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Abstract

Castor oil extracted from seeds of Ricinus Communis plant has an immense potential being used to yield valuable
hydrocarbons with shorter chain length. Castor oil contains chemical structures of heavy hydrocarbons and long chains may
undergo a cracking process which are similar to that as in petrochemical industries. However, cracking process requires
extremely high temperature and energy input. This research came by with an attempt to reduce waste of energy using both
microwave assisted method and modified metal catalyst, Zn/ZSM-5 to provide sufficient energy for cracking process to occur
at comparatively low temperature. Wet impregnation method was used for Zn/ZSM-5 catalyst preparation and the experiments
were carried out via microwave-assisted method. The microwave effect on the temperature and mass of condensate formed was
investigated at three different output powers; 650, 700 and 750 W, under different Zn/ZSM-5 concentrations; 5, 8 and 10 wt%
for 1 h. Results showed that cracking of castor oil is feasible at low temperature (<250 °C) using modified Zn/ZSM-5 via
microwave assisted method. The highest yield of total mass of condensate (5.61%) was obtained from 750 W output power
and 10 wt% Zn/ZSM-5 catalyst concentration. In addition, the highest cracking percentage (97.7%) was obtained from 750 W
output power and 5 wt% Zn/ZSM-5 catalyst concentration. Valuable cracked compounds such as octane for fuel products and
undecylenic acid for pharmaceutical uses were obtained.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Biomass, vegetation and crops contain bio-oils that are foreseen as the future source to replace the non-renewable
fossil fuel oil and production of many other useful chemicals [1-4]. Bio-oils can be classified into inedible and
edible which the latter bio-oils presently cover over 95% of worldwide uses. This high demand causes competition
with the food market and has made the prices of edible bio-oils to increase rapidly. Thus, inedible bio-oils that
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are not part of humans’ nutrition starts to gain attention [5]. Castor oil received considerable attention among all
those bio-oils classified as inedible because the oil content of castor seeds is more than 50% which is relatively
higher as compared with other inedible biomass source [6]. Ricinoleic acid, which is the major constituents of
castor oil consists of long hydrocarbon chain and the presence of functional groups such as double bonds and
hydroxyl groups made this bio-oil possesses excellent lubricity, emollience, non-comedogenicity and available for
many reaction [7]. Furthermore, castor oil occurs naturally with elevated viscosity and polarity also renders its
extremely valuable for the industrial production of coatings, plasticizers, cosmetics, polyurethane polymer, soap
and fine chemical compounds [8,9].

One of the synthesis routes for industrial product from castor oil is through cracking process. Alvarolbarra et al.
reported that raw bio-oil is feasible to be cracked down under fluid catalytic cracking unit [10]. A.A. Mancio et al.
successfully performed the thermal catalytic cracking of palm oleic oil at temperature of 450 °C under atmospheric
pressure [11]. Introducing an appropriate catalyst to biomass catalytic cracking process can boost the biomass conv
ersion efficiency, reduce tar formation, and increase the target product yield [12,13]. The research by Negm, Rabie,
and Mohammed managed to obtain biofuels from the catalytic cracking process of castor and jatropha oil using the
synthesized nano-structured y-Al,O3 at temperature of 280-320 °C [14]. Zeolite is normally used as the base catalyst
in catalytic cracking of vegetable oils such as Swida wilsoniana oil for hydrocarbon biofuel [15]. Electromagnetic
waves cause the dielectric heating of zeolite catalyst particles, providing the energy required for cracking reactions
[16]. Abdelrahman M. Rabie et al. tried on modification of base catalyst, bentonite and showed that it performs
efficiently for catalytic cracking of oil to biofuels at relatively low temperature and showed that the nature of biofuel
is controlled by reaction temperature and catalyst concentration [17]. Copper modified zeolite ZSM-5 performance
was investigated by Vagif et al. in the catalytic cracking process of cotton seeds and sunflower oil under vacuum
condition. They proved also catalytic cracking of castor oil is feasible using metal modified zeolite. In addition, the
metal will increase the gasoline yield by 4% and decrease the coking rate by 10% due to more efficient cracking
[18]. Hamed Abdelfattah & Saleh et al. also show that the combination of NaOH with zeolite will crack the castor
raw oil at temperature range of 233-347 °C [19]. Zn/ZSM-5 catalyst is normally used in catalytic cracking process
to obtain biofuel from inedible biomass such as camelina oil and carinata oil [20,21]. In short, the temperature for
cracking process of vegetable oil can be further decreased with suitable catalyst or metal modified catalyst.

