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Abstract

In this thesis, we present and study a few approaches for constructing controllers
for uncertain systems, using a combination of classical control theory and modern
machine learning methods. The thesis can be divided into two subtopics. The first,
which is the focus of the first two papers, is dual control. The second, which is the
focus of the third and last paper, is multiple-input multiple-output (MIMO) control
of a chiller process.

In dual control, the goal is to construct controllers for uncertain systems that in
expectation minimize some cost over a certain time horizon. To achieve this, the
controller must take into account the dual goals of accumulating more information
about the process, by applying some probing input, and using the available infor-
mation for controlling the system. This is referred to as the exploration-exploitation
trade-off. Although optimal dual controllers in theory can be computed by solving
a functional equation, this is usually intractable in practice, with only some sim-
ple special cases as exceptions. Therefore, it is interesting to examine methods for
approximating optimal dual control.

In the first paper, we take the approach of approximating the value function,
which is the solution of the functional equation that can be used to deduce the
optimal control, by using artificial neural networks. In the second paper, neural net-
works are used to represent and estimate hyperstates, which contain information
about the conditional probability distributions of the system uncertainties. The op-
timal dual controller is a function of the hyperstate, and hence it should be useful
to have a representation of this quantity when constructing an approximately opti-
mal dual controller. The hyperstate transition model is used in combination with a
reinforcement learning algorithm for constructing a dual controller from stochastic
simulations of a system model that includes models of the system uncertainties.

In the third paper, we suggest a simple reinforcement learning method that can
be used to construct a decoupling matrix that allows MIMO control of a chiller pro-
cess. Compared to the commonly used single-input single-output (SISO) structures,
these controllers can decrease the variations in some system signals. This makes it
possible to run the system at operating points closer to some constraints, which in
turn can enable more energy-efficient operation.
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1
Introduction

1.1 Automatic Control and Uncertainty

In automatic control, we consider dynamical systems that can be manipulated by
some input signal u, which is a function of time. In the general case, this signal is
multidimensional, i.e., it consists of several components, so that u= (u1,u2, . . . ,up),
for some positive integer p. Our goal is to devise so-called controllers, which are
algorithms that decide the value of the input u at all time points, such that the system
behaves in a good way. To accomplish this, we first have to define what is meant by
good behavior for the system. Second, we have to figure out how the input affects
the system, so that it can be used to align the system as close as possible with the
desired behavior.

A general system S can, except for the input u, also be affected by some external
disturbance w. Moreover, it has some output y that can be measured and that might
contain some measurement noise e. The system is characterized by its internal state
x, which in general cannot be measured. All signals w, y, e, and x can be multi-
dimensional. If the system model, as well as the input values u(t) and disturbance
values w(t) for times t ≥ τ , are fully known, then it is sufficient to know the state
value x(τ) at time t = τ in order to exactly predict future state values x(t) for t > τ .
Thus, the state value x(τ) at a particular time τ can be thought of as containing all
relevant information about the system that can affect its future behavior. Therefore,
the system behavior can be characterized and described by its state value x(t) at
each time point t.

In conclusion, the control problem consists in constructing a controller C that
generates a control signal u such that the state x of the controlled system S satisfies
some predefined specification. This specification might involve a (possibly multidi-
mensional) reference signal r that is used by the controller. The controller can also
use the output signal y from the system. The setting is illustrated in Fig. 1.1.

The ideal case for a control designer would be if both the system model S and
the disturbances w and e were fully known. Then, it would be possible to exactly
predict what input u causes what state x. However, disturbances are typically not
known. The second best case is then that we know the stochastic properties of the

9



Chapter 1. Introduction

Figure 1.1 The control problem consists in designing a controller C that computes
an input u for the system S with internal state x, under influence of an external distur-
bance w, using the measurement signal y with noise e, such that some specification,
which might depend on the reference signal r, is satisfied.

signals, i.e., their probability distributions. In this case, we can determine the prob-
ability distribution of the resulting state for each given input. A famous example of
a control method applicable to this case, if the system is linear and the disturbances
and initial state value are normally distributed with known distributions, is linear-
quadratic-Gaussian (LQG) control. This method designs a controller that minimizes
the expected value of a quadratic cost that involves the state x and the input u.

In reality, the system we want to control cannot usually be perfectly described
by a linear model. For some systems, a linear model might work for regulation
around some operating point, although the system is nonlinear. However, there are
also cases where a linear model does not adequately describe the behavior of the
system even in the vicinity of a specific point. We might also want to control the
system so that we move between distant operating points. In these cases, we have
to look for methods beyond the well-known toolbox of linear control theory, most
of which are much less developed and less general than the linear methods.

Except for nonlinearities, real-world systems usually also have different kinds of
uncertainties. Even if the general structure of a system is known, the system often
contains parameters that are not exactly known. The parameter values might be
different for different realizations of the system, for different operating conditions,
and might vary with time. The system S can therefore be regarded as a function
S(θ) of some stochastic parameter vector θ .

To find a controller that can handle cases where we have uncertain system pa-
rameters θ or a state x that is not directly measurable and uncertain, tools from
the field of adaptive control can be used. The idea is then to let the control algo-
rithm automatically change, depending on conditions such as current estimations of
uncertain parameters and signals, and their uncertainties.

10



1.2 Contributions

1.2 Contributions

The contents of this thesis can be divided into two main parts. In the first part, we
consider the problem of adaptive control using a method called dual control. This
method tries to balance the dual goals of actively collecting useful information about
the system and using the available information to achieve good control. The problem
with this method is that we have to keep track of the probability distributions of the
uncertain parameters and variables of the system, as well as how these distributions
and the system performance are affected by the choice of control signal (input) over
a certain time horizon. In general, this problem has no analytical solution, and a
straightforward numerical computation is impossible or intractable except for in
some very simple special cases.

As for the dual control problem, our contributions consist in suggesting how
to find approximate but computationally feasible solutions to this problem. We do
this using tools from modern machine learning. One of the approaches is to use
deep neural networks to approximate so-called value functions. These are functions
that describe how good a certain state or combination of state and input is with
regard to the goal of the dual control. This method is examined for linear systems
with time-varying parameters. Another approach we explore is to construct a model
that approximates how the probability distributions of the uncertainties change as a
function of the input signal. Also for this model we make use of neural networks.
This method is examined in a simple system with a nonlinear measurement function,
for which linear methods and simple adaptive control supposedly are insufficient for
achieving good control. The simplicity of the system makes it easy to illustrate that
even a system of low complexity can be difficult to control if it cannot be described
by a linear model, and that advanced control methods, in these cases, might be
needed even for systems of low order.

