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Enzyme immobilization has been extensively explored by chemical/biochemical/ 

biotechnology personnel for research and industrial uses. The ability to improve the 

stability and reusability of enzymes has driven this technique to be employed in a 

plethora of applications in these recent decades. Enzyme Immobilization for 

Bioprocessing offers up-to-date reviews on the current strategies and state of the art 

support systems involved in various bioprocesses. The highlights of this research 

book include:

 The latest enzyme immobilization methods and strategies – entrapment,    

 encapsulation, adsorption and cross-linking.

 Mechanisms and interactions involved between enzyme and support.

 Kinetics and performance of immobilized enzyme in bench-top stirred reactor.

 Emerging support materials for effective immobilization, namely, smart 

 polymer, silica, magnetic nanoparticles, graphene oxide and hollow �ber 

 membrane.   

Enzyme Immobilization for Bioprocessing also features the most recent applications 

of immobilized enzymes, including �ngerprint visualizations. 
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Preface 
 
 

 
 
Enzymes are not a new subject in academic research and their 
applications in the industries. However, it has evolved tremendously 
in recent years, especially regarding the enzyme immobilization 
process and technology. The conventional enzyme immobilization 
technology and techniques are still relevant, but the new 
nanotechnology, modern bioinformatics, and molecular modelling 
have created a new landscape for enzyme immobilization work. 

It is interesting to have an immobilized enzyme system 
successfully applied in the industries. However, factors such as cost, 
operational limitations and diffusion complexities imposed by 
substrates and the product are imminent. Therefore, the main focus 
of the researchers is to develop and improve on any enzyme 
immobilization processes to produce a stable, reusable, and robust 
system to adapt to the uncertain and harsh industrial environment. 
The immobilization technique and support system selection which 
are crucial prior to any applications have become our primary 
subject matter of interest in writing this book.  

We are honoured to have all the authors who are directly 
involved in enzyme immobilization research to be on board in 
contributing to this book. We hope the readers will gain fruitful 
insights into enzyme immobilization and technology too.  
 
 
 
Roshanida A. Rahman 
Universiti Teknologi Malaysia 
 
Shalyda Md Shaarani 
Universiti Malaysia Pahang 
2022 
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1.1 INTRODUCTION 

 

Recent advances in biotechnology and bioengineering have shown 

an increasing trend towards the development of environmentally 

friendly, safe and sustainable bioprocesses using enzymes. The 

excellent selectivity, specificity and catalytic performance have 

made enzymes robust biocatalysts with a wide range of applications 

in biomedicine, biosensing, and biocatalysis (Bilal et al., 2021). Due 

to the low use of chemicals and the absence of hazardous 

metabolites/byproducts, the use of biocatalysts is expected to 

facilitate environmentally friendly processes. In addition, there is a 

recurring obstacle in the various industries where biocatalysis can 

be used: the application of enzyme catalysis in chemical processes 

is limited by the lack of stability of enzymes at high temperatures or 

in turbulent flow regimes, as well as in potentially toxic solvents 

(Chapman et al., 2018). 

Immobilization of enzymes on suitable supports is generally 

recognized as a promising approach that occupies an important 

place. This technology is able to stabilize or protect enzyme 

molecules against environmental and chemical attacks. It also 

means combining the selectivity, stability and kinetics of the 

enzyme with the physical and chemical properties of the support in 
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a specific formulation that plays a major role in maximizing the 

stability of both the physical and enzymatic activity of the 

biocatalyst (Basso and Serban, 2019). A variety of immobilization 

strategies and support materials (natural/synthetic polymers or 

inorganic materials) have been developed and used for the 

immobilization of different classes of enzymes. These strategies 

include immobilization support, linkers, and methods such as 

entrapment, adsorption, and covalent and non-covalent interactions 

(Samak et al., 2020). Figure 1.1 shows the advantages and 

disadvantages of enzyme immobilization. 

 

 
Figure 1.1 Advantages and disadvantages of immobilized enzymes  

 

 

1.2 TECHNIQUES OF ENZYME IMMOBILIZATION 

 

In an enzymatic reaction, an enzyme acts as a biological catalyst that 

promotes the reaction rate and does not wear out during the 

reactions. Therefore, the enzyme can be used repeatedly as long as 

it remains active. To date, a variety of immobilization methods have 

been developed to immobilize enzymes on solid surfaces. The 

different enzyme immobilization methods are grouped as shown in 

Figure 1.2.  
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Figure 1.2 Immobilizing enzymes by different methods 

 

 The types of immobilization techniques are also classified 

according to chemical reactions that are used for binding (Table 

1.1). Sometimes a combination of several immobilization methods 

must be used to immobilize an enzyme. As an example, enzymes 

can be immobilized on a bead by adsorption, affinity, or covalent 

bonds prior to encapsulation. 

In addition to the benefits and drawbacks of each 

immobilization technique (Table 1.1), the technique that is best 

suited to the enzyme is determined by its biochemical and kinetic 

properties as well as the carrier properties (chemical and 

mechanical). Thus, enzymes interact with certain supports to yield 

biocatalysts with biochemical and physicochemical properties that 

are tailored for specific applications. 
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Table 1.1 Benefits and drawbacks of immobilization methods for 

enzymes 

Binding Techniques 

and Types 

Benefits Drawbacks 

Adsorption 

Weak binding: 

hydrophobic, van der 

Waals, or ionic 

interactions. 