The use of microwaves offers considerable advantages over traditional thermal heat sources in industrial
processing such as rapid heat transfer, volumetric and selective heating, compact equipment, rapid on-and-off action
and pollution-free operation as no combustion is involved [22]. JingSun, KeWang, ZhanlongSong et al. proved that
compared with conventional pyrolysis using heat energy, microwave assisted method converts more char to bio-
oil and biogas [23]. Rozita Omar et al. showed that maximum pyrolysis of organic liquid oil and light bio-oil
using microwave as energy source occur at temperature 550 °C [24]. Research from Shiyu Liu et al. found that
maximum bio-oil yield when pyrolysis temperature reached 550 °C through sequential two-step fast microwave-
assisted pyrolysis (fMAP) [25]. Alexandro Stonoga V. da Silva et al. performed catalytic cracking on light gas oil
using microwave with power 2.5 GHz as the source of energy with zeolitic acid and managed to get condensate
oil similar to diesel fuel [16]. In addition, YongNie et al. was able to obtain methyl undecenoate from castor oil by
microwave-assisted pyrolysis at temperature range of 500 °C [26].

In this study, a pilot-scale microwave oven was used for the catalytic cracking of castor oil under continuous
constant supply of output power. The main objective is to prove that microwave energy and metal modified catalyst
provide sufficient energy for catalytic cracking process to occur even at low temperature. In addition, a simplified
mechanism is also proposed to promote a better understanding of chemical reaction aimed at aiding future studies
especially on the process up-scaling.

2. Experimental

2.1. Materials

Pure castor oil was provided by Green Herbology obtained through cold pressing extraction technology. Zeolite
ZSM-5, Ammonium (SiO,:Al,03) came in the powder form with surface area 425 m?/g, 80:1 mole ratio supplied by
Alfa Aesar, Haverhill, Massachusetts, United States. Zinc metal powder(<150 wm) with trace metal basis (99.995%)
was purchased from Sigma-Aldrich.
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2.2. Preparation of catalytic cracking Zn/ZSM-5 catalyst

100 g of Zeolite ZSM-5 was activated by mixing with 0.5M of hydrochloric acid. 10 g of zinc metal was poured
in the aqueous solution, refluxed and stirred for 24 h at 80 °C using a wet impregnation method. Then, it was
filtered and dried overnight in an oven at 100 °C followed by calcination at 500 °C for 3 h in a furnace.

2.3. Catalytic cracking experiment setup

The catalyst and metal additive used in this experiment were zeolite ZSM-5 and Zinc (Zn). At first, 100 ml
of castor oil was mixed with 10 g of zeolite ZSM-5 and Zn (ratio 1:1) in the flat-bottomed flask. A microwave
was connected to the reflux system using a Friedrichs-type condenser. The microwave extraction system was set up
and started at 650 W. The temperature of the microwave extraction system was recorded every 10 min interval for
1 h. The inlet of condenser was flowed in with tap water as a cooling medium to condense the vapor. The formed
condensate flowed into the reflux tube, collected in a beaker and the mass of the condensate was weighted. Nitrogen
gas was flowed into the system as an inert medium for safety precaution. The experiment was repeated using different
parameters-output power (650/700/750 W) and various ratios of metal additives (5,8,10 wt%). Each metal additive
of catalysts was operated using three different output powers(5 wt%:650/700/750 W), (8 wt%:650/700/750 W).
(10 wt%:650/700/750 W) with the total of nine experimental runs.