The second part of the thesis considers control of a complex nonlinear system.
The system in question is a so-called chiller, which is used to cool water, which
in turn can be used to cool spaces such as buildings. For studying this system and
investigating the effect of different control strategies on it, we have access to a com-
plex nonlinear model, which can be used for simulations. In our setup, the system
has only two inputs that should be chosen but has many different measurement sig-
nals that should be kept within certain bounds and that should be considered, in
order to make sure that the control behavior is satisfactory. The model has in total
162 states, most of which usually cannot be directly measured in practice. This sys-
tem can, at least sometimes, be adequately described locally using a linear model.
We would like to apply some kind of adaptive control, to increase the control per-
formance. However, it is important to keep the different variables within certain
limits. The main challenge here is thus to implement some kind of adaptive con-
trol, without inducing too large variations in the constrained signals. In particular,
we examine how combinations of measurement signals can be used as feedback to
determine each of the two control signals. The control strategies that are employed

11



Chapter 1. Introduction

in currently manufactured processes usually determine each input independently,
using only one measurement signal for each input. By using several measurements
to determine each input, we show that control performance can be improved. Us-
ing such improved controllers can make it possible to run the process at operating
points where the main control objective, i.e., to deliver the requested cooling ca-
pacity sufficiently fast, can be reached in a more energy-efficient way, making the
process more economical and climate friendly.

12



2
Background

2.1 Dual Control

Exploration and Exploitation
When controlling a process of which we initially have incomplete information, the
controller fulfils two different purposes. The first one is to perform experiments on
the process, in order to yield more information about it that can be useful for de-
termining future control actions. We refer to this as exploration. The second one is
to perform the actual control, i.e., to try to align the process state with some given
specification. We refer to this as exploitation of the available information. A con-
troller that takes both of these purposes into account, and tries to balance them to
achieve optimal control, is called a dual controller. This notion was introduced by
Feldbaum [Feldbaum, 1960; Feldbaum, 1961], who also presented a general theo-
retical solution to the problem for the case of discrete-time systems where process
changes can be modeled by a discrete Markov process. A good overview of some
different dual control methods, as well as a short introduction to the concept of dual
control, can be found in [Wittenmark, 1995]. This article, together with Feldbaum’s
papers, was the main inspiration for the remainder of this section. Some different
examples of simple optimal and suboptimal dual controllers for different cases are
described in, e.g., [Wittenmark, 1975] and [Åström and Helmersson, 1986]. More
related references are presented in the papers in this thesis.

Feldbaum divides control settings into three different cases:

1. Complete information: Control of systems where all information about the
process that can be known is known. This encompasses the process model,
information about process disturbances w (see Fig. 1.1), the state x of the
process, and the control objective.

2. Incomplete information with passive accumulation of information: Control
of systems where some information that could be known is not known and
where the controller does not have any strategy for exploration, so that infor-
mation is only collected passively.

13



Chapter 2. Background

estimation of
parameters and state

Figure 2.1 In classical adaptive control, the controller C is modified based on es-
timates of uncertain quantities, such as e.g. system parameters θ or a not directly
measurable state x. The estimates of the uncertainties are based on all previous and
current values of the control signal u and measurement signal y from the system
S(θ). The control aim can involve a reference signal r, while the system can be af-
fected by disturbances w, and the output y can be corrupted by noise e.

3. Incomplete information with active accumulation of information: Control
of systems where some information that could be known is not known, and
where the controller has an explicit exploration policy to find some of this
information.

Most variants of adaptive control, and the ones that are most commonly used, fall
into the second of these categories. Dual control, on the other hand, corresponds to
the third category.

Classical Adaptive Control
Classical adaptive controllers are usually composed as illustrated in Fig. 2.1. Using
the control signal u and the measurement signal y, the state x of the system as
well as unknown system parameters θ can be estimated. These estimates can then
be used by the controller to adapt future control actions. One common approach
is so-called certainty equivalence control. In this method, a controller is designed
assuming that complete process information is available. The process might, e.g., be
parameterized with a parameter vector θ , and the controller is then designed using
the process model, assuming that θ is known. This controller is then used with θ

replaced by some estimate θ̂ to control the real process. This approach often works
well if the estimate θ̂ is sufficiently accurate. However, if it is not, the closed-loop
behavior can differ radically from the intended one.

To take into account the uncertainty of the process, one slightly more advanced
variant of adaptive control that can be used is so-called cautious control. In this ap-
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2.1 Dual Control

proach, the control signal at a particular time step is determined by minimizing the
expected value of some cost for the process variables at the next time step, given
the current estimated mean and covariance of the parameter θ . The effect of this
method is usually that smaller control signals are applied when the uncertainty is
large, hence the name. Although this in many situations is a desirable property, it
might also cause problems. Keeping the control signal small means that we maintain
a small degree of exploration, i.e., we do not collect a lot of new useful information
about the process. This tends to lead to that the process uncertainty increases even
more, which in turn decreases the magnitude of the control signal further. Thus,
we have a vicious circle that can lead to the result that the control signal eventu-
ally remains zero, while the uncertainty remains large. This is called the turn-off
phenomenon. [Åström and Wittenmark, 2011]

Optimal Dual Control
In optimal dual control, the exploration-exploitation trade-off is taken into account
by trying to minimize some loss function over a given time horizon. Let xk de-
note the value of the state x at time step k, and analogously for the other signals.
Furthermore, let Yk = {yk,yk−1, . . . ,uk−1,uk−2, . . .} be the set containing the last
measurement signal as well as all previous inputs and outputs. Using a time horizon
of T steps, the goal can then be formulated as that we want to select the control
signal uk such that we minimize a loss function

Jk = E

{
k+T−1

∑
j=k

c j(x j+1,u j)

∣∣∣∣∣Yk

}
, (2.1)

where E{·} denotes mathematical expectation and c j are some cost functions.
Cautious control corresponds to choosing the time horizon as T = 1. In this case,

the optimal solution does not encompass any explicit exploration, since the infor-
mation gained from exploration would be useful only in future time steps, which are
not taken into account by the cost. Thus, to promote control strategies that actively
collect information about the system that can improve future control, the control
horizon must be chosen as T ≥ 2. In that case, a larger step cost in early time steps
due to exploration can be compensated by smaller step costs in the later time steps
due to the gained information.

