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In the present work, the experimental and theoretical reports on electronic and vibrational features of
doxylamine succinate (DXS) are presented. The vibrational spectra were documented and wavenumbers
were obtained theoretically assigned by means of potential energy distribution. In DXS, N-H. . .O and C-
H. . .O intermolecular hydrogen bonding contacts are associated with O. . .H/H. . .O interactions. Solvation
free energy (SFE) for DXS in water, methanol and DMSO, are �10.67, �10.95 and �10.61 eV/mol respec-
tively. Interpretation of electrostatic potential, electron localization function (ELF), localized orbital loca-
tor (LOL) as well as atoms-in-molecules (AIM) analysis is also performed. Presence of non-covalent
interactions is evident from the non-covalent interaction (NCI) isosurface. Molecular docking and simu-
lations were used to determine the binding energy of DXS in order to investigate its potential activity
against the SARS-CoV-2 protease.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Antihistaminic doxylamine succinate is often used to treat
morning sickness in pregnant women. Because it is such a bitter
medicine, it is critical to hide the bitter flavor [1]. Doxylamine suc-
cinate is a short-acting sedative made up of N,N-dimethyl-2[1-phe
nyl-1-(2-pyridinyl)ethoxy]-butanediote. It is sympathomimietic
drug that’s utilized as a nasal decongestant in cough and cold
medicines [2]. Doxylamine is a short-acting sedative that can be
used alone or in conjunction with other drugs to offer allergy
and cold relief at night [3–6]. Doxylamine’s pharmacokinetics
and pharmaco-dynamics were studied in a phase I trial [7].
Recently researchers reported on the estimation of DXS in bulk
and in pharmacological dosage form [8,9]. Parvez et al. reported
XRD analysis of doxylamine succinate (DXS) [10]. Pyridine is an
aromatic compound that has a variety of chemical and biological
applications [11,12]. The pyridine ring structural motif is found
in vitamin B3 and B6, as well as other nitrogenous plants. Thou-
sands of drugs with biological functions contain the pyridine
nucleus according to pharmaceutical data [13]. Pyridine and its
derivatives are employed in the production of a variety of herbi-
cides and pesticides, as well as a solvent in paints, and rubber
products [14]. Arylated pyridines have a wide range applications
including for a variety of medications, ligands for chemical synthe-
sis and organic compounds in material science [15]. At different
temperatures, Singh et al. investigated the volumetric behavior of
glycine in aqueous succinic acid [16]. Succinic acid is a dicarboxylic
acid that is widely employed in a variety of industries, including
food, agriculture, pharmaceuticals and polymers. It works in con-
junction with protein to rebuild nerve endings and aid in the fight
against infection. Different amino acids are converted to succinic
acid and had been demonstrated to be significant in feeding
myocardial contractions with fuel under low oxygen conditions
[17].

Using density functional theory (DFT), spectroscopic methods
and docking to deduce the structural activity of a drug could open
the path for the creation of novel antibacterial inhibitors. Despite
the fact that DFT studies on pyridine derivatives have been
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reported, no spectral study or DFT studies on doxylamine succinate
(DXS) have been conducted [18–20].The use of quantum chemical
computations supported by DFT in vibrational spectral analysis of
DXS is an efficient way for analyzing the many forms of bonding
and normal modes of vibration [21,22]. Potential energy distribu-
tions have been used to support the entire vibrational assignments
for all vibrational modes. Natural bond orbital (NBO) and Hirshfeld
analysis were used to do investigation of the intermolecular inter-
actions and contacts. Docking against viral proteins was used to
assess the antiviral efficacy of DXS. The structure of DXS has been
investigated using theoretical and experimental calculations. FT-IR
and FT-Raman spectra of DXS are explained experimentally and
theoretically. The antiviral action was determined using molecular
docking, which revealed that it may engage irreversible with the
SARS-CoV-2 protease.
2. Methods

