SYSTEM VERSUS OPEN ORIENTATION IN NEW ZEALAND SECONDARY SCHOOL GUIDANCE COUNSELLORS

A research paper submitted in partial fulfilment of the requirements for the Degree

of

Master of Arts in Education

at the

University of Canterbury, Christchurch, New Zealand.

by

Elizabeth Anne Munro

University of Canterbury

1980

		Page
Chapter	ABŞTRACT	1
I	INTRODUCTION	2
II	REVIEW OF LITERATURE	3
III	METHOD	9
	Subjects	9
	Questionnaire	13
	Dependent Measures	14
	Variables derived from SOI and TII	14
	Factor Analysis	14
	Twelve Situations	15
	Independent Measures	15
	Statistical Analysis	17
IV	RESULTS	19
	Factor Analysis	19
	Orientation of New Zealand Guidance Counsellors	36
	Attitudes v Actions - The Twelve Situations	40
	Multivariate Analyses of Variance (MANOVAS)	48
	Preferences versus Practice	6 6
v	SUMMARY AND DISCUSSION	6 8
	ACKNOWLEDGEMENTS	7 4
	REFERENCES	
	APPENDICES	
	A Questionnaire	
	B Rater's Guide	
	C Varimax Rotated Factor Matrix for the	
	48 SOI and TII I	
	D Multivariate Analyses of Variance (MANOVAS) of	
	Factor Scores	
	E Multivariate Analyses of Variance (MANOVAS) of	
	Twelve Situations	

ge

List of Tables

		-
3.1	Characteristics of the Sample : Sex	11
3.2	Characteristics of the Sample : Type of School	11
3.3	Characteristics of the Sample : Length of Teaching Service	11
3.4	Characteristics of the Sample : Teaching Subject	11
3.5	Characteristics of the Sample : Training and Experience	12
3.6	Characteristics of the Sample : Other Tasks	12
3.7	Characteristics of the Sample : Supervision	12
4.1	Factors Derived from the SOI and TII with their Constituent Items and Possible Score Ranges	20
4.2	Intercorrelations among Factors I to VI	22
4.3	Means and Standard Deviations for the Factor Scores Demonstrating the Trend towards Open Orientation	37
4.4	Intercorrelations among Situations 1-12	41
4.5	Intercorrelations among Factors I to VI and the 12 Situations scored according to % of open responses	42
4.6	Means and Standard Deviations for the Twelve Situations Scores Demonstrating the Trend towards Open Orientation	43
4.7	Twelve Situations : Frequency of Responses	44
4.8	Classificatory Variables Used in the MANOVAS with Their Subgroups and the Numbers of Counsellors in Each Subgroup	49
4.9	Summary of Multivariate Analyses of Variance (MANOVAS)	51
4.10	Multivariate Analysis of Variance (MANOVA) of Situations Classified According to Sex, Length of Counselling Service and University Training : Sex Main Effect	52
4.11		53
4.12	Multivariate Analysis of Variance (MANOVA) of Situations Classified According to Sex, Other Experience and Teaching Subject : Sex Main Effect	54
4.13	Multivariate Analysis of Variance (MANOVA) of Situations Classified According to Sex, and Revised Length of Teaching	55

Service : Sex Main Effect

Page

6.

	4.14	Sex by University Training Interaction Effect : Significant Simple Effects Analysis for Each Dependent Variable	57
	4.15	Sex by University Training Interaction Effect : Subgroup Means	58
	4.16	Counsellor Tasks : Differences between the Ideal and the Reality	67
	List o	f Figures	
	4.1	A Model Showing the Relationships between Factors on the New Zealand Sample	35
	4.2	Histogram for Factor 1	38
5	4.3	Histogram for Factor 5	39
)	4.4	Histogram for Situation 1	45
	4.5	Histogram for Situation 2	45
	4.6	Histogram for Situation 3	46
	4.7	Histogram for Situation 5	46
	4.8	Graph showing the Interaction between Sex and University Training on Situation 7 from XTU	59
	4.9	Graph showing the Interaction between Sex and University Training on Situation 10 from XTU	60
	4.10	Graph showing the Interaction between Sex and University Training on Situation 8 from XIU	61
-	4.11	Graph Showing the Interaction between Length of Counselling Service and University Training on Situation 8 from XTU	62
	4.12	Situation 5 : Interaction Sex, Length of Counselling Service and University Training	64

ABSTRACT

Guidance counsellors working in schools are often faced with the choice of supporting the system or of being open in orientation by supporting the individual.

In November 1979 one hundred and twenty-seven New Zealand guidance counsellors out of a sample of two hundred replied to a postal questionnaire made up of Law's (1977) System Orientation (SOI) and Teacher Identification Inventories (TII), plus twelve situations which highlighted dilemmas often faced by counsellors. The first purpose was to determine the extent to which the SOI and TII measure the same thing in New Zealand as in Britain. The second purpose was to find whether New Zealand guidance counsellors were system or open in orientation. The third purpose was to examine the influence of sex, university training, length of teaching service, other experience, teaching subject and length of counselling service on counsellor orientation. Finally counsellor preferences were compared with their practices.

A factor analysis of the distribution of scores on all items yielded six major factors : System-Open Orientation, Interventionist Orientation, Ingressive Orientation, Teacher Identification, Counselling Distinctiveness and Social Education. The first five factors corresponded approximately with those identified by Law (1979).

New Zealand counsellors were shown to be a relatively homogeneous group leaning towards an open orientation but often adopting a compromise position in conflicts between the needs of the individual and the needs of the institution.

CHAPTER I

INTRODUCTION

A counsellor is a servant. Whom does he serve? This is a central question for New Zealand guidance counsellors working in the institutional context of the school. The very title "guidance counsellor" expresses the ambiguities and dilemmas of the role. The essence of guidance is direction. The client is led along a path determined by an expert. The essence of counselling is facilitation. The counsellor follows the lead of the client and helps him to go in the direction he chooses.

A school guidance counsellor has responsibilities towards pupils, staff, parents and the community. These may conflict. The present study seeks to discover whether New Zealand secondary school guidance counsellors desire to be'open', putting the needs of an individual pupil first, or whether they feel an obligation to support the school system. It is, in part, a replication of Law's 1974 British study of system orientation in school counsellors.

The study aims to find out to what extent Law's System Orientation and Teacher Identification Inventories measure the same thing in New Zealand as in Britain. It also seeks to establish where New Zealand secondary school guidance counsellors lie on the open-system continuum and to what extent sex, university training, length of teaching service, other experience, teaching subject and length of counselling service influence their orientation. Finally an attempt is made to discover any discrepancies between counsellor preferences and practices with regard to such tasks as subject teaching, playground duty and extra-curricular activities.

REVIEW OF LITERATURE

Much American literature on school counselling has examined the question of counsellor orientation. Aubrey maintained that "the counselor's allegiance is constantly challenged and put to the test by the conflict between the needs of students and the institutional demands of the school." (Aubrey, 1969, p.274). The counsellor cannot operate solely on behalf of a pupil because "problems are invariably enmeshed with institutional demands, and choices are frequently limited to an area circumscribed by institutional norms." (Aubrey, 1969, p.274). Holly (1972, p.140) also acknowledged the power of the school system in that however much the counsellor valued a client-centred relationship he, in fact, was involved in "interpreting received perceptions and official attitudes."

Much of the debate has centred round whether the counsellor is a specialised teacher or whether he has a separate professional role. (Arbuckle, 1966). One way of asserting that counselling is merely a specialization of teaching is to insist on teaching service prior to counselling service in spite of evidence that this may inhibit counselling effectiveness. Initial acceptance by school administrators is greater for counsellors with prior teaching experience. However, in their review of nine research studies, Lister and Northop concluded generally, "that teaching experience per se had a deleterious effect upon the counsellor's interview behavior." (Lister and Northop, 1972, p.178).

Counsellors who retain their identification with teaching "and see their major function as the provision of information and advice rather than the development of a therapeutic atmosphere" (Arbuckle, 1970, p.107) meet the expectations of many school administrators. Arbuckle quoted the words of Sexton, President of the National Association of Secondary School Principals: "I feel the less we emphasize the psychological, the psychiatric and anything therapeutic the better the feeling the students will have towards counselling." (Arbuckle, 1966, p.145). Counsellors may not agree with this. Sweeney's 1966 research showed that principals expected more clerical and administrative help than counsellors saw as appropriate to their role.

Counsellors are employed by institutions to help individuals and therein lies the source of "the ambiguity of their relations with other school personnel" (Cicourel and Kitsuse, 1963, p.84). Such personnel often assume that "the counselor's professional knowledge, as well as his professional skills, are not in any way different from those of the teacher or the administrator." (Arbuckle, 1970, p.122). If this were accepted it would be pointless to have a person functioning under the title "counsellor" in a secondary school.

However, Arbuckle saw the American school counsellor "emerging as a professionally competent individual whose function and professional education are quite different from those of the teacher and the administrator." (Arbuckle, 1970, p.109).

In New Zealand this trend has not been evident. In spite of the requirement for additional professional training at university the guidance counsellor has been seen as a type of teacher and thus has been expected to be "system-oriented." He is a "specialist teacher" (Circular Memorandum B69/31, 1969) and his emphasis "should be upon guidance rather than upon its essential but subordinate activities" (Department of Education Working Party, 1971, p.7). Indeed the Working Party rebuked those "teachers holding the position of guidance counsellor (who) have tended to see themselves - as their colleagues and pupils also tend to see them - as <u>counsellors</u> instead of, as we believe they should be seen, as <u>guidance teachers</u> who have counselling skills." (Department of Education Working Party recommended that guidance counsellors be renamed "guidance teachers", a recommendation not implemented.

However, the issue did not die in 1971. In the current review of guidance services the debate continues. In official statements the guidance function is emphasized. For example, "schools are reminded that guidance programmes in secondary schools should focus attention on work exploration

and careers education programmes in preparation for leaving school as well as on other aspects of counselling." (Education Gazette, 1979, p.1).

The Post-Primary Teachers' Association (P.P.T.A.) has also assumed such a stance in relation to guidance counselling. Their Members' Handbook stated that "the guidance counsellor is a teacher." (P.P.T.A., 1978, p.25). In their paper, The Functions of School Guidance Counsellors, it was stated that "Guidance counsellors see themselves as members of the teaching team." (P.P.T.A., 1979, p.1). This view was supported by Small (1978) when he maintained that guidance counselling more properly belonged with teaching than with therapy or administration. Yet the P.P.T.A. allowed that while "the guidance counsellor's work in the school should contribute directly to the aim and goals of the school" (P.P.T.A., 1979, p.3) in putting "a priority on the needs of pupils and staff" the counsellor may well have to contribute to "well-founded changes to the school as a whole"(P.P.T.A., 1979, p.1).

Although he may work for change in the school it is still very difficult for a counsellor to operate for an individual pupil against the school. As Webster (1970) pointed out parents do not directly entrust their children to the guidance counsellor but to the school which is expected to pursue certain goals defined by it in accordance with the purposes of society.

A recent national survey again underlined the counsellor's dilemma. A principal was quoted as stating "my guidance counsellor is here to help pupils make vocational and academic choices, not deal with emotional problems - that's the job of teachers and psychologists." (McDiarmid, 1979, p.112). Yet Munro's analysis of data collected over eight years as a counsellor showed that 50% of self-referrals by pupils were for personal-social problems (see Small, 1979, Table 1). In the McDiarmid (1979) survey counsellors ranked sixth among their problems the conflicts which ensued when principals expected them to uphold the school system while they wanted to act as confidantes for the pupils.

The foregoing discussion tends to suggest that the way out of such dilemmas is to lean towards a particular pole. Law (1977, 1978, 1979) concluded that British counsellors tend to work for the school system rather than for the individual client. During his own experience as a counsellor he became very aware of the context of "the demands, expectations and cues offered ... by the school as a social system." (Law, 1977, p.129). This context produced a potential for conflict in each counselling situation: conflict between the value system of the individual and that of the institution, conflict between the need for change and the demand for maintenance of the system, conflict over the status of clients who are legally regarded as minors and conflict between the needs of the individual and the needs of the group.

Law hypothesized that once he knew how a counsellor resolved one such dilemma he would be able to predict how that counsellor would resolve others. He predicted that school counsellors would show a bias either towards the school, namely "system-orientation" or towards the individual, namely "openorientation." The "system-oriented" counsellor would be basically loyal to the school, identifying with teachers, legitimating the demands of the school system and putting the needs of the group before the needs of the client. The "open-oriented" counsellor would tend to work for the individual, concentrating on personal and emotional concerns and if necessary challenging the school system,

Law acknowledged that "system" and "open" orientation represent theoretical polar positions and that in practice many counsellors would operate along a continuum or from a compromise or middle position designated as the "participant" position by Antonouris (1975). The latter maintained that the "open" position was not possible for school counsellors. They could not be "change agents safeguarding the interests of pupils" because in training they were "insufficiently helped to examine critically the institutional and societal framework of education" and would therefore be likely "to continue to operate primarily as the servants rather than the critics of their employing institutions." (Antonouris, 1975, p.209).

To test his hypothesis Law constructed a System Orientation Inventory (see Appendix A) and administered it to a main sample of 398 British secondary school teachers having some responsibility for guidance and/or counselling. He concluded that "system orientation is a measurable parameter operating as

a coherent consideration in the minds of trainee and practising school counsellors." (Law, 1977, p.141).

Law also explored the degree of teacher identification in counsellors and whether counselling is seen as "ingression into the traditional practices of teaching" or "an egression from them." (Law, 1978, p.59). He considered the concomitants of system orientation e.g. personality, title, inter and intra-role conflict with teaching colleagues, time spent in counselling and amount of training (Law, 1978(b). He also discussed the extent to which open-oriented trainees can resist the pressures of the school system. Law isolated four factors (Teaching Identification, Person Focus, System Orientation, and Interventionist Orientation) within his System Orientation and Teacher Identification Inventories (Law, 1979).

In resolving their dilemmas British Counsellors tend to justify and support the school system. Yet a middle position, that of "withstand(ing) the tension between the polarities" (Harris, 1972, p.38) may be just as viable. Experience in New Zealand may support this. The task now is to find out where most New Zealand secondary school guidance counsellors lie on the system-open continuum.

This study attempts to provide answers to the following questions:

1. To what extent do Law's System Orientation (SOI) and Teacher Identification Inventories (TII) measure the same thing in New Zealand as in Britain?

2. How does the factor structure of the SOI and TII in Britain compare with the factor structure in New Zealand?

3. Are New Zealand guidance counsellors open or system-orientated?

4. How do they compare in orientation with British school counsellors?

5. Are there differences between the attitudes and proposed actions of New Zealand guidance counsellors?

6. Are there sex differences in New Zealand guidance counsellor orientation?

7. Does the presence or absence of university training influence guidance counsellor orientation?

8. Do guidance counsellors differ in orientation according to length of teaching service, teaching subject, length of counselling service or other experience?

9. To what extent are guidance counsellors free to control their involvement in non-counselling tasks such as subject teaching, playground duty and extra-curricular activities?

METHOD

Subjects

A Questionnaire was mailed to the 200 guidance counsellors and network school guidance teachers known to be actually occupying positions in New Zealand secondary schools in November, 1979. Replies were received from 131 (65.5%) but four of these came too late to be included in the results. Eight respondents failed to complete the second part of the Questionnaire. Five of these had been in training for most of 1979 and the other three objected to responding without having more information. Therefore 127 Questionnaires (63.5%) were included in part of the analysis but only 119 (59.5%) in the complete analysis.

Comparison with Strang's 1974 study which had an 85% response rate and McDiarmid's 1979 thesis (93% response rate) shows that the sample obtained is representative of the total population of guidance counsellors in several ways. Of the 127 respondents 62.2% were male, a similar proportion to that in Strang's (61%) and McDiarmid's (64%) studies. Single sex schools provided 16.5% of the respondents. (cf McDiarmid 19%). Ninety-four per cent worked full-time as guidance counsellors, a similar proportion to the 90% in the McDiarmid study.

The length of teaching service prior to counselling service was 0-4 years for 20.4% (McDiarmid 20%), 5-14 years for 55% (McDiarmid 40% 5-11 years) and 15 years or more for 24.6% (McDiarmid 31% 12 years or more). Length of counselling service ranged from 0-14 years with 51% in the 1-4 year category (McDiarmid 54%). More counsellors had previously taught English (N=33) than any other subject. English was followed by general subjects to slow learners (N=27) the social sciences (N=20) and sciences (N=12). Seven counsellors (6%) had never taught whereas in the McDiarmid study 9% had no teaching experience. Seventy-one per cent, had had university training compared with 63% in McDiarmid's survey after which a further year has elapsed.

Thus in sex, type of school, percentage of time spent in guidance counselling, length of prior teaching service, length of counselling service and training the sample is similar to McDiarmid's. His survey provides the most recent (1979) and comprehensive (93%) descriptions of the New Zealand guidance counsellor population.

However there is no readily available source of data with which to compare the sample on the remaining variables. It may or may not be representative of the whole population. Of the 127 respondents 28.3% had had experience other than teaching prior to becoming counsellors (e.g. as social workers, psychologists, clergy, tradesmen, policemen, businessmen or armed service personnel.)

Examinable subjects were still taught by 22% while 80% undertook the teaching of social education or careers to class-sized groups. Forty-seven per cent reported carrying out timetabled playground duty. Extra-curricular activities involved 84.2%. Of the 47.2% whose work was supervised 75% received supervision from a senior teaching colleague, usually the principal, 16.6% received it from someone outside the school such as a psychologist or social worker and 8.4% received it from both inside and outside the school.

The characteristics of the sample are set out in Tables 3 : 1-7.

Characteristics of the Sample : Sex

Male	79	(62,2%)
Female		(37,8%)

Table 3.2

Characteristics of the Sample : Type of SchoolN = 127Single Sex21(16.5%)Co-educational 106(83.5%)

Table 3.3

Characteristics of the Sample : Length of Teaching Service N = 127

0-4 years	26	20.4%
5-14 years	70	55.0%
15 years or mo	re 31	24.6%

Table 3.4

Characteristics of the Sample : Teaching Subject N = 127

English	33	(26.0%)
General subjects	27	(21.2%)
Social Sciences	20	(15.7%)
Sciences	12	(9.4%)
Other	28	(21.7%)
None	7	(6.0%)

"Canada"

N = 127

Characteristics of the Sample : Training and Experience N = 127

Yes		No	
90	(71%)	37	(29%)
36	(28,3%)	91	(71.7%)
	<u>Yes</u> 90 36	Yes 90 (71%) 36 (28.3%)	Yes No 90 (71%) 37 36 (28.3%) 91

Table 3.6

Characteristics	of	the	Sample		Other Tasks	
-----------------	----	-----	--------	--	-------------	--

	Yes		No
Teaching Examinable Subjects	28	(22%)	99 (78%)
Social Education/Careers Classes	102	(80%)	25 (20%)
Playground Duty	60	(47%)	67 (53%)
Extra-curricular duties	107	(84,2%)	20 (15.8%)

Table 3.7

Characteristics of the Sample : Supervision

N = 127

n an an anna an ann an Anna an Anna ann an Anna an An Anna ann an A	Yes		No	· · · · · ·
Supervision	60	(47,2%)	67	(52.8%)
Outside supervision	10	(7.8%)	117	(92.2%)
School supervision	45	(35.4%)	82	(64.6%)
Both	, 5	. (.3,9%)	122	(96.1%)

N = 127

Questionnaire

The Questionnaire was mailed to counsellors with a return envelope. It was hoped to obtain responses from all counsellors known to hold appointments in November 1979 but because of the proximity of the end of the school year it was not possible to follow up non-respondents.

Part I

The first part of the Questionnaire consisted of Law's (1977) System Orientation Inventory (SOI) and his Teacher Identification Inventory (TII), Items 1-30 of the Questionnaire (Appendix A pp i - iv) came from the SOI and Items 31-48 from the TII.