The optimal dual controller, i.e., the controller that minimizes (2.1), is given as
the solution to a functional equation called the Bellman equation. Before presenting
this equation, we introduce two new concepts. The first one is the hyperstate, which
is the joint probability distribution of the system state xk and system parameters θk
at a time point k, given the input and output history Yk. The hyperstate is denoted
by

ξk = P(xk,θk | Yk) .
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Chapter 2. Background

The second concept is the value function

Vτ(ξk,k) = min
uk,...,uk+τ−1

E

{
k+τ−1

∑
j=k

c j(x j+1,u j)

∣∣∣∣∣Yk

}
.

This function is equal to the minimizing value of the loss (2.1) when τ = T . Using
dynamic programming, the value functions can now be computed recursively by the
Bellman equation

Vτ(ξk,k) = min
uk

E{ck(xk+1,uk)+Vτ−1(ξk+1,k+1) | Yk} , (2.2)

starting with V0(ξk,k) = 0 and then solving for V1,V2, . . . ,VT . The optimal input at
time k is then given by

u∗k = argmin
uk

E{ck(xk+1,uk)+VT−1(ξk+1,k+1) | Yk} .

It can be shown that the dependence of this optimal control signal on the signal
history Yk is covered by the information contained in the hyperstate ξk [Bertsekas,
1987]. Therefore, we obtain an optimal control policy πT that minimizes the loss
(2.1) with time horizon T in the form

u∗k = πT (ξk).

Hence, the optimal dual controller is a policy that determines the control signal uk
at time k as a function of the hyperstate ξk at the same time point. The controller
structure is therefore as illustrated in Fig. 2.2. For this control structure, we need
an estimator that estimates the hyperstate ξk at each time point given the input and
output history of the system as well as prior knowledge of the initial uncertainties.
A simple instance of this would be a case where the joint probability distribution
of the state x and parameter vector θ could be assumed to be a normal distribution.
In this case, the hyperstate ξk would consist of the mean and covariance of this
distribution. This could be compared to the classical adaptive control structure in
Fig. 2.1, where the estimator only provides means of these quantities but no other
information about their probability distributions to the controller.

Suboptimal and Approximately Optimal Dual Control
Although solving the Bellman equation (2.2) would yield the optimal dual controller
that minimizes the loss (2.1), this equation is unfortunately either impossible or
intractable to solve in practice, except for some very simple cases. This is due to
the nesting of the mathematical expectation and minimization that is needed for the
recursive solution.

One way to circumvent this is to use some kind of suboptimal dual control
instead of optimal dual control. One simple method for incorporating some explo-
ration into the control mechanism is, e.g., to use the cautious controller plus some

16



2.1 Dual Control

estimation of
hyperstate

Figure 2.2 In optimal dual control, the controller C applies a policy based on an
estimation of the hyperstate ξ , which is the joint probability distribution of uncertain
quantities in the system, such as e.g. system parameters θ or a not directly mea-
surable state x. The estimate of the hyperstate is based on all previous and current
values of the control signal u and measurement signal y from the system S(θ). The
control aim can involve a reference signal r, while the system can be affected by
disturbances w, and the output y can be corrupted by noise e.

added perturbation, such as white noise of some amplitude. A perturbation added to
an adaptive controller could also be a function of the current uncertainty, so that its
amplitude is increased when the uncertainty is large, in order to increase the amount
of exploration in that case.

A more advanced approach is to try to construct an approximately optimal dual
controller by approximately solving the Bellman equation. An exact solution would
require us to compute the value of the value function Vτ for every possible hyperstate
ξ in each recursion. Since there are an infinite number of possible hyperstate values,
this is of course not possible. We could, however, evaluate the value function for a
certain set of hyperstate values and then use some kind of function interpolation
method that can yield approximate function values for any value of the hyperstate.
Since the value function in general is a nonlinear function even if the system that
is studied is linear, we need to choose a function interpolation method that can
represent nonlinear functions with a complex structure. One such method, which
has had great success in several fields in recent years, is deep neural networks. In
Paper I of this thesis, we examine the possibility of using neural networks in this
way, i.e., to approximate the value functions used for solving the Bellman equation,
for a simple example system.

Another possible way to achieve approximately optimal dual control could be to
apply reinforcement learning (RL) methods to a stochastic simulation model of the
system, containing probability distributions for all the system uncertainties. Such a
method could then be used to find a policy that gives low values of the loss function
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Chapter 2. Background

(2.1). The idea here would be to use reinforcement learning with the hyperstate as
the reinforcement learning state, instead of an ordinary system state. To use this
method, we need a way to effectively and efficiently represent and estimate the hy-
perstate at each time point, given information about the input and output signals of
the system. This is needed both when applying the resulting policy to a real system,
and also for being able to run many iterations of the RL algorithm on the simulated
model within a limited amount of time. In Paper II, we suggest a method for con-
structing a so-called hyperstate transition model (HTM) that can be used for this
purpose. We assume that the hyperstate can be represented as a mixture model and
train a neural network using results from simulations with the stochastic model to
return the parameters defining the new hyperstate given the parameters of the pre-
vious hyperstate as well as the most recent input and output values. The approach
of using this HTM in combination with reinforcement learning on a simulated sys-
tem to construct a dual control policy is tested on a simple but nontrivial example
system, where the exploration induced by a dual controller is needed in order to
achieve good control performance.

2.2 Chiller Control

Motivation
According to the International Energy Agency (IEA), global energy consumption
due to space cooling, i.e. due to the use of air conditioning systems, has more than
tripled since year 1990. In year 2020, the total energy consumption due to such
systems was about 1 885 TWh, corresponding to about 8% of the global electricity
consumption. [IEA, 2022; Statista, 2022]

In order to bound the global mean temperature in accordance with the Paris
agreement, the global emissions of greenhouse gases must be drastically reduced
in the near future. One important contribution to this would be to make equipment
that consumes a lot of energy more energy efficient. Since air conditioning systems
is an important category of such systems, which is becoming even more important,
making these more energy efficient would lead to a significant contribution to de-
creasing global energy consumption. Another motivation for doing this is that the
load on electricity grids that can get very large at peak hours, and especially during
heat waves, would be decreased. Moreover, at the time of writing this (September
2022), an energy crisis is emerging in Europe, which gives additional strong eco-
nomical incentives for increasing energy efficiency wherever possible. Since heat
pumps are constructed as inverted air conditioning systems, more efficient control
methods for cooling systems could lead to energy savings also for heat pumps.