DXS, is obtained as a gift [10] and the vibrational spectra (Fig.S1
and Fig.S2) are recorded as in literature [23] and the calculations of
DXS (Fig. 1) were by Gaussian 09 [24] and Gaussview 5 [25] via
wB97XD/6–311++G* [26–28]. The default settings were used for
the convergence criteria regarding self-consistent field and opti-
mization procedure. The solvation free energies (SFEs) of DXS in
different solvents were also estimated [29]. ELF and AIM topologi-
cal studies and the calculations of NCI, LOL and electrostatic poten-
tial (ESP) plots were performed using Multiwfn software [30]. ELF,
NCI and ESP iso-surfaces were visualized using UCSF Chimera and
VMD software [31,32]. Molecular Docking studies are carried out
for DXS with SARS-CoV-2 main protease (6YB7) with highest reso-
Fig. 1. Optimized geometry of DXS.
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lution 1.25 Å. The protein X-ray structure was downloaded from
protein data bank [33] and subsequently cleaned for any steric
clashes, intrinsic water and co-crystallized molecules. Then the
protein structure was subjected to energy minimization using
1000 steps of conjugate gradient algorithm. All the hydrogen are
properly added and saved in pdb for docking purpose. Docking
studies were carried out in patch dock web server [34]. Grid center
was provided as 0.35 Å � 6.0 Å � 3.0 Å. Docking parameters were
set for protein small ligand with clustering root mean square devi-
ation (RMSD) 0.5 Å. Ligand binding site information was uploaded
in the server advanced parameter option and energy minimized
protein and geometrically optimized DXS was uploaded for final
run. The Desmond 2020.1 from Schrödinger, LLC was used to run
molecular dynamics (MD) simulations on dock complexes for
6YB7 with DXS. Simple point charge (SPC) water molecules and
the OPLS-2005 force field were utilized in this system [35] in a per-
iod boundary solvation box of 10 Å3. Na+ was supplied to system to
neutralize the charge and NaCl solutions were added to replicate
the physiological environment.

When retraining with the complexes with DXS, the system was
first equilibrated using a normal volume and temperature (NVT)
ensemble for 100 ns. After the preceding phase, a 12-ns normal
pressure and temperature (NPT) ensemble run was used to per-
form a quick equilibration and reduction. Calculations were made
to track the stability of MD simulations using parameters such as
the RMSD, radius of gyration (Rg), root mean square fluctuation
(RMSF0), H-bond number and solvent accessible surface area
(SASA) [36].
3. Results and discussion

3.1. Hirshfeld surface analyses

Hirshfeld surface analysis is a technique for validating the space
taken by a molecule in a crystal system in order to divide the elec-
tron density into molecular pieces [37,38]. To define the near con-
tacts in the crystal, the CrystalExplorer21 application was utilized
[39], which can delineate the curvedness, shape index, electrostatic
potential and fingerprint plots overlaid over dnorm. 2D fingerprint
mapping and 3D Hirshfeld surfaces of DXS are depicted in Fig. 2.
Intermolecular hydrogen bonding contact between N-H. . .O and
C-H. . .O are related with O. . .H/H. . .O interactions, respectively
which is appeared as a sharp edge and a lengthy symmetric spikes
upon 2Dmapping with a percentage contribution of 24.5. The most
remarkable inter/intra atomic contact is H. . .H (center of 2D map)
which contributes about 55.7% and it is due to three methyl groups
(C-H. . .H-C) available in DXS. On the other hand, 15% contribution
of centroid/centroid contacts to the total Hirshfeld surface is sup-
posed as a pair of wings in 2D fingerprint mapping. Weak pi. . .pi
contact is evaluated as 1% that evidenced the lack of p. . .p inter-
molecular interactions in the crystal system [40,41]. The suppres-
sive contacts of p. . .p is due to the excessive intermolecular
H. . .H (C-H. . .H-C) and O. . .H (N-H. . .O/C-H. . .O) interactions.
Because of its positive charge, the nitrogen ion in ammonium moi-
ety does not participate in intermolecular N. . .H interactions, and
the minor participation of N. . .H (3.7%) is attributed to nitrogen
(pyridine moiety) interacting with adjacent hydrogen’s.

A strong red spot is appeared on the O-H group of acidic moiety
in dnorm which intensely explained the DXS has strong interaction
sites. In connection, a countable number of faint red spots where
also been noticed on both the acidic and basic parts evidenced
the weaker C-H. . .O/C-H. . .N interactions. With the inverted blue
and red coloured bow-tie pattern, the shape index confirms the
presence of weaker p. . .p interaction in the system and as flat
regions on the curvedness [42].