Scoring for each item on the SOI and TII was on a five-point scale from Strongly Agree (SA) to Strongly Disagree (SD) with three as undecided. Agreement with system items (e.g. item 2 "I want to be seen to be loyal to the school") earned high scores. Agreement with open items (e.g. item 17 "I want to employ client-centred techniques") earned low scores. Respondents were invited to give the reasons for their choice if and when they chose 'Undecided.' The three main reasons given were:

- (1) That the statement was unclear, ambiguous or irrelevant. (26 respondents).
- (2) That any response would have to be situation-specific and would depend on the circumstances. (46 respondents)
- (3) That the counsellor wanted to adopt a middle position, neither necessarily pupil-centred nor necessarily institution-centred. (17 respondents)

Part II

The SOI and TII purport to measure attitudes. To express an attitude is one thing. To act in accordance with an expressed attitude is another. Therefore the second part of the Questionnaire (see Appendix A pp.vi-vii) consisted of twelve situations to which counsellors were invited to make free responses indicating how they would act. Ten of these situations were New Zealand versions of the cases to which Law (1977) referred to highlight counselling dilemmas over issues such as the school value system, problem definition or orientation to the client. The other two situations (6 and 9) were peculiar to New Zealand.

Responses to the twelve situations were also scored on a five-point scale, a 5 representing a system-oriented solution, a 4 one tending towards system orientation, a 3 a compromise, a 2 a solution tending towards open orientation and a 1 an open solution. (See Appendix B for the Rater's Guide). As a check on the reliability of the rating two experienced visiting teachers independently rated 50 of the Questionnaires. Rater 1 was 90% in agreement with the original ratings, Rater 2 84%. Where there were disagreements modal numbers were recorded for one place differences and concensus obtained for two place differences. Thus if two raters gave a 3 rating and the third rater a 2 rating the accepted rating would be 3. If one rater gave a 3, another a 1 and the third a 5, the ratings would be discussed until consensus was reached. The latter procedure was necessary on 35 out of 600 occasions.

Dependent Measures

1. Variables derived from SOI and TII

Initially Law (1977) aggregated scores for all items on the SOI and TII to provide a global measure of system-orientation but he later carried out a factor analysis of the scores. In the present study it was proposed to begin with a factor analysis of the SOI and TII scores and to treat the derived factor scores and the twelve situations as dependent variables. This was decided because there was no guarantee that with the New Zealand sample the SOI and TII would measure the same thing as with the British sample.

Factor Analysis

A factor analysis of the matrix of intercorrelations among the 48 SOI and TII items was conducted. A standard principal components analysis was followed by Kaiser's varimax procedure for rotation of a given number of factors. Although there were fifteen factors with eigenvalues of 1.00 or more, it was decided to extract and rotate the first six factors. Law (1979) discovered five main factors in his analysis of the same scales and the decision to extract the first six factors was partly to enable direct comparisons with his work. Furthermore the seventh and subsequent factors proved difficult to interpret sensibly and, in any case, accounted for increasingly trivial amounts of common variance. The six factors collectively accounted for 43.8% of the total variance. They will be discussed in detail later.

2. Twelve Situations

The twelve situations, whilst they illustrate facets of the opensystem dimension were each left to stand alone. It was considered that each was worthy of separate analysis as a unique behavioural response.

Each situation poses a counselling dilemma. Andrew's desire to decline to be a prefect (situation 1), Keith's refusal to attend school (situation 2), Catherine's resentment over teacher direction (situation 3) and Derek's aggressive behaviour (situation 4) all represent challenges to the school value system. How much attention a counsellor pays to Keith's family problems (situation 2) or Eddie's deep emotional problems (situation 5) may depend on whether the school identifies these problems as ones it should attempt to handle. Maintenance of the school system becomes an issue in Jillian's case (situation 7). The individual versus large group conflict is evident in situation 6. A counsellor who sees his role as limited to developmental needs would presumably not want to deal with Annette (situation 10) Keith or Eddie. Conflict over who should determine the direction of client change is implicit in Gordon's case (situation 8). Each situation thus taps one of the counselling dilemmas outlined by Law (1977).

Independent Measures

Law's (1978(b)) analysis of the concomitants of system orientation in secondary school counsellors was used as a starting point from which to choose classificatory variables. Law (1978(b)) examined personality

as measured by the 'inner-support' scale of the Personal Orientation Inventory (P.O.I.) (Shostrom, 1968), intra-role conflict, title, amount of time available to do counselling work and amount of training.

It was not possible to administer the P.O.I. 'inner-support' scale to the New Zealand sample. Rather than examining intra-role conflict by asking for counsellor perception of acceptance by teacher colleagues the Questionnaire was mailed to a teacher sample with the words "Counsellors should ..." substituted for the words "I want ...," The results of this form the subject of a separate study. (Munro, 1980).

Title is not an issue in New Zealand because the national Education Department designates role incumbents as "Guidance Counsellors." Only 7 respondents, the guidance teachers, were not entitled to do full-time counselling work, too small a number to make it worthwhile to compare those with different amounts of time for counselling.

A preliminary examination of the effect of single-sex versus co-educational school showed no significant difference so this variable was excluded.

Therefore the classificatory variables chosen on logical grounds were: 1. University Training

This was chosen because it was one of the variables Law considered and work by Manthei and Tuck (1980) suggests that it does affect the orientation of counsellors.

2. Sex

Sex seemed an obvious choice as there is evidence (Parsons and Bales 1955) that women are more 'expressive' (which it was hypothesized might link with open orientation) and men more 'instrumental' (which might link with system orientation). However women have often been shown to be more conforming than men (Douvan and Adelson, 1966, Silcock 1966, Steinmann and Fox 1966, Heilbrun et al 1974) and therefore might be expected to support the institution (i.e. be more system-orientated than men).

3. Length of Counselling Service

Law (1979) suggested that while training tended to make counsellors more open they progressively returned to high levels of system orientation as their time back in schools lengthened. Therefore length of counselling service was included as a variable in the present study.

4. Other Experience

It seemed logical to assume that those who entered guidance counselling from occupations other than teaching (even if at some stage they had been teachers) might differ from those who lacked other experience. It could be hypothesized that they would be more open because their experience had not been confined to the school system.

5. Length of Teaching Service

It seemed logical that this might prove to be significant. There was a possibility that long teaching service might tend to be associated with system orientation.

6. Teaching Subject

Because the distribution of respondents among specialist teaching subjects was very uneven it was decided to divide this variable into two categories : those (usually primary-trained) who taught all subjects (often to slow learners) and those who taught only one or two specialist subjects. A general assumption in New Zealand is that primary-trained teachers are more child-centred than secondary-trained teachers who, it is believed, tend to be subject-oriented.

Statistical Analysis

Multivariate analyses of variance (MANOVAS) were used to look at the relationship between classificatory and dependent variables. Various three-way permutations of classificatory variables were carried out using the six factor scores as dependent variables. Then a further series of three-way MANOVAS were carried out using the twelve situations as dependent measures. Wilk's Lambda Criterion (likelihood ratio test) was adopted using Rao's approximate F distribution (Bock, 1975). The computer programme used was a revision of Bock's (1963) MANOVA programme developed at the University of North Carolina Psychometric Laboraboratory and held on disc at the University of Canterbury Computer Centre.

RESULTS

Factor Analysis

Six factors were extracted. They were defined as:-

- 1. System/open orientation
- 2. Interventionist Orientation
- 3. Ingressive Orientation
- 4. Teacher Identification
- 5. Counselling Distinctiveness
- 6. Social Education

The standards set for selecting those items defining each of the six factors were as follows. Forty-one of the original 48 items showed loadings of 0.30 or higher on one or more of the six factors. Where a particular item loaded on two factors and the squared factor loadings differed by less than 0.10 the item was considered equivocal and was eliminated for factor definition purposes. This left a total of 36 items used for the definition of the six extracted factors. Twenty-nine of these items showed loadings of 0.40 or higher. Factor scores were obtained by summing scores on their constituent items.

Details of factor score composition are given in Table 4 : 1

Table 4.1

Factors Derived from the SOI and TII with their Constituent

Items and Possible Score Ranges

Factor	Items	No.of Items	Range of Possible Scores	Mid-point of Range
one	2, 3, 4,			
	12,13,14,			
	22,24,25,	9	9 - 45	27
two	1, 5, 7, 8,			
	9,15,16,19,			
	23,	9	9 - 45	27
three	17,33,35,36			
	43,44,	6	6 - 30	18
four	34,37,38,45,	4	4 - 20	12
five	18,20,21,40	4	4 - 20	12
six	26,41,42,46,	4	4 - 20	12

The six factors derived from the 48 SOI and TII items are listed below. The items have been classified into four categories according to varying degrees of acceptability:

A. Unequivocal loadings of or greater than 0.40.

- B. Loadings of or greater than 0.40, but having a smaller loading on another factor.
- C. Loadings between 0.30 and 0.39 with no significant loadings on other factors.
- D. Loadings greater than 0.30 but having loadings on other factors.

Factor loadings are given in parentheses <u>preceding</u> each item; where applicable loadings on other factors are indicated in parentheses after the items concerned.

Factor intercorrelations are given in Table 4.2

· · · ·						
Variable	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6
Factor 1						
Factor 2	.046					
Factor 3	.173	.076				
Factor 4	.186	077	.247			
Factor 5	.299	122	.295	.186		
Factor 6	" 203	.046	058	.073	.148	
			· · · · ·			

Intercorrelations* among Factors I to VI (N = 119)

* Significance Levels: r = 0.180, p < 0.05

r = 0.234, p < 0.01

Factor I: SYSTEM/OPEN ORIENTATION

A. Unequivocal loadings of or greater than 0.40:

- 2. (0.53) I want to be seen to be loyal to the school.
- 3. (0.54) I want to be able to bring about changes in the school on behalf of the pupils.
- 4. (0.45) I want to be free to act as an advocate on behalf of the pupil.
- 12. (0.54) Where the interests of the school and the pupil clash I want to put the interests of the school first.
- 13. (0.50) I want to be free to acknowledge to certain pupils that they are right to oppose the demands of the school.
- 22. (0.41) I want my work to be assigned to me by the school in which I work.
- 24. (0.64) I want to help the pupil change the school rather than helping the school to change the pupil.
- 25. (0.58) I want to help pupils comply with the requirements of the school.
- C. Loadings between 0.30 and 0.39 with no significant loadings on other factors:
 - 14. (0.32) I want to contact and work through the pupils' informal social systems.

Factor I accounts for 13.2% of the variance. It measures the Counsellor's orientation i.e. his position on the system-open continuum. A system-oriented counsellor sees his role as supportive of the school (Item 2). His first loyalty in any conflict is to the school (Item 12). He accepts direction from the school (Item 22) and he wants to adjust pupils to fit into the system (Item 25). High scores on these items (2,12,22,25) indicate system-orientation, the tendency to legitimise the demands of the school.

An open-oriented counsellor puts the interests of the individual pupil first. He wants to influence the system on behalf of pupils (Item 3) and is prepared to act as their advocate (Item 4). He accepts what he considers to be legitimate pupil protest (Item 13). An open-oriented counsellor is prepared to accept a change agent's role (Item 24) and to work through pupil social systems(Item 14). Low scores on Items 3,4,13,14 and 24 thus indicate open-orientation, the tendency to uphold the rights and interests of the individual even when this conflicts with institutional demands.

Part of Factor I on the New Zealand sample approximates Law's Factor 3, System Orientation. In his 1979 article he does not specify which items load on this factor. He merely indicates that Factor 3 "is closely related to the SOI - particularly with those items which refer to the legitimacy of the demands of the school upon the counsellor and his client." (Law, 1979, p.200). Items 2,12 and 22 do so and they load on Factor I in the New Zealand study. Items 4 and 14 load on Law's Factor II, Person Focus. The New Zealand Factor I therefore represents both parts of a system-open continuum whereas on the British sample two factors (2 and 3) account for the concepts.

Further confirmation of Factor I was found in the modest intercorrelation with the sum of the twelve situations (0.313) which also purport to measure system-open orientation.

A. Unequivocal loadings greater than 0.40:

- 1. (0.54) I want to be a useful source of information about the pupils to the school.
- (0.48) I want to work with pupils, who are referred by my teaching colleagues.
- 9. (0.55) I want to mediate the needs and problems of the teachers to the pupil.
- 15. (0.43) I want to protect the school against potentially harmful pupils.
- 19. (0.43) I want to help the teachers by showing them how they can best get the co-operation of pupils.
- B. Loadings of or greater than 0.40, but having a smaller loading on another factor:
 - 8. (0.51) I want to help bring about socially desirable changes in the pupil.(0.40 Factor I)
- C. Loadings between 0.30 and 0.39 with no significant loadings on other factors:
 - 5. (0.36) I want to work in a school where I can share in its general educational and social philosophy.
 - 16. (0.32) I want to achieve a position of decision-making responsibility in the school.
 - 23. (0.30) I want to be involved in the administrative work of helping to plan and run the school.

Factor II accounts for 9.1% of the variance. It measures a desire for active intervention, primarily in support of the school system (items 1, 7, 8, 9, 15, 19) and less strongly in support of a decisionmaking or administrative role (items 16, 23). High scores on the above items indicate a willingness to divulge information about pupils to colleagues (item 1), to work with referred clients (item 7), to act as an advocate and helper for teachers (items 9, 19), to adjust pupils to conform to the system (item 8), and to be involved in decision-making and planning in an organisation whose aims the counsellor shares (items 16, 23, 5).

Factor II corresponds closely to Law's Interventionist Factor 4, on which items 1, 5, 7, 9, 15, 16, 19 and 23 also loaded. However, in the New Zealand sample the items which correlated with this factor were interventionist and high system-oriented whereas in Law's analysis two additional groups of items correlated with his Factor 4. (a) items which were interventionist and low system-oriented (e.g. item 3) and (b) items which are interventionist and neither particularly high or low in system orientation (e.g. item 26).

With the New Zealand sample 'intervention' is desired on behalf of the system. This factor therefore measures a conservative dimension, high scores on it indicating support for the status quo.

It is the only Factor that does not intercorrelate significantly with the other factors. However, in reality, intervention on behalf of the system is not necessarily in conflict with the interests of the individual. Information may be divulged to colleagues so that they may better understand the pupils. The fact that clients are referred may reflect a care for the individual. Decision-making and planning can be done in the interests of the pupil.

Factor III: INGRESSIVE ORIENTATION

- A. Unequivocal loadings of or greater than 0.40:
 - 33. (0.74) I want to do work which is more like that of a school psychologist than that of a teacher.
 - 35. (0.65) The work I want to do is more like that of a psychiatrist than it is like that of a teacher,
 - 36. (0.42) I want my counselling and interviewing work to be supervised by a specialist in guidance and counselling rather than by the headteacher or a senior teaching colleague.
 - 44. (0.73) The work I want to do is more like that of a social worker than it is like that of a teacher.
- B. Loadings of or greater than 0.40, but having a smaller loading on another factor:
 - 43. (0.57) The skills I want to develop are different from the skills of most teachers.(0.42 Factor V)
- D. Loadings greater than 0.30 but having loadings on other factors:
 - 17. (0.41) I want to employ client-centred techniques. (0.33 Factor II)

Factor III accounts for 7.2% of the variance. Items which load on this factor define counselling as an ingression into the traditional practices of teaching from professions such as social work (item 44) psychiatry (item 35) and educational psychology (item 33). The skills of counselling are seen to be different from those of teachers and to be specialised. (items 43, 36, 17).

This factor to some extent corresponds with Law's Factor 5 which he saw as representing "a consideration of the extent to which the school can be ingressed with a new kind of supplementary provision." (Law, 1979, p.200). However he finally combined Factors 5 and 1 as Teaching Identification. The ingressive elements represent one end of a teachingnon-teaching continuum.

Some of the items which load on Factor III on the New Zealand sample load on Factor 2, Person-Focus, on the British sample. These are concerned with the use of client-centred techniques (item 17) and a psychological or social work approach (items 33, 35, 43).

While it is possible to find logical links between the way these items load on the British sample and the way they load on the New Zealand sample on the latter sample the Ingressive Factor is more strongly differentiated.

Factor IV: TEACHER IDENTIFICATION

A. Unequivocal loadings greater than 0.40:

34. (0.67) I want to have a teaching programme so that I can demonstrate to my colleagues my effectiveness as a teacher.

- 37. (0.79) I want my counselling and interviewing work to be combined with a timetabled teaching programme so that I can understand what is happening in the daily life of the school,
- 38. (0.78) I want to combine my counselling and interviewing role with a role where I am doing formal teaching from a set curriculum.
- 45. (0.77) I want to have a timetabled teaching programme so that I can keep in touch with the day-to-day problems of the classroom.

This factor accounts for 5.9% of the variance. The items which load strongly on this factor express the desire of guidance counsellors to identify explicitly with teachers by undertaking a traditional timetabled subject-teaching role as one of their tasks. (items 34, 37, 38, 45). They wish to do this in order to demonstrate their understanding of the realities of the classroom (items 37, 45) and their competence as teachers (item 34).

This factor corresponds to Law's Factor 1, Teaching Identification, but fewer items load on the New Zealand sample. As previously discussed Law included his Factor 5, Ingressive, with his Factor 1 as one end of a teaching identification-non-teaching identification continuum. The Ingressive Orientation factor on the New Zealand sample is Factor III. It correlates 0.247(p < 0.01) with Factor IV and so can be regarded as Law regards it but the evidence is not as strong. Low scores were obtained by those agreeing with items which load on Factor III (items, 17, 33, 35, 36, 43, 44) but disagreeing with those which load on Factor IV (items 34, 37, 38, 45).

A. Unequivocal loadings greater than 0.40:

- 20. (0.51) I want to provide a service for pupils which is not being provided by any other part of the school system.
- 21. (0.50) I want to work alongside, but separately from, the other services provided by the school rather than integrally with them.
- 40. (0.63) I want my counselling and interviewing work to be seen by the pupils as something different from the work of the teachers.
- C. Loadings between 0.30 and 0.39 with no significant loadings on other factors:
 - 18. (0.31) I want to put the needs of the individual before the needs of the group.

Factor V accounts for 4.7% of the variance. It encompasses a view of counselling as a distinctive and separate service for the pupils rather than for the institution. Factor V seems to link with Factor I, System/Open Orientation. They correlate positively (.299, p < 0.01). However New Zealand counsellors appear to view the items loading on Factor V as distinctive ways of being open.

It is difficult to compare this factor with any of Law's because in his 1979 article, he dows not specify the items which load on Factors 1 and 3. However as Law states that Factor 3, System Orientation, is closely related to the SOI and as items 18, 20 and 21 are SOI items which are not specified as loading on other factors it is possible to suggest that Factor V on the New Zealand sample may, in part, correspond with Law's Factor 3. Logically the items could be seen to represent a dimension of the open end of a systemopen continuum but as previously mentioned New Zealand counsellors see this grouping as distinctive.

- A. Unequivocal loadings greater than 0.40:
 - 41. (-0.52) I want to combine my counselling and interviewing role with a role where I am also working with timetabled groups in an informal way and where the pupils can choose the topics for study and discussion.
 - 42. (-0.72) I want to combine my counselling and interviewing role with a teaching role where I can help pupils gain a sense of themselves as individual persons.
 - 46. (0.61) I want to combine my counselling and interviewing role with a teaching role where I can help the pupil develop self-discipline and a sense of their own value
- C. Loadings between 0.30 and 0.39 with no significant loadings on other factors:
 - 26. (0.35) I want to engage in liaison, communication and consultation work in the school.

Factor VI accounts for 3.8% of the variance. It appears to suggest the sort of role guidance counsellors fulfil when teaching in social education programmes, especially where work with small groups is involved. Items 41, 42 and 46 fit this conception. However there appears to be no obvious logical explanation for the inclusion of item 26 in this factor. Its much lower loading is consistent with the difficulty of tying it in with the factor as a whole.

The bi-polar nature of the factor is puzzling but there appears to be some logic to it. Items 41 and 42 which load negatively on the factor seem to stress the individual and individual choice. Items 46 and 26 can be seen as more system-oriented although still ultimately to the benefit of the individual.

Law has no comparable factor but items 41 (number 40 on Law's TII) and 26 load on his Factor 2, Person Focus.

The factor analysis of the distribution of scores on all items completed by the New Zealand sample yielded six major factors. These were:

I. System-Open Orientation- a measure of the tendency to support the school as an institution or the pupil as an individual.

II. Interventionist Orientation - a measure of the desire to change situations, primarily in support of the school.

III. Ingressive Orientation - a measure of the extent to which counselling is seen as an ingression into the traditional practices of teaching.

IV. Teacher Identification - a measure of the extent to which counsellors wish to be seen as understanding and being able to perform the role of teacher.

V. Counselling Distinctiveness - a measure of the desire to be seen as offering a distinct, specialist service, different from that provided by teachers.

VI. Social Education - a measure of the desire to be involved in a personalized, pupil-centred form of teaching which would develop a positive self-image in pupils.