Process Description
The purpose of a chiller is to cool down some gas or liquid that is used for cool-
ing down a space, e.g., a building. The medium used for cooling is called coolant
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evaporator

condenser

compressor

water in

heated water to
cooling tower

cold water 
to building

water in

Figure 2.3 The main components of the chiller process.

and circulates between the building and the chiller. The task of the machine is to
decrease the temperature of the coolant, or, in other words, extract heat from it, so
that the coolant in turn can be used to continuously absorb heat from the space to
be cooled. The example system in this work uses water as a coolant.

The chiller has three main components: an evaporator, a condenser, and a com-
pressor, as shown in Fig. 2.3. The water that circulates through the building to be
cooled is passed through the evaporator, where it is cooled down. By means of
another liquid, the refrigerant, for which the pressure is varied, the heat from the
evaporator water can be transferred to water in a separate circulation, through the
condenser. The water that goes through the condenser is circulated to a cooling
tower, where it is cooled down, e.g., using outdoor air.

In the evaporator, the water that circulates through the building is cooled using a
liquid called refrigerant. This is a liquid that has chemical properties that are favor-
able for the application in question. In the choice of refrigerant, the environmental
impact must also be taken into account, often forced by governmental regulations
that tend to become stricter over time, which could make controlling the process
more challenging. The water passes through the evaporator in pipes that are sur-
rounded by refrigerant. This is illustrated in Fig. 2.4. The refrigerant absorbs heat
by transforming from liquid to gas.

In the condenser, shown in Fig. 2.5, the heat absorbed by the refrigerant is trans-
ferred to the condenser water. When the refrigerant releases heat, it condenses, i.e.,
transforms from gas to liquid. Just like in the evaporator, the water is passed through
the condenser in pipes that are surrounded by refrigerant.

To achieve the right phase transitions for absorbing and emitting heat in the
evaporator and condenser, the refrigerant has to have a specific pressure in each
case. The refrigerant thus passes through a cycle where it undergoes changes in
pressure, when it passes between the evaporator and the condenser.

Before describing the refrigerant cycle, we introduce a measure of thermody-
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water (to building)

high-temperature
water

refrigerant in (two-phase)

refrigerant out (gas)evaporator

Figure 2.4 In the evaporator, water (blue) is cooled down by transferring heat to
the refrigerant (orange). The refrigerant enters as two-phase and leaves as a gas.

high-temperature
water

low-temperature
water

refrigerant out (liquid)

refrigerant in (gas)condenser

Figure 2.5 In the condenser, heat is emitted to the circulating water (blue). The
refrigerant (orange) enters as a gas, emits heat to the water by condensation, and
leaves as a liquid.

namic potential, called enthalpy. The enthalpy H of a fluid is defined as

H =U + pV,

where U is the inner energy, p the pressure, and V the volume. [IUPAC, 1997]
Under constant pressure, it holds that

dH = dQ ∗
=CpdT, * if no phase transitions,

where Q is absorbed heat, Cp is a constant (heat capacity at constant pressure),
and the second equality (*) is valid only under the assumption that there are no
phase transitions. Thus, absorption of a certain quantity of heat leads to a change
of the enthalpy by the same amount. Furthermore, if there is no phase change when
the heat is absorbed, the change in temperature is proportional to the amount of
absorbed heat.

Using the notion of enthalpy and its properties, we can now describe the refrig-
erant cycle. The cycle can be illustrated using a pressure–enthalpy (ph) diagram, as
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shown in Fig. 2.6. On the vertical axis, we have the pressure p, and on the horizontal
axis, we have the specific enthalpy h, defined as enthalpy per unit mass of the fluid.
The blue curve divides the plane into three parts, corresponding to the fluid being
a liquid, a gas, or two-phase, i.e., a mix of liquid and gas. The black curve shows
the refrigerant cycle, and the orange lines are curves along which the temperature is
constant.

Starting at point 1 in the figure, the refrigerant leaves the evaporator as a gas.
The pressure of this gas is increased by the compressor, and led to the condenser.
In the compression, there is also an increase in enthalpy, corresponding to the mini-
mal amount of energy required for the compressor to achieve the pressure increase.
Between points 1 and 2 in the figure, the compressed refrigerant increases in tem-
perature, which can be seen by the fact that several temperature level curves are
crossed. Between points 2 and 3, the warm gas enters the condenser, where it is
cooled down by the condenser water, so that it condenses. At point 3, the fluid has
completely turned into a liquid. From here to point 4, the liquid runs through an
expansion valve, so that the pressure of it decreases. The pressure drop leads to
some of the refrigerant turning into gas again, i.e., we return to the two-phase re-
gion. Since the refrigerant pressure continues to decrease in the two-phase region,
the temperature is decreased as well, as seen by the temperature level curves. Be-
tween points 4 and 1, the cooled-down two-phase refrigerant takes up heat from the
evaporator water, until it has evaporated, so that we have a gas that again is sent to
the compressor.

Goal
In the problem setting that we study in this thesis, we have a chiller process with
two actuators: the compressor and the expansion valve. The overall goal is to con-
struct a controller that uses these two actuators to achieve the control goals within
the given constraints of the process in an as energy efficient way as possible. The
most important goal of the controller, given that all constraints are satisfied, is to
make sure that the water leaving the evaporator achieves the specified temperature
sufficiently fast. However, there are in general many ways to achieve this, of which
some are more energy efficient than others.

In the controller structures that are usually implemented in real chiller processes
today, each of the two actuators are set independently to values determined using
one measurement signal for each actuator. In this thesis, we examine whether it is
possible to improve control performance by determining the actuator values jointly,
based on several measurement signals. To be able to achieve efficient control, the
system might have to operate in states where some variables are close to boundaries
that must not be exceeded. To do this, it is important that the deviations of these
variables from their nominal values caused by system disturbances and reference
changes are as small as possible. In Paper III, we examine the subproblem of con-
structing controllers to set the two actuator values that keep deviations for some
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Figure 2.6 Pressure-enthalpy (ph) diagram with the refrigerant cycle (black), the
phase-transition curve for the refrigerant (blue), and some level-curves for the tem-
perature (orange). The pressure is varied by using a compressor and an expansion
valve. This makes it possible to absorb heat in the evaporator, and emit heat in the
condenser.

relevant measurement signals small. This is done by applying a simple reinforce-
ment learning method to simulations of the system, in order to learn a decoupling
matrix that combines outputs of two PI controllers to determine the two control
signals. The approach of jointly controlling the two actuators is compared with the
nominal case of decentralized control.
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Publications

This licentiate thesis is based on the following three publications. The contributions
of each author are described below.