Fig. 2. Hirshfeld surface plots of S6 mapped with three-dimensional (a) open view, (b) shape index, (c) dnorm, (d) curvedness and its (e) two dimensional fingerprint contacts
with its percentage contribution.
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3.2. Spectroscopic geometric and electronic properties

Ring vibrations (table S1) are at: 3063, 3033 cm�1 (Raman),
3078–3033 cm�1 (DFT) (tCH); 1575, 1560, 1433 cm�1 (IR), 1572,
1483, 988 cm�1 (Raman), 1575–986 cm�1 (DFT) (tRA);
1325 cm�1 (IR), 1321, 1181 cm�1 (Raman), 1327–1014 cm�1

(DFT) (dCH) and 992, 692 cm�1 (IR), 850 cm�1 (Raman), 990–
3

697 cm�1 (DFT (cCH) for the mono substituted phenyl ring RA
and 3075, 3052 cm�1 (IR), 3075–3040 cm�1 (DFT) (tCH), 1553,
1539, 1419, 1024 cm�1 (IR), 1281, 1022 cm�1 (Raman), 1554–
1023 cm�1 (DFT) (tRB), 1250–1042 cm�1 (DFT) (dCH) and 935,
761 cm�1 (IR), 931 cm�1 (Raman), 973–761 cm�1 (DFT) (cCH) for
the pyridine ring RB [43–45]. The pyridine ring stretching modes
are reported at 1603, 1536, 1496, 1260 cm�1 (IR), 1594,



Fig. 3. HOMO-LUMO plots of DXS.

Fig. 4. ESP plot of DXS.
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1263 cm�1 (Raman) and 1590–1265 cm�1 (DFT) and the bending
modes in the region, 1334–1063 cm�1 and 949–793 cm�1 theoret-
ically [46].

The CH3 modes are assigned theoretically in the ranges: 3034–
2910 cm�1 (tCH3), 1502–966 cm�1 (dCH3) while bands are
observed at 3034, 3018, 2984 cm�1 (IR), 2996, 2981, 2918 cm�1

(Raman) for stretching and 1504, 1470, 1406, 1140, 1093,
1072 cm�1 (IR), 1406, 1376, 1152 cm�1 (Raman) for bending
modes [43,47]. The CH2 modes are assigned at: 2963, 2932,
2882 cm�1 (IR), 2967, 2932, 2880 cm�1 (Raman), 2975–
2883 cm�1 (DFT) as stretching and 1490, 1445, 1381, 1260, 1238,
919 cm�1 (IR), 1450, 1272, 1238 cm�1 (Raman), 1492–918 cm�1

(DFT) as bending modes [43].
The tC = O and tCO are assigned at 1675, 1600, 1535 cm�1 and

at 1219, 1113, 1097, 1053, 1006 cm�1 theoretically while modes
are observed at 1680, 1610, 1533, 1220, 1093 cm�1 (IR) and
1672, 1601, 1533, 1221, 1103, 1051, 1004 cm�1 (Raman) experi-
mentally [43,48] and the corresponding reported values are at
1677, 1611 and 1101 cm�1 [48,49]. The N. . .H. . .O and OH modes
are assigned at 1720 and 3511 cm�1 theoretically [50] while CN
stretches are at 970, 896 and 833 cm�1 theoretically.

The CO bond lengths are 1.2237, 1.2702, 1.3137, 1.3997, 1.4466
and 1.4869 Å [10]. The separation, N3. . .H4. . .O44 = 2.5453 and the
lengths N3-O45, N3-O44 and N3-O1 lengths are 3.2198, 2.5453
and 2.9107 Å gives significant hydrogen bonding [10]. The torsion
angle between pyridine and phenyl ring is 71.9� and other impor-
tant torsion angles are: O1-C30-C33-N3, C30-C33-N3-C36, C13-
C14-O1-C30, and C14-O1-C30-C33 angles are 55.8, 45.2, 172.5,
and 162.1� [10].