The first five factors correspond approximately with those identified by Law (1979) except that Law's Factor 2, Person Focus, does not appear, the items being dispersed among other factors. Of the items loading on Law's Factor 2 numbers 17, 33, 35 and 43, in New Zealand, load on Factor III, Ingressive Orientation, numbers 4 and 14 on Factor I, System-Open Orientation, number 26 on Factor VI, Social Education and number 40 on Factor V, Counselling Distinctiveness. Item 27 drops out on the New Zealand sample.

The closest correspondence between factors in the two studies is that between Law's Factor 4, Interventionist, and Factor II, Interventionist
Orientation. Eight items appear on both, leaving three Law items that do not. The major difference is that in New Zealand, intervention is desired on behalf of the system while Law isolates two additional categories of intervention.

System Orientation is an important factor on both the British and the New Zealand samples. It is not possible to make a direct comparison of item loadings as Law in his 1979 article does not specify these for the System Orientation factor. However by eliminating items specified as loading on other factors and by referring to Law's description of System Orientation it is possible to deduce that Law's Factor 3 and the New Zealand Factor I approximately correspond. Both measure the extent to which the guidance counsellor looks to the school for the legitimisation of his goals, role and behaviour compared with the extent to which he looks to the individual. The Interventionist factor can also be seen as defining a dimension of System Orientation in New Zealand in that its focus is on facilitating the purposes of the school.

Teacher Identification is a factor extracted from both samples. Fewer items load from the New Zealand sample but it would be possible, as Law did, to subsume Factor III, Ingressive Orientation under the heading Teacher Identification because logically speaking it appears to measure one end of a teaching orientation - non-teaching orientation continuum. Factors III and IV correlate modestly (r = .247) which suggests some overlap between them. However the correlation is low enough to support a claim of distinctiveness. Logically the sixth factor, Social Education could also be seen as a dimension of Teacher Identification, but one peculiar to New Zealand.

It is difficult to relate Factor V, Counselling Distinctiveness, to Law's results but it appears to be possible to see it as associated with his Factor 3, System Orientation. Certainly the modest intercorrelation (0.299) between Factors I (System/Open Orientation) and V on the New Zealand sample would tend to support the view that the two measure dimensions of the same concept.

Overall, it is possible to conclude that on the New Zealand sample, as on the British, a Questionnaire composed of the SOI and TII appears to be a valid measure of system orientation if teacher identification (including the Ingressive and Social Education aspects) is acknowledged as an important dimension of such orientation. Modest intercorrelations between Factor I and the other Factors would tend to lend support to this view. Significant inter-correlations were obtained between Factors I and IV (.186, p < 0.05), Factors I and V (.299, p < 0.01) and Factors I and VI (.203, p < 0.05). That between Factors I and III (0.173) almost reached significance at the .05 level, Besides correlating with Factor I the factors correlate with each other, albeit modestly. (See Figure 4 : 1)

The Orientation of New Zealand Guidance Counsellors

Law was primarily concerned with establishing whether system orientation was a measurable parameter and it is possible to deduce from his results where British respondents lie on the system-open continuum. Law aggregated scores to obtain a measure of system orientation. Of the whole sample (of 398) 73 were classified as high in system orientation (SOI scores of 135 or greater). A further 125 were classified high-average (SOI scores of 119-134) 148 as low average (SOI scores of 101-118) and 52 as low in system orientation (SOI scores of 100 or less).

However, since there is no direct information on how these scores were obtained or any indication of what the scale mid-point would be it is hard to say, on the whole, whether British counsellors are system or open in orientation.

In the New Zealand study guidance counsellors show a trend towards open orientation. The means for the factor scores demonstrate this. On Factors I (System-Open Orientation) and IV (Teacher Identification) the actual means are below the scale mid-points. The actual mean of Factor III (Ingressive Orientation) which Law combined with Teacher Identification is also below the scale mid-point (see Table 4 : 3).

However Factor II, Interventionist does not follow the open trend. In New Zealand guidance counsellors intervene on behalf of the system. In practice, however, counsellors may see little conflict in supporting the system while also supporting individuals. Dealing with referred clients or being involved in decision-making and administration (system-oriented , interventionist items) can be for the benefit of the pupil.

The trend towards openness in the distribution of scores is illustrated in Figures 4 : 2 and 4 : 3. On the frequency distribution of scores for Factor I only one respondent obtained a very high system-oriented score (40) although another 44 respondents were above the mid-point (27). On Factor IV (Teacher Identification) only 21 scored above the mid-point (12) and on Factor III (Ingressive Orientation) 41 scored above the mid-point (18). For Factor V (Counselling Distinctiveness) the number scoring above the mid-point (12) was 29.

Table 4 : 3

Means and Standard Deviations for the Factor Scores

Demonstrating the Trend towards Open Orientation

F	actor	Mean	Standard Deviation	Scale Mid-Point	Law's Factors
I	System/Open * Orientation	25.61	5.16	27.00	3 System Orientation
II	Interventionist Orientation	35 -04	4.01	27.00	4 Interventionist
III	Ingressive * Orientation	16.72	4.32	18.00	5 Ingressive (finally combined with 4)
IV	Teacher * Identification	9.13	3.73	12.00	l Teacher Identification
V	Counselling * Distinctiveness	10.50	2.69	12.00	
VI	Social Edccation	12.20	1.41	12.00	

Figure 4 : 2

NOTE: COUNT IN EACH INTERVAL INCLUDES THAT AT LOWER BOUNDARY BUT NOT UPPE

FACTURS

Figure 4:3

HISTOGRAM FOR

39/.

şo 8

Attitudes Versus Actions: The Twelve Situations

The twelve situations also purport to measure system/open orientation. However there is but weak evidence to support this view. As there are only 8 significant inter-correlations out of a possible 66 on the twelve situations (see Table 4 : 4) it appears unlikely that they measure a unitary construct.

Therefore the modest significant correlations between the sum of the situations and Factors I (r=0.313, p<0.01) and II, interpreted as a dimension of system orientation (r=0.231, p<0.01) must be interpreted with great caution.

Similar caution is necessary when considering the correlations between the percentage of situations scored as open and Factors I (r = -0.337) and III (r = -0.206) (See Table 4 : 5, noting the change in the direction of scoring).

Nevertheless some evidence of the validity of the twelve situations is provided by comments made voluntarily by respondents. These basically stated that the guidance counsellors concerned see the situations as real in their experience. The following two comments illustrate this point:

- (i) 'I found the questions most demanding, very much to the point, (touching on many areas I seemed to have been involved in a lot) and quite thought-provoking.'
- (ii) The Questionnaire, 'certainly gave me some soul-searching times.'

When the twelve situations are taken independently the open trend in responding is evident in the means (See Table 4 : 6) and frequency distribution (See Table 4 : 7). The Frequency of Response Table provides the strongest evidence of the predominance of open responses, 824 being 1's or 2's which are open. Only 89 are 4's or 5's, system-oriented, while 515 occupy the middle position (3).

Figures 4:4 to 4:7 illustrate the open trend with regard to Situations 1, 2, 3 and 5.

Intercorrelations among Situations 1 - 12

Situation Variable 10 11 12 1 2 3 4 5 6 7 8 9 Situation 1 .031 2 3 .190 .092 .081 4 .070 -.062 5 -.085 .102 -.106 .029 6 .124 .093 .115 -.106 .186 7 .032 .252 .018 .036 .006 .006 8 .031 .032 .133 .064 .062 .107 .053 9 .285 .168 .178 .119 .021 .132 .019 .054 .019 -.200 .094 10 -.042 .016 -.163 -.026 .046 .160 -.052 .121 -.034 .201 .034 11 .039 -.005 .102 .134 .075 .019 -.068 .050 12 -.081 .200 -.014 .071 .070 .154 .026 .033

Significance Levels : r = 0.180, p < 0.05

r = 0.234, p < 0.01

41/.

(N = 119)

, and 200

Table	4	:	5
-------	---	---	---

Intercorrelations * among Factors I to VI and the 12 situations scored according to % of open responses (N = 119)

Variable	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	% Situations
Factor 1							
Factor 2	.046						
Factor 3	.173	.076					
Factor 4	, 186	077	.247	-			
Factor 5	.299	122	.295	.186			
Factor 6	.203	. 46	058	.073	.148		
% Situations (Open)(NB)	337	167	206	140	036	066	

* Significance Levels : r = 0.180, p < 0.05

$$r = 0.234, p < 0.01$$

N.B. Correlations are negative on % situations (Open) because when scored a high score represented open orientation whereas on the factor scoring a low score represented open orientation.

Table 4:6

Means and Standard Deviations for the Twelve Situations Scores

Situation	Mean	Standard Deviation
1	2.06	0.94
2	1,93	0.98
3	2,13	0.92
4	1,96	1.00
5	1,66	0.90
6	2,26	1,09
7	2,52	0.88
8	2,58	1,07
9	2,20	0.98
10	2,04	1,16
11	2,09	1.08
12	2,16	1.00

Demonstrating the Trend towards Open Orientation

1 = 0 pen

- 2 = Leaning towards open
- 3 = Half and half compromise solution

4 = Leaning towards system

5 == System

Twelve Situations : Frequency of Responses

Situation	Response 1	2	3	4	5
l	19	66	25	9	0
2	36	44	36	2	1
3	18	55	42	4	0
4	37	38	40	4	0
5	54	40	23	2	0
6	26	29	55	7	2
7	7	25	85	2	0
8	7	40	48	23	1
9	12	66	31	8	2
10	38	39	29	9	4
11	30	43	38	5	3
12	29	26	63	1	···· 0··· ·
TOTALS	313	511	515	76	. 13

Sector Sector

Figure 4.4

45/.

. .

1

н 1911 — П

.

, ·

• • 14 °. 1

·

. I

· 1

HISTOGRAM FOR S ITUATION 2

	HISTOGRAM FOR SITUATION 1	0.50	
1.00 .		• • •	-
0.90		0.45.	
8		0.40	
0.80 .		Ú.35	
0.70		5 6 4	* U 4 4 * * * * *
0.50		0.30	* * * ± *036* ±036*
6 0 8		0.25	x x x x x x x x x x x x x x x x x x
0.50 .	*066* * * * *	0.20	* * * * * * * * * * * * * * * *
0.40	女	•	* * ± * * * & * * * * *
0.30	京 京 大 大 大 大 大 大	0.15	* * * * * * * * * * * * * * *
•		0.10	~ ~ ~ ~ ~ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆
0.20	* * *025* * * *	0.05	× * * * * * * * *008* * * * * * * *
0.10 .	*U19* * * * * * * * * * * * * * *	6 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
÷	*008* * * *009* * * * * * * * * * * *	0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
U.UU .	· · · · · · · · · · · · · · · · · · ·	and the second sec	

NOTE: COUNT IN EACH INTERVAL INCLUDES THAT AT LOWER BOUNDARY BUT NOT UPPER. Figure 4.6

Figure 4.7

HISTOGRAM FOR SITUATION 5

		HISTOGRAM FOR SITUATION	3
0.50	8		
Û.45	8 8 8 8	. 65 c	
Ú.40	6 6 6 8	★ ★ ★ ★ ★ ↓	
Ő . 35	• • •	* * * * * * * *	
0.30	•	* *042* * * * * * * * *	
Ú.25	8 6 8	x x x x x x x x x x	
0.20	9 8 9 9 9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
0 15	6 8 9	* * * * * * * * * * *	
0.13	5 6 5 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0.10	8 0 8 8	* * * * * * * * * * * * * * * *	
0.05	* 6 8 8	x x x x x x x x x x x x x x x x x x x x x x x x x x x x	
0.00	6 6 6 8	* * * * * * * 0 1 2 3 4 5	

0.50	• •
0.45	•
0.40	* 054* * * * *
0.35	• * * • * * • * * • * *
0.30	* * * * * *040*
0.25	x x x x x x x x x x x x x x x
0.20	• * * * • * * * • * * * • * * *
0.15	* * * * * * * *023* * * * * * * * * * *
0.10	a * * * * a * * * * a * * * b * * * b * * *
0.05	• * * * * * • * * * * • *008* * * *
0.00	• * * * * * * • * * * * * • * * * * * • * * * *

NOTE: C JNT IN EACH INTERVAL INCLUDES THAT AT LOWER BOUNDARY BUT NOT UPPER.

On the twelve situations the constriction of the range of responses (mainly 2 or 3 rather than 1,4 or 5) (See Table 4.7) may indicate that in reality New Zealand guidance counsellors operate from a middle or participant (Antonouris, 1974) position although still leaning towards open orientation.

Further evidence of this is provided by the comments about 'Undecided' responses. Seventeen respondents used this category because they saw themselves occupying a central position. The forty-six who used the 'Undecided' category because their action would depend on knowing more about the circumstances may also see themselves as operating in the middle position.

Some of the respondents made explicit comments about their middle position:

'Life is paradoxical and the clues to dealing with paradox are balance and understanding.'

'Trained counsellors should be adaptable, in fact have to be adaptable.'

'Like the school psychologist I want to be seen as equally available to all.'

'I want to be flexible, A counsellor does not take sides.'

'I do not want to put either (individual or school) first - harmony is what I want to achieve.'

'If I am to remain effective I must be seen to be fair to both staff and students.'

So the trend among New Zealand counsellors is towards the open end of the continuum although clustering round the middle.

Law found a similar clustering in the high-average and low-average system orientation range but when scores at the extremes of the systemopen continuum were considered more high system (73) than low system (52) were found. (Law, 1978(b) p.164).

Multivariate Analyses of Variance (MANOVAS) of the Factor Scores

and Twelve Situations

The classificatory variables, $\text{Sex}^{(\mathbf{x})}$ (male versus female), Length of Teaching Service^(T) (4 years or less versus five years or more), Experience other than Teaching^(O) (none versus some), Teaching Subject^(s) (various specialist subjects versus all subjects), Length of Counselling Service^(C) (4 years or less versus five years or more) and the University Training^(U) (yes versus no) were used in a series of multivariate analyses of variance (MANOVAS). Length of Teaching Service was finally revised^(R) to provide three categories : 0-4 years, 5-10 years, and 11 years or more. (See Table 4.8).

The dependent variables in each multivariate analysis of variance were the scores for each of the six extracted factors : System/Open Orientation, Interventionist, Orientation Ingressive Orientation, Teacher Identification, Counselling Distinctiveness and Social Education. Each of the twelve situations was also considered as a dependent variable.

Factors

The series of exploratory MANOVAS undertaken, involving three-way comparisons of the classificatory variables yielded no significant main effect or interactions, a somewhat surprising result It had seemed logical to expect some variance according to sex, other experience etc. The non-significant results are presented in Appendix D.

Classificatory Variables Used in the MANOVAS with Their Subgroups and the Number of Counsellors in Each Subgroup (N.B. N=119 for MANOVAS not 127)

<u>Variable</u> <u>Subg</u>	roups	Numbe	Numbers	
Sex (X)	Male	72	(60.5%)	
	Female	47	(39.5%)	
Other Experience(O)	Some other Experience	31	(26.5%)	
	No other Experience	88	(73.5%)	
University Training(U)	University Training	82	(68.9%)	
	Not university trained	37	(31.1%)	
Teaching Subject(S)	All subjects Specialised Subjects	92 27	(77.3%) (22.7%)	
Length of Counselling Service(C)	0-4 years 5 or more years	79 40	(66.4%) (33.6%)	
Length of Teaching Service(T)	0-4 years 5 or more years	20 99	(16.8%) (83.2%)	
Revised Length of Teaching Service(R)	0-4 years 5-10 years 11 or more years	20 40 59	(16.8%) (33.6%) (49.6%)	

Twelve Situations

The series of MANOVAS conducted on the twelve situations, involving three-way comparisons of the classificatory variables yielded six significant two-way interactions and one significant three-way interaction. The significant results are presented in Tables 4.9 to 4.13. Non-significant results are contained in Appendix E.

However the significant interactions occur on only a small number of situations:

- (1) Sex by University Training on Situations 7, 8, 10.
- Length of Counselling Service by University Training on Situation 8.
- (3) Sex by Length of Counselling Service by University Training on Situation 5. (See Table 4.9)

When Revised Length of Teaching Service was used it provided a significant two-way interaction with sex on Situations 1, 7, 9, 10 and 12.

The only main effect obtained was sex which was significant consistently on Situation 10 and from RX on situations 1, 7, 9 and 12 as well (See Tables 4.9 to 4.13).

As previously discussed (p. 40) the twelve situations do not appear to measure a unitary construct. Therefore any conclusions must be viewed very tentatively. The results come from a small number of situations but may suggest a tendency for females to be less open than males. (However the mean is still at the open end of the continuum). Some evidence that this trend could have been predicted was provided by the finding by Jacquiery (1979) that New Zealand female Secondary Teachers' College students expected to find their major satisfaction in teaching from the academic role (a 'system' goal) while males expected to find their major satisfaction from a helping role (an 'open' goal).

Summary of Multivariate Analyses of Variance (MANOVAS) : Main Effects, Interactions, Levels of Significance and Significant Dependent Variables for Sex, Length of Teaching Service, University Training, Length of Counselling Service, Teaching Subject, Other Experience and Revised Length of Teaching Service

	MAIN EI	FECTS	
CLASSIFICATORY VARIABLES	SEX	REVISED LENGTH OF TCHG.SERVICE	INTERACTIONS
Sex by Length of Teaching Service by University Training (XTU)	p<0.05 Situation 10		Sex by University Training Situations 7, 8, 10
Sex by Length of Counselling Service by University Training (XCU)	p<0.05 Situation 10		<pre>Length of Counselling Service by University Training p<0.05 Situation 8 Sex by University Training p<0.05 Situations 7, 8 Sex by Length of Counselling Service by University Training p<0.05 Situation 5 (almost on Situation 4, p<0.059).</pre>
Length of Teaching Service Length of Counselling Service by University Training (TCU)	-		Length of Counselling Service by University Training p<0.05 Situation 8
Sex by Other Experience by Teaching Subject (XOS)	p<0.05 Situation 10		-
Revised Length of Teaching Service by Sex (RX)	p<0.05 Situations 1, 7,9,10,12	p∠0.05 Situation 8	Revised Length of Teaching Service by Sex p∠0.05 Situations 1, 7, 9, 10, 12.

51/ °

Multivariate Analysis of Variance (MANOVA) of Situations Classified According to Sex, Length of Counselling Service and University Training : Sex Main Effect

أنتجاني

52/ **。**

Test of roots 1 through 1	F 1.997	df(hyp) 12.00	df (error) 101.00	p less than 0.032	R 0.438
Variable	F(1,112)	UNIVARIATE F I Mean Square	ESTS p less than	Standardized Dis Function Coef:	scriminant ficients
Situation 1	2.151	1.425	0.145	-0.277	
2	0.386	0.306	0.536	0.025	
3	1.249	0.789	0.266	0.326	
4	0.098	0.081	0.754	0.108	
5	3.217	2.042	0.076	0.569	
6	0.466	0.451	0.496	-0,103	
7	1.888	0.762	0.172	-0.037	
8	0.986	0.698	0.323	0.166	
9	3.030	2.087	0.085	-0.433	
10	5.784	6.429	0.018	-0.516	
11	0.518	0.503	0.473	0.313	
12	2.746	2.065	0.100	-0,488	

 $e^{\alpha i \beta a_{ij}}$

Multivariate Analysis of Variance (MANOVA) of Situations Classified According to Sex, Length of Teaching Service and University Training : Sex Main Effect

Test of roots 1 through 1	F 1.894	df(hyp) 12.00	df(error) 101.00	p less than 0.044	R 0.429
Variable	F(1,112)	UNIVARIATE F Mean Square	TESTS	Standardized Disc Function Coeffi	criminant icients
Situation 1	2.191	1.425	0.142	-0,299	
2	0.415	0.306	0.521	0.038	
3	1.295	0.789	0.258	0.343	
4	0.100	0.081	0.753	0.189	
5	3.054	2.042	0.083	0.499	
6	0.487	0.451	0.487	-0.070	
7	1.935	0.762	0.167	-0,137	
8	0,933	0.698	0.336	0.133	
9	2.894	2.087	0.092	-0.351	
10	6.002	6.429	0.016	-0.534	
11	0.510	0.503	0.477	0,280	
12	2.698	2,065	0.103	-0,461	

Multivariate	e Analysis of Varian	alysis of Variance (MANOVA) of Situations Classified According to Sex, Other Experience				
	and Teaching Subject		: Sex Main Effect			
Test of roots 1 through 1	F 1.904	df(hyp) 12.00	df(error) 101.00	p less than 0.042	R 0.430	
U Variable F(1,112)		UNIVARIATE F T Mean Square	UNIVARIATE F TESTS Mean pless than Square		Standardized Discriminant Function Coefficients	
Situation 1	2,111	1.425	0.149	-0.342		
2	0.405	0.306	0.526	0.068		
3	1,276	0.789	0.261	0.378		
4	0.097	0,081	0.757	0.129		
5	2,893	2,042	0.092	0.471		
6	0.471	0.451	0.494	-0.075		
7	1.742	0.762	0.190	-0.082		
8	0.853	0.698	0.358	0.228		
9	3.072	2.087	0.082	-0.419		
10	5.676	6.429	0.019	-0.483		
11	0.504	0.503	0.479	0.335		
12	2.687	2.065	0.104	-0.445		

°∕ng

Multivariate Analysis of Variance (MANOVA) of Situations Classified According to Sex, and Revised

55/

Length of Teaching Service : Sex Main Effect

Test of roots 1 through 1	F 2.296	df(hyp) 12.00	df(error) 110.00	p less than 0.012	R 0.448
Variable	F(1,121)	UNIVARIATE F 1 Mean Square	ESTS p less than	Standardìzed Discr Functìon Coeffic	ciminant zients
Situation 1	5,996	5,034	0.016	-0,357	
2	0,223	0.216	0,637	0.029	
3	0.057	0.047	0.812	0.371	
4	0.501	0.510	0,480	0.153	
5	0.400	0,325	0.528	0.470	
6	2.692	3.201	0,103	-0.07 8	
7	5,927	4,375	0.016	-0.180	
8	0.265	0.294	0 .6 07	0.191	
9	6.794	6,337	0.010	-0.438	
10	9.707	12.487	0.002	-0.544	
11	0.089	0,106	0,765	0.362	
12	6.421	6.213	0,013	-0.526	

Yet it is Sex in interaction with University Training which produces the most important result. In situations 7, 8 and 10 it is evident that whereas women without university training are consistently less open than men without university training, there are either no sex differences or women are more open than men if university trained. In other words university training has a decided impact on women (i.e. towards openness) but has little impact on men in relation to system/open orientation. (See Tables 4.14, 4.15).