2.4. Characterization of condensate product

2.4.1. GC-MS chromatographic measurement

The condensate was analyzed using GC-chromatographic analysis. GC-7890 A instrument was equipped with
DB-1IMS column, which was 30 m length, 0.25 mm in diameter with 0.25 um thickness film. The oven temperature
was initially programmed at 40 °C for 2 min. raised to 100 °C at 3 °C/min for 1 min and retained at 270 °C at
4 °C/min for 1 min. The split ratio was set to 1:101 and helium (He) was used as a carrier gas at a flow rate of
0.9 mL/min.

2.4.2. ATR/FTIR analysis

Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance (ATR/FTIR) measurement were acquired
on a Nicolet ™ iS50 FT-IR Spectrometer (Thermo Fisher, Scientific Inc., Waltham, US) equipped with built in iS50
ATR accessory. Spectra [4000-600 cm™!] were collected with resolution of 0.09 cm~! by co-adding 32 scans for
each spectrum. Integrated software for Windows was used for spectra collection.

3. Results and discussions

3.1. Effect of output power on temperature

In Fig. 1, all three graphs of different Zn/ZSM-5 catalyst concentrations showed a similar trend that the
temperature increased rapidly at the first 10 min before remaining constant throughout the experiment. In general,
the temperature trends of 650,700 and 750 W were managed to sustain without having any significant drop of
temperature through the reaction time of 60 min. Temperature increased when increasing the output power that
generated stronger electromagnetic intensity causing the atoms within the castor oil molecules to vibrate more
vigorously. The atoms collided with each other more frequently and produced much larger frictional force. As a
result, great deal of heat energy was generated which causes elevation in temperature. Noticeably, there was a certain
point of the experiment where the temperature started to drop. The slightly drop in temperature was possibly due
to the cracking process which is an endothermic reaction that consumes part of the heat energy generated to break
down the long chain into shorter chained hydrocarbons.

The highest Zn/ZSM-5 catalyst concentration of 10 wt% at the highest power of 750 W (gray solid line)
tends to absorb more heat from the microwave system, and results in higher temperature increment. Although the
highest catalyst concentration was expected to achieve the highest temperature, it was not sustained at the highest
temperature during the experiment. The rate of evaporation of the castor oil was much higher at the highest catalyst
concentration that possibly causes more cooling effects and a drop in the temperature trend.
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Fig. 1. Comparison of temperature versus time at different output powers for (A) 5 wt% (B) 8 wt% and (C) 10 wt% Zn/ZSM-5 catalyst.

3.2. Effect of output power on mass of condensate formed

Theoretically, higher output power will generate more mass of condensate formed as more castor oil molecules
will attain enough energy to vaporize at high temperature. This theory only supported by graph C from Fig. 2 as
higher output power (10 wt% of 750 W) generated relatively higher mass of condensate. However, the output power
has no direct relationship on the mass of condensate formed. This is probably because the energy used was very
random that some were used to break the bonds in the castor oil during cracking process while some energy was
used for the latent heat in evaporation process. Thus, the masses of condensate formed were varied regardless of
the output powers.
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Fig. 2. Comparison of mass of condensate formed versus time at different output power for (A) 5 wt% (B) 8 wt% and (C) 10 wt%
Zn/ZSM-5 catalyst.

3.3. Effect of catalyst concentration on mass of condensate formed

The theory was also supported by graph C from Fig. 3 as higher catalyst concentration generated relatively higher
mass of condensate. However, catalyst concentration also has no direct relationship on the mass of condensate
formed. The random energy was utilized to break the bonds during cracking process and some energy was
consumed for the latent heat in evaporation. Thus, the masses of condensate were random regardless of the catalyst
concentrations.

3.4. Parameter with the highest total mass of condensate formed

In Fig. 4, the output power of 750 W and catalyst concentration of 10 wt% gave the highest 5.62% yield with the
total mass condensate of 5.61 g from 100 g of castor oil. Both higher output power and catalyst concentration gave
higher temperature and generated more heated vapor and collected as condensate. On the contrary, the output power
of 650 W and catalyst concentration of 5 wt% provided the lowest yield of 0.47%. Lower temperature which was
due to both lower output power and catalyst concentration only enable some of the castor oil molecules to attain
enough energy to rise up as heated vapor and then condensate. As a result, the total mass of condensate formed
was the lowest among all the parameters.
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Fig. 3. Comparison of mass of condensate formed versus time at different Zn/ZSM-5 catalyst concentration for (A) 650 W (B) 700 W and
(C) 750 W output power.
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Fig. 4. Comparison of total mass of condensate formed at different output power for 5 wt%, 8 wt% and 10 wt% Zn/ZSM-5 catalyst.