Frontier molecular orbital (FMO) is used to characterize elec-
tron donating/withdrawing ability of any chemical system by pre-
dicting the chemical reactivity and kinetic stability of molecules
[51,52]. A smaller HOMO-LUMO gap gives the molecule’s stabiliza-
tion [53,54]. For DXS, HOMO is located on the nitrogen and oxygen
atoms of aliphatic moieties and a lesser extent on the aromatic ring
system (Fig. 3). On the other hand, LUMO electrons were spread
over on the aromatic ring system in a greater extent and resonate
well. The calculated energy gap of HOMO-LUMO was 5.7505 eV,
which gives a possible charge transfer in DXS [55]. SFE is the
change in energy of a molecule between gas and solvent, and it
is useful in predicting parameters such as activity coefficients
and solubilities [56]. Continuum solvation models are employed
in this context to predict SFEs [29,57]. SFEs for DXS were computed
using SMD model in water, methanol and DMSO, yielding values of
�10.67, �10.95 and �10.61 eV/mol respectively. SFE are negative
for all solvents which are nearly same and all solvents are better
for solubilization of DXS which supports the biological activity.
The chemical descriptors in solvents show slight variations in com-
parison with that in vacuum. The changes in thermochemical
parameters are negative for all solvents,which means the solvation
process is exothermic and spontaneous.

ESP exhibits reactive sites of electrophilic or nucleophilic
attacks [58,59]. The negative and positive ESP sites are shown as
red and blue in the ESP surfaces. Fig. 4 depicts the electrostatic
potential of DXS. It exhibits a positive potential on H3 of acidic
COOH and N2 with (CH3-N-CH3) dimethyl system [60]. These
positive atoms can naturally interact with negative system of
the opponent. Similarly, Oxygen atoms reveal a strong electron
rich centre around it and it would interact with positive system
[61]. Strong NBO interactions due to lone pair atoms are:
N2? (C5-C7, C11-C13) with energies, 9.01 and 9.57 and O44?
(O45-C49) with energy 77.39, O45? (O44-C49, C59-C50) with
energy (20.30, 17.24) and O46? (O47-C56, C53-C56) with energy
(35.09, 17.20) and O47? (O46-C56) with energy 40.45 kcal/mol
(table S2) [62]. Occupancy is 100% p-character in O44, O45 and
O46 atoms [63].
4

3.3. Reactivity analysis

Analysis of ELF [64,65] was performed to obtain electronic
structure with the ELF localizarion domain of DXS (Fig.S3)



Fig. 5. ELF localization domains (Isovalue = 0.80) of DXS. The protonated basins are
shown in blue, monosynaptic basins are marked in red, disynaptic basins are
marked in green and the core basins are marked in red color. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 1
Total electron density, q, Laplacian of electron density r2qðrcÞ and localized orbital locator
the optimized geometry in Fig. 5)

BCP (3,-1) RCP (3,+1

CP Bonding Region q r2qðrcÞ LOL CP

61 N2-C5 0.302 �0.630 0.680 63
65 N2-C13 0.302 �0.636 0.692 75
73 C56-O46 0.379 �0.562 0.591 78
84 C56-O47 0.247 �0.333 0.647 98
90 O46-H12 0.014 0.071 0.135 108
100 C49-O44 0.306 �0.555 0.663 109
101 C30-O1 0.218 �0.221 0.625
102 C49-O45 0.342 �0.651 0.645
103 O44-H4 0.099 0.114 0.472
112 O45-H42 0.008 0.043 0.010
113 O45-H37 0.013 0.064 0.130

Fig. 6. BCPs (3,-1), RCPs (3,+1) and the bond p
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displayed in Fig. 5. The presence of monosynaptic V(O44) basin
integrating 3.88 e is with the non-bonding electron density (NBED)
at O44 carbon, while the disynaptic V(O44,H4) basin integrating
2.30 e is associated with the O44-H4 bonding region. Monosynap-
tic V(O45) and V’(O45) with 5.94 e is related to NBED at O45 oxy-
gen. The ELF also gives V(O1) and V’(O1) basins integrating 5.57 e,
monosynaptic V(O46) and V’(O46) basins integrating 5.58 e,
monosynaptic V(O47) and V’(O47) basins with 5.07 e, associated
respectively with NBED on O1, O46 and O47. Decrease in NBED
at O47 is attributed to formation of O-H bond. The monosynaptic
V(N2) and V(N3) with 3.02 and 0.35 e is related to the NBED at
N2 and N3, while disynaptic V(N3,H4) basin with 2.22 e is with
N3-H4 region. Note that monosynaptic V(N3) basin shows minimal
population of 0.35 e, owing to the involvement of the electron den-
sity at N3 nitrgogen in the N3-H4 bonding region [66].

