the foundation stiffness of an
elastic substrate gradually increases its quadratic nonlinearity as either pre-compression and/or
applied mechanical compression increase, thereby passing through a sequence of sharper and
sharper localizations.

(b) On the domain of existence of building blocks: length limits and creases
The identified building blocks are intermediate n-tupling states between the initial short-
wavelength (sinusoidal or period doubling) wrinkling modes and the overall hump mode at
high strain levels. Similarities exist between the equilibrium manifolds of these basic building
blocks, and hence, it is useful to gain further insight into their characteristics. Specifically, all
n-tupling modes start and end at bifurcation points with anti-symmetric critical eigenmodes that
break/restore the left-right symmetry of the wrinkling pattern (see B4 and B5 in figure 3 for the
bilayer with L0 = 5Lcrw; BH6 and BH7 in figure 5 for the bilayer with L0 = 4.455Lcrw; and further
cases in §4 of the electronic supplementary material). When these two bifurcation points merge
and disappear in parameter space, i.e. at a codimension-2 cusp catastrophe, the stable period
n-tupling mode ceases to exist. The cusp can thus be used to determine the limit bilayer length
for which a stable building block exists at all.

A multi-parameter continuation of bifurcation point B4 in figure 3, that is where stable period
quintupling forms for a bilayer with L0 = 5Lcrw, is conducted. Figure 6a shows the locus of
bifurcation points traced in the end-compression versus bilayer length parameter space. For
illustration purposes, the equilibrium path of bilayers with L0 = 4.455Lcrw and L0 = 4.720Lcrw are
also shown as cutsets through the multi-dimensional equilibrium surface. The cusp is found at
L0 = 4.331Lcrw, where bifurcation point B4 merges with another bifurcation point and annihilates.
Physically, this implies that no stable building block can exist for L0 < 4.331Lcrw. Thus, for
the specific material properties and substrate pre-compression level assumed here, the shortest
individual wrinkling pattern bounded by inward fold localizations that can form is a period
quadrupling cell of length 4.331Lcrw.

Similarly, the upper length boundary for the existence of a stable building block as an
individual cell confined by inward folds is determined using the ability to trace limit points
through parameter space. Specifically, limit point LPH3 of figure 5 denotes the point where a half
hump mode stabilizes for a bilayer of length L0 = 4.555Lcrw. Hence, this limit point is equivalent
to a full hump forming for a system of twice this length (L0 = 9.11Lcrw). This can be observed in
figure 4, where LPH3 denotes the point where two period quadrupling building blocks merge
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Figure 6. (a and b) Locus of the bifurcation points (dashed curves) and limit points (solid black curves) of bilayerswith different
lengths. Also shown are the equilibrium paths of bilayers with L0 = 4.455Lcrw and L0 = 4.720Lcrw. Note that the bifurcation
structure of the bilayer with L0 = 4.455Lcrw is essentially the same as the bilayer with L0 = 8.910Lcrw comprising two building
blocks of length 4.455Lcrw. (Online version in colour.)

into a period nonupling mode that governs the deep post-wrinkling regime. As was discussed
in §3b, the period nonupling mode is therefore not a building block in itself, but forms by the
coalescence of two period quadrupling building blocks. As a result, if LPH3 is path-followed
with decreasing L0, then a certain bilayer length must exist, below which, two building blocks
can no longer merge to form a period nonupling mode. Indeed, below this critical length we
would expect a stable period octupling mode rather than two stable period quadrupling modes
that coalesce into period nonupling. Thus, LPH3 is traced through the end-compression versus
bilayer length parameter space, where for simplicity, we choose the equivalent point LPH3 of the
half-length system, i.e. L0 = 4.455Lcrw. If LPH3 vanishes at a cusp by merging with another limit
point, then we have identified the upper length boundary of the stable building blocks in the
intermediate strain regime, as for any bilayer longer than this, the system breaks into two shorter
building blocks.

As predicted, LPH3 vanishes at a cusp when L0 = 4.379Lcrw (see figure 6b), where it merges
with LPH2. For the equivalent full length system, this corresponds to a critical bilayer length of
L0 = 2 × 4.379Lcrw = 8.758Lcrw. This implies that when the bilayer is shorter than L0 = 8.758Lcrw,
a stable n-tupling building block exists that covers the entire length of the bilayer (inward
localization at either end). However, for bilayers longer than L0 = 8.758Lcrw, the system cannot
form a stable building block that extends along the entire length of the bilayer in the intermediate
strain regime, and rather breaks into two shorter building blocks.

