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Under–expanded jet noise prediction using surrogate models
based on artificial neural networks
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The use of surrogate models in recent times plays a key role in the design process and, over
the past few years, machine learning algorithms are adapting to the use of activemetamodelling
techniques. In the present study, Artificial Neural Networks formulation is used as a data–
driven nonlinear model aimed at describing the dynamics of an experimental test campaign
related to the noise emitted by a single–stream jet in under–expanded conditions. The archi-
tecture of the neural network is selected employing a deterministic optimization algorithm,
coupled with data informed tuning of the input parameters. The data set explored here was
acquired in the state–of–the–art aeroacoustic facility at the University of Bristol. Both the near-
and far–field acoustic measurements were carried out for a cold under–expanded jet for Mach
numbers ranging from 1.1 to 1.4. The predictions by the metamodel are in good agreement
with the experimental data, and the results demonstrate the capability of metamodels as a
reliable tool to estimate jet noise in under-expanded flow conditions for a wide range of Mach
numbers and near–field locations.

I. Introduction
This works presents a data–driven surrogate model based on Artificial Neural Networks (ANN) for the prediction of

the near–field noise generated by a cold jet in under–expanded conditions. The relevant framework is the use of suitable
noise prediction tools within the so–called Simulation Based Design (SBD) for aircraft. Over the past few years, the
use of SBD in many engineering fields [1] has led the researchers towards increased use of metamodels to describe
the dynamics of simulations or experimental data: such an approach considerably reduces the effort of the designers,
ensuring a more reliable knowledge of the design space. To date, a large number of metamodelling strategies are used
[2–4] to support the design process, and surrogate models built through ANN are starting to gain increasing relevance.
Although the formalization of the input–output relations of the artificial neurons dates back to the 40s [5, 6], the increase
in computing resources within the last 50 years [7–10] led to the exploration of complex multilayer structures, which
ensure the capability to easily address many engineering problems such as computer vision and speech recognition [11].
More recently, models built using ANN are also being successfully exploited in the field of aeroacoustics [12–14], along
with the well–assessed Radial Basis Functions (RBF) technique [15].

The ANN metamodel is here exploited as data–driven model with the aim at representing a dataset built starting
from aeroacoustic measurements of a cold jet. The relevance of the physical problem presented in this work lies in
the fact that during the cruise phase, due to the combined effect of low external static pressure and required thrust to
maintain the flight Mach number, the jet exhausting flow is under–expanded [16, 17]. This nozzle condition generates
a jet plume with a complex flow pattern characterized by a series of oblique compression and expansion waves that
form the so–called shock–cell sequence [18]. The presence of these complex flow structures introduces further sound
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generation mechanisms, likes Broadband Shock Associated noise (BBSAN) and Screech tones that are in addition to the
turbulent jet mixing noise also present in the subsonic case. The BBSAN was first identified by Harper-Bourne and
Fisher [19], and it is generated from a weak interaction between downstream propagating large turbulent structures and
the quasi–periodic shock cells in the jet plume. This is the dominant noise component for an under–expanded jet in the
upstream direction. Screech is a form of aeroacoustic resonance present in shock–containing under–expanded jets:
it was first identified by Powell [20], which defined the feedback loop as generated by a disturbance that propagates
downstream from the nozzle lip, interacts with the shock–cells, and comes back upstream, closing the resonant loop
at the nozzle lip. Observations reveal that when a jet emits strong screech tones, the flow has strong oscillations
characterized by different modes [21–23] (e.g. helical, toroidal, and flapping modes).

For the first time we present a data–driven ANN–based metamodel capable of predicting the jet noise spectra of
the near–field noise emitted by a jet in under–expanded conditions. The database used to train the model contains
time–resolved signals acquired in the BJARF aeroacoustic facility at the University of Bristol. The measurements were
made using a near-field microphone array positioned at different radial distances from the jet axis between h/D=1.5 and
h/D=10.5. The array comprises ten microphones located in the stream–wise direction between x/D=0 and x/D=18.
Far-field measurements considered for the model were acquired using a polar array positioned at 1.6m from the jet axis.

