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Abstract 
 

A single-step method is developed for three-dimensional reconstruction of the spatial distribution of 

complex refractive index in weakly scattering objects from multiple planar transmission images. The 

images are collected using coherent or partially-coherent illumination at a range of incident directions 

in the Fresnel region after free-space propagation from the object to the detector. The method is based 

on the contrast transfer function formalism extended to the cases of partially-coherent illumination 

and strongly absorbing samples. The proposed tomographic methods can be used for 3D 

reconstruction of internal structure of objects with X-rays, electrons and other forms of radiation and 

matter waves. Compared to related previously published methods for propagation-based phase-

contrast tomography, the results reported in the present paper can be applied to a wider range of 

imaging conditions and can be also advantageous in terms of computational efficiency and robustness 

with respect to noise. 
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1. Introduction 
 

We recently proposed a method for a single-step three-dimensional (3D) reconstruction of the internal 

structure of objects in propagation-based X-ray phase-contrast tomography (PB-CT) (Thompson et 

al., 2019). This method was based on the combination of conventional computed tomography (CT) 

with phase retrieval using the Transport of Intensity equation (TIE) (Teague, 1983). As such, the 

method was applicable to the so-called "near-Fresnel" imaging conditions, i.e. the cases where the 

Fresnel number is much larger than unity: 2 / ( ) 1FN h R  , where h is the size of the imaged 

feature of interest,  is the radiation wavelength and R is the effective free-space propagation distance 

between the imaged object and the detector (Gureyev et al., 2004). In the present paper, we extend 

this method to the whole of the Fresnel region, including the "far-Fresnel" zone, where 1FN  . The 

latter imaging conditions can be encountered in practice, for example, in X-ray imaging (Mayo et al., 

2003) or electron microscopy (Cowley, 1995). Mathematically, the principal difference between the 

method proposed in (Thompson et al., 2019) and the one developed in the present paper, can be 

explained in terms of the corresponding approaches to the linearization (with respect to the refractive 

index, ( ) 1 ( ) ( )n i= − +r r r , of the imaged object) of the general image intensity distribution 

expressed by the square modulus of the Fresnel diffraction integral. The method in (Thompson et al., 

2019), being based on the TIE, uses a linearization relying on the slow spatial variation of the 

refractive index. In contrast, the method developed in the present paper is based initially on the 

assumption of the weak scattering (first Born approximation), which assumes that the deviation of the 

refractive index from unity is small (see details in the next section).  This approach is known as the 

contrast transfer function (CTF) or Fourier optics theory (Cowley, 1995; Pogany et al., 1997). 

However, we subsequently show that, following the ideas described in (Wu & Liu, 2003; Gureyev et 

al., 2004; Guigay et al., 2007; Nesterets & Gureyev, 2016; Gureyev & Nesterets, 2017), the two 

approaches can be merged, leading to a solution that is valid for refractive index distributions that can 

be represented as a sum of a slowly varying and a small components. 

 

Considering another key aspect of the problem of the reconstruction of the 3D distribution of the 

complex refractive index inside an object from transmission images collected at different incident 

illumination directions (or object orientations), we note that the conventional approach used for 

solution of this problem in the case of weakly absorbing objects consists essentially of two stages. At 

the first stage, the collected 2D images are processed with the goal of recovering the phase 

distribution of the transmitted beam from the registered intensity distribution(s) (Gureyev et al., 
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2004), subsequently “back-propagating” the resultant complex amplitudes from the image (detector) 

plane to the object plane at each illumination direction. At the second stage, the distributions of the 

complex amplitude in the object planes, obtained at different illumination directions, are processed 

together to reconstruct the 3D distribution of the complex refractive index in the object by means of 

conventional CT techniques (Natterer, 2001). The approach described in (Thompson et al., 2019) 

allows one to effectively merge these two stages into a single step, which may have advantages in 

terms of the computational efficiency and robustness. Related versions of single-step PB-CT 

reconstruction were also described in earlier publications (Bronnikov, 1999; Bronnikov, 2002; 

Gureyev et al., 2006). The methods developed in the present paper also belong to this type of single-

step 3D reconstruction from phase-contrast projections, with the difference from the previously 

considered cases being primarily in the broader object classes and imaging conditions under which the 

projections are collected (as explained above).  