On Situation 7 males with no university training are significantly more open than females with no university training. (See Figure 4.8). The latter tend to occupy a middle position. The male counsellor with no university training would tend to support Jillian in her desire for a change of form whereas the female counsellor with no university training would tend to work for a compromise.

This trend is also true for Situation 10. (F(1,112)=9.33 (p<0.01). Here the male counsellor without university training would be a little more inclined to accept Annette's demand for confidentiality. (See Figure 4.9).

However university training does affect the responses of females. Trained females are significantly more open than females without university training on Situations 8 (F(1,112=10.33(p<.01) and 10 (F(1,112)=5.02 (p<0.05) (See Figure 4.10). The university trained females would tend to support Gordon in his desire to leave school and accept Annette's request for confidentiality while the females without university training would be more likely to adopt a compromise position.

University trained females are also significantly more open F(1,112)= 4.48 (p<0.05) than university trained males on Situation 8 although both are still inclined towards the middle of the scale.

University training influences males on Situation 7 in that they are more system-oriented than males without university training (F(1,112)=5.79)

Sex by University Training Interaction Effect : Significant Simple Effects Results for Each Dependent Variable with F Ratios and Levels of Significance

Situations	Simple Effects	F Ratio (df 1,112)	Significance Level
7	Males : university-trained versus those without university training	F = 5.79	(p<0.05)
	No university training : males versus females	F = 14.06	(p<0.01)
8	Females : university-trained versus those without university training	F = 10.33	(p<0.01)
	University Training : Females versus Males	F = 4.48	(p<0.05)
10	Females : university-trained versus those without university training	F = 5.02	(p<0.05)
	No university training males versus females	F = 9.33	(p<0.01)

Simple effects analysis after Winer, 1971, pp.445-451.

Sex by University Training Interaction Effect : Subgroup Means* for the Significant Dependent Variables Arranged According to Sex and University Training

	Situation	Sex	University Training	
· .		· · · · · · · · · · · ·		
			University Training	No University Training
	7	Male	$\overline{X} = 2.71(55)$	$\overline{X} = 2.28(18)$
		Female	$\overline{X} = 2.65(27)$	$\overline{X} = 2.95(19)$
	8	Male	$\overline{X} = 2.84(55)$	$\overline{X} = 2.67(18)$
		Female	$\overline{X} = 2.32(27)$	$\overline{X} = 3.11(19)$
	10	Male	$\overline{X} = 1.98(55)$	$\overline{X} = 1.94(18)$
		Female	$\overline{X} = 2.18(27)$	$\overline{X} = 2.84(19)$

* The numbers in brackets after each mean indicate the number of respondents in each subgroup

100

58/ .

Graph showing the Interaction between Sex and University

Graph showing the Interaction between Sex and University

Graph showing the Interaction between Sex and University

Training on Situation 8 from XTU

Graph showing the Interaction between Length of Counselling

 $(p \lt.05)$ although both groups still incline towards the open end of the scale.

The interaction between Length of Counselling Service and University Training (from XCU) on Situation 8 (See Figure 4.11) is much more tenuous. It may be due to chance as the huge mean ($\overline{X} = 3.36$) and small number of subjects (N=14) may indicate.

Figure 4.12 sets out the three-way interaction between sex, length of counselling service and university training on Situation 5. In the case of females with no university training there is virtually no significant difference in openness according to length of counselling service. However in the case of females with university training, those with short counselling service are more open than those with long counselling service.

It would be unwise to be anything but tentative about this result. Cell numbers are very small (19 for females with short counselling service and university training, 9 for females with long counselling service and university training). The difference between the means is not great (\bar{X} =1.421) for those with short service and \bar{X} =2.00 for those with long service) and both means lie at the open end of the system-open continuum. Law hypotheses that, while training may produce an open orientation, once the counsellor has been back in the school for five or six years the system will have reasserted itself. Perhaps women, who are often thought of as being more conforming, are more susceptible to this pressure than men. However, it must be remembered that this finding pertains to only nine respondents.

On short counselling service there is little difference between males with university training ($\overline{X} = 1.892$) and those without ($\overline{X} = 1.778$). However males with long counselling service and university training are more open ($\overline{X} = 1.500$) than males with long counselling service and no training ($\overline{X} = 2.556$). In other words the effect of university training appears to be greater on males with long counselling service.

Situation 5 : Interaction Sex, Length of Counselling Service and University Training

6ty/ •

However their orientation on entry to training is not known. The two groups may have differed there. Also, the cell numbers are again small (18 for long service and university training, 9 for long service without training).

As this three-way interaction occurs only on Situation 5 it is impossible to attach too much significance to it.

In summary, it would appear, on the evidence of this study, that New Zealand guidance counsellors are a fairly homogeneous group, differing only slightly according to sex and whether or not they have university training. The import of these differences is weakened by the fact that they relate to so few of the situations and to none of the factors.

65/ .

Counsellor Tasks : Preferences versus Practice

One of the realities of the counsellor's life is that he is working in a system that can allocate tasks to him which he sees as inappropriate to his role. This is evident in Table 4.16 which shows, for example that while only 17.3% of respondents considered playground duty to be an appropriate task 47% were involved in it, despite the recommendation in the 1969 Hewitson Document that it not be part of the counsellor's role. (Department of Education, 1971, Appendix I p.vi). Almost twice as many counsellors as want to are involved in formal teaching from a set curriculum. The only area in which most counsellors having such a responsibility actually want it is that of extra-curricula activities.

Thus counsellors are to some extent constrained by the demands of the system as the McDiarmid (1979) study also found (e.g. 27% of counsellors did do playground duty while 54% principals thought they should; 23% enforced school rules and dress codes, 38% of principals thought that they should). It is in relation to tasks such as playground duty in particular that counsellors are regarded as teachers.

66/。

Counsellor Tasks : Differences between the Ideal and the Reality

	Ideal	Reality	
Task	% Wanting This	% Having It	
Supervision from a Guidance	21.20	8%	
Counselling Specialist	21.26		
, ,			
Formal teaching from a set			
Curriculum	12.5%	22%	
'Shepherding' pupils in a			
Custodial sense	17.3%	47%	
(e.g. playground duty)			
'Extra-curricula' responsibilities	82.7%	84.2%	

Computed from the number of 4's and 5's for each respondent

1007

SUMMARY AND DISCUSSION

The present study sought to discover whether Law's System Orientation and Teacher Identification Inventories provide a valid measure of system orientation when used with New Zealand secondary school guidance counsellors. System orientation is defined as the tendency to support the school system. Its opposite, open orientation, is defined as a tendency to support the individual.

A second purpose was to establish where New Zealand counsellors lie on the system-open continuum and to compare them with their British counterparts. A third was to investigate the influence of sex, university training, length of teaching service, other experience, teaching subject and length of counselling service on orientation. Finally an attempt was made to discover any discrepancies between counsellor preferences and practices in relation to some common teacher tasks.

In November, 1979, a Questionnaire made up of the System Orientation and Teacher Identification Inventories, plus twelve situations presenting counsellors with a dilemma, was mailed to the two hundred guidance counsellors known to be occupying positions in New Zealand secondary schools. Although only 63,5% of the Questionnaires were returned, the sample proved to be representative in that it closely approximated the characteristics of the most comprehensive survey previously undertaken, McDiarmid's 1979 thesis for which 93% responded.

Agreement with system items on the SOI and TII and system-oriented responses to the twelve situations earned high scores while agreement with the open items earned low scores.

A factor analysis of the matrix of inter-correlations among the SOI and TII items was conducted. Six major factors were extracted:
I System-Open Orientation (accounting for 13.2% of the variance)
II Interventionist Orientation (9.1% of the variance)
III Ingressive Orientation (7.2% of the variance)
IV Teacher Identification (5.9% of the variance)
V Counselling Distinctiveness (4.7% of the variance)
VI Social Education (3.8% of the variance)

System Orientation, the tendency to legitimate the purposes and values of the school, was an important factor on both the New Zealand and the British samples, although in New Zealand it loaded as one dimension of a system-open continuum whereas in Britain, a separate factor, Person Focus, representing the open end of the continuum was extracted. An Interventionist factor was extracted from both samples, the difference being that in New Zealand intervention was desired on behalf of the system only, whereas in Britain, Law found two other categories of intervention.

The Ingressive Orientation factor, a measure of the extent to which counselling is seen as an ingression into traditional teaching practices was present on both samples, although Law subsumed it under the heading Teacher Identification as one facet of a teaching-non-teaching orientation. Teacher Identification as a separate factor appeared in both New Zealand and Britain, but with fewer items loading on it in the former.

Two factors, Counselling Distinctiveness, and Social Education, were difficult to relate to the British results. The former correlates modestly with System-Open Orientation on the New Zealand sample and could be seen to measure a dimension of Law's System Orientation in that it represents one extreme, the provision of a separate pupil service. Social Education was a factor difficult to interpret, and one unique to New Zealand.

Overall it was possible to conclude that, as in Britain, the System Orientation and Teacher Identification Inventories do provide a valid measure of system orientation. The twelve situations intercorrelated but

69/。

modestly and did not appear to measure a unitary construct. However a significant number of respondents voluntarily attested to their reality in their own counselling experience.

From the information available it was not possible to state accurately the orientation of British counsellors, although a slight trend towards system orientation could be proposed. In New Zealand a trend towards openness was evident from the means for the factor scores and from the frequency distributions. Such a trend was also evident for the Twelve Situations. However on the Twelve Situations the constriction in the range of responses in the middle rather than at the extremes may indicate that counsellors have to operate from a middle position, balancing any conflicting demands between the individual and the institution, while still inclined to support the individual. A number of respondents commented to this effect.

Any differences in orientation between New Zealand and British school counsellors could be explained by the difference in samples. It is logical to expect that those in full-time counselling work should be more open than those who combine counselling with teaching. All but seven of the New Zealand respondents were full-time counsellors whereas only 45% of the British respondents were engaged in counselling from half to full-time.

One possible explanation for the open trend of the New Zealand counsellors may lie in training. The orientation of the university-trainers tends to be open. A greater degree of system orientation might be evident if Teachers' Colleges ran the training courses. Also it could be assumed that the thirty-six respondents who had had previous experience in clientcentred occupations like vocational guidance, social work or psychology and the twenty-seven who had taught in special education programmes would tend to be open. In addition one of the common motivations for entering counselling is concern for the individual.

70/。

The study yielded few possible explanations of the differences among counsellor attitudes or their proposed actions. From the six factors which emerged no significant main effects or inter-actions could be attributed to any of the six independent variables. The twelve situations yielded a significant main effect due to sex in five situations, suggesting a tendency for females to be open, but less so than males. However this conclusion must be viewed very cautiously.

Sex interacted with university training on three situations. When faced with these particular dilemmas women without university training were consistently less open than men without university training. However in one of these situations (7) there was no sex difference accompanying university training and in the other two situations women were more open than men if university trained.

Sex in interaction with revised length of teaching service was significant on five situations and length of counselling service with university training on Situation 8 only. The latter may be due to chance as the number of subjects is small and the mean large.

The only significant three-way interaction was sex by length of counselling service by university training on Situation 5. In the case of females university training was associated with openness where counselling service was short but there was no significant difference in openness associated with length of counselling service when the counsellors were untrained. Training made little difference to males with short counselling service but resulted in more openness in those with long service. The significance that can be attached to these results is again limited by the small numbers involved and the fact that they occur on only one situation.

It is important now to consider whether the small number of significant differences could be due to factors within the methodology of the investigation, or whether they reflect fairly accurately the attitudes and preferences of secondary school guidance counsellors.

71/.

It is possible that the proportion responding (63.5%) might have been a factor in producing homogeneity. If the non-respondents differed significantly from the respondents on important variables, this could have been responsible for bias in the findings. However, as previously discussed, the sample appears to be representative on the usual criteria, and these criteria themselves seem to be unproductive of variance in the data. It is difficult to envisage what other variables or criteria might have yielded more variance.

Another possibility is that the subjective nature of the rating of scores for the twelve situations may have tended to obscure differences. There could be a tendency in respondents to choose the mid-point in the range of possible scores rather than the extremes on items that were unclear to them or for which they whished to make a qualified response.

Also it must be acknowledged that the twelve situations included as a measure of system orientation are of unknown validity. However they seem to be real. They have their origin in the work of Law, they correlate modestly (r = 0.313) with Factor I, System/Open Orientation, and comments from respondents attest to their validity.

On the other hand a middle position may reflect the reality of the school situation. New Zealand counsellors may in reality be a homogeneous group. This is a small country with a national education system. All but seven of the guidance counsellors in the sample had been teachers at some time. Therefore they had been through a selection procedure for teaching based on national criteria and another selection procedure for counselling controlled by the same educational authorities.

A second factor which could contribute towards homogeneity is the training courses, particularly at Canterbury and Massey which have trained the largest number since 1973. These courses may have a unifying effect. They tend to be open in orientation. The Education Department probably also exercises a role which tends towards uniformity. It has to approve all appointments and it monitors training programmes through an annual meeting of trainers.

72/.

The professional organisations, P.P.T.A. and N.Z.C.G.A. may also encourage homogeneity. P.P.T.A. defines counsellors as teachers and resists the prospect of their belonging to separate professional organisation. Its Code of Ethics is a form of control. The N.Z.C.G.A. circulates a newsletter to all guidance counsellors whether or not they are Association members (50% were in April 1979) and its Annual Conference may have a unifying effect. Most counsellors know personally or know about each other and meet at N.Z.C.G.A. Annual Conference or at regular regional meetings and in-service training days.

New Zealand secondary school guidance counsellors therefore appear to be a relatively homogeneous group somewhat open in orientation. Even though they may be client-centred the power of the institution is such that counsellors must at times compromise. For some this means accepting tasks such as playground duty that they do not regard as properly belonging to their role.

In New Zealand, guidance counsellors are classified as teachers. They are but one part of a guidance network. Perhaps as Law suggests "the problems connected with reconciling teaching and counselling are much more critically attached to teaching approaches than to teaching tasks." (Law, 1978(a),p.69). The child-centred teacher and the open-oriented counsellor may well share a common concern, the fullest possible development of each unique individual.

73/.

Sincere thanks are due to my supervisors, Mr. B. Keeling and Dr. J.J. Small for their encouragement, support and ready assistance.

.

.

- Antonouris, G. Client-Centredness, Sociological Awareness and Counsellor Training. British Journal of Guidance and Counselling, 1975, 3, 2, 209-216
- Antonouris, G. Mental Health and Education. <u>British Journal of Guidance</u> and Counselling, 1974, 2, 1, 84-86
- Arbuckle, D.S. <u>Counseling : Philosophy, Theory and Practice</u>. 2nd ed. Boston, Massachusetts : Allyn and Bacon, Inc., 1970
- Arbuckle, D.S. <u>Pupil Personnel Services in the Modern School</u> Boston, Massachusetts : Allyn and Bacon, Inc., 1966.
- Armor, D.J. <u>The American School Counselor</u>. New York : Russell Sage Foundation, 1969
- Aubrey, R.F. Misapplication of Therapy Models to School Counseling. Personnel and Guidance Journal, 1969, 48, 4, 273-278
- Bock, R.D. <u>Multivariate Statistical Methods in Behavioural Research</u>. New York : McGraw-Hill, 1975
- Boy, A.V., and Pine, G.J. The Counselor in the School : a Reconceptualisation Boston : Houghton Mifflin, 1968
- Cicourel, A.V., and Kitsuse, J.J. <u>The Educational Decision-Makers</u>. Bobbs-Merrill, 1963.
- Department of Education. <u>Guidance in Secondary Schools : Report of a Working</u> Party, Wellington : Department of Education 1971
- Department of Education. <u>Guidance Counsellor Positions</u>. Education Gazette, 1979, 58, 16, 1.
- Douvan, E. and Adelson, J. The Adolescent Experience. New York : John Wiley, 1966

Graff, R.W. and Warner, R.W. Jnr. Attitudes toward a School's Counseling Services as seen by Administrators, Teachers, and Counselors in Cochran, J.R., and Peters, H.J. (eds)

<u>Guidance : An Introduction - Selected Readings</u>. Columbus, Ohio : Charles E. Merrill, 1972, pp.149-154.