In conclusion, stable building blocks of the intermediate strain regime can exist only for
bilayers extensions in the range [4.331, 8.758]Lcrw. An approximate, first-order approach to
determine the upper and lower length boundaries of each individual n-tupling building block
is discussed in §4c. As we will see in §5, this estimation can be used to program the wrinkling
pattern of longer bilayers.

Since the effects of creasing (contact across reflective symmetry lines) are not accounted for in
the model, it is also important to identify the longest possible hump mode before creasing occurs.
To do this, a multi-parameter continuation of the furthest bifurcation point where period doubling
occurs is conducted. In this case, the bilayer with L0 = 8Lcrw (the equilibrium path can be found in
§4.1.6 of the electronic supplementary material) is selected as a starting point and the length of the
bilayer is then smoothly increased to trace the selected bifurcation point in parameter space. For
the bilayer with geometry and material properties presented in table 1, it is found that creasing
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the wrinkling modes with integer number and half-integer number of full waves, respectively. The number of wrinkling waves
in each envelope hump is equal to the x-coordinate of the minimum of the hump (an integral or half-integer number). The
representative n-tupling wrinkling modes of the corresponding building block for each hump are also shown. (The wrinkling
pattern corresponds to the bifurcation point where the stable building block is formed, e.g. B4 for L0 = 5Lcrw in figure 3). Red
stars represent the lower andupper boundaries of the basic building blocks that are discussed in §4b. The geometry andmaterial
properties of the bilayer are presented in table 1; the pre-compression factor in the substrate is λpre = 0.7. L0 and Lcrw are the
length of the film (length of the substrate after pre-compression) and the critical wrinkling wavelength of an infinitely long
bilayer, respectively. εcrw is the nominal critical wrinkling strain; εcr,min is the minimal critical wrinkling strain, i.e. the critical
strain of an infinitely long bilayer. (Online version in colour.)

occurs for L0 = 8.3Lcrw in a half-hump mode. Below this length, further period doubling of the
basic building blocks can occur without the formation of a crease. This implies that the longest
full hump mode that can be formed by the coalescence of individual n-tupling building blocks is
L0 = 16.6Lcrw.

(c) Approximate estimation of the building blocks’ upper and lower lengths
For given material and geometric properties, the loci of bifurcation points traced in the previous
subsection may be used to determine which building blocks can form for varying L0, as well
as their minimum/maximum extension. However, tracing these curves in parameter space can
be computationally expensive. Moreover, the extensive exploration of the bifurcation landscape
for bilayers with different lengths (see above and §4 of the electronic supplementary material)
indicates that the initial buckling modes along the fundamental path (the flat state) can provide
insight into the building blocks that will form for a bilayer of given length.

Figure 7 presents the relationship between the nominal critical wrinkling strain, εcrw (transition
from flat to sinusoidal wrinkles), with respect to L0. The curves are obtained using the pitchfork
continuation solver of the in-house FE code [36] (more details can be found in §3 of the electronic
supplementary material). The critical strain is normalized by the corresponding value for an
infinitely long bilayer, εcr,min, while L0 is normalized by Lcrw. The curves describing the first
and second bifurcation points on the fundamental path—in this case wrinkles of an integer
number (blue curve) of full waves and a half-integer number (orange curve) of full waves—are
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intertwined, in a manner reminiscent of the critical buckling curves of axially compressed flat
plates (critical buckling stress versus aspect ratio) [40]. The effective critical wrinkling strain is
given by the lower-bound envelope of the integer and half-integer curves. Hence, for bilayers
with a half-integer number of full waves in the critical (first) eigenmode, the second eigenmode
always features an integer number of full waves, and vice versa. For instance, a bilayer of
length L0 = 4.455Lcrw bifurcates onto a pattern with 4.5 waves first. By not branch switching,
i.e. continuing along the now unstable fundamental path of flat solutions, the second bifurcation
point corresponds to a wrinkled pattern with four waves. Similarly, a bilayer with L0 = 4.720Lcrw

would still have 4.5 waves in the first critical eigenmode, but five in the second.
Noting that the upper and lower boundaries of the domain of existence for building blocks,

which were determined in the preceding section, are labelled as red stars, our analyses indicate
that, for bilayers of generic length, a good first-order prediction of the stable n-tupling mode
that forms in the intermediate post-wrinkling range (i.e. the building block) can be obtained by
splitting figure 7 into vertical sections extending between the peaks of the blue curves. As a result,
the bilayers of length L0 = 4.455Lcrw and L0 = 4.720Lcrw should form period quadrupling and
quintupling building blocks, respectively, and this is indeed what is observed with more detailed
explorations of the post-wrinkling bifurcation landscape (see §4.2 of the electronic supplementary
material).