The choice of ANN architecture is a crucial task for designers since the network hyperparameters affect model
response throughout the domain. Indeed, the ANN fitting capability is known to be sensitive to the network architecture,
and the set of topologies capable to correctly fit the training data is strongly problem dependent. Unfortunately, there is
not a specific scheme to find the optimal or near–optimal configuration of hidden layers, thus a recently–implemented
in–house architecture optimiser has been used to derive the ANNmodel architecture. The optimiser automatically selects
both the number of hidden layers and nodes, together with the best combination of activation functions: the algorithm is
coupled with a self–tuning scheme for the automatic selection of learning rate and batch size. The self–tuning algorithm
has demonstrated to be accurate and efficient, as well as the architecture optimiser and the observed performance
discloses the possibility to implement numerical strategies for the reliable and robust design in aeronautics. It is
worth highlighting that, since the ANN model can predict function values in regions of the domain where there are no
experiments, an uncertainty function must be provided to estimate the reliability of the model itself. Here, the ANN
response is assumed to be the expectation of a posterior stochastic process, and the spatial correlation is used to derive
the uncertainty function on the whole domain.

The work is organized as follows. The active ANN metamodel formulation is detailed in Sec. II, with special
attention paid to the definition of the uncertainty function. An overview of the experimental setup is in Sec. III, whereas
the numerical results are presented and discussed in Sec. IV. Sec. V gathers the conclusions outlining the future work.

II. Active metamodelling with Neural Networks
The ANN metamodel is aimed at representing the fundamental dynamics of a physical phenomenon through an

analytical function, starting from a limited knowledge of the actual output obtained via simulations or experiments. At
first let us consider a multilayer dense structure (composed by one or more intermediate hidden layers, each consisting of
one or more neurons, in addition to the input and the output layers): the output of each layer can be written as it follows

al = φl (Wl-1al-1 + bl) , l = 2, . . . , L (1)

so that the inputs x ≡ a1 and the outputs y ≡ aL . In the Eq. (1) the term φl is the vector containing the activation
functions of the l-th layer, Wl-1 is the matrix of the weights, and bl the vector containing the bias values: the well–known
backpropagation method is used to compute the unknown weights matrices and biases vectors of Eq. (1). This technique
basically consists of the minimisation of the following cost function

Ct =
1
2

R∑
i=1

(
di − yi,t

)2 (2)

for a prescribed number of epochs T : in Eq. (2) R is the number of training set patterns, di is the output vector and yi,t
the network output at the t-th epoch, both related to the i-th training pattern. The gradient of the cost function Ct is
computed as a series of local intermediate components obtained by backpropagating the information flow from the output
layer down to the input one: downstream the backpropagation, weights and biases are updated by means of the learning
rate η. Once the training process is complete, the network can be identified by its parameters Θ = {fl,Wl-1, bl}Ll=2, and
the the network output is such that ŷi is the image of xi . A schematic representation of a neural network is in Fig. 1.

2



Fig. 1 Schematic representation of a neural network with 3 input nodes, two hidden layers (with 7 and 6 nodes
respectively) and 9 output nodes.

It is known that there is no specific rule to find the optimal or near–optimal network configuration in terms of
activation functions and topology: here, a recently implemented fully–deterministic optimization scheme has been
used to derive the metamodel architecture. The initialization of weights and biases is performed using uniform random
deviate distributions of numbers between 0.0 and 1.0, generated with a fixed seed: afterward, the Box–Muller transform
is applied to make the distributions normally distributed with zero expectation and unit variance. Activation functions
and batch size are chosen after a preliminary tournament. The number of layers and neurons per layer is selected through
a minimization problem, which accounts for the Root Mean Square Error (RMSE), related to both the training set and
the validation set. The network training is facilitated by a dynamic update of the learning rate η, to mitigate the effects
of the learning instabilities. An early stopping criterion determines whether or not to continue the training of the current
network configuration [14].

Since the metamodel aims at predicting the functions in the whole domain, even in regions where there are no true
values, the definition of a merit function representing the behaviour of the metamodel uncertainty plays a key role. By
definition, the uncertainty must equals zero at the training points, as the prediction accuracy set by the designer is
ensured by current optimal topology. Here, the uncertainty function is supposed to be linked to the spatial correlation:
specifically, the standard deviation σN(x) related to the posterior stochastic process is modelled as it follows

σN(x) =


[∑N

j=1 ωj(x)ŷj∑N
j=1 ωj(x)

− ŷ(x)
]2

if ∆j(x) , 0 ∀ j

0 if ∃ j |∆j(x) = 0

(3)

being ωj(x) = ∆−αj with ∆ = d(x, xj) the Euclidean distance of a generic point x ∈ D and xi ∈ T, with x the generic
domain point. The parameter α of Eq. (3) controls the decay law of the influence of distant points. Under the hypothesis
of a continuous uniform distribution with expectation ŷ (the network predictions) and variance σ2