 

In the two-stage PB-CT algorithms, typically, the phase retrieval is applied first, in 2D, at each 

illumination angle, followed by the 3D CT reconstruction. In contrast, in the 3D PB-CT methods 

described in (Thompson et al., 2019) and in the present paper, the 3D CT reconstruction is effectively 

applied to the "raw" phase-contrast images first and the phase retrieval is applied in 3D after that, 

even though the two operations appear as parts of a single analytical expression. As explained in 

(Thompson et al., 2019), the latter methodology can be substantially advantageous e.g. in the case of 

objects containing several distinct components, each spatially localized to a 3D area m, with 

different locally-constant ratios ( ) / ( ), ,m m   r r r  of the real decrement and the imaginary 

part of the complex refractive index (Beltran et al., 2010). In this case, the computationally expensive 

3D CT reconstruction step can be performed only once for the whole object volume, followed by 

repeated phase retrieval operations localized to different (smaller) 3D areas m. A highly efficient and 

stable 3D phase retrieval method based on the monomorphous (homogeneous) TIE (TIE-Hom) 

(Paganin et al., 2002) can be applied here locally in m with the constant value m . As will become 

obvious in the next section, a very similar methodology can be applied using the results derived in the 

present paper, with the straightforward replacement of the TIE-Hom phase retrieval by the 

corresponding monomorphous version of the 3D CTF (CTF-Hom) based phase retrieval. In the 

general case, the main results of the present paper can be applied to weakly scattering objects with 

arbitrary distribution of the complex refractive index. In order to make the phase retrieval possible in 

this general case, it is usually necessary to collect two or more images at different object-to-detector 

distances at each illumination direction (view angle); alternatively, two or more images can be 

collected at the same object-to-detector distance, but at different radiation wavelengths (Gureyev et 

al., 2004). Compared to the reconstruction methods conventionally used in PB-CT in such a context, 
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the method developed below can provide some advantages in terms of computational efficiency and 

stability, in the same way as described previously in (Thompson et al., 2019). 

 

2. 3D CTFs for weakly scattering objects 
 

Consider the PB-CT imaging system schematically shown in Fig.1. Let an object be illuminated by a 

monochromatic plane X-ray wave with wavelength   and intensity inI , 1/2 exp( )inI ikz  with 

2 / .k  =  The image of the object is recorded on a position-sensitive detector located at the 

distance R  downstream from the object. In the following we assume that the dimensions of the object 

are small compared to the source-to-object distance   and R . Interactions of the X-rays and 

object matter are described via the spatial distribution of the complex refractive index, 

( ) 1 ( ) ( )n i= − +r r r , ( , , )x y z=r . 

 

 

Figure 1 PB-CT experimental setup, the direction of the incident X-ray wave forms an angle    

with the z  axis, / 2 / 2  −   , and / 2  = + , the object and detector planes are located at 

0z =  and z R =  respectively. 

 

Conventional X-ray radiography and CT are generally concerned with measuring the intensity 

distribution of transmitted radiation in the object plane and reconstructing the imaginary part of the 

complex refractive index,  , relating the attenuation characteristics of the object to the measured 
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intensity. In contrast, PB-CT seeks to utilise transmitted wavefront phase modulation resulting in 

visible diffraction fringes created upon propagation through a given distance. By processing this 

diffraction intensity pattern, phase information in the object plane can be mathematically retrieved. 

In the following we assume that the interaction of the incident X-rays and object is accurately 

described by the complex scalar transmission function,  

 ( )  , exp ( , ) ( , ) ,q x y B x y i x y    = − +  (1) 

consisting of the amplitude attenuation ( )) ,( , yB x y k x   = P  and phase ( )( , ) ,y k x yx  −  = P  

functions, both of which are defined in terms of the projection operator, 

 ( ) ( ) ( ), , ,  sin  cos ,f x y f x y z x x z dxdz

 



 

  
− −

 = − − P  (2) 

where   represents the Dirac delta function. 

