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Abstract

Information and communication technology (ICT)

plays an important role in rural livelihoods and house-

hold well-being. Therefore, this study examines the

impact of ICT adoption on farmers' decisions to access

credit and the joint effects of ICT adoption and access

to credit on household income using 2016 China

Labour-force Dynamics Survey data. Both recursive

bivariate probit model and a selectivity-corrected ordi-

nary least square regression model are employed for

the analysis. The results show that ICT adoption

increases the probability of access to credit by 12.8% in

rural China and empowers rural women and farm

households in relatively less-developed regions to

access credit. ICT adoption and access to credit affect

household income differently. ICT adoption signifi-

cantly increases household income, while access to

credit significantly reduces it, primarily because

farmers do not use the acquired credit to invest in

income-generating farm and off-farm business activi-

ties. ICT adoption has the largest positive impact on

household income at the highest 90th quantile. Our

findings suggest that improving rural ICT infrastruc-

ture to enhance farmers' ICT adoption and developing

Received: 29 June 2022 Revised: 13 August 2022 Accepted: 11 September 2022

DOI: 10.1111/rode.12943

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and

reproduction in any medium, provided the original work is properly cited.

© 2022 The Authors. Review of Development Economics published by John Wiley & Sons Ltd.

Rev Dev Econ. 2022;1–24. wileyonlinelibrary.com/journal/rode 1

https://orcid.org/0000-0001-7847-8459
mailto:hgqiu@ruc.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/rode
http://crossmark.crossref.org/dialog/?doi=10.1111%2Frode.12943&domain=pdf&date_stamp=2022-10-10


ICT-based financial products to enable households to

access sufficient funds can improve rural household

welfare.
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1 | INTRODUCTION

Access to credit plays an important role in improving agricultural production and alleviating
poverty in rural areas of developing and emerging countries. Credit eases liquidity and facili-
tates farm households to purchase productivity-enhancing inputs (e.g., improved seeds, fertil-
izers, and pesticides) (Kehinde & Ogundeji, 2022; Osabohien, Mordi, & Ogundipe, 2022), invest
in the farm and off-farm businesses (Ejemeyovwi, Osabuohien, & Bowale, 2021), smoothen
household consumption (Kumar, Mishra, Sonkar, & Saroj, 2020; Li, Lin, & Gan, 2016), and
cope with short-term nondelinquent expenditures, such as sickness prevention and treatment
(Felkner, Lee, Shaikh, Kolata, & Binford, 2022) and children's education (Kandulu, Wheeler,
Zuo, & Sim, 2019). In addition, access to credit can empower rural women by enabling them to
purchase productive assets. For example, credit enables the purchase of women-oriented dura-
ble goods and services such as sewing machines and washers and farm machinery and relevant
services to maintain farm production when men migrate for better salary opportunities
(Basumatary, Chhetri, & Rajesh, 2022; Datta & Sahu, 2021; Paudel, Gartaula, Rahut, &
Craufurd, 2020).

Despite the importance of access to credit, rural households are usually unable to acquire
credit easily or get the credit amount they need due to various constraints, including the lack of
credit market and services, arrangements of regional financial institutions, lack of collateral
and information asymmetry (Akudugu, Egyir, & Mensah-Bonsu, 2009; Benami & Carter, 2021;
Kehinde & Ogundeji, 2022; Kofarmata & Danlami, 2019; Li, Ma, Mishra, & Gao, 2020). In par-
ticular, information asymmetry has been identified as a major obstacle. In the investigations on
Ghana and Nigeria, Akudugu et al. (2009) and Kofarmata and Danlami (2019) found that asym-
metric information increases the risks of borrowers' moral hazard and adverse selection, which
restricts rural households from participating in the credit markets and obtaining the required
loan amount. Therefore, it is important to reduce information asymmetry between borrowers
and lenders to improve farm households' ability to access credit.

Adopting information and communication technologies (ICTs) such as computers and
mobile phones can reduce information asymmetry in the digital age. ICT-based analytical tools
can help both borrowers and lenders better understand the market risks and improve their effi-
ciency and effectiveness in dealing with potential information asymmetry and moral hazards
(Asongu, le Roux, Nwachukwu, & Pyke, 2019). Several studies found that ICT adoption
enhances farm economic performance (Ogutu, Okello, & Otieno, 2014), increases rural house-
holds' income (Leng, Ma, Tang, & Zhu, 2020; Ma, Grafton, & Renwick, 2020), and facilitates
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rural development (Niebel, 2018; Spielman, Lecoutere, Makhija, & Van Campenhout, 2021).
For example, Ogutu et al. (2014) showed that ICT-based market information services increase
the use of purchased seeds and fertilizers and labor productivity in Kenya. Ma et al. (2020)
found that in rural China ICT adoption in terms of smartphone use increases farm income, off-
farm income, and overall household income. ICT also enables mobile money usage
(i.e., making basic financial transactions via smartphones), which reduces borrowing costs
(Kim, 2022; Lashitew, van Tulder, & Liasse, 2019; Munyegera & Matsumoto, 2018). Very few
studies have explored the relationship between ICT adoption and rural households' financial
accessibility. A notable exception is a study by Asongu et al. (2019), who analyzed panel data of
162 banks from 42 African countries and showed that ICT adoption decreases loan prices and
increases loan quantity in their analysis. Moreover, farmers may simultaneously make decisions
on ICT adoption and credit access to maximize their expected household welfare, but no previ-
ous studies have explored the joint effects of ICT adoption and access to credit.

The primary objective of this study is, therefore, to investigate the relationship between ICT
adoption and access to credit, as well as their joint effects on household income, using the 2016
China Labour-force Dynamics Survey (CLDS) data collected by the Centre for Social Science
Survey at Sun Yat-sen University in Guangzhou, China. Although the CLDS collected data from
both rural and urban households, this study focuses only on rural households because they are
more likely to be credit-constrained compared to their urban counterparts and rural financial
markets are not mature (Kofarmata & Danlami, 2019; Yuan & Xu, 2015).