N(x), the global
uncertainty U(x) can be computed as it follows

U(x) =

√√√
1
N

N∑
j=1

u2
j (x) (4)

being u j(x) = 2
√

3σN(x) the uncertainty related to each component of the vector function. The relevance of the
uncertainty function also lies on the possibility to identify the regions of the domain where knowledge of the data should
be improved with additional experiments. Indeed, a new training point can be selected as it follows

xnew = arg max
x∈D
[U(x)] (5)

so that the size of the training set is increased, and a new network can be built using the active scheme described above.
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III. Experimental setup
The experiments were conducted at the new jet aeroacoustic facility (BJARF) at the University of Bristol. The jet

flow in the facility is conditioned and silenced using three different in–line–silencers to create a quiet flow. The first two
silencers were placed right after the control valve outside the anechoic chamber and has a diameter of 0.3 m and a height
of 1.5 m each. The third large silencer was placed inside the chamber and has a diameter of 0.457 m and a height of
1.9 m. The silencers were equipped with perforated tubes for the flow with the remaining area packed with glass wool.
The anechoic chamber has dimensions of 7.9 m in length, 5.0 m in width and 4.6 m in height, including the surrounding
acoustic walls and a cut-off frequency of 160Hz [24, 25].

In this application the jet flow exhausts from a convergent contoured nozzle having an exit diameter of 16.993mm,
and has been obtained by 3:1 down-scaling the SMC000 nozzle proposed by [26]

The tests were carried out for a wide range of subsonic flows with Mach number M ranging from 1.1 up to 1.4,
by step of M=0.1. Near–field noise measurements were performed using 1/4–inch G.R.A.S 40PL microphones for
t = 12 s and at a sampling frequency of f = 217Hz. As shown in Fig. 2, the near–field measurements were carried
with a linear array of 10 microphones placed at a distance of 2D away from each other, moved to 12 different heights h
radially away from the jet centre–line using an high precision traversing system. The closest height was chosen to be
h = 1.5D to avoid grazing of flow on the microphone and the last one is at h = 10.5D. Far-field measurements were
carried out using an array of 18 microphones distributed on an arc centred on the jet exit at a distance of 1.6 m (≈ 95D)
that covered an angle between 60◦ upstream and 155◦ downstream with the 90◦ microphone positioned right above the
nozzle exit (see Fig. 2).

Fig. 2 Sketch of the experimental setup.

To the extent of the noise level estimations, the sound pressure level, (SPL) was calculated using SPL formulation
reported as reported in the following equation:

SPL = 10 log10

(
PSD∆ fref

P2
ref

)
, (6)

where PSD denotes the power spectral density evaluated using Welch’s method, ∆ fref is the frequency bandwidth and
Pref is the reference pressure in air (equal to 20µPa).
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Spectra have been represented in 1/3–octave bands: the rationale underlying this choice lies in the fact that most
aircraft noise prediction tools widely used in the aircraft design process make use of the 1/3–octave bands description
of the pressure signals from 50 Hz up to 10 kHz, as required by regulations. In addition, using the bands representation
considerably reduces the number of training set data, resulting in faster network training.

IV. Results and discussion
The data of the experimental campaign were used to create a database consisting of 160 elements, each one composed

by the 3 independent variables with associated the 28 components of the SPL spectrum (related to the centre frequencies
in 1/3–octave bands). The dataset has been randomly shuffled, thus 140 elements were used as training set T whereas
20 as validation setV. In this view, the vector collecting the 1/3–octave bands SPL is a function of x/D, h/D and M:
this implies 3 input neurons and 28 output neurons.

For the architecture optimization the maximum number of hidden layers has been set equal to 3, and several activation
functions have been used for the tournament (gaussian, sigmoid, hyperbolic tangent, swish, identity, hyperbolic secant
and cardinal sine). The stop criterion was based on the normalised RMSE on the training set points RMSET , whereas
the validation error RMSEV was analysed in runtime during the training to prevent the overfitting, stopping the training
of the current configuration. The RMSET target accuracy was set equal to 1%, and the optimization algorithm reached
the convergence value in 404 iterations, as shown in Fig. 3.

Fig. 3 RMSET as a function of the number of iterations.

The optimised network architecture obtained by means of the minimisation process has the characteristics reported
in the table Tab. 1.

Table 1 ANN metamodel final configuration.