There is, of course, a natural limit to using figure 7 as a first-order approximation for which
building block forms in a bilayer’s intermediate post-wrinkling regime, as well as its upper and
lower extension bounds. As the bilayer lengthens, the bifurcation points on the fundamental path
are more tightly spaced and the post-wrinkling bifurcation structure becomes more complex. For
example, for a bilayer of length L0 = 8.7Lcrw the second bifurcation point may feature nine waves
in the eigenmode, but in the intermediate strain range the bilayer splits into two blocks of length
L0 = 4.35Lcrw, each featuring a period quadrupling mode, or alternatively, form a single block
featuring a period octupling mode.

(d) Strain energy density of basic building blocks and spatial chaos
The existence of an upper length boundary over which building blocks cannot form as single
entities has immediate implications on the behaviour of long bilayers, i.e. bilayers longer than the
upper threshold of 8.758Lcrw. In these cases, the variety of stable building blocks that exist, each
with different characteristic periods, can lead to the coexistence of ‘competing’ wrinkling patterns.
This is because a bilayer longer than L0 > 8.758Lcrw naturally wrinkles into a series of adjacent
n-tupling building blocks. For example, a system of length L0 = 20Lcrw can split into four period
quintupling modes; or two period septupling and one period sextupling mode; or two period
sextupling and one period octupling mode; and so on. The set of competing solutions is the group
of all permutations of building blocks that can tessellate the bilayer’s extension. The formation of
a specific wrinkling pattern of adjacent building blocks depends on the strain energy of each
solution as well as the starting conditions, i.e. initial imperfections and material heterogeneity of
the bilayer. To the limit of a perfect and infinitely long bilayer, the system’s response becomes
spatially chaotic [37]. Conversely, with the acquired understanding of the basic building blocks,
we can tailor and pre-program the formation of periodic wrinkling patterns in long bilayers. One
of the potential approaches along these lines is discussed in §5.

Auguste et al. [18] compared the strain energy of different stable period n-tupling modes
and proposed that the wrinkling mode with lowest strain energy is, all else being equal, most
likely to occur due to its state as a global energy minimizer. Following a similar train of thought,
it is beneficial to calculate the strain energy density of each stable building block in order to
ascertain its likelihood of forming in long bilayers. Figure 8 presents the strain energy density
of each building block (strain energy per unit length) at different nominal strain levels, starting
from the bifurcation point where each building block becomes stable and ending at the first
successive instance of period doubling. Note that for the period quadrupling mode, bilayer with
L0/Lcrw = 4.455 was selected, since the lower boundary of building block is 4.331Lcrw. For other
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Figure 8. The strain energy density of different basic building blocks, i.e. n-tupling modes with n= {4, . . . , 8}, in the
intermediate post-wrinkling regime. The lines start and end at the bifurcation points where stable period n-tupling modes
form and further period doubling occurs, respectively. (Online version in colour.)

n-tupling modes, the length of bilayers is equal to an integer multiple of the critical wrinkling
wavelength. Generally speaking, the strain energy density decreases as the length of the building
block increases. This is reasonable since longer building blocks have less curvature in the film and
also form shallower localizations at their ends.

However, even though the bilayer favours the formation of wrinkling patterns with longer
wavelengths, different n-tupling wrinkling patterns may be separated by unstable equilibria and
hence energy barriers may prevent spontaneous transitioning of the system from a local energy
minimum to the global energy minimizer. For very long bilayers—strictly much longer than the
upper length boundary of the basic building blocks, L0 � 8.758Lcrw—a number of different stable
n-tupling modes can therefore form side-by-side along the length of the bilayer, each trapped in
a local energy minimum. As a result, an infinitely long bilayer will form one possible wrinkling
pattern out of a strictly infinite set of possible combinations of building blocks (for instance, see
figure 1d). In the geometrically perfect case, such a spatially chaotic system [37] is characterized by
an infinite number of possible post-critical equilibrium paths. In the inherently imperfect world
of manufactured bilayers, on the other hand, the morphological evolution can be controlled
by defining the nature of the starting conditions rather than leaving them to chance. This idea
of programming the morphological evolution of spatially chaotic bilayers using manufactured
defects is what we explore next.