This study contributes to the literature in several aspects. First, we analyze the impact of
ICT adoption on access to credit. We use a recursive bivariate probit (RBP) model to address
the selection bias issue that usually occurs when farmers self-select themselves as ICT adopters
or non-adopters. Previous studies have employed a propensity score matching (PSM) approach
to mitigate selection bias associated with ICT adoption (Minah, 2022; Shimada &
Sonobe, 2021). However, the PSM approach is unable to mitigate selection bias issues arising
from unobserved factors. Second, we explore whether there exist heterogeneous effects of ICT
adoption on access to credit between male- and female-headed households and among geo-
graphical locations. Extant studies have confirmed that a gender divide exists in ICT adoption
(Leng et al., 2020; Nikam, Ashok, & Pal, 2022; Silver & Cornibert, 2019). Thus, the impact of
ICT adoption on access to credit might be heterogeneous between male- and female-headed
households. Moreover, the institutional arrangements, socioeconomic conditions, ICT infra-
structure conditions, and resource endowments differ among different geographical locations in
China, so it is worth investigating whether there are heterogeneous regional effects of ICT
adoption.

Third, we explore the joint effects of ICT adoption and access to credit on household
income. Previous studies have either examined the effects of ICT adoption (Colombo, Croce, &
Grilli, 2013; Khan, Ray, Zhang, Osabuohien, & Ihtisham, 2022; Leng et al., 2020; Ma &
Zheng, 2022) or analyzed the effects of access to credit (Al-shami, Razali, & Rashid, 2018;
Ankrah Twumasi, Jiang, Fosu, Addai, & Essel, 2022; Kehinde & Ogundeji, 2022; Li et al., 2020;
Osabohien et al., 2022). However, given that farmers may make joint decisions in their efforts
to adopt ICTs and acquire credit, modeling the separate effects of ICT adoption and access to
credit on household income would generate biased and inconsistent estimates. Fourth, we fur-
ther estimate the impact of ICT adoption and access to credit on farm income and business
income. This estimation enables us to intuitively understand whether farmers have used the
ICTs and acquired credit to invest in income-generating farm and off-farm activities. Finally,
we estimate an unconditional quantile regression (UQR) model to check whether the impacts
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of ICT adoption and access to credit on household income are homogenous or heterogeneous.
From a policy perspective, policymakers are usually interested in understanding how ICT inter-
ventions and credit market development in rural areas affect the unconditional distributions of
an outcome such as household income.

This paper is structured as follows: Section 2 introduces the conceptual framework. Section 3
presents econometric models, and Section 4 presents data and descriptive statistics. Section 5
offers and discusses the empirical results. The final section concludes with policy implications
and research limitations.

2 | CONCEPTUAL FRAMEWORK

Figure 1 illustrates the potential relationship between ICT adoption, access to credit, and house-
hold income. The first path shows that farmers' decisions to adopt ICT and access to credit can
affect each other. On the one hand, ICT adoption reduces information asymmetry associated
with credit markets and stimulates mobile money usage (Asongu et al., 2019; Ejemeyovwi
et al., 2021; Kim, 2022), and thus, farmers adopting ICTs may be more likely to obtain credit.
Munyegera and Matsumoto (2018) showed that mobile money leverages rural households'
financial access constraints in Uganda and stimulates remittance and borrowing transactions
between farm households. On the other hand, access to credit may also affect ICT adoption.
Credit obtained from informal sources (e.g., friends and relatives) and formal sources
(e.g., banks and credit cooperatives) enables farmers to relax capital constraints. For example,
farmers may use the obtained credit to purchase ICT devices such as smartphones and
computers.

The second path shows that ICT adoption can affect farm work, off-farm work, leisure, and
other income, which ultimately affects household income. The farm household model suggests
that rural farmers allocate their fixed time to farm work, off-farm work, and leisure
(Fernandez-Cornejo et al., 2007). Previous studies have shown that ICT adoption improves farm

Farm work

Off-farm work

Farm investment

ICT adoption

Off-farm business 
investment

Access to credit

income
Household 

Leisure

Other income

Healthcare

Human capital 
investment

FIGURE 1 Potential relationship between information and communication technology (ICT) adoption,

access to credit, and household income [Colour figure can be viewed at wileyonlinelibrary.com]
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investments and productivity (Agbodji & Johnson, 2021; Kaila & Tarp, 2019; Ma &
Zheng, 2022), off-farm work participation (Hartje & Hübler, 2017; Rajkhowa & Qaim, 2022),
and farmers' leisure time (e.g., chatting, playing games, buying lotteries online, gambling,
watching videos, and browsing webpages on smartphones and computers) and quality of life
(Kirova & Vo Thanh, 2019; Mnisi & Alhassan, 2021). Thus, ICT adoption affects farmers' farm
and off-farm income and overall household income. For example, more time allocated to ICT-
based leisure would result in less time allocated to ICT-based farm and off-farm activities,
which indicates a negative effect of ICT adoption on household income, and vice versa. Besides,
ICT adoption can affect household income by providing opportunities for other income sources,
such as remittance (Kirui, Okello, Nyikal, & Njiraini, 2013; Munyegera & Matsumoto, 2016).

The third path shows that access to credit can also affect household income by directly
influencing households' economic activities. Rural households may acquire credit to support
farm investment and off-farm business. Petrick (2004) found that access to subsidized credit is
positively associated with farmers' farm investment behavior in Poland. Abate, Rashid, Borzaga,
and Getnet (2016) showed that improving access to credit increases smallholder farmers' adop-
tion of agricultural technologies, including fertilizers and improved seed varieties in Ethiopia.
In Bangladesh, access to credit positively influences the adoption of farm machinery (Mottaleb,
Rahut, Ali, Gérard, & Erenstein, 2017), which ultimately affects farm productivity and house-
hold income. Banerjee and Jackson (2017) revealed that the microfinance program
implemented in Bangladesh provides the poor with new opportunities for entrepreneurship,
which helps generate income and reduce poverty. Therefore, access to credit may increase
household income. However, farmers may seek credit for health care and children's education
(Chein & Pinto, 2018; Kandulu et al., 2019; Sun & Yannelis, 2016) rather than investing in
income-generating activities, which indicates that access to credit may have a negative or no
impact on household income. For example, suppose credit users do not use the acquired credit
for income-generating activities but use it for other household activities such as children's edu-
cation and medical treatment, while nonusers of credit invest in income-generating activities
using their funds. In that case, access to credit might negatively impact household income.

In this study, we quantitatively examine to what extent and how ICT adoption affects access
to credit and the joint effects of ICT adoption and access to credit on household income, using
rigorous econometric approaches. The findings of this study would inform policymakers regard-
ing what efforts they should make to improve farmers' ICT adoption and financial access status,
aimed at promoting rural development and economic growth.