Final topology 3/27/40/28
Hidden layer activation gaussian
Output layer activation sigmoid
RMSET 0.99%
RMSEV ∼3.0%

Since the initial requirement of a model is its ability to reproduce the data, let analyse the network response in some
points belonging to the training set: this capability has paramount relevance in handling large databases, as allows the
designers to completely replace the dataset with a small number of network hyperparameters that describe the dynamics
of the data. Figure 4 show the comparison between model and data in known points.
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(a) SPL data and model for M = 1.1, x/D = 18 and h/D = 10.5
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(b) SPL data and model for M = 1.2, x/D = 4 and h/D = 3.5
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(c) SPL data and model for M = 1.3, x/D = 6 and h/D = 1.5

10
3

10
4

30

40

50

60

70

80 Data

Model

(d) SPL data and model for M = 1.3, x/D = 18 and h/D = 5.5

Fig. 4 Comparison between ANN metamodel response and original data at different known locations.

The analysis of Fig. 4 highlights that the ANN model is in excellent agreement with the experimental data: the
network is fully capable to reproduce the broadband noise, as well as the the 1/3-octave bands representation of the
tonal components (see Figs. 4b and 4c). It can easily be noted that the selected target RMSET accuracy (set equal to 1%
over the points belonging to the training set T) guarantees an absolute error always lower than 0.25 dB, which fully
satisfies the requirements of a predictive noise model. The model RMSET turns out to be lower than ∼ 3% (see Tab. 1)
over the whole domain of interest, ensuring the absence of overfitting within the limits of applicability.

A metamodel is also capable of making predictions within the entire domain (it can be shown that extrapolation of
data outside the domain, as far as theoretically possible, is definitely to be avoided): in this way it is possible to make
a forecast of the phenomenon where there are no experimental data. Thus, let analyse the model behaviour in a not
measured point: Fig. 5 shows the model response at h/D = 3.5 and x/D = 3.5 (for all the Mach numbers between 1.1
and 1.4), with associated the uncertainty values.

Results in Fig. 5 are consistent with the literature and the physics. Despite the bands representation, the Screech tone
is clearly visible in Fig. 5a: as expected, it appears at M > 1.15 and the maximum amplitude increases with M. The
frequency of the Screech tone is almost constant with M , showing a slight drop in frequency starting from M ≈ 1.32.
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(a) Model response at h/D = 3.5 and x/D = 3.5
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(b) Model uncertainty at h/D = 3.5 and x/D = 3.5

Fig. 5 ANN metamodel response and uncertainty at h/D = 3.5 and x/D = 3.5 for all the Mach numbers
between 1.1 and 1.4.

The ANN model uncertainty map of Fig. 5b shows that the uncertainty values seem to be proportional to the SPL values:
this means that the tonal phenomena should be verified by additional experimental data.

Considering another direction of the domain identified by the axial distance: Fig. 6 shows the model response and
the uncertainty at M = 1.33 and h/D = 2 for all the values of x/D between 0 and 18.
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(a) Model response at M = 1.33 and h/D = 2
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(b) Model uncertainty at M = 1.33 and h/D = 2

Fig. 6 ANN metamodel response and uncertainty at M = 1.33 and h/D = 2 for all the values of x/D between 0
and 18.

As expected, the Screech tone is clearly visible in Fig. 6a at the same frequency of Fig. 7a: its amplitude decreases
as x/D increases because of the reduction in intensity of shock–cell sequence. At x/D ≥ 5 the entire spectrum is
dominated by the broadband component and this is ascribed to the jet flow development. The ANN model uncertainty
map of Fig. 6b confirms what stated for Fig. 5b: the tonal component’s envelope is linked to the maximum uncertainty
values, meaning that the high dynamic range of the function should require additional knowledge for enriching the
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training set.
The behaviour of the ANN metamodel has been finally explored by varying the last domain direction, the radial

location of the microphone array h/D, reported in Fig. 7.
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(a) Model response at M = 1.35 and h/D = 2
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(b) Model uncertainty at M = 1.35 and h/D = 2

Fig. 7 ANN metamodel response and uncertainty at M = 1.35 and x/D = 3.5 for all the values of h/D between
1.5 and 6.25.

As shown in Fig. 7a, the Screech tone remains located at the same frequency and disappears at higher h/D, where
the global energy content of the pressure is lower. As for the previous cases also here, the ANN model uncertainty map
of Fig. 7b is very low except for some frequency localized zones close to the Screech tone.