5. Tailoring the wrinkling pattern of long bilayers
High-fidelity manufacturing methodologies are required for the production of instability-induced
morphologies for use in thin-film technologies [6–9]. However, exerting sufficient processing
control over pre-compressed thin-film bilayers that may assume multiple stable shapes upon
end shortening, or even exhibit spatially chaotic behaviour, can be difficult and expensive.
Nonetheless, in addition to having enabled the acquisition of new understanding over their
behaviour, the ability to trace a bilayer’s full equilibrium manifold opens another opportunity:
modal nudging [41,42]. Modal nudging is a recently developed design philosophy that uses the
deformation modes associated with stable post-critical equilibria to alter the undeformed baseline
geometry of a structure, thereby favouring the seeded postbuckling response over potential
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Figure 9. Equilibrium path and wrinkling modes of a bilayer of length L0 = 26Lcrw with localized dents in the stiff film that
divide the bilayer into (a) six, (b) five, (c) four and (d) three equal-length segments. Note that the locations of the localized
imperfections are embedded at the valleys of stable building blocks. Random imperfections are also introduced throughout the
entire length of the film. (Online version in colour.)

alternatives. Our aim here is to precondition the wrinkling response of long bilayers away
from spatial chaos by embedding characteristic geometric patterns into the stiff film/substrate
assembly such that the system’s behaviour overall is nudged into the desired wrinkling pattern.

Figure 9 presents the equilibrium paths and wrinkling mode progression of a long bilayer with
L0 = 26Lcrw and manufactured localized dents. The distance between consecutive dents is equal
to the period of stable building blocks as determined in previous sections. Different permutations
of dent spacing divide the bilayer into 3–6 segments of equal length, corresponding to panels (d)
to (a) in the figure. Spatially uncorrelated random imperfections are also seeded into the FE mesh
of the film to test the robustness of the nudged response. The profile of the localized dents is
cosinusoidal, while the amplitudes of the artificial dents and random imperfections are 0.1hf and
0.005hf, respectively.

Our numerical results show that, with the embedded dents, the bilayers can be pre-
programmed to wrinkle directly into a target pattern comprising a sequence of stable building
blocks. The pattern is attained without the unstable symmetry breaking/restoring that would
be observed in the geometrically perfect case. As the equilibrium paths of all nudged cases
are generally stable throughout, or feature limited regions of instability like in figure 9d,
the behaviour of the tailored bilayers is no longer chaotic or sensitive to imperfections or
uncertainties. Specifically, humps are formed between embedded localized dents.

In summary, experimentally, individual building blocks in a long, unnudged bilayer [18] are
free to compete and the final wrinkling pattern is an unspecified series of adjacent building
blocks dictated by the profile of imperfections present in the bilayer. Conversely, in bilayers pre-
programmed by modal nudging, the morphological evolution can be designed and controlled.
In either case, with further end-compression beyond the intermediate strain range, the initially
developed building blocks undergo further period doubling by merging with their neighbouring
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Figure 10. (a and b) Equilibrium path and wrinklingmodes of a bilayer with length L0 = 26Lcrw and artificially localized dents
in the stiff film that divide the bilayer into four segments of length 5Lcrw, 6Lcrw, 7Lcrw and 8Lcrw. The details are the same as in
figure 9. (Online version in colour.)

building blocks to form longer humps until self-contact occurs. However, this evolution is
engineered in the nudged case and completely controlled by random imperfections in the
unnudged case.