Paper I

Rosdahl, C. and Bernhardsson, B. (2020). "Dual Control of Linear Discrete-Time
Systems with Time-Varying Parameters". 2020 International Conference on
Control, Automation and Diagnosis (ICCAD) (pp. 1-6). IEEE.

The problem formulation and method were developed in discussions between the
authors. C. Rosdahl derived the mathematical expressions for computing the value
function for a general discrete-time linear system with time-varying parameters, as a
generalization of the method used in another paper for the case of an integrator with
unknown gain. C. Rosdahl constructed, implemented and ran simulations with the
algorithm for control law computation based on approximating the value function
with a neural network. B. Bernhardsson wrote some background and about some
related work in the manuscript and helped with proofreading the whole manuscript.
C. Rosdahl wrote the remaining parts of the manuscript.

Paper II

Rosdahl, C., Cervin, A. and Bernhardsson, B. (2022). "Dual Control by Re-
inforcement Learning Using Deep Hyperstate Transition Models". IFAC-
PapersOnLine, 55(12), 395-401.

The idea of using a neural network model for the transition of some representation
of the hyperstate, to be used in combination with dual control, was suggested by B.
Bernhardsson. The details of the hyperstate transition model construction algorithm
were formulated by C. Rosdahl, who also implemented and tested the algorithm.
The reinforcement learning algorithm for constructing the action–value function
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using the hyperstate transition model was formulated, implemented, and tested by
C. Rosdahl. The test examples and the general structure of the overall method were
decided by regular discussions between all authors. B. Bernhardsson contributed
to the introduction part of the manuscript by describing some background and giv-
ing context to the method. C. Rosdahl wrote most of the remaining parts of the
manuscript. A. Cervin extended and improved the text in several sections. A. Cervin
and B. Bernhardsson also helped with structuring and proofreading the manuscript.

Paper III

Rosdahl, C., Bernhardsson B. and Eisenhower B. (2022). "Model-Free Adap-
tive MIMO Control of a Chiller Process Using Reinforcement Learning".
Manuscript prepared for journal submission.

The overall problem formulation was given by B. Eisenhower. All of the authors
contributed significantly to the development of the method, participating in regu-
lar discussions during its development. The details of the reinforcement learning
algorithm, including the cost used for the test problem, were formulated and im-
plemented by C. Rosdahl. The introduction section of the manuscript, with general
background information on control of vapor compression systems, was written by
B. Eisenhower. The preliminaries about decoupling were written by B. Bernhards-
son. The remaining parts of the manuscript were written by C. Rosdahl.
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4
Conclusions

The main conclusion of this thesis is that the combination of classical methods from
control theory with modern methods from the field of machine learning has the po-
tential to pave the way for new interesting algorithms that can solve problems for
which simple classical control methods are insufficient. While machine learning
methods for some applications tend to yield impressive results, these usually re-
quire huge amounts of data in order to work well. Automatic control can, on the
other hand, perform relatively well given very little information if we have a suffi-
ciently good model that describes the structure of the system to be controlled. Thus,
control theory let us utilize known structures in an efficient way, while machine
learning contributes with a great amount of flexibility and adaptability. It is there-
fore a reasonable idea that combining tools from both of these fields should be able
to give us the best of both worlds.

In Paper I, we use classical control theoretical results for how to achieve opti-
mal dual control, i.e., for how to find a controller that balances exploration and ex-
ploitation in order to minimize some control cost over a given horizon. Since these
results require us to compute and store values of highly nonlinear multidimensional
functions, methods for approximately doing this is an efficient way are needed. To
this end, we utilize artificial neural networks, which are very flexible structures that
have the potential to represent complex nonlinear functions. Simulations with some
simple examples suggest that this method can indeed be useful. Future work would
be to apply the same or similar methods to more complex systems and to further
examine what structures for neural networks are best adapted to this application.

In Paper II, we again return to the dual control problem. In this case, we do not
try to solve the Bellman equation (the equation that yields the optimal dual con-
troller) explicitly, but instead try to construct an estimator that represents the hy-
perstate, i.e. the probability distribution of the system’s uncertainties, at each time
step. Also for this nonlinear function, we make use of a neural network. Classical
control theory suggests that the hyperstate is the important quantity for determining
the optimal dual controller. Therefore, we try to use this estimator in combination
with a simple reinforcement learning method applied to a simulation of the sys-
tem, where the uncertainties are included in the model, to find a dual controller
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that can be used for controlling the system. Tests on an example system show that
the method succeeds in constructing a controller with dual features, i.e. a controller
that applies probing actions when this is advantageous for minimizing a given con-
trol cost over some time horizon. Future work would involve applying the method
to more complex systems and settings. Also exploring different structures for the
neural network in the hyperstate transition model as well as different kinds of rein-
forcement learning methods to use with this model, would be interesting tracks for
future research.

In Paper III, we use classical PI controllers and classical control theory results
for how to perform multivariate control by using a decoupling structure. However,
instead of assuming that we have a perfect model that can be used to compute a fixed
static decoupling, we utilize a simple reinforcement learning algorithm that has the
ability to adjust the decoupling adaptively. By simulation studies, we see that the
method is able to find a good decoupling even starting from a completely decentral-
ized controller structure. In practice, this method could be used to adapt controllers
to different versions of the process in question, or to changes in a specific process
that occur over time. Thus, it is yet again observed that classical control and ma-
chine learning can be combined into interesting new algorithms that can be useful
for solving practical problems. Future work should involve testing the method with
the complex nonlinear model on more complex settings, e.g. involving more differ-
ent measurement signals. Eventually, the method should be tested in combination
with a high-level optimizer, first in simulations and then on real processes.

In this thesis, we have given a few demonstrations of algorithms that combine
control theory and machine learning, with the aim of constructing adaptive con-
trollers that can achieve good control over some time-horizon. The fast develop-
ment of machine learning methods in recent years offers great potential for further
investigating such approaches. Hopefully, this thesis can contribute to encouraging
more researchers to continue exploring in this direction.
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Dual Control of Linear Discrete-Time
Systems with Time-Varying Parameters
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Abstract

We describe how the optimal dual controller for a discrete-time linear system
can be found by approximately solving the corresponding Bellman equation
using a neural network to represent the value function. We illustrate the method
on an example with time-varying dynamics, where the new method is shown
to give improved performance.
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Paper I. Dual Control of Linear Discrete-Time Systems with Time-Varying
Parameters
1. Introduction

Adaptive control of systems with unknown dynamics is traditionally addressed by
first designing a controller under the assumption that the system parameters are
known, and then using the designed controller with estimations of the parameters in
place of the real parameters. This approach is called certainty equivalence control.
If the estimates are poor, the resulting control could however differ drastically from
the aims of the control design. Neither is it certain that the system will operate in a
manner such that the parameter estimates will improve with time.