The evolution of a paraxial transmitted wave in the free half-space 0z  can be described by the 2D 

Fresnel diffraction integral (Goodman, 2005), 

 
( )

( ) ( )
2 2

exp
( , ) exp ( ) , .R

ikR i
x y x x y y q x y dx dy

i R R
 




 

 

− −

         = − + −   
   (3) 

Equation (3) can be conveniently presented as the 2D convolution of the transmission function with 

the 2D Fresnel free-space propagator, ( ) ( ) ( )2

2

1 2, exp / ( )RP ix y i R x y R  
−

  = +
  , 

 ( )2)( , ) .ex (p( , )R Rikx Ry P q x y   =   

Hereafter, the asterisk denotes the convolution of two functions, e.g. in the considered 2D case 

 ( )( ) ( , ) ( , ) .,f g f x y g x x xx dyy y y d

 

− −

      = − −   

The spatial distribution of the propagated intensity in the detector plane is thus, 

 ( )
2

, ( , ) .R RI x y x y  =  (4) 

The Fourier transform of the image intensity in eq.(4), derived by Guigay (Guigay, 1977) and 

extended to 2D from the original 1D case is given by, 

 
( ) ( )

( )

2

1 1 1 1
2 2 2 2

, exp 2

, ( , ) ,

R i x y

q x R y R q x R y R dx dy

I

 







 

    

       

− −



  = − +  

     − − + +

 F
 (5) 
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where the superscript asterisk denotes the complex conjugate and the 2D Fourier transform is defined 

as follows (note that the definition of the Fourier transform differs from one used in some of our 

recent papers), 

 ( ) ( ) ( )2 , exp 2 , .g i x y g x y dx dy

 

 

    
− −

    = − +   F  

The phase retrieval problem is that of finding a solution to the non-linear eqs.(4) or (5) with respect to 

q . To simplify this task, linearized approximations are generally desired for which many methods 

have been derived. 

The linearization known as the CTF approximation, originally developed by Guigay (Guigay, 1977), 

can be derived under the assumptions of weak object attenuation and weak or slowly-varying phase: 

  
( )

( , ) 1,

( , ) , 1.

B x y

x R y R x y



      




  − − −
 (6) 

Applying these assumptions in addition to a uniform incident intensity distribution inI  in the object 

plane, Guigay obtained the linearized expression for the propagated intensity distribution (extended to 

the 2D case), cf. (Guigay, 1977) 

 ( )
( ) ( ) ( )

( ) ( )

2 2

2

2
2 2

2

, 2 , cos
, .

2 , sin
in

R
B R

I
R

I





       
 

     

    − +
  

   
  + +   

F
F

F
 (7) 

Recall that the mathematical basis for CT can be described by the inversion equation, 

 2 ( , , ) ( , , ),f x y z f x y z =F P  (8) 

where  is the filtered back-projection (FBP) operator, 

 ( ) ( )  ( )
0

, ,   exp 2  sin  cos , , .h x y z i x z y h d d d

  

 

           
− −

    =  + +       

A generalised form of the 2D Fourier derivative theorem (Paganin, 2006) is given by, 

 ( ) ( )2 2( , ) ( , ) 2 2 ( , ).
n

m
m

m n

n
ig x y i

y
g

x
       

 
 


 = 










F F  (9) 

Using eq.(9), an explicit form of the Fourier transform of the 2D Laplacian of a function in the 

detector plane can thus be expressed as the identity,  

 ( )2 2 2 2

2 2( , ) 4 ( , ),gg       ⊥
   = − +F F  (10) 

where ,
'x y

⊥

  
 =  

  
. 
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Moreover, when the 3D Laplacian is applied to both sides of eq.(8), the following equality can be 

established, 

 
2 2

2 ( , , ) ( , , ).f x y z f x y z⊥  =F P  (3) 

Here , ,
x y z

   
 =  

   
. 