The statistics related to the ANN model uncertainty represents the last part of the analysis presented here, and is
reported in Fig. 8, in terms of Probability Density Function (PDF) and Cumulative Density Function (CDF).
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Fig. 8 Probability Density Function (PDF) and Cumulative Density Function (CDF) related to the ANNmodel
uncertainty.

The statistical distribution of the uncertainty over the prediction domain is characterised by an expectation µ = 0.0893
with variance σ2 = 0.0046. The uncertainty distribution, as shown in Fig. 8, is highly skewed towards low uncertainty
values, and there are also several values characterised by zero uncertainty in correspondence with the training points. It
is interesting to note that the uncertainty at the 95th percentile is of the same order of magnitude as the training set
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target accuracy RMSET and this peculiarity was also found in other analyses carried out by the authors: this property
has a paramount relevance in all the problems involving the adaptive sampling, since provides to the designer a criterion
to consider the metamodel as final when the true function is not known.

V. Conclusions
A data–driven nonlinear model aimed at predicting the noise emitted by a cold jet in under–expanded condition

has been built and validated. The experimental campaign was conducted at the aeroacoustic facility of the Bristol
University: the measurements were carried out for a wide range of under–expanded flow conditions with Mach numbers
ranging from 1.1 up to 1.4. The surrogate model is based on artificial neural networks, and a recently–implemented
architecture optimization algorithm, coupled with a self–tuning scheme to select the network training parameters, has
been used to derive all the relevant parameters. Results show an excellent agreement between the model and the original
data, and the predictions related to unknown points are in accordance to the expected physics and the literature. The
active algorithm used in this work also provided the uncertainty function, built here based on the spatial correlation
between the prediction at the training point and any point within the domain. The uncertainty function can be used to
identify the regions of the domain where knowledge of the data should be improved with additional experiments. Within
the context of this work, the uncertainty maps revealed that the regions of the domain where additional experiments
should be carried out is in correspondence with the Screech tone. Nevertheless, the ANN metamodel has demonstrated
to be a viable prediction tool for the jet noise in 1/3–octave bands.

Acknowledgements
This work has been supported by the European Union’s Horizon 2020 research and innovation program under project

ENODISE (Enabling optimized disruptive airframe-propulsion integration concepts) grant agreement No. 860103.
Part of this work was supported by Engineering and Physical Sciences Research Council (EPSRC) Grant No.

EP/S000917/1.

References
[1] Diez, M., Volpi, S., Serani, A., Stern, F., and Campana, E. F., Simulation-Based Design Optimization by Sequential Multi-

criterion Adaptive Sampling and Dynamic Radial Basis Functions, Springer International Publishing, Cham, 2019, pp. 213–228.
doi:10.1007/978-3-319-89988-6_13.

[2] Giunta, A. A., and Watson, L. T., “Using surrogate models and response surfaces in structural optimization with application to
crashworthiness design and sheet metal forming,” Tech. rep., 1998.

[3] Jones, D. R., “A Taxonomy of Global Optimization Methods Based on Response Surfaces,” Journal of Global Optimization,
Vol. 21, 2001, pp. 345–383. doi:10.1023/A:1012771025575.

[4] Chandrashekarappa, P., and Duvigneau, R., “Radial Basis Functions and Kriging Metamodels for Aerodynamic Optimization,”
Tech. rep., 2007.

[5] McCulloch, W., and Pitts, W., “A logical calculus of the ideas immanent in nervous activity,” The bulletin of mathematical
biophysics, Vol. 5, 1943, pp. 115–133. doi:10.1007/BF02478259.

[6] Hebb, D., The Organization of Behaviour, John Wiley & Sons, Inc., 1949.

[7] Ivakhnenko, A., Cybernetics and forecasting techniques, Elsevier Science Ltd, 1967.

[8] Ivakhnenko, A., Cybernetic predicting devices, CCM Information Corporation, 1973.

[9] Werbos, P. J., Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, Harvard University, 1975.

[10] Mead, C. A., and Ismail, M., Analog VLSI Implementation of Neural Systems, Kluwer Academic Publishers, 1989. doi:
10.1007/978-1-4613-1639-8.

[11] Safran, I., and Shamir, O., “Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks,” Proceedings
of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 70, edited by
D. Precup and Y. W. Teh, PMLR, International Convention Centre, Sydney, Australia, 2017, pp. 2979–2987.

9



[12] Shah, M., “Machine Learning Models for Jet Noise Analysis,” Master’s thesis, The Ohio State University, 2019. Advisor:
Gaitonde, Datta.