3.5. Parameter with the highest cracking percentage

Fig. 5 shows that the output power of 750 W and catalyst concentration of 5 wt% has the highest percentage of
cracking in condensate product (97.7%). Higher output power will contribute more energy to the chemical bonds
within castor oil molecule to vibrate more vigorously. Hence, the chemical bonds are easily broken when the
supplied energy exceeds the forces of attraction between atoms and this is where cracking happens. However, small
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60 -

40

20
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5

8
WT% of Zn/ZSM-5 in castor oil
Fig. 5. Comparison of percentage of cracking for 9 parameters with different output power and Zn/ZSM-5 catalyst concentration.
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amount of catalyst (5 wt%) was sufficiently needed for the cracking process to occur. On the contrary, catalyst in
excess amount will absorb more heat energy generated from the microwave and thus only small portion of energy
is available for the cracking process. Thus, high concentration catalyst is not favored for the cracking process.

3.6. Characterization of condensate from parameter with the highest cracking percentage

Three main peaks of GC-MS indicated three major constituents of 9,17-octadecadienal, (Z-C;gH3,0), octane
(CgH;sg), and undecylenic acid (C;1H00;). The first, second and third highest peaks have the percentage area of
47.58, 24.16 and 20.85, respectively. ATR/FTIR shows the presence of functional groups such as C=O0 stretch at
1708.2 cm~!, =C—H- bend at 966.59 cm ~! and further discussion is performed in the proposed catalytic cracking
reaction.

3.7. Proposed reaction of cracking

First highest peak indicates that 47.58% from 100% castor oil had been converted to unsaturated aldehyde by
dehydration process of water removal to give 9,17-octadecadienal, (Z)- (C1gH3,0). This finding was suggested by
the presence of C=O stretch at 1708.2 cm~! and =C—H- bend at 966.59 cm~! in ATR/FTIR analysis. Two hydroxyl
functional groups had been removed with hydrogen atoms at carbon terminal to produce terminal alkene of 9,17-
octadecadienal, (Z). The second highest peak area of 24.16% indicates that 24.16% from 100% castor oil had been
cracked down to a mixture of octane (CgH,g) which was supported by C—H bend at 1459.17 cm™!. The third highest
peak area of 20.85% indicates that 20.85% from 100% castor oil had been cracked down to undecylenic acid [27]
(C11H»90,), which is supported by the presence of =C-H bend, C=O0 stretch and C-O stretch at 966.59 cm™!,
1708.2 cm™! and 1241.02 cm™!, respectively. The schematic diagram of the proposed reaction is shown in Fig. 6.

T ?
7 OH & =
w - \_\_\_¥ /_/_ﬁ 4 20
OH Dehydration \=/"
Ricinoleic acid CzH3403 9,17-octadecadienal, (Z)- Ci3sH3:0
0
(0]
d oy PN PN
OH Catalytic
cracking

Ricinoleic acid C;sH3405 Octane CsHs

0
Z OH
_ OH
OH Catalytic 0o
cracking
Ricinoleic acid CigH3403 Undecylenic acid Cy1H002

Fig. 6. Schematic diagram of the proposed catalytic cracking process.

4. Conclusions

Microwave assisted method with the modified metal catalyst, Zn/ZSM-5 provided sufficient energy for the
cracking process to occur even at low temperature. The cracking process was observed at low temperature which
was supported by the data analysis using GC-MS and ATR/FTIR. The schematic diagram of the propose catalytic
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cracking process was proposed to produce octane and undecylenic. Fuel and pharmaceutical products of octane and
undecylenic acid were obtained through catalytic cracking process via microwave assisted method.
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