Also, eqs.(10) and (11) can be easily generalised for any positive integer power n  of the Laplacian, 

 ( )2 2 2 2

2 2( , ) 4 ( , ),
n

n gg       ⊥
    = − +
 

F F  (12) 

 ( ) ( )2 2

2 ( , , ) ( , , ).
n n

f x y z f x y z⊥  = F P  (13) 

Importantly, this last property, eqs.(11) and (13), demonstrates the ability to switch the order of 

differentiation and filtered back-projection, with the noticeable change of the dimensionality of the 

Laplacian operator between 2D projections and the reconstructed volume in 3D real space. A post 

CT-reconstruction method for phase retrieval of monomorphous objects in the TIE regime has been 

derived (Thompson et al., 2019) exploiting this property. 

Below, we adapt this approach for the CTF approximation by expressing the Fresnel propagator 

components in terms of a Laplacian to utilise relationship in eq.(13). 

Let ( ) ( ), , 1 , /R

R inK x y I x y I 
 − designate the in-line contrast function, with

( ) ( )2 2

2 2 cos,aP R     =
 

  +F and ( ) ( )2 2

2 2 sin,pP R     = −
 

  +F being the 2D Fourier 

transforms of the amplitude and phase Fresnel propagators respectively (Nesterets & Gureyev, 2014). 

Rearranging eq.(7) produces the expression, 

 ( ) ( ) ( ) ( ) ( )2 , 2 22 22 2, 2 , , 2 , , .a p

R P PK B                = +F F F F F  (14) 

The 2D Fourier transform of the amplitude Fresnel propagator, ( )2 ,aP  2F , when expressed as a 

Taylor series has the form, 

 ( )
( )

( )
( )

2

0

2

2

2
1

.
!

,
2

n
n

a

n

P
n

R    


=

−
 = 


+
2F  (15) 

Multiplying the expansion by the Fourier transform of the 2D projection, ( )2 ,f  F P , leads to,  

 ( ) ( )
( )

( )
( ) ( )2

2

2

0

2

2 2 2, , , .
1

2 !

n
n

a

n

P f R f
n

         


=

  
−

 
 

+F F P = F P  (16) 

Using eq.(12) the right-hand side of eq.(16) can be re-written in terms of the power series of the 

Laplacian of projections,  
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 ( ) ( )  ( )2

2

2

2

0

2 2 , , , ,
n

a a

n

n

f fP C      


⊥

=
    F F P = F P  (17) 

where 
( )

( )

2
1

.
2 4!

n n

a

n

R
C

n





−  
=  

 
 

It is worth noting that according to eq.(17) the amplitude contrast (this corresponds to the first term in 

the right-hand side of  eq.(14)) can be expressed as a power series of the Laplacian of the attenuation 

function, 

 ( )
2

2

2

0

( ) ( , ).,
n

a a

n

n

P C x yB x y B 



⊥

=

    =   

Similarly, the phase contrast (this corresponds to the second term in the right-hand side of eq.(14)) 

can be expressed as a power series of the Laplacian of the phase function, 

 ( )
2 1

2

2

0

( ) ( , ),,
n

p p

n

n

x yP C x y  


+

⊥

=

  =     

where the coefficients p

nC  are defined below, next to eq.(19). 

Using eq.(13), the filtered back-projection operator applied to the right-hand side of eq.(17) is 

expressed as follows, 

   ( ) ( )2 2 2
2 2 2

0 0

2

0

2, , ( , , ) ( , , ).
n n n

a a a

n n n

n n n

f x y z f x y z f x zC yC C 

  

⊥ ⊥

= = =

 
      =        

 
 =  F P F P   

Hence, 

 ( )( ) ( )
2

2 ,

2 2 3

0

2 (, , ( , , ) , , ,)
n

a a a R

n

n

fP C Px y z f x y fz x y z



=

 =   F F P =  (18) 

where we introduced a 3D amplitude propagator, 
,

3 ( , , )a RP x y z . 