- Harris, S.J. The Authentic Person. Niles, Illinois : Argus, 1972
- Heilbrun, A.B., Kleemeir, C., and Piccola, G. Developmental and situational correlates of achievement behavior in college females. Journal of Personality, 1974, 42, 3, 420-436.
- Hitchcock, W.L. Counselors feel they should... <u>Personnel and Guidance</u> Journal, 1953, 32, 2, 72-74
- Holly, D. Society, Schools and Humanity. London : Paladin, 1972
- Jaquiery, E.J. <u>An Exploratory Investigation into the Social and Educational Back-</u> <u>ground and Attitudes of Secondary School Teacher Trainees, and some</u> <u>Implications for Pre-Service Teacher Training</u>. Unpublished M.A. thesis (Education) Victoria University, 1979
- Law, B. Anne's Story : a Counsellor's Dilemmas British Journal of Guidance and Counselling, 1974, 2, 212-220
- Law, B. System Orientation : a Dilemma for the Role Conceptualisation of 'Counsellors' in Schools. British Journal Of Guidance and Counselling, 1977, 5, 2, 129-148.
- Law, B. Counsellors as Teachers. British Journal of Guidance and Counselling, 1978(a), 6, 1, 59-73
- Law, B. The Concomitants of System Orientation in Secondary School Counsellors. <u>British Journal of Guidance and Counselling</u>, 1978(b), <u>6</u>, 2, 161-174
- Law, B. The Contexts of System Orientation in Secondary School Counselling. British Journal of Guidance and Counselling, 1979, 7, 2, 199-211

- Lister, J.L. and Northrop, J.C. Teaching Experience for Counselors : A Review of the Evidence in Cochran, J.R., and Peters, H.J. <u>Guidance : An Introduction - Selected Readings</u>. Columbus, Ohio : Charles E. Merrill, 1972, pp.176-185
- Lortie, D.C. Administrator, Advocate or Therapist? in Mosher, R.I., Carle, R.F., and Kehas, C.D.(eds) : <u>Guidance an Examination</u> New York : Harcourt, Brace and World, 1965, pp.127-143
- McDiarmid, J. McK. <u>The Role of the New Zealand Guidance Counsellor</u> : <u>Consensus and Conflict</u>. unpublished M.A. thesis (Education) University of Otago, 1979.
- Munro, E.A. <u>Administrators' and Teachers' Views of Guidance Counsellor</u> <u>Orientation</u>. unpublished research study, University of Canterbury, 1980.
- N.Z. Post-Primary Teachers' Association. Handbook and Code of Ethics. Wellington : N.Z.P.P.T.A., 1978
- N.Z. Post-Primary Teachers' Association. <u>The Functions of School Guidance</u> <u>Counsellors</u> - a discussion paper. Wellington : N.Z.P.P.T.A., 1979
- Parsons, T. and Bales, R.F. <u>Family, Socialization and Interaction Process</u>. Illinois : Free Press, 1955

Seligman, M., and Baldwin, N.F. Counselor Education and Supervision. Springfield : Charles C, Thomas, 1972

Silcock, A. The Social Sex Roles of Brisbane Youth. Australian Journal of Education, 1966, 10, 2, 171-185

Shostrom, E.L. <u>Personality Orientation Inventory</u>: <u>Manual</u>. San Diego, Educational and Industrial Training Service, 1968

Small, J.J. The Guidance Counsellor's Mandate. N.Z. Counselling and Guidance Association Journal, 1978, 1, 2, 24-29

- Small, J.J. Guidance and Counselling Research in New Zealand <u>The State</u> of the Art paper presented at the Educational Research Conference, Wellington, 1979
- Steinmann, A. and Fox, D.J. Male-female perceptions of the female role in the United States. Journal of Psychology, 1966, 64, 256-276
- Strang, J.M. <u>Guidance Counselling in New Zealand</u>. unpublished M.A. thesis (Education) University of Otago, 1973
- Sweeney, T.J. The School Counselor as Perceived by School Counselors and Their Principals. <u>Personnel and Guidance Journal</u>, 1966, 44, 8, 844-849
- Webster, A.C. Guidance and Counselling. in Bates R.J.(ed.) <u>Prospects in</u> New Zealand Education. Auckland : Hodder and Stoughton, 1970
- Winer, B.J. <u>Statistical Principles in Experimental Design</u> 2nd ed. New York : McGraw-Hill, 1971
- Woodsworth, J.G. The School Counsellor : A Practitioner in Search of a Profession. Journal of Educational Thought 1970, 8, 1,29-39
- Manthei, R.J., and Tuck, B.F. (1980) Effects of training on New Zealand school counsellors as measured by the Personal Orientation Inventory. <u>International Journal for the Advancement of</u> Counselling (in press)

APPENDIX A

UNIVERSITY (OF CANTERBURY
Private Bag	
CHRISTCHURCH	I. 1

QUESTIONNAIRE - COUNSELLORS and GUIDANCE TEACHERS

As part of a research project, we wish to survey some of the work preferences Information from this project will be helpful in our training of counsellors. course for guidance counsellors. We would be grateful if you would rate each item on this scale and return it to the above address by Monday 19 November 1979. The results will, of course, be confidential: names of schools and persons will We would be glad to answer enquiries about this survey. not be used.

EDUCATION DEPARTMENT

	2	-		-
		John Small		
October 1979		Anne Munro		
	n an		······································	
Title (circle one): Gui	dance Teacher; C	ounsellor.		
Sex (circle one): Mal	e / Female			
Length of teaching servi	ce before beginni	ng counselling	·	years
Length of other service	(specify, e.g., V	ocational Guida	ance)	
			<u></u>	years
Main teaching subject:				
Length of counselling se	rvice:		 .	/ ************************************
How many hours per week	do you teach exam	inable subjects	:?	
How many hours per week education/careers?	do you teach clas	s size groups i	n social.	
Do you do regular playgr	ound duty? YES	5 / NO		
In what extra-curricula	activities are you	u involved?	بور مانسر دین رو میروی ور م	<u></u>
Who, if anyone, supervis	es your work?(e.g	., Principal, F	sychologi	.st)

Have you undergone university training in guidance counselling? YES / NO

DIRECTIONS

For each item please circle one of the symbols on the right. The meaning of the respective symbols is as follows: Strongly Agree (SA); Agree (A); Undecided (U); Disagree (D); Strongly Disagree (SD) Your reasons for marking "Undecided" could be important. Please include them in the space provided on p.4.

1.	I want to be a useful source of information about the pupils to the school.	SA	A	U	D	SD
2.	I want to be seen to be loyal to the school.	SA	A	ប	D	SD

i

3.	I want to be able to bring about changes in the school on behalf of the pupils.	SA	А	U	D	SD
4.	I want to be free to act as an advocate on behalf of the pupil.	SA	A	υ	D	SD
5.	I want to work in a school where I can share in its general educational and social philosophy.	SA	A	U	D	SD
6.	I am ready to accept responsibility for maintaining discipline.	SA	A	U	D	SD
7.	I want to work with pupils who are referred by my teaching colleagues.	SA	A	υ	D	SD
8.	I want to help bring about socially desirable changes in the pupils.	SA	A	U	D	SD
9.	I want to mediate the needs and problems of the teachers to the pupil.	SA	A	U	D	SD
10.	I want to be free to work out my own role in the school.	SA	A	U	D	SD
11.	I want to employ behaviour modification techniques.	SA	A	U	D	SD
12.	Where the interests of the school and the pupil clash I want to put the interests of the school first.	SA	А	U	D	SD
13.	I want to be free to acknowledge to certain pupils that they are right to oppose the demands of the school.	SA	A	U	D	SD
14.	I want to contact and work through the pupils' informal social systems.	SA	A	U	D	SD
15.	I want to protect the school against potentially harmful pupils.	SA	A	U	D	SD
16.	I want to achieve a position of decision-making responsibility in the school.	SA	A	υ	D	SD
17.	I want to employ client-centred techniques.	SA	A	U	D	SD
18.	I want to put the needs of the individual before the needs of the group.	SA	A	U	D	SD
19.	I want to help the teachers by showing them how they can best get the cooperation of pupils.	SA	A	U	D	SD
20.	I want to provide a service for pupils which is not being provided by any other part of the school system.	SA	A	U	D	SD
21.	I want to work alongside, but separately from, the other services provided by the school rather than integrally with them.	SA	A	U	D	SD
22.	I want my work to be assigned to me by the school in which I work.	SA	A	υ	D	SD

ii

23.	I want to be involved in the administrative work of helping to plan and run the school.	SA	A	U	D	SD
24.	I want to help the pupil change the school rather than helping the school to change the pupil.	SA	A	U	D	SD
25.	I want to help pupils comply with the requirements of the school.	SA	A	Ŭ	D	SD
26.	I want to engage in liaison, communication and consultation work in the school.	SA	A	U	D	SD
27.	I want to work with pupils having primarily 'personal difficulties (as opposed to educational or vocational difficulties).	SA	A	U	D	SD
28.	I want to be able to work from the pupil's point of view in a disagreement rather than from the school's point of view.	SA	A	U	D	SD
29.	I want to work with parents to show them how they can best help their children meet the requirements of the school.	SA	А	U	D	SD
30.	I want to communicate the values of the school to the pupil.	SA	A	U	D	SD
31.	The professional ethic I want to work to is different from the professional ethic of the teaching profession.	SA	А	υ	D	SD
32.	I want to combine my role with a teaching role where I am also communicating to the pupil the disciplines and values of society.	SA	А	U	D	SD
33.	I want to do work which is more like that of a school psychologist than that of a teacher.	SA	A	U	D	SD
34.	I want to have a teaching programme so that I can demonstrate to my colleagues my effectiveness as a teacher.	SA	А	U	D	SD
35.	The work I want to do is more like that of a psychiatrist than it is like that of a teacher.	SA	A	υ	D	SD
36.	I want my counselling and interviewing work to be supervised by a specialist in guidance and counselling rather than by the headteacher or a senior teaching colleague.	J SA	А	U	D	SD
37.	I want my counselling and interviewing work to be combined with a timetabled teaching programme so that I can understand what is happening in the daily					
38.	life of the school. I want to combine my counselling and interviewing	SA	A	U	D	SD
	role with a role where I am doing formal teaching from a set curriculum.	SA	А	U	D	SD
39.	I want to combine my counselling and interviewing role with a role where I am responsible for					
	snepheraing or 'looking after' the pupils in a custodial sense.	SA	A	ប	D	SD

iii

	40.	I want my counselling and interviewing work to be seen by the pupils as something different from the work of the teachers.	SA	A	U	D	SD
	41.	I want to combine my counselling and interviewing role with a role where I am also working with timetabled groups in an informal way and where the pupils can choose the topics for study and discussion.	SA	A	U	D	SD
	42.	I want to combine my counselling and interviewing role with a teaching role where I can help pupils gain a sense of themselves as individual persons.	SA	A	U	D	SD
	43.	The skills I want to develop are different from the skills of most teachers.	SA	A	U	D	SD
	44.	The work I want to do is more like that of a social worker than it is like that of a teacher.	SA	A	U	D	SD
)	45.	I want to have a timetabled teaching programme so that I can keep in touch with the day-to-day problems of the classroom.	SA	А	U	D	SD
	46.	I want to combine my counselling and interviewing role with a teaching role where I can help the pupil develop self-discipline and a sense of their own values.	SA	A	U	D	SD
	47.	The work I want to do is different even from the work of a pupil-centred teacher.	SA	A	U	D	SD
	48.	I want to combine my counselling and interviewing role with a role where I am also having 'extra- curricula' responsibilities in which I can engage					
		with the pupils in an easy and relaxed manner.	SA	А	U	D	SD
	Items	which you marked U (Undecided)					

iv

Items which you marked U (Undecided)

tem No.	Reason				
	·	· · · · · · · · · · · · · · · · · · ·		 	
	·····				
			····	 	
			· · · · · · · · · · · · · · · · · · ·		
		······································	······································	 	

What would you as a school counsellor do in the following situations? (One sentence answers will suffice)

 Andrew in Form 7 is offered a prefect's position which he wants to decline because he does not believe in being in a position of authority over his peers. He comes to you for advice.

2. Keith is a deeply distressed third form school refuser. The Principal asks you to get him back to school and expects quick results. You find deep-seated family problems.

3. Catherine, who is academically able and intends to go on to university, complains to you that she resents being pushed by teachers to sit scholarship.

4. David is referred to you because of his aggressive behaviour in class. He confides in you a lot about his circumstances. Later you are asked to write a detailed report for the Board of Governors supporting a recommendation for expulsion.

5. Eddie is referred because teachers consider he is an under-achiever. In the process of counselling you discover that he has deep emotional problems.

.

6. The Principal has asked you to take sex education with class groups during Liberal Studies time on Thursday afternoons. At that time you had arranged to run a small group for seniors suffering from severe anxiety. There is no other in-school time you can do this.

7. Jillian who is experiencing a serious personality clash with her form teacher asks to be transferred to another form. Such transfers are against school policy except in extreme situations.

- 8. Gordon admits that his teachers are right in describing him as "lazy". He asks you whether he should leave school to take a job which has been offered to him. He very much wants to take it but it has few prospects and will use few of his abilities.
- 9. Sione comes to you because the Principal has refused permission for him to be away for 10 days at a Samoan Church gathering in a distant centre.
- 10. Annette refers herself to you after making a suicidal gesture. She confides this to you but then refuses to accept further help from you unless you maintain absolute confidentiality.
- 11. You are in charge of testing in your school. At the beginning of March you arrange for the P.A.T. reading tests and an interest inventory to be administered to all third formers. June, an anxious, vulnerable 14 yearold, is upset by these tests. Her parents complain to the Principal and the Chairman of the Board of Governors that the use of such tests represents an unacceptable invasion of privacy.
- 12. Ferne refers herself to you saying she is being persecuted by younger girls. Peers and teachers see her as a moaner who needs to grow up, her parents see her as an innocent victim of "tough" girls, and a psychologist sees her as an unwanted child.

APPENDIX B

RATER'S GUIDE

Scoring

1	\equiv	Open

- 2 = Leaning towards open
- 3 = Half and half compromise solution
- 4 = Leaning towards system
- 5 = System

Definitions

- Open = -concerned with the emotional and personal concerns of individuals -willing to act as an advocate for pupils and a change agent in the school system
 - -in a clash of interests inclined to put the interests of the individual first

-defines problems from point of view of the child

System -loyal to the school, furthering its interests

-in clashes between the individual and the group tends to put the interests of the group first

-works towards adjustment of pupils to fit the system

Sample Responses

Items 1

1. Support him in his decision.

- 2. Examine the implications of possible choices encourage (let) him decide.
- 3. Examine the pros and cons.
- 4. Examine implications advise to accept.
- 5. Tell him he should accept.

Items

4

- Tell the Principal he can't have quick results. Work on the family problems perhaps calling in other agencies e.g. Psychological Service.
 - 2. Explain situation to Principal work on family problems.
 - 3. Try to get Keith back to school and work on family problems.
 - 4. Concentrate on getting some form of schooling be it a transfer or correspondence.
 - 5. Get him back to school as quickly as possible. e.g. by using behavourist techniques.
- 3 1. Represent Catherine's case to the teachers.
 - 2. Examine the issues but support her in her decision.
 - 3. Examine the advantages and disadvantages of Scholarship.
 - 4. Stress the advantages of sitting Scholarship.
 - 5. Tell her she should sit.
 - 1. Absolutely refuse to write the report or reveal confidential information.
 - 2. Write or speak on David's behalf to his advantage.
 - 3. Write a factual report (don't support expulsion or David).
 - 4. Write a report if expulsion seems justified because of the effect of David's behaviour on his peers.
 - 5. Write as directed and support expulsion.
- 5. 1. Focus only on the deep emotional problems (may include referral to psychologist etc).
 - 2. Work on the emotional problems help teachers see how these affect achievement.
 - 3. Work on both the under-achievement and the emotional problems.
 - 4. Work on the underachievement with some consideration of the emotional problem.
 - 5. Treat the educational aspects only i.e. focus on the underachievement.

Items

7

9

- 6 l. Insist on taking the small group.
 - 2. Try to negotiate with Principal so he will allow the small group.
 - 3. Compromise arrangement e.g. take both but on alternate weeks.
 - 4. Make an out of school time for the small group and take sex education as timetabled.
 - 5. Give in to the Principal and take the sex education only.
 - 1. Transfer Jillian regardless of oppostion.
 - 2. Present her case as "extreme" and therefore justifying transfer.
 - 3. Try to get Jillian and the teachers together and transfer only if this doesn't work.
 - 4. Persuade Jillian to see the value of staying.
 - 5. Insist Jillian has no option but to stay in her present form.
- 8 1. Support Gordon in his desire to leave.
 - 2. Examine implications (goals, prospects etc) of his actions but let him make his own choice.
 - 3. Examine all the pros and cons.
 - 4. Examine the implications of possible choices but try to persuade him to stay (maybe provide work exploration to show him how "boring" the job is).
 - 5. Tell him he should stay at school and exhort him to work harder.
 - 1. Go to the Principal on Sione's behalf or tell Sione to just go to the Church gathering regardless.
 - 2. Try to negotiate with the Principal or advise the parents of their options.
 - 3. Go through the implications of going and of staying.
 - 4. Go through the implications but advise Sione to stay at school.
 - 5. Tell Sione he must stay at school that is the legal position.

Item

- 10 1. Accept Annette's demand for absolute confidentiality.
 - 2. Accept the demand with the proviso that you may have to break it later but will inform her first.
 - 3. Persuade her to let you divulge this to.....
 - 4. Refuse to accept her demand.
 - 5. Refuse to accept and tell the Principal and/or her parents.
- 11 1. Get all parties together, explain testing, exempt June if she is still distressed.
 - 2. Get all together and explain.
 - 3. Accept their fears but continue testing.
 - 4. Test but explain the results.
 - 5. Tell parents the school has a right to test and will continue to do so.
- 12 1. Work with her to build her self-esteem on her terms.
 - 2. Work with her and involve peers, parents etc.
 - 3. Work on self-esteem and facing reality (e.g. social skills assertiveness).
 - 4. Help her to grow up e.g. use a behaviour contract.
 - 5. Tell her she needs to grow up.

APPENDIX C

Table C.1

Varimax Rotated Factor Matrix for the 48 SOI and TII Items (N=127)*

		······································				
SOI and	_	_	Factor		_	_
TII Items	1	2	3	4	5.	6
			· · · · · · · · · · · · · · · · · · ·			
7	10001	50005	00000			
L	12221	53907	03077	08972	05042	-05082
2	53359	25287	01079	09414	-06777	
3	53962	-26154	-04017	08599	09440	-05965
4	45657	-20091	00245	15053	23304	-15681
5	07513	36086	02148	-14266	06581	03203
6	27679	13754	00142	24336	21262	-10030
7	08165	48360	-00876	-05385	10432	05538
8	40253	51269	-05313	01357	-14560	-01096
9	-07592	54895	-08114	-01392	-06483	01728
10	28562	-16957	04955	10610	11856	14269
11	10013	25339	-25919	-04088	01832	04555
12	53678	15481	03836	-01378	-05857	-01281
13	50229	-05789	07048	04879	20553	-08345
14	31862	-28578	25396	07840	-18390	07618
15	19583	43140	04714	-04591	-21521	06925
16	-10852	31710	-12753	-02323	-00484	10743
17	15296	-32625	41436	26028	-04934	-17408
18	2577/	-012025	05102	17/55	31//7	-06907
10	-037/3	1207	09011	_02225	_297/9	16032
19	10000	45270	00702	-08223	-20740	10032
20	12002	-10040	09793	10004	21029	00134
21	05290	10000	09442	-10904	49012	00234
22	41185	-18823	07456	26874	-03036	-02739
23	00279	30478	08522	00624	00172	-01834
24	63530	05873	-02542	-09995	10069	07554
25	58220	09142	01039	09678	-09512	01326
26	-07250	27318	-29273	-25594	01661	35371
27	26957	-04337	26763	-02028	22865	-11211
28	48957	08568	01737	03742	42197	-19291
29	35166	34863	11881	-06675	-15241	28463
30	39706	40444	08396	01745	-26102	09282
31	35517	14786	39492	05406	28749	-10267
32	20579	34864	18706	37096	-06593	37358
33	-01962	10033	74411	14225	12169	06512
34	-00731	05977	01335	66877	-02737	-05955
35	06412	08422	65844	-00426	05256	14077
36	29110	20119	42113	-00793	11998	-19712
37	18921	-15280	14952	78605	11544	17224
38	03349	-04439	15252	77850	08946	-02647
39	14737	-15617	22401	25681	-28614	-01436
40	08748	-12570	22404	14945	63454	01100
40	22121	-10069	01686	07520	12643	
40	04225	-00360	01000	-04052	01045	-52570
42	04223	10400	66772	-04032	41596	71090
43	-09680	10428	20772	07260	41000	-04916
44	-00307	-03284	/3154	21270	08024	-01846
45	10646	-08652	18643	//058	04//0	T803A
46	03468	06832	04869	2465L	15206	61428
47	03200	05116	36581	18875	38809	12158
	u−10882		15720	04497	-00047	12402
Eigenvalue	6.3279	4.3503	3,44468	2.82315	2,25364	1.82713
Cumulative % of Variance	13.2	22,2	29.4	35,3	40,0	43,8
		*Decimals have	been omitted			

Arrest a

)

APPENDIX	D : MULTIVARIATE	ALYSES VI	ARIANCE (MANC	VAS) OF ACTO	R SCORES CLASS	FIED ACCORDING
TO SEX (X) UNIVERSITY TH	LAINING (U) OTHER	EXPERIENCE (0)	LENGTH OF TEAC	HING SERVICE (T)	LENGTH OF COUNSELL	ING SERVICE (C)
AND TEACHING SUBJECT	(s)		_			
TEST OF TOU		Table	D. 1			•
TESTS OF SIGNIFICA	ACE USING WILKS	LAMBDA CRIT	ERION AND	CANONICAL CORR	ELATIONS	
TEST OF ROOTS 1 Through 1	F 1•265	DFHYP 6.000	DFERR 114•000	P LESS THAN 0.279	0.250	
VARIABLE	UN1VAR F(1, 119)	IATE F TESTS MEAN SQ	P LESS THAN	SIANDARDIZE 1	D DISCRIMINANT	FUNCTION COEFFICIENTS
FACTURI FACTUR2 FACTUR3 FACTUR4 FACTUR5 FACTUR6	1.674 0.116 0.002 0.332 5.197 0.018	42.186 1.905 0.029 4.716 36.521 0.036	U.198 U.734 O.969 U.566 O.024 U.895	U • 3 3 9 0 • 270 - 0 • 4 37 0 • 1 1 4 0 • 9 4 7 - 0 • 3 1 8		
-						

Table D.2

TEST OF OU for TOU

TESTS OF SIGNIFICANCE USING WILKS LAMBDA CRITERION AND CANUNICAL CORRELATIONS

TEST OF ROOTS 1 THROUGH 1	F V•856	0FHYP 6.000	DFERR 114.000	P LESS THAN 0.530	R 0•208	·
	UNIVA	RIATE F TEST		STANDARDIZ	ED DISCRIMINA	NT FUNCTION COEFFICIENTS
FACTURI FACTURI	-+(1) 119) 2.013 0.215	<u>MEAN SU</u> 50.714	U.159	0.761	الم المراقع الم المراقع	
FACTORZ FACTOR3 FACTOR4	0.649 0.084	12.027	0.422	0.256		
	0.518 1.018	3.643	0.473	0.250		· .