Analysis of the QTAIM parameters [67,68] allows obtaining a
complete comprehension of the atomic interactions present in a
molecule. The total electron density (ED), q, Laplacian of electron
density (LED) r2qðrcÞ and the localized orbital locator (LOL) in a.
(LOL) in au at the selected BCP (3,-1) and RCP (3, +1) of DXS (Numbering according to

)

Ring/Bonding Region q r2qðrcÞ LOL

Pyridine Ring 0.023 0.151 0.142
Phenyl ring 0.022 0.136 0.138
C49, O44, H12, C11,C9, C10, H52, C50 0.001 0.006 0.029
O44,H4,O1,C14, C13, C11 0.294 0.024 0.041
O44,C49,O45, H37, N3, H4 0.007 0.044 0.073
O44,C49,O45, H37, N3, H4 0.006 0.038 0.067

aths along with the NCI isosurface of DXS.
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u. selected BCP (3,-1) and RCP (3, +1) of DXS are given in Table 1,
with the BCPs and RCPs displayed in Fig. 6 along with the NCI
[69] iso-surface. BCP 61 and 65 are associated with the N2-C5
and N2-C13 of the pyridine ring and show electron density of
0.302 e, with the LOL of 0.680 and 0.692 au, with the negative
Laplacian of �0.630 and �0.636 au. The C56-O46 double bond
shows the total electron density of 0.379 e and that of C56-O47
single bond is 0.247 e, with the respective LOL of 0.591 and
0.647 au. BCP 90, 112 and 113 associated with the O46-H12,
O45-H42 and O45-H37 bonds show the total electron density of
0.014, 0.008 and 0.013 e and LOL of 0.135, 0.010 and 0.130 respec-
Fig. 7. Molecular Electrostatic Potential (MEP) isosurface with the electrostatic
potential (ESP) in kcal mol�1 of the surface minima (blue colour) and surface
maxima (brown color). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. MD simulation analysis of 100 ns trajectories of (a) Ca backbone of SARS-CoV-2 m
Formation of hydrogen bonds in SARS-CoV-2 main protease + DXS complex. (d) Radius
accessible surface area of SARS-CoV-2 main protease + DXS complex (f) Energy plot of S
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tively, while BCP 103 associated with the O44-H4 bonding region
shows the higher accumulation of total electron density of 0.099
e and LOL of 0.472, with the positive LED characteristic of non-
covalent interactions. DXS shows six ring critical points (RCPs),
two of them, namely RCP 63 and 75 are associated with the pyri-
dine and phenyl rings with the ED of 0.023 and 0.022 e and LOL
of 0.142 and 0.138 au. RCPs 78, 98, 108 and 109 are associated with
the atomic framework created due to non-covalent interactions in
the molecule. Note that RCP 98 shows the maximum total electron
density of 0.294 e and is associated with the bonding framework of
O44, H4, O1, C14, C13 and C11 with the positive Laplacian of 0.024
au, implying the presence of non-covalent interactions, evident
from the NCI isosurface shown in Fig. 6 [70].

The molecular electrostatic potential (MEP) study was per-
formed to characterize the electrophilic and the nucleophilic sites
of DXS and the MEP surface map is displayed in Fig. 7. The red
and blue regions indicate positive and negative zones respectively.
DXS shows the presence of 10 surface minima (blue color) and 19
surface maxima (brown color) in the MEP plot. The surface minima
of �49.71 and �34.14 kcal mol�1 is localized near O44 and H4,
while the surface maxima of + 27.38 and + 27.87 kcal mol�1 are
localized over N3 nitrogen, implying the polarization of electronic
charge along O44-H4-N3 framework. Note that the maximal MEP
(+60.26 kcal mol�1) is shown by the surface maxima at the vicinity
of H48, while the surface minima of �53.88 and �58.88 kcal mol�1

are localized around O46 and O47.
3.4. Molecular Docking and dynamics simulations