An equivalent treatment can be similarly applied to the phase component of the Fresnel propagator, 

( ) ( )2 2

2 2 n, si ,pP R     − + =
 

F  resulting in the equation, 

 ( ) ( )  ( )2

2 1

2

0

2

2

2 , , , ,
n

p p

n

n

fP Cf      


+

⊥

=

    F F P = F P   

where 
( )

( )

2 1
1

2 1 ! 4

n n

p

n

R
C

n





+
−  

=  +  
. 

Hence, 

 ( )( ) ( )
2 1

2 ,

2 3

0

2 2 , , ( , , ) , , ,( )
n

p p p R

n

n

f Cx y z f x xP f zPy z y


+

=

 =   F F P =  (19) 
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where we introduced a 3D phase propagator, ,

3 ( , , )p RP x y z . 

Applying the amplitude and phase reconstructions given by eqs.(18) and (19) to eq.(14), with proper 

substitutions for   and  , and expressing the result in 3D Fourier space results in, 

 ( ) ( ) ( ) ( ) ( )3 2 , 3 3 3 3

, ,

3 3 ,, , 2 , , , , 2 , , , ,a

R

R p RK P Pk k                = − F F F F F F  (20) 

where ( ) ( )2 2

3 3

2, c s, o,a RP R       
 

= + +F and ( ) ( )2 2

3 3

2, si, n,p R RP        
 

= − + +F are 

the 3D Fourier transforms of the 3D amplitude and phase Fresnel propagators respectively and 3F  

represents the 3D Fourier transform operator, 

 ( ) ( ) ( )3 , , exp 2 , , .g i x y z g x y z dxdydz

  

  

      
− − −

= − + +    F  (21) 

 

3. Application of 3D CTFs for PB-CT reconstruction 
 

Examination of the similarity between eqs.(14) and (20) establishes an important link between 2D and 

3D expressions for propagation-based phase contrast in the CTF regime. Equation (20) represents a 

generalized form of 3D CTF phase contrast that provides a basis to reconstruct the complex refractive 

index in the object plane from post-FBP reconstructed propagation-based intensity measurements. 

Moreover, with some algebraic manipulation, general solutions for the Fourier transforms of both 

and  can be obtained for two propagation distances 1R and 2R  (we have omitted the argument list 

( , , )    for the sake of conciseness): 

 1

1 2

1 2

2 3 3

, ,

3 3

,

3

3

3

,
2

p R

p

R

p R

R R

R

k

P P

P


−

 −
=

F F
F

F
 (22) 

 2

2 1

1

1

2

3 3

, ,

3 3

,

3

3

3

.
2

a R a R

p R

R R

R
k

P P

P
−

− 


+
=

F F
F

F
 (23) 

Here ( ) ( )3 2 ,, , , ,R RK       = F F  represents the 3D Fourier transform of the reconstructed in-

line contrast function at the propagation distance R , see eq.(20). 

The structure of eqs.(22) and (23) illustrates that both the real and imaginary parts of the refractive 

index decrement in the object plane can be retrieved by subtracting weighted 3D Fourier-filtered FBP 

reconstructions of the propagated intensity at two distances. Furthermore, absorption/phase retrieval 

can be performed after conventional FBP-CT reconstructions and, importantly, can be applied locally 

to a given CT-reconstructed sub-volume. 
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Assume that the object is monomorphous, such that a spatially independent (but energy-dependent) 

proportionality constant, / = , holds for the complex refractive index (Paganin et al., 2002, 

Mayo et al., 2003). This assumption is valid, for example, for objects consisting of a single material 

and objects composed of light elements (with atomic numbers 10Z  ) when irradiated with high-

energy X-rays (60-500 keV). 

Applying this property to the generalised CTF expression in eq.(20) provides a monomorphous form 

of the CTF, denoted CTF-Hom, allowing for the reconstruction of the object’s complex refractive 

index from single set of intensity measurements collected at the propagation distance R , 

 ( )
,

1

3 ,

3333

1
, , ( , , ),

2 R

R

a R p
x y z x y

P P
z

k




−  
=  

− 
F

F F
 (24) 

Equation (24) implies that phase/amplitude retrieval can be implemented as a localisable 3D Fourier 

filter and applied as a post-CT reconstruction operation in the CTF regime for a monomorphous 

object acquired at a single propagation distance. 