By choosing the control signal better, it is possible to excite the system in or-
der to deliberately improve the parameter estimates, so-called probing. This gives
rise to the exploration-exploitation trade-off, which aims to select the probing in
order to optimize long-term control, albeit at the expense of short-term control.
This is the essence of what, due to the dual aims of estimating and controlling, is
denoted dual control. This regime was introduced by Feldbaum [Feldbaum, 1960;
Feldbaum, 1961], who showed that the problem could, in principle, be solved by
solving a certain functional equation – the Bellman equation.

The remaining issue for the dual control is that the Bellman equation is in-
tractable to solve exactly, except for some very simple cases. This lead to a range
of approximate and suboptimal dual control methods some years ago, leading to
some partial progress, see e.g. [Tse et al., 1973; Tse and Bar-Shalom, 1973], [Wit-
tenmark, 1975] and [Lindoff et al., 1998]. An overview of some of the methods is
given in [Wittenmark, 1995]. Some more recent approaches are described in [Svens-
son, 2016] and [Bayard and Schumitzky, 2010]. In recent years, there has been a re-
newed interest in the area due to the rapid progress in reinforcement learning, where
general model-free algorithms have been developed, which perform well on many
different problems, though often requiring a long learning time before successful
control is achieved, see [Sutton and Barto, 2018]. It is therefore of interest to try to
combine the classical control methods with modern machine learning methods, as
proposed in e.g. [Recht, 2019] and [Klenske and Hennig, 2016], in order to utilize
the advantages of both of the approaches.

In this paper we describe how the model-based traditional approach can be
renewed by introducing recent machine learning based methods to find nonlinear
function approximators used for solving the Bellman equation.

We will describe a generalization of the algorithm from [Åström and Helmers-
son, 1986] that applies to a general discrete-time system with unknown normally
distributed parameters which might vary in time. The algorithm can be used with
any suitable methods for evaluation point selection and interpolation of the value
function. One possible choice, consisting of random uniform sampling and interpo-
lation by neural networks, is explored by application on two simple examples.
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2 Problem Formulation

2. Problem Formulation

We will consider linear systems of the form

yk =
n

∑
i=1

ai
kyk−i +

m

∑
i=1

bi
kuk−i + ek, (1)

where {ek} denotes independent normally distributed noise with E{ek} = 0 and
E{e2

k}= σ2. We will for simplicity assume that the value of the constant parameter
σ is known. Note that we have allowed the a and b coefficients to be time-varying.
This enables the study of control policies for slowly evolving dynamical systems.

The system can be rewritten as

yk+1 = θ
T
k+1φk + ek+1, where (2)

θk =
[
b1

k a1
k . . . an

k b2
k . . . bm

k

]T
,

φk =
[
uk xT

k

]T
,

xk =
[
yk . . .yk−n+1 uk−1 . . .uk−m+1

]T
.

The vector φk contains the input uk to be chosen at time k, as well as the previous
inputs and outputs, collected in the vector xk.

The system parameters in θk are not known, but are assumed to have a prior
distribution θ0 ∼ N (θ̂0,P0). Furthermore, the parameters are assumed to evolve
according to

θk+1 = Aθk + vk, (3)

for some known matrix A, where vk ∼N (0,Rv) and E[vkvT
j ] = 0 for all j ̸= k.

The goal at time k is to determine control laws {u j(Y j)}k+T−1
j=k that minimize

the loss

J = E

{
k+T

∑
j=k+1

y2
j

∣∣∣∣∣Yk

}
, (4)

whereYk = {yk,yk−1, . . . ,uk−1,uk−2, . . .} is the set of observed outputs and previous
inputs.

3. Algorithm

3.1 Hyperstate
In the solution of the optimal control problem, we use the hyperstate ξk consisting
of the process state and the conditional distribution of the parameter vector θk+1
given Yk.
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The conditional distribution of θk+1 at any given time is Gaussian and is there-
fore fully described by the mean and covariance

θ̂k+1|k = E{θk+1 | Yk}, (5)

Pk+1|k = E{(θk+1−θ̂k+1|k)(θk+1−θ̂k+1|k)
T|Yk}. (6)

The hyperstate at time k contains a sufficient statistics for the future statistical
optimization problem and is given by

ξk = (xk, θ̂k+1|k,Pk+1|k). (7)

The conditional mean and covariance of the parameter vector can be recursively
computed by applying a Kalman filter [Åström and Wittenmark, 2011] to the system
defined by (2) and (3), with the initialization θ0 ∼N (θ̂0,P0). The mean value θ̂k+1|k
and estimation error covariance Pk+1|k for the parameter vector θk+1 given Yk can
then be computed as

θ̂k+1|k = Aθ̂k|k−1 + s−2
k−1APk|k−1φ

T
k−1εk, (8)

Pk+1|k = APk|k−1AT +Rv− s−2
k−1APk|k−1φ

T
k−1φk−1Pk|k−1AT, (9)

where εk := yk−φ T
k−1θ̂k|k−1 and

sk :=
√

φ T
k Pk+1|kφk +σ2. (10)

3.2 The Bellman Equation
The problem we want to solve is to choose {u j}k+T−1

j=k such that the loss function
(4) is minimized. To accomplish this, we make use of the value function

Vτ(ξk,k) = min
uk,...,uk+τ−1

E

{
k+τ

∑
j=k+1

y2
j

∣∣∣∣∣Yk

}
, (11)

which is equal to the loss (4) when k is the current time and τ = T . Using the
principle of optimality, the value function gives the Bellman equation

Vτ(ξk,k) = min
uk

E
{

y2
k+1 +Vτ−1(ξk+1,k+1) | Yk

}
. (12)

The linearity property of the expected value allows for computing the expecta-
tion of each term separately. The first term can, by insertion of the system dynamics
(2), be computed as

E{y2
k+1|Yk}= (φ T

k θ̂k+1|k)
2 +φ

T
k Pk+1|kφk +σ

2. (13)

To compute the second part of the expectation in (12), we need to express the hyper-
state ξk+1 = (xk+1, θ̂k+2|k+1,Pk+2|k+1) in terms of the current hyperstate ξk and the
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input to be decided, uk. Given ξk and uk, all components of xk+1 are known except
for the stochastic variable

yk+1(ξk,uk) = φ
T
k θk+1 + ek+1, (14)

where φk contains known values, whereas θk+1 and et+1 are independent normally
distributed variables. After adding the two independent Gaussian variables, we can
rewrite this as

yk+1(ξk,uk;X) = φ
T
k θ̂k+1|k + skX , (15)

where X ∼ N (0,1) is the only stochastic component in (15) and sk is defined in
(10).