3 | ECONOMETRIC MODELS

3.1 | Modeling the impact of ICT adoption on access to credit

Households decide themselves (self-selection), whether to adopt the ICTs, depending on their
welfare and other socioeconomic and technological factors, which leads to the potential endo-
geneity issue of the ICT adoption variable in an econometric estimation. When analyzing the
impact of a binary endogenous treatment variable (i.e., ICT adoption) on a binary outcome vari-
able (i.e., access to credit), previous studies have suggested different approaches, such as the
PSM method (Minah, 2022; Shimada & Sonobe, 2021), endogenous switching probit (ESP)
model (Lokshin & Sajaia, 2011; Nkegbe et al., 2022), and RBP model (Addai, Temoso, &
Ng'ombe, 2022; Li, Cheng, & Shi, 2021). Among them, the PSM method fails to correct for
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endogeneity issues originating from unobserved factors (e.g., an individual's innate ability and
motivation), while the ESP model cannot estimate a direct effect of ICT adoption on access to
credit. In comparison, the RBP model addresses the endogeneity issue from both observed and
unobserved factors, and it can estimate a direct marginal effect of ICT adoption on access to
credit. Therefore, our estimation uses the RBP model.

The RBP model estimates two equations (Addai et al., 2022; Li et al., 2021). One describes
the probability of ICT adoption based on Equation 1, and another explains the impact of ICT
adoption on households' credit access based on Equation 2:

I�i ¼ ηiXiþξiIV iþ τi, Ii ¼
1, if I�i >0

0, otherwise

�
ð1Þ

C�
i ¼ αiIiþβiXiþ εi,Ci ¼

1, if C�
i >0

0, otherwise

�
ð2Þ

where I�i is a latent variable representing the probability that a household i adopts ICTs, which
is determined by the observed binary variable Ii (Ii ¼ 1 for ICT adopters and Ii ¼ 0 for non-
adopters); C�

i refers to a latent variable that represents the propensity of credit access, which is
determined by the observed binary variable Ci (Ci ¼ 1 for credit users and Ci ¼ 0 for non-users);
Xi is a vector of exogenous variables; IV i refers to an instrumental variable (IV), which is used
for RBP model identification; ηi, ξi, αi, and βi are parameters to be estimated; τi and εi are error
terms.

Because we could not identify a valid instrumental variable (IV) from the available variables
in the CLDS data set, we follow previous studies (Zheng, Ma, & Zhou, 2021; Zhu, Ma, Sousa-
Poza, & Leng, 2020) and use a synthesized IV. The synthesized IV represents the average num-
ber of other ICT adopters (i.e., except for the sampled household) within the same county. We
expect that the synthesized IV affects a household's ICT adoption decision, but we do not expect
it to affect access to credit directly. Statistically, we conduct a Pearson correlation analysis to
test the validity and effectiveness of the IV. The results (see Table A1) show that the IV is signif-
icantly correlated with the ICT adoption variable, but it is not significantly correlated with the
access to credit variable, confirming the appropriateness of the IV.

The full information maximum likelihood estimator simultaneously estimates Equations 1
and 2. This procedure generates a correlation coefficient between the two error terms in Equa-
tions 1 and 2, that is, ρτε ¼ corr τi, εið Þ. If ρτε is statistically significant, it would suggest the pres-
ence of selection bias arising from the unobserved factors (Addai et al., 2022), and estimating
the impact of ICT adoption on access to credit using other approaches such as PSM or simple
probit model may generate biased estimates.

3.2 | Modeling the joint effects of ICT adoption and access to credit
on household income

To examine the joint effects, we assume that household income is a function of the ICT adop-
tion, access to credit, and a vector of explanatory variables. The regression equation for house-
hold income can be rewritten as follows:
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Yi ¼ γiIiþδiCiþφiXiþϖi ð3Þ

where Yi refers to household income, which is measured at 1,000 Yuan/capita; Ii, Ci, and Xi

are variables defined earlier; γi, δi, and φi are parameters to be estimated; ϖi is an error term. γi
and δi are parameters capturing the impacts of ICT adoption and access to credit on household
income, respectively. Equation 3 can be estimated using an ordinary least square (OLS) regres-
sion model.

As discussed earlier, the ICT adoption variable (Ii) is endogenous in Equation 3, because
farmers select themselves as ICT adopters or non-adopters. Access to credit variable (Ci) is also
potentially endogenous in Equation 3 due to the similar self-selection issue of becoming credit
users or nonusers. The endogeneity issue of access to credit variables has been discussed in pre-
vious studies (Kumar et al., 2020; Li et al., 2020). Failing to address the endogeneity issues asso-
ciated with ICT adoption and access to credit variables would produce biased estimates
regarding their joint effects on household income.

Following previous studies (Ma, Renwick, & Grafton, 2018; Wooldridge, 2015), we employ a
two-stage selectivity-corrected OLS model to estimate the unbiased impacts of ICT adoption
and access to credit on household income. In the first stage, the two equations of ICT adoption
and access to credit are jointly estimated using a seemingly unrelated bivariate probit (SUBP)
model. The SUBP model simultaneously estimates an ICT adoption equation and access to
credit equation. Unlike the RBP model estimation, the ICT adoption variable is removed from
Equation 2 in the SUBP model estimation to avoid a reverse causality relationship between ICT
adoption and access to credit. The results estimated by the SUBP model are used to generate
predicted variables for the endogenous factors. In the second stage, the predicted ICT adoption
variable and predicted access to credit variable, which controls for the endogeneity issues, are
used to replace the original variables in Equation 3. Therefore, the following selectivity-
corrected OLS model can be estimated:

Yi ¼ ζiI
0
iþλiC

0
iþψ iXiþωi ð4Þ

where Yi and Xi are variables defined previously; I 0i and C0
i are predicted ICT adoption variable

and predicted access to credit variable, respectively; ζi, λi, and ψ i are parameters to be esti-
mated; ωi is an error term.

4 | DATA AND DESCRIPTIVE STATISTICS

4.1 | Data

Data used in this paper were obtained from the CLDS, which was conducted in 2016 by the
Centre for Social Science Survey at Sun Yat-sen University in Guangzhou, China. The data were
collected from western, central, and eastern regions, covering 29 provinces of mainland China
(excluding Tibet Autonomous Region and Hainan). The questionnaire includes detailed infor-
mation on individual and household-level characteristics, household daily life activities, the use
of ICTs, housing conditions, households' financial performance, rural labor migration, and agri-
cultural production and marketing. The 2016 CLDS survey comprises 14,200 samples, including
8,248 rural households and 5,952 urban households. The data cleaning took three steps. First,
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we excluded the samples of urban households. Second, we removed rural samples with missing
values in household income, farm income, and business income. Third, we further dropped samples
with missing information on the control variables (e.g., age, education, car ownership, and pen-
sion). Finally, we obtained a total of 7,771 rural household samples for empirical analysis.