-

.

"Same

TEST OF TO from TOU

TESTS OF SIGNIF.	ICANCE USING WIL	KS LAMBDA	CRITERIUN	AND CANONICAL C	ORRELATIONS
TEST OF RODTS 1 Through 1	F 0•852	DFHYP. 6.000	DFERR 114•000	P LESS THAN U.532	R 0.207
	UNIVAR	IATE F TEST	T S	STANDARDIZ	ED DISCRIMINANT FUNCTION COLFFICIENTS
VARIABLE	F(1) 119)	MEAN SQ	P LESS THAN	<u> </u>	
FACTORI	0.004	0.090	. 0.953	-0.036	
FACTOR2	0.361	5.921	0.549	0.338	
FACTOR3	1.929	35:719	0.168	-0.844	
FACTOR4	1.333	18.728	0.251	0 • 8 0 3	
FACTORS	0.248	1.744	0.619	-0.028	
FACTORO	0.012	0.025	0.911	-0.022	

Table D.4

TEST	T OF TU from TOU					
TEST	IS OF SIGNIFICANC	E USING WILK	S LAMBDA CRI	TERIUN AND CA	NONICAL CORRELA	TIONS
TEST OF ROOTS 1 THROUGH 1	2.101	DFHYP 6.000	DFERR 114.000	P LESS THÁN 0.050	R 0 • 316	1
	UNIVA	RIATE F TEST	S	STANDARDIZE	D DISCRIMINANT	FUNCTION COEFFICIE
	6.608 0.513	166.512 8.411	P LESS THAN 0.011 0.475	0.872		
FACTOR3 FACIDR4	1.454	26.927	0.230	0.371		
FACTORS	0.406	2.853	0.525	0.023		

TEST OF U from TOU

	R 0.198	P LESS THAN 0.591	DFERR 114.000	DFHYP 6•000	0•775	TEST DF RODIS 1 Through 1
T FUNCTION COLFFICE	DISCRIMINANT	STANDARDIZED		ATE F TEST	UNIVA	
		1	P LESS THAN	MEAN SU	$F(1) = \frac{119}{1522}$	VARIABLE FACTORI
		0.181	Ú. 674	2.923	0.178	FACIDR2
		0 • 389	0.202	30.426	1.643	
			0.485	3.446		FACTORS
		-0.175	0.891	0.039	0.019	FACTORE

S. Wards

· · · · · ·	~	
Iahl	e 1)	1
	C 2.	2

TEST OF O from TOU

TEST OF ROOTS 1 Through 1	F 1.620	DFHYP 6.000	DFERR 114.000	P LESS THAN 0.148	R 0.280
V 5 6 1 4 9 1 F	UNIVAR	RIATE F TEST		STANDARDIZED	DISCRIMINANT FUNCTION COEFFICIE
FACTORA FACTORA FACTORZ	<u> </u>	6.719 19.294	U.607	-0.092	
FACTOR3 FACTOR4	2.228	41.266 3.387	0.138 0.602	0.718 0.166	
FACTORS FACTURG	3.887 0.666	27:314 1:357	$0.051 \\ 0.416$	-0.826 -0.126	

TEST OF I from TOU

TESTS OF SIGNIFICANCE USING WILKS LAMBDA CRITERIUN AND CANUNICAL CORRELATIONS

1 THROUGH	1	0.732	6.000	114.000	0 + 625	R Ø • 193

	UNIVARIATE F TESTS			SIANDARDIZE	D DISCRIMINANT	FUNCTION	UNCTION COFFEICIENTS		
VARIABLE	F(1, 119)	MEAN SQ	PIESS THAN	1					
FACIORI	0.266	6.693	0.607	0.112					
EACTURZ	2.154	35.318	0.145	0 • 6 2 6					
FACIOR3	0.160	2.969	0.690	0.246					
	0.145	2.056	0.704	-0.311					
FACTURD	0.005	0.039	0.941	-0.055					
FACTURO	2.002	4.203	- 0.154	0 • 6 6 3					
					÷				

TEST OF XSC

TESTS OF SIGNIFICANCE USING WILKS LAMBDA CHITERION AND CANUNICAL CORRELATIONS

TEST OF ROOTS	F	DFHYP	DFERR	P LESS THAN	R	
1 THROUGH 1	1.947	6.000	114.000	0.079	0.305	

	UNIVA	HIATE F TES	STANDARDIZED DISCRIMINANT FUNCTION COLFF				
VARIABLE	F(1, 119)	MEAN SQ	P LESS THAN	1			
FACTORI	2.861	76.025	0.093	-0.772	R CONTRACTOR OF CONTRACTOR		
FACTORZ	0.092	1.449	0.762	0.250			
FACTÓR3	0.402	7.701	0.527	0.217			
FACTOR4	1.355	18.712	0.247	-0.436			
FACIORS	3.034	21.747	0.084	0 • 805			
FACTÓRÓ	0.091	0•184	0.763	0.213			

TEST OF SC from X	sc						
 TESTS OF SIGNIFIC	ANCE U	SING WILK	S LAMBDA CR	ITERION AND	CANDNICAL CORRE	LATIONS .	
 1 THROUGH 1		1.274	6.000	114.000	0.275	R 0.251	
 VARIABLE FACTORI FACTUR2 FACTUR3 FACTOR4 FACTOR5 FACTOR6	F(1	UNIVA 119) 1.217 4.649 1.098 0.007 1.432 0.000	RIATE F TES MEAN SQ 32.329 73.071 21.020 0.096 10.265 0.000	TS <u>PLESS_THAN</u> 0.272 0.033 0.297 0.934 0.234 0.990	STANDARDIZED 1 0 • 2 0 0 0 • 8 4 0 0 • 1 8 5 - 0 • 1 3 2 0 • 5 0 8 - 0 • 1 1 5	DISCRIMINANT FUNCTION COLFFICIENT	5

Table D.10.

TEST OF XC from XSC

TESTS	OF SIGNIF	FICANCE	USING	WILKS	LAMBDA	CRITERION	AND	CANONICAL	CORRE	LATION	VS.
								_			

TEST OF ROOTS	F	DEHYP	DFERR	P LESS THAN	R	
1 THROUGH 1	1•433	6.000	114.000	0.208	0.265	

	UNIVARIATE F TESTS			STANDARDIZED DISCRIMINANT FUNCTION COEFFICIENT		
VARIÁBLE	F(1 + 119)	MEAN SQ	P LESS THAN	1		
FACTORI	0.827	21.989	0.365	-0.679		
FACIOR2	0.797	12.531	0.374	0.510		
FACTORS	0.187	3.574	0.066	-0•378		
FACTUR <u>4</u>	0.589	8.128	0.444	0.324	·	
FACTURS	1 • 9 4 9	13.968	0.165	0 • 7 8 2		
FACTOR6	1.227	2.478	0.270	0 • 379		

TEST OF XS from XSC

TESTS OF SIGNIFICA	ANCE USING WILK	S LAMBDA CRI	TERION AND	CANONICAL CORR	RELATIONS
TEST OF ROOTS 1 Through 1	F 0•712	DF HYP 6.000	DFERR 114.000	P LESS THAN 0.640	R 0.190
	UNIVA	RIATE F TEST	S	STANDARDIZE	D DISCRIMINANT FUNCTION COFFECTENTS
VARIABLE	<u> </u>	MEAN SQ	P LESS THAN	1	
FACTOR1	0.898	23.860	0.345	0.317	
FACTURZ FACTOR3		10+03/	0.307	00403	
FACTORA	1.342	18.535	0.249	0.599	
FACTORS	0.016	0.112	0.901	-0.163	
FACTOR6	1.391	2.809	0.241	0.427	

Table D. 12.

TEST OF C from XSC

TESTS OF SIGNIFICANCE USING WILKS	1 1 1 1 1 1 1 1 1	CRITEGIAN		
TENS	LAMOUA	CRIEKIUN	AND CANONICAL	CORRELATIONS

I THROUGH 1	F 1.864	DFHYP 6.000	DFERR 114.000	P LESS THAN 0.093	R 0.299	
	UNIVAR	ATE E TESTS				

A	UNIVA	MANE F LES	12	STANDARDIZED DIS	COTMINIANT CHNICTICAL ADTERIA
VARIADLE	F(1 + 119)	MEAN SQ	F LESS THAN	1	SCHIMINANT FUNCTION CUEFFICIENIS
	0 •281	7.454	0.597	-0.323	
FACTORE	1 • 203	18.209	0.275	0.325	
FACTORA	3.637	28.533	0.225	0 + 5 8 9	
FACTURS	0.266	50+227	0.059	-0.784	
FACTÓRE	1.311	2.648		0.236	·
		2.040	0.254	0 • 482	

Table D.13

Sec.

TEST OF S from XSC

IEST OF RUDIS	F	DEHYP	DEERR	P LESS THAN	R		
1 THROUGH 1	1.243	6.000	114.000	0 • 290	0.248		
			<				
VARIABLE	UNIVAL F(1. 119)	RIATE F TEST:	S DESS THAN	SIANDARDIZE	D DISCRIMINAN	T FUNCTION	COEFFICIEN
FACIORI	0.731	19.421	0.394	-0.564		<u> </u>	
FACTOR3	0.342	6.541	0.560	-0.227			
FACTORS	1.030 0.893	14.224 6.404	0.312 0.346	-0 · 364 0 · 725			
FACTORG	1.044	2.108	0.309	0.449			
			•				
			•		No. 1. State from the matrices of the		
			· · · · · · · · · · · · · · · · · · ·	ga an	Here there is the second sec		. -
		Talla	Dil				
		Table	D. 14				
		Table	D. 14				
TEST OF X from XSC		Table	D. 14				
TEST OF X from XSC TESTS OF SIGNIFIC	CANCE USING WILKS	Table LAMBDA CRIT	D. 14 ERION AND	CANONICAL CORRE	LATIONS		
TEST OF X from XSC TEST OF SIGNIFIC TEST OF RODTS 1 THROUGH 1	CANCE USING WILKS F 0.413	Table LAMBDA CRIT DFHYP 6.000	D. 14 ERIDN AND DFERR 114.000	CANONICAL CORRE PLESS THAN 0.869	LATIONS R 0.146		
TEST OF X from XSC TESTS OF SIGNIFIC TEST OF RODTS 1 THROUGH 1	CANCE USING WILKS F 0.413	Table LAMBDA CRIT DFHYP 6.000	D. 14 ERIDN AND DFERR 114.000	CANUNICAL CORRE PLESS THAN 0.869	LATIONS R 0.146		
TEST OF X from XSC <u>TESTS OF SIGNIFIC</u> TEST OF RODTS 1 THROUGH 1	CANCE USING WILKS F 0.413	Table LAMBDA CRIT DFHYP 6.000	D. 14 ERIDN AND DFERR 114.000	CANUNICAL CORRE PLESS THAN 0.869	LATIONS R 0.146	EUNCTION	COFFFICIE
TEST OF X from XSC TESTS OF SIGNIFIC TEST OF ROOTS 1 THROUGH 1 VARIABLE	CANCE USING WILKS F 0.413 UNIVAR F(1, 119)	Table LAMBDA CRIT DFHYP 6.000 IATE F TESTS MEAN SQ	D. 14 ERIDN AND DFERR 114.000 P LESS THAN	CANONICAL CORRE PLESS THAN 0.869 STANDARDIZED 1	LATIONS R 0.146 DISCRIMINANT	FUNCTION	COEFFICIE
TEST OF X from XSC <u>TESTS OF SIGNIFIC</u> TEST OF RODTS 1 THROUGH 1 <u>VARIABLE</u> FACTOR1 FACTOR1 FACTOR2	CANCE USING WILKS F 0.413 UNIVAR F(1, 119) 0.643 0.934	Table LAMBDA CRIT DFHYP 6.000 IATE F TESTS MEAN SQ 17.093 14.084	D. 14 ERIDN AND DFERR 114.000 P LESS THAN U.424 U.336	CANONICAL CORRE P LESS THAN 0.869 STANDARDIZED 1 0.333 0.654	LATIONS R 0.146 DISCRIMINANT	FUNCTION	COEFFICIE
TEST OF X from XSC TESTS OF SIGNIFIC TEST OF ROOTS 1 THROUGH 1 VARIABLE FACTOR1 FACTOR2 FACTOR3 EACTOR4	CANCE USING WILKS F 0.413 UNIVAR F(1, 119) 0.643 0.934 0.348 0.110	Table LAMBDA CRIT DFHYP 6.000 IATE F TESTS MEAN SQ 17.093 14.084 6.665	D. 14 ERIDN AND DFERR 114.000 P LESS THAN U.424 U.336 0.556	CANUNICAL CURRE PLESS THAN 0.869 STANDARDIZED 1 0.333 0.654 0.261 0.457	LATIONS R 0.146 DISCRIMINANT	FUNCTION	COEFFICIE

.

"National and the second

•

1

•

TEST OF TOU

TESTS OF SIGNIFIC A TEST D⊨ ROOT S 1 Thruugh 1	NCE USING WILKS F 0.428	5 LAMBDA CRIT DFHYP 6.000	ERION AND DFERR 114.000	CANONICAL CORR P LESS THAN 0.859	ELATIONS R 0.148	
VARIA BLE	UNIVAF F(1, 119)	RIATE F TESTS MEAN SQ	S P LESS THAN	SIANDARDIZE 1	D DISCRIMI	NANT FUNCTION CULFFICIENTS
FACTORI FACTOR2 FACTOR3 FACTOR3 FACTOR5 FACTOR5 FACTOR6	0 • 137 0 • 004 0 • 643 0 • 266 0 • 155 0 • 727	3.267 0.071 12.170 3.558 1.096 1.464	0.712 0.947 0.424 0.607 0.694 0.396	- U + 4 1 6 - U + 0 6 1 - U + 7 0 9 - U + 5 5 0 - U + 5 6 - U + 6 8/		

Table D.16

TEST OF OU from Tou

TESTS OF SIGNIFIC TEST OF ROOTS 1 THROUGH 1	CANCE USING WILK: F 1.840	S LAMBDA CHI Dfhyp 6.000	TERION AND OFERR 114.000	CANONICAL CORF PLESS THAN 0.097	0.297
	UNIVA	RIATE F TEST	S D FESS THAS	STANDARDIZE	ED DISCRIMINANT FUNCTION COEFFICIENTS
VARIABLE FACIORI FACIORZ FACIORJ FACIOR4 FACIOR5 FACIOR5 FACIOR6	F(1) 197 8.514 0.131 0.978 3.466 3.834 0.934	203.734 2.123 18.518 46.407 27.067 1.883	C.004 0.718 0.325 0.065 0.053 0.336	0.706 -0.098 -0.029 0.348 0.336 0.017	

TEST OF TU from Tou

TEST OF TU from T	οU				×
TESTS OF SIGNIFIC	ANCE USING WILK	S LAMBDA CRI	TERIUN AND	CANONICAL CORRI	ELATIONS
TEST OF ROOTS 1 Through 1	F 2.053	DFHYP 6.000	DFERR 114.000	P LESS THAN 0.064	R 0.312
VARIABLE	UNIVA F(1, 119)	RIATE F TEST MEAN SQ	S PLESS THAN	STANDARDIZEI 1	D DISCRIMINANT FUNCTION COEFFICIENTS
FACIORI FACIORI FACIORI FACIORI FACIORI FACIORI FACIORI FACIORI	0.542 0.680 1.221 0.099 0.369	161.065 8.785 12.879 16.352 0.701 0.744	0.007 0.463 0.411 0.271 0.753 0.545	0.922 0.134 0.245 -0.525 -0.067 -0.311	

Table D.18

.

)		
TEST OF TO from Tou	-				
TESTS OF SIGNIFICANCE TEST OF ROOTS	USING WILK	S LAMBDA CRIT	ERION AND	CANONILAL LURREL	- ATIONS
1 THROUGH 1	1.161	6.000	DFERR 114.000	P LESS IHAN 0.332	R 0.240
VARIABLE FC	UNIVA 1, 119)	RIATE F TESTS	P LESS THAN	STANDARDIZED 1	DISCRIMINANT FUNCTION COEFFICIENTS
FACIOR2 FACTOR3 FACTOR4	2.179 0.431	9.965 35.284 8.159	0.520 0.143 0.513	-0.034 0.453 0.068	
FACTORS FACTUR6	4.949 0.050	19.068 34.944 0.101	0.229 0.028 0.823	-0.344 -0.743 0.082	

•

Tal		e	D	I	9	
1000	~		-			

TEST OF U from TOU

.

TESTS OF SIGNIFI TEST OF ROOTS 1 THROUGH 1	CANCE USING WILKS 0.827	LANBDA CRI DEHYP 6.000	TERION AND DFERR 114.000	CANDNICAL CORRE PLESS THAN 0.552	CR 204	~
VARIABLE	UNIVARI F(1, 119)	ATE F TEST MEAN SQ	S PLESS THAN	STANDARDIZED	DISCRIMINANT	FUNCTION COEFFICIENTS
FACIORZ FACIORZ FACIORJ FACIUR4 FACIUR5	4 • 085 0 • 050 1 • 097 1 • 424 0 • 674	97.776 0.971 20.762 19.067	0.045 0.807 0.297 0.235	0.810 0.076 0.200 0.303		
FACTORE	0.016	0.032	0.900	-0.191		

Table D.20

TEST	T OF	Δ	from	TOU
1831	(<u>u</u> a	0	1	

TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CRIT	ERION AND	CANONICAL CORP.	ELATIONS_	
TEST OF ROOTS	F	DEHYP	DEERR	P LESS THAN	R	
1 IARDUGH 1	1.847	6.000	114.000	0.096	0.298	

)

	UNIVA	RIATE F TES	TS	STANDARDIZE	D DISCRIMINANT FUNCTION COEFFICIENTS
VARIABLE	F(1, 119)	MEAN SQ	P LESS THAN	1	
FACTORI	0.432	10.332	0.512	-0.296	
FACIORZ	1.171	18.958	0.281	0.305	
FACIORS	1.344	25.448	0.249	0.570	
FACION4	4.047	54.192	0.047	-0.786	
FACTURS	0.418	2.950	9.519	0.181	
FACTOR6	1.210	2.438	0.274	0.470	

TEST OF T

TEST OF ROUTS	F	0FHYP	DFERR	P LESS THAN	R
1 THROUGH 1	U • 772	6.000	114.000	0+594	0.196
VARIABLE	UNIVA F(1, 119)	RIATE F TEST MEAN SQ	S PLESS THAN	STANDARDIZE	U DISCRIMINANT FUNCTION COEFFICIENTS
FACTORI FACTURZ FACTUR3 FACTOR4	0.280 2.181 0.157 0.154	6.693 35.318 2.969 2.056	0.598 0.142 0.693	0.085 0.630 0.268	
FACTURS	0.006	0.039	0.941	-0.049	
FACTUR6	2.086	4.203	0.151	0.682	

.