The variable θ̂k+2|k+1 is according to (8) and by insertion of (15) given by

θ̂k+2|k+1(ξk,uk;X) = Aθ̂k+1|k + s−1
k APk+1|kφkX , (16)

where X is the same random variable as in (15). The final hyperstate variable
Pk+2|k+1 can be expressed in known variables according to (9), as

Pk+2|k+1(ξk,uk) = APk+1|kAT +Rv− s−2
k APk+1|kφ

T
k φkPk+1|kAT. (17)

Note that Pk+2|k+1 does not depend on X , but is deterministic given ξk and uk.
Using these calculations we can now express the Bellman equation as

Vτ(ξk,k) = min
uk

{
(φ T

k θ̂k+1|k)
2+φ

T
k Pk+1|kφk+σ

2

+
∫

∞

−∞

ϕ(X)Vτ−1(ξk+1(ξk,uk;X),k+1)dX
}
,

(18)

where ϕ(X) = (1/
√

2π)e−X2/2 is the probability density function for the standard
normal distribution, and ξk+1(ξk,uk;X) is given by (15)-(17).

Using the fact that V0 ≡ 0, the optimal control u∗k at time k can now be deter-
mined by recursive solution of (18). By induction, it follows that the value function
is not an explicit function of the time k. Thus, we get

Vτ(ξk) = min
uk

Qτ(ξk,uk), (19)

where
Qτ(ξk,uk) = (φ T

k θ̂k+1|k)
2+φ

T
k Pk+1|kφk+σ

2

+
∫

∞

−∞

ϕ(X)Vτ−1(ξk+1(ξk,uk;X))dX ,
(20)

and the optimal control at time k is given by

u∗k = argmin
uk

Qτ(ξk,uk). (21)
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The main problem with this recursive solution is that Vτ(ξ ) for τ = 1, . . . ,T −1
has to be computed according to (19) for all possible values of ξ , to be able to
calculate the integral in the following recursion step. Since this cannot easily be
carried out, a solution is to compute Vτ(ξ

i) for some finite set of points {ξ i}N
i=1

within a subset

Ω =
{

ξ = (x,θ ,P) | ξmin ≤ ξ ≤ ξmax,
∣∣Pi j

∣∣= ∣∣Pji
∣∣≤√

PiiPj j
}

(22)

of the hyperstate space and then use some suitable method to find an approximation
V̂τ(ξ ) of Vτ(ξ ) for arbitrary ξ by interpolating between these values. The limits in Ω

should be chosen such that they include the parts of the space where the hyperstate
is likely to be. The conditions on P follow since it is a covariance matrix.

In conclusion, we have constructed a method for determining the optimal con-
trol u∗k with respect to the objective function (4) given the current hyperstate
ξk = (xk, θ̂k+1|k,Pk+1|k), i.e., we can compute a policy function πT such that

u∗k = πT (ξk). (23)

Algorithm 1 summarizes the computation of the approximately optimal dual control
law.

The hyperstate is obtained by starting from the initial state x0 and prior pa-
rameter distribution θ̂0|−1 = θ̂0 and P0|−1 = P0, from which the initial hyperstate
ξ0 = (x0, θ̂1|0,P1|0) can be computed with (8) and (9). It is then, in each step k > 0,
updated by computing xk from xk−1 and the last input and measurement, and again
computing θ̂k+1|k and Pk+1|k by (8) and (9).

Algorithm 1 Control Law Computation
Input: Time horizon T , system size n, m, noise parameters A, σ , Rv, and bounds

ξmin, ξmax, umin, umax
Output: Value function approximation V̂T (ξ ) and control law u∗ = πT (ξ )

1: Initialize: V̂0(ξ ) =V0(ξ )≡ 0
2: for τ = 1, 2, . . . , T do
3: Generate N hyperstate-space points {ξ i}N

i=1 from the set Ω in (22)
4: Set up expression for ξk+1(ξk,uk;X) according to (15), (16) and (17)
5: Compute {Vτ(ξ

i)}N
i=1 by minimizing Qτ(ξ ,u) according to (19) and (20)

with Vτ−1(ξ ) replaced by V̂τ−1(ξ )

6: Create an approximation V̂τ(ξ ) of Vτ(ξ ) for arbitrary ξ by interpolating
between the points {Vτ(ξ

i)}N
i=1

7: end for
8: By using V̂T−1 in place of VT−1, define the function πT (ξ ) =

argminu QT (ξ ,u) according to (20)
9: return V̂T (ξ ), πT (ξ )
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3.3 Cautious and Certainty Equivalence Control
Due to the fact that V0 ≡ 0, the optimal control for time horizon T = 1 can by (19)
and (20) be computed analytically. To facilitate this, we introduce a partitioning of
the parameter vector

θk =
[
bk αT

k

]T
, (24)

where bk := b1
k and

αk :=
[
a1

k . . .a
n
k b2

k . . .b
m
k

]T
. (25)

The covariance matrix is accordingly partitioned

Pk =

[
Pb

k Pbα
k

(Pbα
k )T Pα

k

]
. (26)

The Bellman equation (19) then gives the value function V1(ξ ) as the minimum of

Q1(ξk,uk) = u2
k b̂2

k+1|k + xT
k α̂k+1|kα̂

T
k+1|kxk

+2ukb̂k+1|kα̂
T
k+1|kxk +2ukPbα

k+1|kxk

+u2
kPb

k+1|k + xT
k Pα

k+1|kxk +σ
2,

(27)

and the optimal control u∗k as the minimizer. As long as b̂k+1|k ̸= 0, we can minimize
this by differentiating with respect to uk and requiring the derivative to be equal to
zero, giving the minimizing input

ucc
k =−

b̂k+1|kα̂T
k+1|k +Pbα

k+1|k

b̂2
k+1|k +Pb

k+1|k
xk. (28)

This is the so-called cautious control policy. If the parameter bk+1 is uncertain,
the control policy (28) takes the risk of erroneous control effects into account by
reducing the control action u. If, on the other hand, the variance of all parameters is
assumed to be zero, we get the control law

uce
k =−

α̂T
k+1|k

b̂k+1|k
xk. (29)

This is the certainty equivalence control, which is optimal if the parameters are
exactly known.