ICT adoption is measured as a dichotomous variable, which equals one if a farm household
adopts the Internet-connected ICTs such as computers and mobile phones in 2015, and zero
otherwise. Access to credit is also measured as a dichotomous variable, which equals one if a
farm household has access to credit from any formal credit sources (e.g., banks and credit
unions) and informal credit sources (e.g., friends and relatives). Household income refers to
total household income generated from farm work, business investment, salaries, property, and
remittance, which is measured at 1,000 Yuan/capita. Farm income refers to the income gener-
ated from agriculture, forestry, animal husbandry, and fishery, while business income refers to
income from an off-farm business such as grocery stores and family workshops.

4.2 | Descriptive statistics

Table 1 presents the definitions and descriptive statistics of the variables used in the analysis. It
shows that 32.5% of households adopt the ICTs, and 44.9% have access to credit. The average
household income is 10,171 Yuan/capita. The mean age of the household heads is 52 years, and
more than half (57.1%) are male. Only 15.2% of the rural households own cars, and around 5.9%
are specialized in agricultural production.1

Table 2 presents the mean differences of the variables between ICT adopters and non-adopters.
Compared with the non-adopters, ICT adopters are 14.8% more likely to access credit and are also
more likely to obtain a higher household income. ICT adopters are younger and more likely to own
a car and an indoor toilet than non-adopters. ICT adopters are also more likely to specialize in agri-
cultural production than their non-adopter counterparts. More generally, the mean differences indi-
cate that the ICT adopters and non-adopters are systematically different, primarily because farmers
select themselves as ICT adopters or non-adopters. Therefore, the empirical analysis cannot ignore
the endogeneity issue associated with the ICT adoption variable.

Figure 2 demonstrates the means of access to credit variables by gender. Male ICT adopters are
more likely to acquire credit than female ICT adopters. While among the ICT non-adopters, the
mean of access to credit for the female is higher than that for the male. Figure 3 presents the means
of access to credit variables by geographical locations. ICT adopters in the western region have the
highest probability of acquiring credit, while the non-adopters in the eastern region have the lowest
likelihood of obtaining credit. The information presented in Figures 2 and 3 suggests that ICT adop-
tion may generally affect access to credit heterogeneously between male- and female-headed house-
holds and among geographical locations. Thus, we also quantitatively estimate the heterogeneous
effects of ICT adoption on access to credit in the empirical section.

5 | EMPIRICAL RESULTS AND DISCUSSION

5.1 | Results of the RBP model estimation

The coefficient estimates of the RBP model are presented in Table A2 for reference. As dis-
cussed earlier, the RBP model jointly estimates Equations 1 and 2. The results in the lower part
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of Table A2 show that the estimated correlation coefficient ρτε is statistically significant and
negative, suggesting the presence of negative selection bias originating from unobserved factors
(Addai et al., 2022; Li et al., 2021). The negative selection bias implies that farmers having lower
probabilities of adopting ICTs have higher probabilities of accessing credit. These findings sug-
gest that failing to account for the selection bias issues would underestimate the impact of ICT

TABLE 1 Variable definitions and descriptive statistics

Variables Definitions Mean (SD)

Dependent variables

ICT adoption 1 if household adopts the ICTs such as computer and/or smartphones, 0
otherwise

0.325 (0.468)

Access to
credit

1 if household has access to credit from various sources (e.g., banks,
credit unions, friends, and/or relatives), 0 otherwise

0.449 (0.497)

Household
income

Annual household income (1,000 Yuan/capita)a 10.171 (13.387)

Farm income Annual income from agriculture, forestry, animal husbandry, and fishery
(1,000 Yuan/capita)

2.579 (6.632)

Business
income

Business investment income (1,000 Yuan/capita) 1.448 (7.435)

Independent variables

Age Age of household head (HH) in years 51.671 (14.662)

Gender 1 if HH is male, 0 otherwise 0.571 (0.495)

Illiteracy 1 if HH's education level is illiteracy, 0 otherwise 0.191 (0.393)

Primary
school

1 if HH's education level is a primary school, 0 otherwise 0.360 (0.480)

Middle-level
school

1 if HH's education level is between primary school and college (i.e.,
middle school, high school, vocational high school, technical school, or
technical secondary school), 0 otherwise

0.416 (0.493)

College and
above

1 if HH's education level is college and above, 0 otherwise 0.033 (0.178)

Farm labor Number of farm labor 1.036 (1.1)

Car
ownership

1 if household owns a car, 0 otherwise 0.152 (0.359)

Indoor toilet 1 if household owns an indoor toilet, 0 otherwise 0.458 (0.498)

Pension 1 if HH receives a retirement pension, 0 otherwise 0.091 (0.288)

Soil quality 1 if soil quality is good, 0 otherwise 0.553 (0.497)

Specialization 1 if household specialized in farming, 0 otherwise 0.059 (0.235)

West 1 if household residents in western China, 0 otherwise 0.310 (0.463)

Central 1 if household residents in Central China, 0 otherwise 0.269 (0.444)

East 1 if household residents in eastern China, 0 otherwise 0.421 (0.494)

IV The average number of other ICT adopters within the same county 0.449 (0.223)

Gift money Annual spending on gift money (100 Yuan) 6.147 (65.596)

Abbreviations: ICT, information and communication technology; IV, instrumental variable.
aYuan is the Chinese currency.
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adoption on access to credit. The Wald test of ρτε ¼ 0 is also statistically significant, suggesting
that we can reject the null hypothesis that there is no correlation between the selection and

TABLE 2 Mean differences in the selected variables between ICT adopters and non-adopters

Variables
ICT adopters
(N = 3,487)