Of particular note in figure 9 is the bilayer divided into three segments of panel (d), because,
unlike the other cases, the bifurcation diagram features some limit points (two pairs) along the
equilibrium path, before three humps are formed. These limit points correspond to snap-back
and snap-through instabilities where the wrinkling patterns within the left and right building
blocks change, with the number of sinusoidal waves therein going from nine to eight. This is not
observed in the other three cases with more dents and with building blocks of shorter length.
This phenomenon occurs because, with an increase in cell length, the bifurcation diagram of
the corresponding building block becomes increasingly more complex. Longer building blocks
cannot be obtained directly through monotonic increases in end-compression (see §§4.1.5 and
4.1.6 of the electronic supplementary material for bilayers with L0 = 7Lcrw and L0 = 8Lcrw). In
these cases, instabilities are present along the path to pattern formation. Hence, background
imperfections play a relatively bigger role in comparison with shorter building blocks. As
a consequence, the size of the dents introduced to produce the results in figure 9 becomes
increasingly less efficient at exerting sufficient control over the response. In other words, with
longer building blocks, we lose some ‘nudging authority’ [43] over the precise wrinkling sequence
that is to be imposed. Additional geometric nudging, e.g. deeper dents or more defined profiles, is
thus required to guarantee effective control over the wrinkling progression and the final pattern.
For instance, additional shallower dents can be introduced between the original larger dents.

As a final example of nudging, figure 10 presents a combination of different basic building
blocks, i.e. the distance between dents corresponds to 5Lcrw, 6Lcrw, 7Lcrw and 8Lcrw. Stable
wrinkling patterns corresponding to these four basic building blocks are observed in the
intermediate strain level. With further compression, the building blocks merge with their
neighbouring building blocks to form humps with longer characteristic lengths. As above, the
wrinkling progression has been successfully pre-programmed.

6. Conclusion
We have used the versatility of a generalized path-following FE framework to uncover the
bifurcation landscape of end-compressed bilayers that comprise a stiff film mounted on a
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pre-compressed soft substrate. Compared with cases where the substrate is unstrained, the pre-
compressed bilayer features subcritical bifurcations, multi-stability and imperfection sensitivity
that provide challenges in modelling and experimentation. Crucially, our models allow a
comprehensive exploration of the bifurcation behaviour of bilayers of different lengths and
thereby help to uncover different phenomena that govern the bilayer’s mechanics. For all
bilayer lengths considered, the initially flat, stiff film wrinkles into a periodic sinusoidal
pattern and then undergoes further bifurcations that increase the wavelength of the wrinkling
pattern as the applied compression increases. For bilayers with an unstrained substrate,
period doubling and period tripling bifurcations are well documented. For the case of a pre-
compressed substrate studied here, period quadrupling, quintupling, sextupling, septupling
and octupling modes are also possible depending on the length of the bilayer. These period
n-tupling modes are here identified as stable ‘building blocks’ that govern the intermediate
post-wrinkling regime. They form as a result of sequential subcritical pitchfork and saddle
node bifurcations that first break and then restore symmetry groups. As compression is
increased even further beyond this intermediate post-wrinkling regime, the building blocks
coalesce via supercritical bifurcations until creases (self-contact) occur. In this manner, the
behaviour of the pre-compressed bilayer returns to the behaviour of the initially unstrained
bilayer governed by sequential period doubling bifurcations, once sufficient end-compression is
applied.

In addition, we have identified multiple, coexisting but isolated stable states that lead to
occasionally irregular wrinkling patterns in the load region over which the transition from
sinusoidal wrinkling to period n-tupling occurs. Furthermore, for some levels of compression,
the irregular patterns coexist with periodic solutions, thereby explaining the seemingly ‘chaotic’
and uncontrollable, but actually just irregular and multivalued, pattern formation observed in
previous experiments.

As bilayer length increases, the different n-tupling modes compete during the pattern
formation sequence. Indeed, different permutations of the n-tupling building blocks can tesselate
the bilayer’s length, and the exact permutation formed is a function of the initial condition.
In this manner, the pre-compressed bilayer features the properties of pronounced imperfection
sensitivity, and in the limit of an infinitely long bilayer is governed by spatial chaos with infinite
possible permutations of the building blocks. As a corollary, this means that the permutation
of building blocks that form in long bilayers can be tailored by precisely controlling the initial
conditions. Aiming to aid manufacturing of bilayers for thin-film technologies, we demonstrate
that the post-wrinkling pattern can be programmed in a deterministic way using the concept of
‘modal nudging’ [41]. This programming is achieved by embedding multiple localized dents in
the stiff film, spaced at intervals equal to the length of the identified building blocks. Future work
will focus on manufacturing and testing nudged bilayers to validate the ability to program the
wrinkling patterns experimentally.
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