٠

۰.,

Table D.22

• • •

TEST OF XOS

<u>`</u>,

TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CRIT	ERION AND	CANONICAL CORR	FLATIONS	
TEST UF ROOTS 1 Through 1	F 2•133	DFHYP	DEERR	P LESS THAN	R	
				01005	0.318	

VARIABLE	UNIVA F(10 119)	RIATE F TES MEAN SU	TS <u>PLESS THAN</u>	STANDARDIZED	DISCRIMINANT FUNCTION COEFFICIENTS
FACTOR2 FACTOR3	5•246 2•497 0•043	138.331 39.670	0.024	-0 + 850 0 + 562	
FACTOR4 FACTOR5	1.704 0.284	24.063	0.194		
FACTOR6	0.013	0.026	0.911	0.067	

TEST OF OS from XOS

TEST OF ROOTS 1 THROUGH 1	F 0•414	DFHYP 6:000	DFERR 114.000	P LESS THAN 0+868	R 0.146	
VARIABLE	UNIVA F(1, 119)	RIATE F TEST MEAN SQ	S PLESS THAN	STANDARDIZE	D UISCRIMINANT	FUNCTION COLFFICIENTS
FACIORI FACTOR2 FACTUR3 FACTUR4 FACTUR5	0.505 0.918 0.458 0.146 0.039	13.309 14.584 8.784 2.065 0.267	0.479 0.340 0.500 0.703 0.844	0 • 517 0 • 527 0 • 400 - 0 • 405 0 • 069		

Table	D,	24
-------	----	----

TEST	٥F	ΧŜ	from X05	
------	----	----	----------	--

,

	USING WILKS	LAMBDA CRIT	ERION AND	CANDNICAL FORRE	
IEST OF RODIS 1 Through 1	0 • 755	DFHYH 6.000	DFERR 114.000	P LESS THAN 0.607	R 0.196
	UNIVAR	TATE E TESTS	· ·	STAND, POTZEC	

3

VARIABLE	<u> </u>	MEAN SQ	PIESS THAN	SIANDARDIZEL	D DISCRIMINANT FUNCTION COEFFICIENTS
FACTORI	0 • 955	25.196	0.330	U • 267	
FACTORI	0 • 986	15.657	0.323	0 • 455	
FACTORI	0 • 038	0.724	0.846	- U • 275	
FACTORI	1 • 663	23.489	0.200	U • 641	
FACTORI	0 • 046	0.339	0.830	- U • 241	
FACTORI	1 • 420	2.912	0.236	U • 445	

TEST OF XO from XOS

TESTS OF	SIGNIFICANCE USIN	NG WILKS LAMBDA	CRITERION ANI	D CANONICAL CORRE	LATIONS	
TEST OF R 1 Th rdu g	арт <u>я</u> Эн 1 (F DFHY 0+210 6+00	P DFERR 00 114.000	P LESS THAN 0.973	R 0 • 105	
<u></u>						
VARIABLE	F(1)	UNIVARIATE F 1 119) MEAN SG	ESTS PLESS THAT	STANDARDIZED	DISCRIMINANT	FUNCTION COEFFICIENTS
FACIORI FACIDR2 FACIDR3	0	•012 0•32 •085 1•347	0.912 U.171	-U•035 U•336		
FACTUR4 FACTOR5 FACTOR6		491 6.940 170 1.249 037 0.076	Ú 485 0 681 2 0 848	-0.556 0.5774 -0.219		

• -

And the second s

Table D. 26

TEST OF S from XOS

TESTS OF SIGNIFIC TEST OF RODIS 1 THROUGH 1	ANCE USING WILKS 0.996	S LAMBDA CRI DFHYP 6.000	TERION AND DFERR 114.000	CANONICAL CORREL P LESS THAN U+432	R U.223	
VARIABLE	UNIVAF F(1, 119)	RIATE F TEST	S PLESS THAN	STANDARDIZED	DISCRIMINANT	FUNCTION COEFFICIENTS
FACTURI FACTORZ FACTORJ FACTUR4 FACTUR5 FACTUR6		22 • 38 3 28 • 631 2 • 639 12 • 567 3 • 284 1 • 740	0.353 0.182 0.711 0.347 0.505 0.359	-0.571 0.625 -0.184 -0.301 0.571 0.427		

TEST OF O from XOS

TESTS OF SIGNIFICANCE	E USING WILKS	LANBDA CRI	TERIÓN AND	CANONICAL CORRE	LATIONS	
TEST OF RODTS 1 Through 1	F 1•620	0FHYP 6•000	DFERR 114•000	P LESS THAN 0.148	R 0 • 280	
	UNIVARI	ATE F TEST	5	STANDARDIZED	DISCRIMI	NANT FUNCTION COLFFICIENTS
VARIABLE F	(1, 119) 0.197	MEAN SQ 5+190	PLESS THAN	-0.09/		
FACTOR3 FACTOR3 FACTUR4 FACTUR5 FACTUR6	2 • 279 0 • 238 3 • 589 0 • 508	24.023 43.758 3.362 26.355 1.042	0.221 0.134 0.627 0.061 0.477	0.283 0.720 0.187 -0.810 -0.114		

Table D.28

TEST DF X from XOS

TESTS OF SIGNIFICANCE USING WILKS LANBDA CRITERIUNAND CANUNICAL CORRELATIONSTEST OF ROOTSFOFHYPDFERRP LESS THANR1 THROUGH10.3826.000114.0000.8890.140 P LESS THAN 0.889 0.382 6.000 114.000 0.140 UNIVARIATE F TESTS STANDARDIZED DISCRIMINANT FUNCTION COEFFICIENTS 119) 0.648 0.924 0.347 0.108 0.589 0.043 VARIABLE MEAN SO 17.093 14.694 P LESS THAN F(1, FACTOR1 FACTOR2 0.422 0.338 0.557 0.743 0.407 0.601 0.236 -0.443 FACTURE 6.665 1.520 4.324 0.089 FACTURS FACTURS 0.444 0.469 U.835 -0.011

TEST OF RX

TESTS OF SIGNIFICA	NCE USING WILKS	LAMBDA CRIT	TERION AND C	ANONICAL CORF	ELATIONS
TEST OF ROUTS 1 THROUGH 2 2 THROUGH 2	0 • 5 2 0 0 • 4 7 4	DFHYP 12.000 5.000	232.000 116.500	0.901 0.795	0.180 0.141
VARIABLE FACTURI FACTURZ FACTUR3 FACTUR5 FACTUR5 FACTUR6	UNIVAR F(2, 121) 0.280 0.975 0.117 0.311 1.482 0.197	IATE F TESTS MEAN SQ 7.633 15.573 2.267 4.255 10.753 0.399	PLESS THAN 0.756 0.380 0.889 0.734 0.231 0.822	STANDARDIZE 1 0.169 0.329 0.115 -0.347 -0.868 0.273	D DISCRIMINANT FUNCTION COEFFICIENTS

TEST OF X from RX

TESTS OF SIGNIFIC TEST OF RODTS 1 THROUGH 1	ANCE USING WILKS	LAMBDA CRJ DEHYP 6.000	TERION AND DFERR 116.000	CANONICAL CORRI PLESS THAN 0.896	R Q.137
VARIABLE	UNIVARI	ATE F TEST	S	STANDARDIZE	D DISCRIMINANT FUNCTION COEFFICIENTS
FACTORI	F(1, 121)	MEAN SQ	P LESS THAN	1	
FACTORZ	0.588	16.011	0.445	0.418	
FACTURZ	0.843	13.469	0.360	0.624	
FACTURZ	0.333	6.535	0.562	0.246	
FACTURZ	0.050	1.095	0.778	-0.428	
FACTURZ	0.623	4.520	0.432	0.468	
FACTURZ	0.036	0.074	0.849	-0.019	
Table D. 31

•

i

TEST OF R from RX

TESTS OF SIGNIFICAN	CE USING WILKS	S LANBDA CRI	TERION AND	CANONICAL CORRE	LATIONS	
TEST OF ROOTS	F	DFHYP	DFERR	PLESS THAN	R	A
1 THROUGH 2	1.302	12.000	212.000	0.218	0.312	
2 THRUUGH Z	ו024	2.000	110.300	V+636	0.100	- -
	UNIVA	RIATE E TEST	S	STANDARDIZED	DISCRIMINA	ANT FUNCTION COEFFICIENTS
VARIABLE	F(2, 121)	MEAN SQ	P LESS THAN	1		
FACTORI	0.039	17.393	0.530	0.553		
		25.826	0.203	0.312		· ·
	3.186	43.651	0.045	-0.860		and the second
FACTORS	0.523	3.793	0.594	-0.349		
FACIÓRÓ	1.054	2.139	0.352	0.136		
						,

ר

· ···· · · · · · · · · ·

					anne, 1940an.	Ai	PPEI	NDIX	Ē		~~~ .	· ~~~					
MULTIVARIATE	ANAL YSE	s of	VARIAN	ICE (M	ALICVAS)	OF -	THE	TWELVE	SITU	JATIC	INS (1	TEARS	1-12)	CLASSIFIED	ACCORDING	τ0	SEX (X)
UNIVERSITY T	RAINING (U)	OTHER	EXPERIE	ENCE (C) LENGT	H OF	TEAC	HING SE	RVICE	(Τ)ι	ENGTH	t of cou	NSELLI	ua service	E (C) TEACHIN	sa :	SUBJECT (S)
AND REVISED	LENGTH OF	COUNS	ELLING	SERVI	CE (R)	: RES	0LT S	5 THAT	ARE	NOT	SIGN	IFICAN	Τ.				
			-			T	abl.	e E.I									

.

TEST OF TOU

Æ

p.

	TEST OF ROOTS 1 THRUUGH 1	0•800	DFHYP 12+000	DFERR 101.000	P LESS THAN 0.650	0.295
		UNIVAF	ATE F TEST	S	STANDARDIZED	DISCRIMINANT FUNCTION COEFFICIENT.
<u> </u>	VARIABLE	<u>F(1, 112)</u>	MEAN SQ	PLESS THAN	1	
₩ ⁵⁰	ITEM2 ITEM3 ITEM4	0 • 4 3 1 0 • 9 6 8 9 • 3 6 8	0.316 0.503 0.310	0.348 0.513 0.327 0.546	0 • 2 1 4 0 • 2 1 8 0 • 2 0 6 0 • 3 6 5	
	ITEM5 ITEM6 ITEM7	2.516 0.571 0.000	1.686 0.524 0.000	0.115 0.451 0.994	●0 + 5 8 5 0 + 4 3 8 0 + 0 9 6	
jr.	ITEMO ITEMO ITEM10 ITEM11	0 • 188 0 • 626 1 • 951 1 • 081	0 • 1 4 0 0 • 455 2 • 2 4 7 1 • 0 7 4	0.430 0.165 0.301	-0:047 -0:382 -0:389 -0:344	e de la companya de l
P	ITEM12	0.015	0.011	0.904	-0.097	
	`				-	
ŀ						
1						
	-					
e st						الله المراجع ال

TEST OF TU from TOU

TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CRIT	ERION AND	CANONICAL C	ORRELATIONS		
TEST OF ROOTS	F	DFHYP	DFERR	P LESS THA	N R	and and a second and a second and a second and a second a	
1 IHROUGH 1	1.678	12.000	101.000	0 • 0 8 3	0 • 408		

	UNIVA	RIATE F TES	TS	STANDARDIZED DISCRIMINANT FUNCTION COLFFICIEN
VARIABLE	F(1, 112)	MEAN SQ	P LESS THAN	1
ITEM1	4.678	3.164	0.033	0.491
ITEM2	8.416	6.178	0.004	Q • 6 Q 5
ITEM3	1.440	0.897	0.233	0.119
ITEM4	1.042	0.878	0.309	0 • 2 0 4
I TEM5	2.236	1.499	Ú.138	0.106
ITEM6	5.467	5.018	0.021	0 • 4 ± 0
IIEM7	0.313	0.136	0.577	-0.121
ITEM8	0.181	0.140	0.671	-0.278
ITEM9	0.116	0.084	0.734	-0:273
ITEM10	· Q.206	0 • 2 37	0.051	0 • 0 37
ITEM11	0.002	0.002	0.961	
ITEM12	0.961	0.707	0.329	0.194

Table E. 3

TEST OF TC from TCU

1 THROUGH 1	F 0.619	0FHYP 12+000	DFERR 101.000	P LESS THAN 0.821	R 0•262	
VARIABLE	UNIVA F(10 112)	ARIATE F TEST MEAN SQ	S PLESS THAN	STANDARDIZE 1	D DISCRIMINANT	FUNCTION COEFFICIENT
ITEM2 ITEM3	0.101 2.066 0.050	0.068	0.751 0.153 0.822	-0.227 0.476		
LIEMA ITEMS LIEMA	0.151 0.256	0.128 0.172	0.098 0.614	-0.057 -0.204		
I LEM7 I TEM8	0.797 0.819	0 • 346 0 • 345 0 • 635	0.971 0.374 0.367	-0.023 0.476 -0.390		
ITEM9 ITEM10 ITEM11	0.329	0 • 239 0 • 899	0.567	0 • 1 5 0 0 • 1 6 9		
ITEM12	2.147	1.579	0.146	-0.174 -0.573		

TEST OF U from TCU

IESIS U	T SIGNIFICANCE	USING WILKS	LAMBUA CHITERI	JN AND	LANUNICAL	CURRELATIONS
TI 5 TO D	5 CICALTEICANCE	NOTHE METCHE	LANDON CONTROP	3 8 1 8 8 1 1		

	TEST OF ROOTS 1 Through 1	F 1 ≥ 054	0FHYP 12.000	DFERR 101.000	P LESS THAN 0.407	R 0 • 334		
--	------------------------------	--------------	-----------------	------------------	----------------------	--------------	--	--

Sec. 200

•

	UNIVA	RIATE F TES	TS	STANDARDIZED DI	SCRIMINANT FUNCTION COEFFICIENTS
- VARIABLE	F(1, 112)	MEAN SQ	P LESS THAN	1	
 IIEM1	0.122	0:083	0.727	0 = 1 4 9	
ITEM2	1.385	1.017	0.242	0.366	· · ·
ITEM3	0.044	0.027	0.834	-0.133	
ITEM4	0.161	0.135	0.689	-0.309	
ITEM5	0.653	0.438	0.421	Q.03/	
ITEM6	1.615	1.482	0.206	0.179	
ITEM7	0.387	0.168	0.535	-0.565	
ITEMB	1.938	1.504	0.167	0.477	
ITEM9	0.115	0:084	0.735	0:034	
ITEM10	3.213	3.701	0.076	0.598	
ITEM11	0.143	0.143	0.(06	-0.016	
IIEM12	1.519	1.117	0.220	0.588	

Sugar

TEST OF C from TCU

-

EFFICIENTS
<u></u>

	TEST OF ROOTS 1 THROUGH 1	F 1.073	DFMYP 12.000	DFERR 101.000	P LESS THAN 0.391	R 0.336
-	VARIABLE	UNIVA F(1, 112)	RIATE F TESTS MEAN SQ	S P LESS THAN	STANDARDIZE. 1	D DISCRIMINANT EVNCTION COEFFICIENTS
-	ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM6 ITEM6 ITEM7 ITEM8 ITEM9 ITEM10 ITEM11 ITEM12	0.1257 0.0576 0.06980 2.12275 0.12275 0.12275 0.1653	0:127 1:284 0:284 0:534 0:067 0:467 0:479 0:949 0:418 0:49 0:418 0:792 0:162 0:480	0.666 0.189 0.357 0.353 0.405 0.405 0.142 0.271 0.450 0.4250 0.487 0.421	4254 26304 26300 2003 20039 20039 20039 20039 20039 20039 20039 20039 2003 2003	

TEST OF T from TCU

Sand Sand

Table E. 7

TEST OF XOS

TESTS OF SIGNIFICANO	E USING WILKS	LAMBDA CRIT	ERION AND	CANONICAL CORRI	ELATIONS
1 THROUGH 1	0.746	12.000	101.000	0.703	0.285
VARTABLE F	UNIVAR (1, 112)	IATE F TESTS MEAN SQ	P LESS THAN	STANDARDIZE	D DISCRIMINANT FUNCTION COEFFICIENTS
ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM6 ITEM8 ITEM8 ITEM10 ITEM11 ITEM12	0.433 0.602 2.5720 0.213 0.222 0.222 0.222 0.222 0.222 0.286 0.046 1.286 0.425 0.102	0.292 0.455 1.559 0.459 0.159 0.246 0.246 0.246 0.238 0.038 0.423 0.423 0.423	0.512 0.440 0.115 0.3985 0.3985 0.3985 0.395 0.359 0.455 0.830 0.259 0.516 0.751	-0.443 0.443 -0.227 -0.227 -0.223 -0.223 -0.233 -0.234 -0.234 -0.234 -0.234 -0.234 -0.234 -0.234 -0.234 -0.234 -0.235 -0.255 -0.	

- -

TEST OF OS from XOS

TESTS OF SIGNIF!	ICANCE USING WILKS	LAMBDA CRI	TERION AND	CANONICAL CORREL	LATIONS		
TEST OF ROOTS 1 THROUGH 1	0.573	DFHYP 12.000	DFERR 101.000	P LESS THAN 0.859	0 ^R 252		
VADTARIF	UNIVARI	LATE F TEST	S DIFSS THAN	STANDARDIZED	DISCRIMINANT	FUNCTION	COEFFICIENTS
ITEM1 ITEM2 ITEM2 ITEM3 ITEM4 ITEM5 ITEM5 ITEM6 ITEM7 ITEM8 ITEM9 ITEM10 ITEM11 ITEM12	0.431 1.725 0.867 0.339 0.213 0.177 0.150 0.068 0.642 0.191 0.111 1.221	0 • 291 1 • 363 0 • 291 0 • 5385 0 • 150 0 • 170 0 • 0655 0 • 572 0 • 216 0 • 110 0 • 939	0.513 0.192 0.354 0.562 0.645 0.675 0.700 0.795 0.361 0.663 0.740 0.271	4307 43017 43017 40.4457 40.4457 40.4457 40.4457 40.4457 40.4457 40.4457 40.4457 40.4457 40.4457 40.4457 40.4457 40.4457 40.4457 40.4457 40.4457 40.4457 40.4457 40.4577 40.4577 40.457			

TEST UT XS from XOS

TESTS OF SIGNIFICANCE USING WILKS LAMBDA CRITERION AND CANONICAL CORRELATIONS TEST OF ROOTS F DEHYP DEER PLESS THAN R

1 THROUGH 1	0.676	12.000	101.000	0 • 771	0.273
VARIABLE	UNIVA f(1, 112)	RIATE F TEST. NEAN SQ	S P LESS THAN	STANDARDIZED	DISCRIMINANT FUNCTION COEFFICIENTS
ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM6 ITEM6 ITEM9 ITEM9 ITEM10 ITEM12	0.144 1.3082 0.32830 0.35630 0.4862 0.4862 0.4862 1.2035 0.42635 0.42635 0.42635 0.42635 0.42635 0.063	0.097 1.040 0.271 0.416 0.079 0.214 0.079 0.214 0.2703 1.934 0.048	0.777 0.2777 0.2777 0.5747 0.54427 0.6111 0.6111 0.6111 0.6111 0.6111 0.6111 0.6111 0.6111 0.6111 0.60 0.31993 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.6	-0.069 -0.591 -0.310 -0.2077 -0.2285 -0.345 -0.345 -0.530 -0.087	

Table E.10

 $\langle \zeta_{0200} \varphi$

TEST OF XO from XOS

TESTS OF SIGNI	FICANCE USING WILKS	LAMBDA CRI	TERION AND	CANONICAL CORREL	LATIONS
TEST OF RODIS 1 THROUGH 1	0.855	12.000	DFERR 101:000	P LESS THAN 0.594	0 • 3 04
VARTARIF	UNIVAR E(1, 112)	IATE F TEST	S PIESS THAN	STANDARDIZED	DISCRIMINANT FUNCTION COEFFICIENTS
ITEM1 ITEM1 ITEM3 ITEM4 ITEM5 ITEM6 ITEM7 ITEM8 ITEM9 ITEM9 ITEM10 ITEM11 ITEM12	3.074 2.730 0.144 0.581 0.002 2.153 1.001 1.218 1.626 3.305 0.130 0.180	2.063 0.089 0.489 0.489 0.489 0.489 0.438 0.4399 0.4399 0.4499 0.4499 0.4499 0.4499 0.4499 0.4499 0.44990 0.44990000000000	0.082 0.101 0.705 0.448 0.968 0.145 0.319 0.272 0.205 0.072 0.719 0.672	- 400 - 400 - 359 - 0 • 0 52 - 0 • 0 52 - 0 • 0 52 - 0 • 0 52 - 0 • 0 59 - 0 • 0 52 - 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0	

-

44000 C

Sec.	TEST OF RODTS 1 THROUGH 1	F 0.623	DFHYP 12.000	DFERR 101.000	P LESS THAN 0.818	0°263		
¹ trick	VARIABLE	UNIVA F(1, 112)	RIATE F TEST MEAN SQ	S PIESS THAN	STANDARDIZE	D DISCRIMINANT	FUNCTION	COEFFIENTS
	ITEMI ITEM2 ITEM3	U • 165 3 • 953 0 • 152	0 • 1 1 1 2 • 987 0 • 0 94	0.686 0.049 0.697	-0.205 0.717 0.062		9473	an a
~10	ITEM4 ITEM5 ITEM6	0.013 0.174 0.005	0.011 0.123 0.004	0.909 0.677 0.946	-0.157 0.132 -0.087			
τ.	ITEM7 ITEM8 ITEM9	0.148 0.152 1.248	0.065 0.125 0.848	0.701 0.697 0.266	-0.282 0.023 0.460			
ж.,	ITEMIO ITEMII ITEMI2	0.696 1.110	0.693 0.853	0.406 0.294	-0.182 0.309 -0.336			

~~<u>~~</u>~~~

T	EST	OF.	0	mon	X05
---	-----	-----	---	-----	-----

.