Docking of DXS with SARS-CoV-2 main protease (PDB ID: 6YB7)
are displayed in Fig.S4. Surface view and ribbon secondary struc-
ture of DXS with SARS-CoV-2 main protease displayed that the
ain protease + DXS (b) RMSF of Ca backbone of SARS-CoV-2 main protease + DXS (c)
of gyration (Rg) of Ca backbone of SARS-CoV-2 main protease + DXS (e) Solvent
ARS-CoV-2 main protease + DXS complex.
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co-crystal well accommodated within in the binding pocket (Fig.
S4b). The dock score is calculated within 0.5 Å RMSD clusters tol-
erance 6180 with an area 710.15. The free energy of binding of
DXS exhibited more negative (DG) = -8.7 kcal/mol. This indicated
the high binding affinity of DXS for SARS-CoV-2 main protease.
Residues Asn142, Ser144 and His163 formed conventional hydro-
gen bonds (2.6875 and 2.9230 Å) with the DXS (Fig.S4), whereas,
the other residues at the binding pocket involved in weak interac-
tions with the DXS.

MD studies of 100 ns give stability and convergence of CoV-
main protease (PDB ID: 6YB7) with DXS. RMSD of Ca-backbone
of complex exhibited a deviation of 0.6 Å (Fig. 8(a)). Plot of stable
RMSD during simulation signify a good convergence and stable
conformations [71]. Therefore, it can be suggested that DXS bound
to SARS-CoV-2 main protease as a quite stable complex due to
higher affinity of the ligand. The RMSF plots displayed small spikes
of fluctuation in SARS-CoV-2 main protease protein except at resi-
dues 48–60, 220–240 and 260–280 residues might be due to
higher flexibility of the residues conformed into loop region, while
the rest of the residues less fluctuating during 100 ns simulation on
binding with DXS (Fig. 8(b)) indicating the stable amino acid con-
formations during the simulation time. All these RMSF values are
in the acceptable region [72] and during simulation structures of
proteins are stable in ligand bound conformations. Number of H-
bonds between protein and ligand suggests significant interaction
and stability of the complex. The H-bonds number showed signif-
icant numbers between DXS bound with SARS-CoV-2 main pro-
tease, respectively throughout the simulation time 100 ns (Fig. 8
(c)). A consistent numbers of hydrogen bonds are observed
between protein and DXS (Average 2 number) (Fig. 8(c)) that might
facilitate to conform into stable complex. Rg gives protein’s com-
pactness and in this study, SARS-CoV-2 main protease Ca-
backbone bound to DXS displayed lowering of Rg from 22.0 to
21.5 Å (Fig. 8(d)). Significantly lowering gyration (Rg) indicates
highly compact orientation of the protein in ligand bound state
[73,74]. The unbound state of DXS to receptor protein SARS-
CoV-2 main protease show high SASA (Fig. 8(e), Cyan) and lowered
during bound state with DXS (Fig. 8(e), blue). The overall study of
Rg signifies ligand binding compel the proteins to become more
compact and less flexible. Energy plots describe the total energy
of the protein ligand complex in Fig. 8(f). More negative values
indicate more compact and stable structure. It is observed from
Fig. 8(f), SARS-CoV-2 main protease bound with DXS achieved glo-
bal minima with an average energy �105 kcal/mol. In order to
achieve the global minima, major contribution is provided by cou-
lomb energy and nonetheless by van der Waal’s (vdW) energy
(Fig. 8((f)). Energy plots indicated that DXS accommodated in the
binding cavity of the protein and facilitate in stabilizing protein
as well as to make a compact complex [75].
4. Conclusion

Vibrational spectroscopic, electronic properties and reactivity
analysis of doxylamine succinate were reported theoretically and
experimentally. The most remarkable inter/intra atomic contact
is H. . .H and it is due to three methyl groups. The MEP maps pro-
vide information about the reactivity sites of DXS. Maximum total
electron density is associated with the bonding framework of O44,
H4, O1, C14, C13 and C11 with a positive Laplacian, implying the
presence of non-covalent interactions. The dock score is within
0.5 Å RMSD clusters tolerance is 6180 and binding free energy is
more negative. According to docking and MD simulations DXS
interacted favorably with SARS-CoV-2 main protease with energy
of �105 kcal/mol.
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