Moreover, it can be shown that the CTF-Hom reconstruction formula, eq.(24), reduces to the 

corresponding TIE form under the assumption that the transmission function, ( ),q x y
  is slowly 

varying on the length scale R at all  whereby the in-line contrast function ( ), ,RK x y
 is band-

limited to the spectral region 
2 12 .( )R   − +  Applying these constraints to eq.(24) results in the 

cosine function (the amplitude propagator) reducing to 1 and the sine function (the phase propagator) 

being replaced by its argument giving the expression equivalent to that derived in (Thompson et al., 

2019), 

 ( ) ( ) ( )2 2 2 2

3 , , , , / 2 4 .R k R            =  + + +
 

F  (25) 

In its original form, the CTF approximation as derived above does not suffer constraints upon 

propagation distance as TIE approximations impose. However, it is quite restrictive due to the 

assumption of weak absorption, limiting its application to real-life imaging applications. 

Subsequent works have extended the validity of the CTF by way of a “slowly-varying” object 

approximation allowing it to be used for absorbing objects (Wu & Liu, 2003; Gureyev et al., 2004; 

Guigay et al., 2007; Nesterets & Gureyev, 2016; Gureyev & Nesterets, 2017).  
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4. Extension to partially-coherent illumination and strongly absorbing 
objects 
 

Nesterets (Nesterets & Gureyev, 2016) described an approximation of the CTF for partially coherent 

illumination with validity extended to strongly absorbing objects. An equivalent approach can be 

applied to extend the validity of 3D CTF. 

Let the attenuation function be the sum of a small (“sm”), and a slowly varying (“sl”) components: 

 
, ,( , ) ( , ) ( , ).sm slB x y B x y B x y  

  = +  (26) 

It is assumed that small component satisfies 
, ( , ) 1smB x y

  and 
, ( , )slB x y

  varies slowly on the 

length scale relative to the width of the partially-coherent free-space propagator (Nesterets & 

Gureyev, 2016). Introducing the complex function, 

 ,( , ) ( , ) ( , ),smx y B x y i x y    = − +  (27) 

and the contact intensity of the slowly varying attenuation component, 

 ( ), ,, exp 2 ( , ) ,slslI x y B x y
  = −   (28) 

the combined propagated intensity can be approximated as in (Nesterets & Gureyev, 2016): 

 ( ) ( ) ( )( ), 2, , 1 2Re , .R R

in slI Px y I I x y x y 
    + 
 

 (29) 

Here ( ) ( )( )2 2, ,R R

sysx y x yP P P =  is the 2D partially-coherent Fresnel free-space propagator obtained 

by convolving the fully-coherent Fresnel free-space propagator with the point-spread function of the 

imaging system, ( ),sysP x y . The latter takes into account partial coherence of the incident 

illumination as well as finite resolution of the detector (Nesterets & Gureyev, 2016). 

Rearranging eq.(29) by bringing the incident intensity to the left-hand side and applying the negative 

logarithm to both sides results in an expression representing the propagated contrast function:  

 ( ) ( )( ), 2,, 2 ( , ) l ,og 1 2Re ,R sl

RK x y B x yPy x 
    − + 
 

 (30) 

with ( )
( )

,

,
, log .

R

R

in

x y
K x y

I

I





 
 = −   

 
 

The logarithm on the right-hand side of eq.(30) can be linearized using the approximation 

log(1 )x x+   as the contrast due to weak absorption and phase contrast are assumed to be small 

relative to unity, 
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 ( ) ( )( ) ( )( ), ,

2 2, , ,, 2 ( , ) 2 , 2 , .R sl sm

a R p R xPK x y B x y B x y P y       +  +  (31) 

Here ( ) ( )( ), ,

2 2, ,a R a R

sysx y x yP P P =  and ( ) ( )( ), ,

2 2, ,p R p R

sysx y x yP P P =  are the 2D partially-

coherent amplitude and phase Fresnel propagators, respectively. 