Non-adopters
(N = 4,284) Mean-differences t-Value

Access to credit 0.349 (0.477) 0.304 (0.460) 0.045*** 4.259

Household income 13.693 (15.691) 7.303 (10.314) 6.390*** 21.545

Age 45.740 (13.739) 56.498 (13.581) �10.758*** �34.551

Gender 0.534 (0.499) 0.600 (0.490) �0.066*** �5.868

Illiteracy 0.109 (0.312) 0.256 (0.437) �0.147*** �16.713

Primary school 0.293 (0.455) 0.416 (0.493) �0.123*** �11.343

Middle-level school 0.537 (0.499) 0.318 (0.466) 0.219*** 19.940

College and above 0.061 (0.240) 0.010 (0.099) 0.052*** 12.798

Farm labor 1.034 (1.199) 1.038 (1.012) �0.004 �0.156

Car ownership 0.261 (0.439) 0.063 (0.244) 0.198*** 25.092

Indoor toilet 0.565 (0.496) 0.370 (0.483) 0.195*** 17.522

Pension 0.085 (0.279) 0.096 (0.295) �0.011 �1.640

Soil quality 0.481 (0.500) 0.610 (0.488) �0.129*** �11.461

Specialization 0.069 (0.254) 0.050 (0.218) 0.019*** 3.631

West 0.248 (0.432) 0.361 (0.480) �0.113*** �10.799

Central 0.218 (0.413) 0.311 (0.463) �0.093*** �9.270

East 0.535 (0.499) 0.328 (0.470) 0.206*** 18.734

IV 0.550 (0.211) 0.366 (0.197) 0.184*** 39.597

Gift money 6.980 (1.210) 5.470 (0.920) 1.512 1.011

Note: Standard deviation in parentheses.
Abbreviations: ICT, information and communication technology; IV, instrumental variable.
***p < 0.01.

0.36
0.34

0.29
0.32

0.00

0.10

0.20

0.30

0.40

0.50

Male Female

M
ea

ns
 o

f 
ac

ce
ss

 to
 c

re
di

t

ICT adopters ICT non-adopters

FIGURE 2 Means of access to credit by information and communication technology (ICT) adoption and gender

10 MA ET AL.



outcome equations. The finding indicates that it is more appropriate to estimate the ICT adop-
tion equation and access to credit equation jointly rather than separately.

Since the explanation of coefficient estimates from the RBP model (Table A2) is not straight-
forward, we calculate the marginal effects of the explanatory variables and present the results
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FIGURE 3 Means of access to credit by information and communication technology (ICT) adoption and

geographical locations

TABLE 3 Marginal effects of ICT adoption on access to credit

Variables

RBP model Probit model

ICT adoption Access to credit Access to credit

ICT adoption 0.128 (0.033)*** 0.033 (0.012)***

Age �0.004 (0.002)* 0.009 (0.002)*** 0.008 (0.002)***

Age squared �0.000 (0.000)* �0.000 (0.000)*** �0.000 (0.000)***

Gender �0.053 (0.010)*** 0.005 (0.011) �0.001 (0.011)

Primary school 0.040 (0.014)*** �0.016 (0.015) �0.011 (0.015)

Middle-level school 0.123 (0.014)*** �0.050 (0.017)*** �0.035 (0.016)**

College and above 0.186 (0.036)*** �0.106 (0.035)*** �0.088 (0.035)**

Farm labor 0.018 (0.005)*** 0.022 (0.005)*** 0.023 (0.005)***

Car ownership 0.210 (0.014)*** �0.044 (0.017)*** �0.020 (0.015)

Indoor toilet 0.092 (0.010)*** �0.001 (0.012) 0.011 (0.011)

Pension �0.060 (0.018)*** �0.067 (0.020)*** �0.072 (0.020)***

Soil quality �0.036 (0.009)*** �0.008 (0.011) �0.014 (0.011)

Specialization 0.057 (0.020)*** 0.044 (0.022)** 0.051 (0.022)**

Central 0.022 (0.012)* �0.046 (0.014)*** �0.044 (0.014)***

East 0.028 (0.012)** �0.153 (0.013)*** �0.142 (0.013)***

IV 0.601 (0.022)***

Observations 7,771 7,771

Note: Standard errors in parentheses. The reference region is west. The reference education level is illiteracy.

Abbreviations: ICT, information and communication technology; IV, instrumental variable.
*p < 0.1. **p < 0.05. ***p < 0.01.
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in Table 3 to improve our understanding of the determinants of ICT adoption and access to
credit.

5.1.1 | Determinants of ICT adoption

The results for the factor influencing ICT adoption are presented in the second column of
Table 3. The marginal effect of the gender variable is negative and statistically significant,
suggesting that compared to male household heads, their female counterparts are 5.3% more
likely to adopt the ICTs. Our result is consistent with the finding of Martínez-Domínguez and
Mora-Rivera (2020), who found that women are more likely to adopt the ICTs with Internet
access for information searches, communication, and social networks in rural Mexico. The
significant marginal effects of the education variables suggest that compared to illiterate people,
those with primary school, middle-level school, and college education are 4%, 12.3%, and 18.6%
more likely to adopt ICTs. The positive correlation between education and ICT adoption is also
found in the literature (Ma et al., 2020; Mishra, Williams, & Detre, 2009). For example, Mishra
et al. (2009) found that education positively and significantly affects farmers' decision to adopt
computers with Internet access in the U.S. The Pew Research Center survey, conducted among
30,133 people in 27 countries, shows that better-educated people are more likely to be digitally
connected (Silver & Cornibert, 2019).

Farm labor has a positive and statistically significant marginal effect. The finding suggests
that one more farm labor increase in a household tends to increase the probability of ICT adop-
tion by 1.8%. Labor is an important factor in agricultural production, and ICT adoption helps
improve farm labor productivity via disseminating agriculture-related information (Kaila &
Tarp, 2019; Zhang, Wang, & Duan, 2016). ICT adoption is also positively associated with asset
ownership, such as cars and indoor toilets. We show that car ownership and indoor toilet own-
ership increase the likelihood of ICT adoption by 21% and 9.2%, respectively. To some extent,
cars and indoor toilets are treated as a symbol of wealth in many rural areas of developing
countries, including China and India, and only wealthy farm households can afford them. Sil-
ver and Cornibert (2019) revealed that income level plays a sizable role in explaining technol-
ogy adoption differences. Therefore, higher-income households are more likely to use ICTs
such as computers and mobile phones.