Simple and cheap 

Little conformational 

change of the enzyme 

Desorption 

Non-specific adsorption 

(spelling) 

Affinity 

Bond forms between 

two affinity partners 

Simple and oriented 

immobilization 

Remarkable selectivity 

High cost 

Covalent bonding 

Occurs between 

functional groups of the 

carrier and the enzyme 

No leakage of the 

enzyme 

Potential to stabilize the 

enzyme 

It is not possible to 

regenerate matrixes and 

enzymes 

Severe activity loss 

Entrapment 

Entrapment in a 

polymer network 

Broad applicability Restricts mass transfer 

Leakage of enzymes 

Cross-linking 

A functional reagent 

cross-links enzyme 

molecule 

Stabilization of the 

biocatalyst 

Packed beds are less 

suitable for cross-linked 

biocatalysts 

Limited mass transfer 

Enzyme deactivation 

 

 

1.3 CARRIER SELECTION 
 

Various materials of different origins can be used to immobilize 

enzymes. There are three types of materials: organic, inorganic, and 

hybrid or composite. Attachment of enzymes to insoluble support 

allows not only their reusability but also additional stabilization 

through covalent binding at multiple points or binding of multiple 

subunits of enzymes on solid supports (Aggarwal and Pundir, 2016). 

There are some limitations in this area, as the matrix should 

not interfere with the enzyme or negatively affect its structure 

beyond what is necessary to ensure stable enzyme-matrix 

interactions. Further, the functional groups of the two materials need 

to be compatible in order for the enzyme to effectively bind to the 
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support and form enzyme–matrix interactions. Such an affinity is 

significant when covalently immobilizing enzymes (Vijayalakshmi 

et al., 2020). The support should expose the catalyst's active sites so 

that molecules from substrates can easily attach to the catalyst, 

reducing diffusion barriers between substrates and products 

(Mandari and Devarai, 2021). As summarized in Figure 1.3, support 

materials have several important properties for efficient enzyme 

immobilization. 

 

 

 

Figure 1.3 Main features of support materials used for immobilizing 

enzymes 

 

As immobilized enzymes become more widely available, 

they can be used in many practical applications. It has recently 

become extremely important to find materials tailored to specific 

enzymes that have the desired properties. Both organic and 
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inorganic materials derived from these sources exhibit outstanding 

thermal and chemical stability as well as excellent mechanical 

properties. In addition, these support materials can be shaped in 

various morphologies with particle sizes that can be controlled, 

often at the nanoscale, which facilitates their use as enzyme carriers. 

Further, these materials contain a variety of functional groups that 

correspond to protein chemical groups and enhance enzyme binding 

and surface modification (Liao et al., 2019). However, in the past 

decade, the scientific community has turned its attention to hybrid 

and composite materials, combining the advantages of both types of 

composite precursors (Navrotskaya et al., 2020). As a result of using 

these enzyme carriers (see Figure 1.4) for the technological process, 

the immobilized enzymes display a greater catalytic efficiency, and 

the reaction product quality and purity improve. 

 

 
 

Figure 1.4 A selection of immobilization supports from organic, 

inorganic and hybrid sources 
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1.4 INDUSTRIAL APPLICATIONS 

   

Immobilized enzymes have shown exceptional stability and 

reusability compared to the free enzyme form, resulting in robust 

biocatalytic systems suitable for various applications of industrial 

interest (Chatzikonstantinou et al., 2018). It offers the possibility of 

repeated flow processing; easy recovery and low-cost operation can 

also be performed on a large scale (Hassan et al., 2019). Some 

immobilized biocatalysts are also used in the food, pharmaceutical, 

and biotechnology industries due to their natural properties 

(Kuribayashi et al., 2021). Processes for immobilization of 

mesoporous silica for nutraceuticals and pharmaceutical compounds 

have a significant impact on various fields of biomedicine and 

biotechnology (Cipolatti et al., 2021) (Figure 1.5). 

 

 
 

Figure 1.5 A chart showing a number of industrial applications of 

enzyme immobilization indicating their importance in 

various fields 
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1.5 CONCLUSION 

 

Recent advances in biotechnology, especially in enzyme 

immobilization, have demonstrated good stability, increased 

enzyme activity, reusability, and cost-effective techniques. 

Different types of techniques and supports for immobilization have 

been investigated with different advantages and disadvantages. 

Even though immobilized enzymes demonstrated positive results, 

they cannot be generalized. It is important to consider and optimize 

several different conditions when developing a biocatalyst. It is 

common for enzyme activity to be drastically reduced or even lost 

completely after immobilization as a result of structural changes in 

the enzyme. Different methods exist for binding enzymes to support 

materials in this context, including single-point and multi-point 

binding. Additionally, a suitable carrier material should exhibit 

various desirable qualities, including stability, biocompatibility, 

nontoxicity, resistance to microbial invasion, minimal diffusion 

limitations, commercial accessibility, and cost-effectiveness. Due to 

the immobilization process, the kinetics of the immobilized system 

have shown a higher enzyme-substrate affinity and catalytic 

conversion rate, which is due to changes in the enzyme structure. 

These techniques and supports are therefore likely to be used in 

many industrial applications in the future. 
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