					LATTONC
TESTS OF SIGNIFIC	ANCE USING WILKS	LAMBDA CRIT	ERIUN AND	CANUNICAL CURRE	LAILUNS
TEST OF RODTS 1 THROUGH 1	0.774	12.000	101.000	P LESS THAN 0.676	0.290
VARTARLE	UNIVAR] F(1, 112)	ATE F TESTS	S P LESS THAN	STANDARDIZED	DISCRIMINANT FUNCTION COEFFICIENTS
ITEM12 ITEM3 ITEM4 ITEM5 ITEM6 ITEM6 ITEM7 ITEM9 ITEM10 ITEM12	$\begin{array}{c} 0.106\\ 0.002\\ 0.147\\ 0.348\\ 0.055\\ 1.202\\ 0.097\\ 2.114\\ 3.011\\ 0.674\\ 0.290\\ 0.235\end{array}$	0.072 0.002 0.091 0.293 0.039 1.152 0.042 1.729 2.045 0.763 0.289 0.181	0.745 0.964 0.702 0.557 0.815 0.275 0.757 0.149 0.085 0.414 0.685 0.414 0.591 0.629	0.125 0.008 -0.195 -0.217 -0.010 -0.240 -0.095 -0.6880 0.6880 0.6891 -0.407 0.174	

Table E. 3

Suggest of

.

TEST OF TOS

-

TESTS OF SIGNIFIC	ANCE USING WILKS	LAMBDA CRI	TERTON AND	CANONICAL CORRE	LATIONS	
TEST DE ROOTS 1 Through 1	F 1•524	JERIYE 12.000	DFERR 101.000	P LESS THAN 0.128	R 0.392	
 VARIABLE	UNIVARI F(1, 112)	ATE F TEST: MEAN SQ	S P LESS THAN	STANDARDTZED	DISCRIMINANT	FUNCTION COEFFICE
 ITEM1 ITEM2	1.016 0.249	0.708	0.316 0.619	-0.278		· · · · · · · · · · · · · · · · · · ·
ITEM3 ITEM4	0.666	0.416	0.416 0.600	0 • 1 6 2 0 • 1 1 7 0 • 1 1 7		
ITEMO ITEMO ITEM7	0.466	0.459	0.400	0.353		
ÎTEMO ITEMO	0.002 1.277	0.002	0.261	0.018		
ITEM10 ITEM11	1.694 7.032	2.036	0.196 0.009	-0.396 0.853		
TIRWIK	· · 1 / 4	0.001	V • # 4 1	U I L JZ		•

"Yoger"

TEST OF OS from Tos

TESTS OF SIGNIFIC.	INCE USING WILKS	LAMBDA CRIT	ERTON AND	CANONICAL CORRI	ELATIONS
TEST OF ROOTS 1 THROUGH 1	F 0.649	OFHYP 12.000	DFERR 101.000	P LESS THAN 0.796	R 0.268
VARIABLE	UNIVAR F(1, 112)	IATE F TESTS MEAN SQ	P LESS THAN	STANDARDIZEL 1	D DISCRIMINANT FUNCTION COEFFICIENTS
ITEMI ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM7 ITEM7 ITEM8 ITEM10 ITEM11 ITEM12	0.034 1.478 0.594 0.000 0.128 0.593 1.650 0.593 1.650 0.158 1.684 0.252 1.181	0 • 024 1 • 142 0 • 403 0 • 504 0 • 000 0 • 126 0 • 069 0 • 4838 1 • 1222 0 • 234 0 • 922	0.853 0.227 0.422 0.422 0.422 0.428 0.722 0.692 0.692 0.692 0.6657 0.28 0.28	0 • 15 0 • 15 0 • 26 - 0 • 28 - 0 • 33 - 5 - 0 •	

2000

Table E. 15

TEST OF TS from Tos

TESTS OF SIGNIFICANCE USING WILKS LAMBDA CRITERIDN AND CANONICAL CORRELATIONS

TEST OF ROOTS 1 THROUGH 1	f 0.548	DFHYP 12.000	DFERR 101.000	P LESS THAN 0.878	R 0.247	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
VARIABLE	UNIVAR F(1, 112)	IATE F TEST. MEAN SQ	S P LESS THAN	STANDARDIZE	DISCRIMINANT	FUNCTION COEFFICIENTS
I TEM1 I IEM2 I TEM3 I TEM4 I TEM5 I TEM6 I TEM6 I TEM7 I TEM8 I TEM9 I TEM10 I TEM11 I TEM12	1:026 0.432 0.042 0.225 2.212 0.504 0.022 1.335 1.044 0.925 0.185 0.000	0.715 0.333 0.026 0.191 1.566 0.496 0.010 1.089 0.733 1.112 0.172 0.000	0.313 0.513 0.838 0.636 0.140 0.479 0.881 0.250 0.309 0.338 0.668 0.983	-0.326 0.241 0.245 -0.133 0.2259 -0.343 -0.259 -0.344 0.259 -0.344 0.2428 0.2428 0.248 0.248		

TEST OF TO from Tos

TESTS OF SIGNIFIC. TEST OF ROOTS 1 THROUGH 1	ANCE USING WILKS F 0.363	LAMBDA CRIT DFHYP 12.000	TERION AND OF ERR 191.000	CANONICAL CORRE PLESS THAN 0.973	R 0.203
NAR JABLE	UNIVAF	LATE F TEST	S PIESS THAN	STANDARD IZEI	D DISCRIMINANT FUNCTION COEFFICIENTS
ITEM1 ITEM2 ITEM3 ITEM4 ITEM4	0.057 0.410 1.547 0.001 0.001	0.040 0.317 0.967 0.001 0.001	0.811 0.523 0.216 0.970	0.158 0.304 -0.674 0.034 -0.171	
ITEM6 ITEM7 ITEM8 ITEM8 ITEM9	0.184 0.241 0.010 0.048	0.181 0.105 9.008 0.033	0.668 0.624 0.920 0.928	0 • 166 • • 310 • • 017 • • 176	
ITEM10 ITEM11 ITEM12	0.174 1.532 0.003	0.209 1.424 0.002	0.218 0.959	0.125 -0.658 0.022	

.

TEST OF 5 from Tos

	TEST OF ROOTS 1 THROUGH 1	0.679	DFHYP 12.000	DFERR 101.000	P LESS THAN 0.768	0.273
. .	VARIABLE	UNIVAR F(1, 112)	MEAN SQ	S P LESS THAN	STANDARDIZE 1	D DISCRIMINANT FUNCTION COEFFICIENT
	ITEM1 ITEM2 ITEM2 ITEM2 ITEM3 ITEM3 ITEM5 ITEM5 ITEM6 ITEM7 ITEM7 ITEM9 ITEM9 ITEM10 ITEM11 ITEM12	0.295 3.871 0.206 0.006 0.355 0.000 0.201 0.193 0.926 0.152 0.893 1.484	0.205 2.990 0.129 0.005 0.251 0.000 0.088 0.157 0.650 0.153 0.183 0.183 0.183 1.160	0.588 0.052 0.651 0.937 0.552 0.655 0.655 0.655 0.662 0.338 0.697 0.347 0.226	-0.258 0.656 0.118 -0.117 0.204 -0.053 -0.262 0.362 -0.262 -0.362 -0.350	

TEST OF ROOTS 1 THROUGH 1	F 0.669	DFHYP 12.000	DFERR 101.000	P LESS THAN 0.778	R 0 • 27 1
	UNIVA	RIATE F TES	TS	STANDARDIZE	D DISCRIMINANT FUNCTION COEFFICIENTS
VARIABLE	F(1, 112)	MEAN SQ	P LESS THAN	1	
ITEM2	0.032	0.025	0.857	0.043	
	0.323	0.047	0.784	-0.132	
I TEM5	0 . 034	0.524	. 0.855	0.013	
ITEMG	1.101	1.083	0.296	0.223	
LIEM/ ITEMB	1.804	1.471	0.182	-0.451 -0.451	
Î TEMŐ	2.598	1.824	0.110	0.763	
ITEM10	0.709	0.852	0.402	0.101	
TEN12	9.284	0.222	0.545	0.179	

,

Table E.19.

TEST OF T from Tos

	TEST OF SIGNIFIC TEST OF RODTS 1 THROUGH 1	ANCE USING WILK	S LAMBDA CRI DFHYP 12.000	DFERR 101-000	P LESS THAN 0.460	R 0.325
	VARTABLE	UNIVA1 F(1) 112)	RIATE F TESTS MEAN SQ	P LESS THAN	STANDARDIZE	DISCRIMINANT FUNCTION COEFFICIENTS
	ITEM1 ITEM2 ITEM3 ITEM4 ITEM6 ITEM6 ITEM6 ITEM7 ITEM8 ITEM9 ITEM10 ITEM11 ITEM12	1.663 0.854 0.075 0.660 0.075 2.176 1.164 0.595 0.659 0.174 0.615	0 • 127 1 • 284 0 • 064 0 • 467 0 • 0467 0 • 949 0 • 949 0 • 418 0 • 792 0 • 162 0 • 480	0.200 0.357 0.784 0.418 0.785 0.143 0.283 0.143 0.283 0.442 0.447 0.435	0.211 0.4446 -0.2324 -0.2915 -0.2915 -0.2017 -0.201 -0.200	
-						

TEST OF XTU

TEST OF RODTS 1 Through 1	F 1 • 233	DEHYP 12.000	DFERR 101.000	P LESS THAN 0.271	R 0 • 357
VADTADI F	UNIVA E(1. 112)	RIATE F TESTS	D I FES THAN	STANDARDIZE	D DISCRIMINANT FUNCTION COEFFICIENTS
ITEMI	1.201	0.182	P LESS THAN	0.434	
ITEM2 ITEM3	0.547	0.404 0.246	0.461 0.526	-0.255	
ITEM4	3.895	3.170	0.051	0.457	
TTEM6	0.011	0.010	0.916	-0.000	
ITEM7	2.161	0.851	0.144	-0.6/8	
ITEN9	0.363	0.262	0.548	0.274	
ITEM1U ITEM11	0.002	2.502	0.967	0.002	
ITEM12	0.023	0.018	0.880	0.034	

.

.

TEST OF TU from XTU

	TESTS OF SIGNIFIC,	ANCE USING WILKS	LANBDA CRT	TERTON AND	CANDNICAL CORRE	LATIONS		
	TEST OF ROOTS 1 THROUGH 1	F 1•716	DF HYP 12.000	DFERR 101.000	P LESS THAN 0 • 074	R 0.411		
Y		UNIVARI	ATE F TEST	S D LECE THAN	STANDARDIZED	DISCRIMINANT	FUNCTION	COEFFICIENTS
• •••••	TIFM1	6.029	MLAN 50 3.922	0.016	0.479			· · · · · · · · · · · · · · · · · · ·
	ĪŢĒM2	8.693	6.417	0.004	0.592			
	I I E M S I T F M A	1.643	1.337	0.203	0+253			
	ITEMS	0.348	0.233	0.556	-0.026			
	ITEM6	6 • 986	6.472	0.009				
~	ITEMA	0.000	0.000	0.985	-0.139			
	ITEM9	0.045	0.032	0.833	-0.177			
	ITEM10	0.166	0 + 178	0.684	-0.036			
	ITEM12	0.801	0.613	ŏ.373	Ũ•146			

TEST OF XT from XTU

·····	TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CRITE	RTON AND	CANONICAL CORREL	LATIONS
	1 THROUGH 1	F 0 • 699	DFHYP 12.000	DFERR 101-000	P LESS THAN 0.749	R 0.277
	VARIABLE F(UNIVARJ 1, 112)	IATE F TESTS MEAN SQ P	LESS THAN	STANDARDIZED	DISCRIMINANT FUNCTION COEFFICIENTS
- -	ITEMI ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM7 ITEM8 ITEM10 ITEM11 ITEM12	0.112 0.463 1.168 2.1996 0.709 2.1991 2.1991 2.091 2.403 2.403 2.064	0.3140 0.3140 0.314699 1.346899 1.024019 1.024049 1.0240049 1.0240049 1.02400000000000000000000000000000000000	0.739 0.497 0.2814 0.5141 0.148 0.1458 0.1448 0.1448 0.1448 0.1448 0.1448 0.9759 0.800 0.800	0 1 1 1 1 1 1 1 1 1 1 1 1 1	
·						

10.000/201

TEST OF U from XCU

TEST OF ROOTS 1 THROUGH 1	F 0•768	DFHYP 12.000	DFERR 101.000	PLESS THAN 0.682	R ؕ289	
VARIABLE	UNIVA F(1. 112)	RIATE F TEST:	S PIESS THAN	STANDARDIZED	DISCRIMINANT	FUNCTION COEFFICIENTS
ITEM1 ITEM2	0.003	0.002	0.269	0.018		an a
ITEMS		0.009	0.207	-0+135		
ITEN5	1.549	0.983	0.216	0.138		
ITEMO ITEMO	0.519	1.302 0.209	0.249 0.473	0.226 -0.456		
ITEM8 ITEM9	2.297 0.018	1.625	0.132	0 • 586 - 0 • 0 27		
ITEM10	1.766	1.963	0.187	0.511		
ITEM12	0.729	0.548	0.395	0.449		

Table E.24

TEST OF U from XTU

 TESTS OF SIGNIFICA	NCE USING WILKS	LAMBDA CRI	TERTON AND	CANONICAL CORRE	LATIONS	_
1 THROUGH 1	0 * 9 9 3	12.000	101.000	0.461	0,7325	·····
VARTABLE	UNIVAR: F(1, 112)	ATE F TEST	S PLESS THAN	STANDARDIZED	DISCRIMINANT FUNCTION	I COEFFICIENTS
ITEMI ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM6 ITEM7 ITEM8 ITEM9 ITEM9	0.010 1.663 0.001 0.138 1.395 1.478 0.863 2.709 0.011 2.114 0.72	0.008 1.228 0.001 0.112 0.9370 1.370 0.925 0.008 2	0.921 0.200 0.972 0.711 0.240 0.227 0.355 0.103 0.918 0.149 0.149	0.098 0.387 -0.088 0.115 -0.288 0.115 -0.522 -0.522 -0.522		
ITEM12	0.712	0.545	ŏ.400	0.475		

TEST OF T from XTU

	TESTS OF SIGNIFIC	ANCE USING WILKS	LAMBDA CRT	TERTON AND	CANONICAL CORRE	LATIONS		
	TEST OF ROOTS 1 THROUGH 1	F 1•080	0FHYP 12.000	DFERR 101-000	P LESS THAN 0.385	R 0•337		
~~	VARTABLE	UNIVART F(1, 112)	ATE F TEST MEAN SQ	S P LESS THAN	STANDARDIZED	DISCRIMINANT	FUNCTION COEFFICIENT	.c
ч. ч.	ITEM1 ITEM2 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM7 ITEM6 ITEM9 ITEM9 ITEM9	0.206 1.725 0.080 0.725 0.080 0.726 2.372 1.255 0.557 0.776 0.170	0 • 134 1 • 273 0 • 522 0 • 0 65 0 • 0 71 0 • 9 34 0 • 9 35 0 • 4 83 0 • 4 83 0 • 4 83 0 • 6 7	0.651 0.192 0.356 0.778 0.396 0.783 0.783 0.126 0.266 0.266 0.457 0.381	0:222 0:451 0:220 -0:214 -0:319 -0:136 -0:612 0:490 -0:208 0:504 -0:072			@
S	ITEM12	0.651	0.498	0.422	0.500	 	• .	

TEST OF RX

dimension and

TESTS OF SIGNIFICANCE USING WILKS LAMBDA CRITERION AND CANONICAL CORRELATIONS

TEST OF ROOTS 1 THROUGH 2 2 THROUGH 2	0.674 0.590	07HYP 24.000 11.000	Df ERR 220.000 110.500	P LESS THAN 0.874 0.833	0.285 0.236
VARTABLE	UNIVAR F(2, 121)	IATE F TESTS MEAN SQ	S P LESS THAN	STANDARDIZE	D DISCRIMINANT FUNCTION COEFFICIENTS
ITEM1 ITEM2 ITEM3 ITEM4 ITEM4 ITEM6 ITEM6 ITEM7 ITEM9 ITEM10 ITEM11 ITEM12	1.429 4.2962 1.2921 2.1200 1.1.200 1.1.200 1.1.200 0.536 1.300 0.536 1.300 0.536 1.300 0.536 1.300 0.536 1.300 0.536 1.300 0.536 1.300 0.536 1.300 0.536 1.300 0.536 1.300 0.536 1.300 0.536 1.300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000	1.030332059592 12010110000400 10110110000400 10000400	00000000000000000000000000000000000000	0.00 - 00 - 00	· · · · · · · · · · · · · · · · · · ·

Table E-27

TEST OF XC from XCU

TESTS OF SIGNIFICANCE USING WILKS LAMBDA CRITERION AND CANONICAL CURRELATIONS

TEST OF ROOT	S	DEHYP	-DFERR P	LESS THAN	R	
THROUGH	1	12.000 10	01.000	0.383	0.337	natera e a sec e e a contra contra e en acontra en antigativa e presidente de la contra

	UNIVA	RIATE F TEST	S	STANDARDIZED DIS	CRIMINANT FUNCTIO	N CUEFFICIENTS
VARIABLE	F(1, 112)	MEAN SO .	P LESS THAN	1		
ITEMI	2.090	1.715	0.092	-0.499		
		0.376			-	
<u> </u>	<u>v</u> _204	0.129	<u> </u>	<u></u>	· · · · · · · · · · · · · · · · · · ·	
ITEM4	0.114	0.094	0.130	0.097		
IIEM5	1.841	1.169	0.178	0.346		
	0.107					
11 EM/						an a
			<u> </u>			
LICPY				-0.101		ى بېرىنى دىرىمۇمىيە بەرمەيمۇر بىرى تىلىپ ، يېلىپ بىرىيىتىك بىرىيىتىيىتى بىرىيە بىرىيى بىرىيە بەرمەيلىپ بىر بېر
	1,009	0.479	0.317	0.425		
Î Î Ê MÎ 2	0.288	0.216	0.593	0.048	an alaran dalam da ana ang kana da kana ang kana ang kana ang kana da kana da kana da kana da kana da kana da k	
						a son yanna maya aya falan ka yang ang ang ang ang ang ang ang ang ang
a na		۰. 				المحاجب والمحاج والمراجع فالمحاج والمحاج والمحاجم والمحاج والمحاجم والمحاجم والمحاجم والمحاجم والمحاج والمحاجم
rommentering and a subscription of the second se	 A second of the local second se Second second se Second second sec			a a ben na hannan na hannan na hannan na hannan na hannan hannan hannan hannan hannan hannan an hannan an hanna		 A part for the second se
kennenger sonskepper innenisier at dangen for beging genalitiere og andere stageformen er filse overer at seken			مەرىپىلىكى ئۆلۈك بەر ئەلىكى ئەرىپىلىكى ئەرىپىلىكى ئەرىپىلىكى ئەرىپىلىكى ئەرىپىلىكى ئەرىپىلىكى ئەرىپىلىكى ئەرىپ ئەرىپىلىكى ئەرىپىلىكى ئەرىپىلىكى ئەرىپىلىكى ئەرىپىلىكى ئەرىپىلىكى ئەرىپىلىكى ئەرىپىلىكى ئەرىپىلىكى ئەرىپىلىكى ئە	and a second of the second		
<pre>interaction control of the state of the</pre>	ىرىپ يېلىرى بەر بىلەر بەر بىلەر بەر بىلەر بەرلەر بەرلەر بەرلەر بەر بىلەر بىلەر بەر بەر بەر بەر بەر بەر بەر بەر	· · · · · · · · · · · · · · · · · · ·				
and a second second and a second s		•				
		<u></u>				
and a second						