The negative and significant marginal effect of the pension variable suggests that compared to
farmers not receiving the pension, those who received it are 6% less likely to adopt ICTs. This is
because pension receivers are usually old generations. Being a specialized agricultural producer
increases the probability of ICT adoption by 5.7%. Specialized producers mainly seek profit maximi-
zation from agricultural production, while ICT adoption can help them realize market opportuni-
ties, enhance bargaining power in market transactions, reduce transaction costs, and also obtain
information on weather conditions and extension information. The positive role of ICT adoption in
agricultural production has also been recorded in previous studies (Cette, Nevoux, & Py, 2021;
Kaila & Tarp, 2019; Laddha, Tiwari, Kasperowicz, Bilan, & Streimikiene, 2022; Nikam et al., 2022).
In addition, compared to the farmers living in western China (reference group), those living in the
central and eastern regions are 2.2% and 2.8% more likely to adopt ICTs. The findings suggest that
ICT adoption varies across regions primarily due to the differences in rural infrastructure and socio-
economic conditions. Finally, the marginal effect of the IV is positive and statistically significant,
confirming that an individual's ICT adoption decision is positively influenced by the average num-
ber of other ICT adopters within the same county due to spatial peer effects.
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5.1.2 | Determinants of access to credit

The results for the determinants of credit access are presented in the third column of Table 3.
ICT adoption increases the probability of access to credit by 12.8%.2 The finding is consistent
with Munyegera and Matsumoto (2018), who concluded that using mobile money services
increases the likelihood of obtaining a loan for Uganda's rural households. For comparison pur-
poses, we also estimate the impact of ICT adoption on access to credit using a simple probit
model and present the results in the last column of Table 3. The results show that ICT adoption
increases the likelihood of credit access by 3.3%, which is much smaller than the magnitude
observed in the RBP model. This is because the simple probit model treats all explanatory vari-
ables as exogenous variables, while we find the presence of selection bias arising from
unobserved factors (see significant ρτε in the lower part of Table A2). Thus, the RBP model esti-
mation provides more reliable results.

Our estimates indicate that age is positive and significant among other control variables,
while its squared term is negative and significant. The findings suggest the presence of the life-
cycle effect of age on access to credit. We show that older farmers are more likely to acquire
credit, with the largest effect occurring at 36 years. Beyond 36, age has a negative effect on
farmers' decisions to access credit. The nonlinear relationship between age and access to credit
is also confirmed by a study of Indonesian farmers (Okten & Osili, 2004). Compared with older
farmers, younger ones usually face credit constraints because they take time to accumulate
wealth. The significant and negative marginal effect of the education variable suggests that peo-
ple receiving middle-level school and college education, respectively, are 5% and 10.6% less
likely to access credit. Farmers with better education can be better engaged in higher-income-
generating activities such as farm and off-farm works (Abate et al., 2016; Ma et al., 2018; Rahut,
Jena, Ali, Behera, & Chhetri, 2015), and thus, they are less likely to be capital constrained.

The marginal effect of farm labor is positive and statistically significant, suggesting that house-
holds with more farm labor endowments are 2.2% more likely to access credit. Enough labor
endowments enable households to easily allocate surplus labor to farm/off-farm businesses
(Rahut & Scharf, 2012), but this requires complementary funds. Households owning a car are 4.4%
less likely to access credit on average. Since car ownership is a symbol of wealth, households with
cars usually have no capital constraints, and thus, they are less likely to access credit.

The pension variable has a negative and significant impact on access to credit. Compared
with households without retirement pensions, those with the pension are 6.7% less likely to
obtain credit. The finding confirms that the social pension program helps relieve credit-
constraints of rural households. Farmers specializing in agricultural production are 4.4% more
likely to access credit. This may be because those households specializing in agriculture require
credit to purchase yield-enhancing inputs (e.g., fertilizers, pesticides, and improved seeds) and
crop insurance. Compared to the households in western China (reference group), those living
in the central and eastern regions are 4.6% and 15.3%, respectively, less likely to access credit.
The findings suggest the existence of location-fixed effects that affect rural farmers' decision to
access credit.

5.1.3 | Disaggregated effects of ICT adoption (heterogeneity analysis)

To better understand the heterogeneity effects of ICT, we disaggregate the impact of ICT adop-
tion on access to credit by gender of household head and geographical location (Table 4). For
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the sake of simplicity, the marginal effects of other control variables are not presented, but they
are available upon request.

The results show that the effects of ICT adoption on access to credit are heterogeneous
between male and female household heads. ICT adoption effect on access to credit is larger for
women than for men. Specifically, ICT adoption increases the probability of credit access for
women by 14.6%, while it increases the likelihood of credit access for men by 13%. Several stud-
ies have reported that ICT adoption empowers rural women in terms of education and knowl-
edge creation (i.e., the combination, transfer, and conversion of different kinds of knowledge),
poverty alleviation, and employment opportunities (Islam, 2015; Umrani & Ghadially, 2003;
Yu & Cui, 2019). Our results provide clear evidence that ICT adoption empowers rural women
to access credit.

Regarding the disaggregated effects of regions, we find that ICT adoption increases the prob-
ability of credit access for rural households in the western and central regions by 31.8% and
20.2%, respectively. In comparison, ICT adoption does not significantly impact credit access of
rural households living in the eastern region. In China, the east is economically more developed
than the west, so the eastern farm households are less likely to be credit-constrained. Therefore,
the findings suggest that ICT adoption empowers farm households to access credit in the rela-
tively less-developed western region.

5.2 | Joint effects of ICT adoption and access to credit on household
income

5.2.1 | Results of the selectivity-corrected OLS model estimation

Table 5 presents the joint effects of ICT adoption and access to credit on household income. As
indicated previously, the selectivity-corrected OLS model is used to estimate Equation 4, in
which the predicted ICT adoption variable and predicted access to credit variable from the
SUBP model estimates (see Table A3)3 are used to control for their endogeneity issues. The
selectivity-corrected OLS model estimation results are presented in the second column of
Table 5. We find that ICT adoption has a positive and statistically significant impact on

TABLE 4 Disaggregated marginal effects of ICT adoption on access to credit by gender and geographic

locations

Category Observations Marginal effects

Gender

Male 4,435 0.130 (0.041)***

Female 3,336 0.146 (0.056)***

Geographic locations

West 2,410 0.318 (0.088)***

Central 2,091 0.202 (0.061)***

East 3,270 0.031 (0.062)

Note: Standard errors in parentheses.

Abbreviation: ICT, information and communication technology.
***p < 0.01.
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household income. ICT adoption enables rural households to generate income by enhancing
agricultural investments and productivity (which usually transfers to a higher farm income),
facilitating off-farm work participation, and stimulating remittance-receiving (Laddha
et al., 2022).

Access to credit has a negative and statistically significant impact on household income.
This finding contradicts previous studies that showed a positive association between access to
credit and a higher household income (Kumar et al., 2020; Luan & Bauer, 2016). To find out
the reason, we further estimate Equation 4 by replacing household income, that is, the depen-
dent variable, with farm income and business income. Our results (Table A4) show that access
to credit does not significantly impact both farm and business income. The findings reflect that
rural credit users may use the acquired credit to cover expenses such as health care, consump-
tion, and children's tuition fees rather than using it for income-generating activities such as pur-
chasing yield-increasing inputs or investing in the off-farm business. Among other factors, we
show that household income is also affected by age, ownership of household assets, and agricul-
tural specialization. For example, the significant and positive coefficient of specialization
variable suggests that agricultural specialization increases household income, consistent with
previous studies (Rae & Zhang, 2009).