Equation (31) represents a CTF approximation that is applicable and valid for strongly absorbing (but 

slowly varying) objects containing weakly absorbing features. Moreover, due to the above assumption 

that 
,slB  varies slowly on the length scale relative to the width of the partially-coherent free-space 

propagator, the first two terms in the right-hand side of eq.(31) may be combined, such that

( )( ) ( )( ), ,

2 2, ,( , ) , ,a

s

R

l sm

a RB yPx y B x y B P x  
  +   . Applying this simplification into eq.(31) results 

in, 

 ( ) ( )( ) ( )( ), ,

2 2, ,, 2 , 2 ,R

a R p RK x y B x y x yP P    +   (32) 

which is equivalent to the CTF approximation given by eq.(14). 

Applying the same 3D treatment to eq.(32) as we did with eq.(14) to derive eq.(20) provides an 

expression for the FBP reconstructed 3D contrast function which is similar to eq.(20), 

 ( ) ( ) ( ) ( ) ( )3

,

3 2 , 3 3

,

333, , 2 , , , , 2 , , , , .a R p R

RK Pk k P                 − F F F F F F  (33) 

Here ( ) ( )( ), ,

3 3 3,, ,a R a R

sysx y x yP P P =  and ( ) ( )( ), ,

3 3 3,, ,p R p R

sysx y x yP P P =  are the 3D partially-

coherent amplitude and phase Fresnel propagators, respectively, and ( )3, , ,sys x y zP  is the point-spread 

function of the imaging system in the reconstructed 3D volume.  

 

Solutions of the 3D PB-CT reconstruction problem can be obtained from eq.(33) in exactly the same 

way as eqs.(22)-(24) were obtained from eq.(20). 

 

5. Discussion 
 

In the previous sections, we have developed a single-step method for PB-CT reconstruction of the 3D 

distribution of the complex refractive index in weakly scattering objects from multiple 2D 

transmission images collected in the Fresnel region (at some free-space propagation distance from the 

object) using coherent or partially-coherent incident X-ray beams at different illumination directions. 

It is instructive to summarise the assumptions that led us to the main results of this paper, eqs.(14), 

(20) as well as eqs.(32) and (33). 
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In order to derive eqs.(14) and (20) we made the following assumptions. 

1. Plane fully-coherent incident wave, 1/2( ) exp( )in inU zI ik=r , was assumed 

2. Projection approximation was applied for the interaction of the incident wave with the object, 

eqs.(1) and (2). 

3. Paraxial approximation (Fresnel diffraction) was assumed for the free-space propagation between 

the object and the detector, eq.(3). 

4. Weak absorption in the object and Guigay’s condition (slow variation) for the phase, eqs.(6), were 

assumed. 

 

In order to derive eqs.(32) and (33), the assumptions 1 and 4 have been relaxed and replaced with the 

following assumptions. 

5. Partially-coherent illumination of the object was assumed instead of the fully-coherent illumination. 

6. In addition to the weak component, as in item 4 above, the attenuation function of the object was 

allowed to have a strong but slowly-varying component, eq.(26). This latter component of the 

attenuation function was assumed to be slowly varying on the length scale of the width of the 2D 

partially-coherent Fresnel propagator, ( ) ( )( )2 2, ,R R

sysx y x yP P P = . 

 

The single-step PB-CT reconstruction formulae, eqs.(22)-(23), have been derived under the above 

assumptions 1-4 in the case of a generic weakly-scattering object and two images per illumination 

direction collected at different object-to-detector distances and a range of illumination directions. We 

also gave a corresponding solution, eq.(24), for the 3D reconstruction of monomorphous objects from 

a single image per illumination direction. Similar equations can be easily derived from eq.(33) in the 

case of partially-coherent illumination and strongly absorbing samples satisfying the assumptions 5-6. 
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