[13] Brown, C. A., Dowdall, J., Whiteaker, B., and McIntyre, L., A Machine Learning Approach to Jet-Surface Interaction Noise
Modeling, 2020. doi:10.2514/6.2020-1728, URL https://arc.aiaa.org/doi/abs/10.2514/6.2020-1728.

[14] Centracchio, F., Burghignoli, L., Palma, G., Cioffi, I., and Iemma, U., “Noise shielding surrogate models using dynamic artificial
neural networks,” INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2021. doi:10.3397/IN-2021-3008.

[15] Burghignoli, L., Rossetti, M., Centracchio, F., Palma, G., and Iemma, U., “Adaptive RBF with hyperparameter optimisation
for aeroacoustic applications,” International Journal of Aeroacoustics, Vol. 21, No. 1-2, 2022, pp. 22–42. doi:10.1177/
1475472X221079545.

[16] Camussi, R., Ahmad, M. K., Meloni, S., de Paola, E., and Di Marco, A., “Experimental analysis of an under-expanded jet
interacting with a tangential flat plate: Flow visualizations and wall pressure statistics,” Experimental Thermal and Fluid Science,
Vol. 130, 2022, p. 110474. doi:https://doi.org/10.1016/j.expthermflusci.2021.110474, URL https://www.sciencedirect.
com/science/article/pii/S0894177721001217.

[17] Huber, J., Fleury, V., Bulté, J., Laurendeau, E., and Sylla, A. A., “Understanding and Reduction of Cruise Jet Noise at Aircraft
Level,” International Journal of Aeroacoustics, Vol. 13, No. 1-2, 2014, pp. 61–84. doi:10.1260/1475-472X.13.1-2.61.

[18] Meloni, S., Camussi, R., Prestianni, M., de Paola, E., and Biondo, F., “An experimental investigation on the unsteady pressure
field induced by an installed jet in supersonic flow conditions,” AIAA AVIATION 2021 FORUM, 2021. doi:10.2514/6.2021-2119.

[19] Harper-Bourne, M., and Fisher, M. J., “The Noise from Shock Waves in Supersonic Jets,” AGARD Conf. Noise Mech, Vol. 34,
1–13, 1973.

[20] Powell, A., “On the Mechanism of Choked Jet Noise,” Proceedings of the Physical Society. Section B, Vol. 66, No. 12,
1039–1056, 1953.

[21] Edgington-Mitchell, D., “Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets – A review,”
International Journal of Aeroacoustics, Vol. 18, No. 2-3, 118-188, 2019.

[22] Norum, T. D., “Screech suppression in supersonic jets,” AIAA Journal, Vol. 21, No. 2, 1983, pp. 235–240. doi:10.2514/3.8059,
URL https://doi.org/10.2514/3.8059.

[23] Tam, C. K. W., “Supersonic Jet Noise,” Annual Review of Fluid Mechanics, Vol. 27, No. 1, 1995, pp. 17–43. doi:
10.1146/annurev.fl.27.010195.000313, URL https://doi.org/10.1146/annurev.fl.27.010195.000313.

[24] Jawahar, H. K., Meloni, S., Camussi, R., and Azarpeyvand, M., Experimental Investigation on the Jet Noise Sources for
Chevron Nozzles in Under-expanded Condition, 2021, Vol. AIAA AVIATION 2021 FORUM. doi:10.2514/6.2021-2181, URL
https://arc.aiaa.org/doi/abs/10.2514/6.2021-2181.

[25] Meloni, S., and Kamliya Jawahar, H., “A Wavelet-Based Time-Frequency Analysis on the Supersonic Jet Noise Features with
Chevrons,” Fluids, Vol. 7, No. 3, 2022. doi:10.3390/fluids7030108, URL https://www.mdpi.com/2311-5521/7/3/108.

[26] Bridges, J., and Brown, C., “Parametric testing of chevrons on single flow hot jets,” 10th AIAA/CEAS aeroacoustics conference,
2004, p. 2824.

10

https://arc.aiaa.org/doi/abs/10.2514/6.2020-1728
https://www.sciencedirect.com/science/article/pii/S0894177721001217
https://www.sciencedirect.com/science/article/pii/S0894177721001217
https://doi.org/10.2514/3.8059
https://doi.org/10.1146/annurev.fl.27.010195.000313
https://arc.aiaa.org/doi/abs/10.2514/6.2021-2181
https://www.mdpi.com/2311-5521/7/3/108

	Introduction
	Active metamodelling with Neural Networks
	Experimental setup
	Results and discussion
	Conclusions