TABLE 5 Joint effects of ICT adoption and access to credit on household income

Variables Selectivity-corrected OLS

ICT adoption (predicted) 2.907 (0.358)***

Access to credit (predicted) �8.976 (3.971)**

Age 0.324 (0.109)***

Age squared �0.004 (0.002)***

Gender 0.374 (0.312)

Primary school �1.157 (0.433)***

Middle-level school �0.880 (0.584)

College and above 2.400 (1.344)*

Farm labor �0.628 (0.302)**

Car ownership 4.984 (0.521)***

Indoor toilet 2.046 (0.376)***

Pension �0.189 (0.986)

Soil quality �0.438 (0.353)

Specialization 2.974 (0.872)***

Central 0.128 (0.601)

East �0.959 (1.628)

Constant 1.581 (2.184)

Observations 7,771

Note: Standard errors in parentheses; the reference region is west; The dependent variable refers to household income, which is
measured at 1,000 Yuan/capita. The reference education level is illiteracy.

Abbreviations: ICT, information and communication technology; OLS, ordinary least square.
*p < 0.1. **p < 0.05. ***p < 0.01.
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5.2.2 | Results of the UQR model estimation

We further check how ICT adoption and credit access affect household income distributions to
provide granular insights. Both the conditional quantile regression (CQR) and UQR models
have been applied in previous studies (Gregory & Zierahn, 2022; Ma & Zheng, 2022). Compared
with the CQR model, whose quantiles are defined conditional on the selected covariates, we
can freely add or delete covariates without redefining the quantiles in the UQR model. Thus,
we employ the UQR model for empirical purposes and report the results estimated at the 10th,
30th, 50th, 70th, and 90th quantiles. Table 6 presents the estimated results.

The results show that ICT adoption and access to credit affect household income heteroge-
neously. ICT adoption affects household income positively and significantly. The estimated
effects are monotonously increasing at the selected quantiles, and the largest positive effect
occurs at the highest 90th quantile. The findings suggest that richer households tend to benefit
more from ICT adoption than their poor counterparts. Access to credit affects household
income negatively, and the estimated effect is the largest and statistically significant at the low-
est 10th quantile.

6 | CONCLUSION AND POLICY IMPLICATIONS

Using the 2016 CLDS data, this study examines the impact of ICT adoption on access to credit
and the joint effects of ICT adoption and access to credit on household income. Since both
observed and unobserved factors may affect farmers' decisions to become ICT adopters or non-
adopters, an RBP model is used to address the selection bias issue associated with ICT adoption.
Furthermore, a selectivity-corrected OLS model is applied to estimate the joint effects of ICT
adoption and access to credit on household income.

The results of the RBP model reveal a negative selection bias due to unobserved factors.
After controlling for this selection bias, we show that ICT adoption increases the probability of
credit access by 12.8%. In addition to ICT adoption, we find that age, education, farm labor, car

TABLE 6 Results of the UQR model estimation

Variables

Selected quantiles (dependent variable = household income)

10th 30th 50th 70th 90th

ICT adoption (predicted) 0.770*** 1.497*** 2.606*** 2.869*** 8.511***

(0.105) (0.156) (0.232) (0.333) (1.428)

Access to credit (predicted) �1.764*** �1.900 �0.669 �4.705 �4.992

(0.524) (1.645) (2.677) (4.236) (21.246)

Control variables Yes Yes Yes Yes Yes

Constant �2.335*** �1.204 1.818 4.842** 7.100

(0.503) (0.912) (1.434) (2.162) (10.253)

Observations 7,771 7,771 7,771 7,771 7,771

Note: Standard errors in parentheses. Household income is measured at 1,000 Yuan/capita.
Abbreviations: ICT, information and communication technology; UQR, unconditional quantile regression.
**p < 0.05. ***p < 0.01.
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ownership, retirement pension, and agricultural specialization affect farmers' decision to access
credit. ICT adoption is mainly determined by gender, education, farm labor, ownership of cars
and indoor toilets, pension, and agricultural specialization. The disaggregated analyses reveal
that the impacts of ICT adoption on access to credit are heterogeneous between male- and
female-headed households and among geographical locations. We show that ICT adoption bet-
ter facilitates credit access for rural women and farm households in relatively less-developed
regions. The additional analysis suggests that access to credit does not significantly impact ICT
adoption, confirming that farmers usually do not use acquired credit to purchase relatively lux-
ury ICT devices such as computers and smartphones. In addition, the selectivity-corrected OLS
model estimates show that ICT adoption and access to credit affect household income differ-
ently. We find that ICT adoption significantly increases household income, but access to credit
shows a negative effect primarily because farmers may not invest the obtained credit in income-
generating activities. The UQR model estimates show that ICT adoption has the largest positive
impact on household income at the 90th quantile.

Our finding generally confirms the significant role of ICT adoption in facilitating rural
farmers' access to credit in the digital age. This suggests that the government should make fur-
ther efforts to improve rural ICT infrastructure, enhance farmers' ICT adoption, and improve
the poor's access to credit. Since the rural financial markets are not gender-neutral, developing
rural credit programs should consider gendered differences in access to credit. We find that
access to credit is negatively associated with farm income, business income, and household
income. The findings suggest that the government should help rural households obtain credit
for investments in income-generating farm and off-farm activities, especially in the regions
where financial and credit markets are not well developed. Because mobile money can make
loan borrowing much faster and more convenient, innovative policies and strategies should
consider developing ICT-based financial products to enable households to access sufficient
funds for farm and off-farm business investments, which can help improve rural household
welfare. Rural women should be given special attention when implementing ICT-based pro-
grams for rural credit access.

The present study is subject to some limitations. First, due to data limitations, we are unable
to distinguish the different impacts of formal versus informal credit access on ICT adoption or
investigate the influence of ICT adoption on the loan amount. Second, rural households may
use the acquired credit to invest in income-generating farm and off-farm activities or use it to
satisfy basic household expenses. However, we cannot have a deep exploration due to the
absence of relevant data. Third, our empirical analyses are based on 1-year cross-sectional data
so we cannot capture the dynamic relationships between ICT adoption, access to credit, and
household income. Nevertheless, we believe these are promising areas for future studies when
the required data are available.
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ENDNOTES
1 The fewer products the farm produces the more specialized it is (Czyżewski & Smędzik-Ambroży, 2015). The
opposite of specialization of production is its diversification.

2 Figure 2 in Section 2 also suggests that there may exist a reverse causality between ICT adoption and access to
credit. To investigate this issue, we estimated the impact of access to credit on ICT adoption and found that
access to credit does not significantly affect farmers' decisions of ICT adoption. This is not implausible, given
the fact that farmers may use the acquired credit to deal with uncertainties in life (e.g., sickness and natural
disasters) and pay for life necessities (e.g., foods, children's tuition fees, and social interactive–oriented gift
money) rather than purchase luxury goods (e.g., smartphones and computers).

3 In the SUBP model estimation, the synthesized IV (see discussions in Section 3.1) is used in the ICT adoption
equation and another IV representing gift money (see the lower part of Table 1) is used in access to credit equa-
tion for model identification.

Abbreviation: ICT, information and communication technology.

* p < 0.1.
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APPENDIX

TABLE A1 The results of Pearson correlation analysis

Variables Access to credit ICT adoption IV_County_level

Access to credit 1.000

ICT adoption 0.0483*** 1.000

IV �0.011 0.410*** 1.000

Abbreviations: ICT, information and communication technology; IV, instrumental variable.

***p < 0.01.

TABLE A2 Coefficient estimation of the effects of ICT adoption on access to credit

Variables

RBP model
Probit model

ICT adoption
(coefficients)

Access to credit
(coefficients)

Access to credit
(coefficients)

ICT adoption 0.376 (0.100)*** 0.096 (0.035)***

Age �0.013 (0.007)* 0.026 (0.006)*** 0.024 (0.006)***

Age squared �0.000 (0.000)* �0.000 (0.000)*** �0.000 (0.000)***

Gender �0.185 (0.035)*** 0.014 (0.033) �0.003 (0.032)

Primary school 0.139 (0.049)*** �0.047 (0.045) �0.033 (0.045)

Middle-level school 0.427 (0.051)*** �0.147 (0.050)*** �0.101 (0.048)**

College and above 0.644 (0.125)*** �0.312 (0.102)*** �0.256 (0.101)**

Farm labor 0.062 (0.016)*** 0.064 (0.016)*** 0.067 (0.016)***

Car ownership 0.729 (0.049)*** �0.129 (0.050)*** �0.059 (0.044)

Indoor toilet 0.320 (0.034)*** �0.003 (0.034) 0.032 (0.032)

Pension �0.208 (0.062)*** �0.196 (0.059)*** �0.209 (0.059)***

Soil quality �0.123 (0.033)*** �0.023 (0.031) �0.042 (0.031)

Specialization 0.197 (0.070)*** 0.129 (0.064)** 0.149 (0.063)**

Central 0.076 (0.043)* �0.126 (0.039)*** �0.121 (0.039)***

East 0.096 (0.042)** �0.446 (0.039)*** �0.412 (0.037)***

IV 2.084 (0.086)***

Constant �0.485 (0.184)*** �0.660 (0.167)*** �0.479 (0.157)***

ρτε �0.182 (0.061)***

Wald test of ρτε ¼ 0 8.449, Prob >χ2 = 0.004

Observations 7,771 7,771

Note: Standard errors in parentheses. The reference region is west. The reference education level is illiteracy.
Abbreviations: ICT, information and communication technology; IV, instrumental variable.
*p < 0.1. **p < 0.05. ***p < 0.01.
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TABLE A3 SUBP model estimation

Variables ICT adoption (coefficients) Access to credit (coefficients)

Age �0.013 (0.007)* 0.023 (0.006)***

Age squared �0.000 (0.000)* �0.000 (0.000)***

Gender �0.188 (0.035)*** �0.007 (0.032)

Primary school 0.143 (0.049)*** �0.029 (0.045)

Middle-level school 0.431 (0.051)*** �0.087 (0.047)*

College and above 0.655 (0.126)*** �0.243 (0.101)**

Farm labor 0.060 (0.016)*** 0.068 (0.016)***

Car ownership 0.729 (0.049)*** �0.036 (0.044)

Indoor toilet 0.317 (0.034)*** 0.045 (0.032)

Pension �0.209 (0.062)*** �0.213 (0.059)***

Soil quality �0.122 (0.033)*** �0.048 (0.031)

Specialization 0.200 (0.070)*** 0.154 (0.063)**

Central 0.071 (0.043)* �0.119 (0.039)***

East 0.095 (0.042)** �0.396 (0.037)***

IV 2.077 (0.087)***

Gift money �0.001 (0.000)*

Constant �0.493 (0.184)*** �0.399 (0.157)**

ρ0τε 0.037 (0.022)*

Wald test of ρ0τε=0 2.957, Prob >χ2 = 0.086

Observations 7,771

Note: Standard errors in parentheses. The reference region is west. The reference education level is illiteracy.
Abbreviations: ICT, information and communication technology; IV, instrumental variable.
*p < 0.1. **p < 0.05. ***p < 0.01.
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TABLE A4 Joint effects of ICT adoption and access to credit on farm income and business income:

Selectivity-corrected OLS estimations

Variables Farm income (coefficients) Business income (coefficients)

ICT adoption (predicted) 0.006 (0.185) 1.424 (0.209)***

Access to credit (predicted) �5.920 (2.054)*** �4.689 (2.321)**

Age 0.159 (0.056)*** 0.151 (0.063)**

Age squared �0.003 (0.001)*** �0.002 (0.001)**

Gender 0.110 (0.161) 0.381 (0.182)**

Primary school �0.275 (0.224) �0.658 (0.253)***

Middle-level school �0.428 (0.302) �0.945 (0.341)***

College and above �1.329 (0.695)* �0.879 (0.786)

Farm labor 1.426 (0.156)*** �0.283 (0.177)

Car ownership 0.998 (0.270)*** 2.038 (0.305)***

Indoor toilet �0.727 (0.195)*** 0.571 (0.220)***

Pension �1.941 (0.510)*** �1.399 (0.576)**

Soil quality �0.025 (0.183) �0.290 (0.206)

Specialization 4.837 (0.451)*** 1.000 (0.510)**

Central �0.666 (0.311)** �0.644 (0.351)*

East �2.155 (0.842)** �1.674 (0.951)* y

Constant �1.219 (1.130) �1.712 (1.277)

Observations 7,771 7,771

Note: Standard errors in parentheses. Both farm income and business income are measured at 1,000 Yuan/capita. The reference
education level is illiteracy. The reference region is west.
Abbreviations: ICT, information and communication technology; OLS, ordinary least square.
*p < 0.1. **p < 0.05. ***p < 0.01.
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