The fact that the cautious controller reduces the input when the uncertainty is
large might be advantageous, but might also cause problems. If the control action
is too small, the uncertainty of the parameter values might increase instead of de-
crease, which leads to even smaller control action, until the control becomes zero.
This is the so-called turn-off phenomenon, which can be resolved by probing intro-
duced by e.g. solving the dual control problem for a longer time horizon.
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4. Simulations

Here, we present results obtained when applying the algorithm with a specific
method for evaluation point selection and interpolation to some simple systems. In
each recursion step of Algorithm 1, N hyperstate-space points {ξ i}N

i=1 are chosen
by uniform sampling from the subset Ω in (22). It is also assumed that the control
signal is limited to |uk| ≤ 100 by an added saturation.

For the interpolation, a neural network is used. It consists of 5 dense inner layers
with ReLU activation functions and 32 nodes each. Also the input layer has ReLU
activation, while the one-node output layer does not have any activation function. As
training loss, the mean squared error is used, and the ADAM optimizer is used with
learning rate 10−4. At least 100 training epochs are carried out, until the training
loss is less than 0.01 or until the number of epochs is 1000.

For each system, 1000 different realizations are simulated, each with the length
of 100 time steps. In the simulations, the computed control is applied as long as the
hyperstate is inside the set Ω. If the hyperstate leaves this set, cautious control (28)
is applied until the hyperstate returns to Ω. The result is compared with the costs
obtained when controlling the system with alternative control policies while using
the same noise sequence realizations {ek} and {vk}. The simulation cost is defined
as ∑

T
k=1 y2

k .

4.1 Example 1
The algorithm is applied to the system

yk+1 = yk +buk + ek+1, (30)

studied in [Åström and Helmersson, 1986], where b is constant but unknown, and
has an initial distribution b ∼ N (b̂1|0,P1|0). For this simple case, a normalized hy-
perstate can be described by only two variables, which makes it easy to evaluate
the value function on a regular grid using traditional methods. We use this to com-
pare with the neural network approximation method proposed above. As shown in
[Åström and Helmersson, 1986], it is sufficient to consider the normalized hyper-
state ξk = (ηk,βk), where

ηk := yk/σ and βk := b̂k+1|k/
√

Pk+1|k. (31)

The sampling set is chosen as

Ω = {ξ = (η ,β ) | −2≤ η ≤ 2, −4≤ β ≤ 4} (32)

and N = 100 points are sampled in each recursion step. Furthermore, we set σ = 1
and get A = 1 and Rv = 0 since the parameter is constant, i.e. bk+1 = bk. The initial
hyperstate is chosen as

x0 = y0 = 1, b̂1|0 = 0.7, P1|0 = 1, (33)
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Table 1. Average performance cost ∑
100
k=1 y2

k (with sample standard deviations in
parenthesis).

Control Policy Example 1 Example 2
Dual Control, NN 158 (29) 385 (384)
Dual Control, Linear 132 (20) 1694 (571)
Certainty Equivalence 153 (548) 29356 (34491)
Cautious Control 113 (36) 676 (351)
Optimal (θ known) 101 (14) 102 (14)

while the true parameter is b = 1. The time horizon for the loss function is chosen as
T = 30, since it is shown in [Åström and Helmersson, 1986] that the change of the
value function for a larger horizon is small. The control policy is therefore assumed
to be close to optimal for a longer time horizon as well, such as the 100-step horizon
that is simulated.

As reference for the result, the dual control is computed by evaluating the value
function in each recursion step on an equidistant 100× 100 grid on the ηβ -plane
for 0.01 ≤ η ≤ 2 and 0.01 ≤ β ≤ 4. For this particular example, the values for
negative variables are given by the symmetry of the value function and therefore
only positive variable values have to be considered. This fact is, however, not used
when applying the main algorithm.

The value function approximation from the main algorithm and the reference
from the linear interpolation algorithm are shown in Fig. 1. The approximation has a
maximal relative error of around 6%, even though the value function was evaluated
in only 100 points per recursion step, compared with the 10 000 points for the
reference solution.

The results from the simulations are shown in Tab. 1. The control policies are,
in order, the one obtained from the suggested algorithm with neural network in-
terpolation (Dual Control, NN), the one obtained as in [Åström and Helmersson,
1986], with the parameter assumed to be constant and using linear interpolation
(Dual Control, Linear), certainty equivalence control (29), cautious control (28), as
well as the optimal minimum variance control if the parameters would have been
known (Optimal), which is (29) with the real parameters instead of the means.

For this particular example, with initialization (33) and real parameter b = 1,
the cautious control gives a close-to-optimal cost. However, this does not apply
in general, and different settings give a significantly higher cost with this method.
The NN algorithm has, for the studied case, an average cost comparable to the CE
control, but with significantly less variance, and seems therefore to be more robust
to disturbances.
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Figure 1. The estimated value function V30 in Example 1 and the same value func-
tion computed by linear interpolation. The neural network gives a good representa-
tion of the true value function.

4.2 Example 2
Now, a time-varying system with a similar structure is considered

yk+1 = yk +bk+1uk + ek+1, (34)

where b1 ∼N (b̂1|0,P1|0) and where

bk+1 = 0.9bk + vk (35)

with Rv = 0.19, giving a unit-variance b. The sampling set for the 3-dimensional
hyperstate is chosen as

Ω={ξ =(y, b̂,P) | |y| ≤ 10, |b̂| ≤ 4,0≤ P≤ 2} (36)
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Figure 2. Resulting control, output and parameter estimation for one of the simu-
lations from Example 2, using the control from the presented algorithm (Dual, NN),
the dual controller computed for a system with constant parameters and linear in-
terpolation (Dual, Linear), certainty equivalence control (CE) and cautious control
(CC). A 95% confidence interval is shown for the parameter estimation.
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and N = 100 points are sampled in each recursion step. Initial values are again
chosen as (33), and the true initial parameter value is b1 = 1.

The resulting costs, with sample standard deviations, are shown in Tab. 1. In
this case, the suggested controller with the particular initialization gives better per-
formance than all the other controllers. For a slow parameter variation, the Linear
method could possibly perform well, but for this example, the constant-parameter
assumption leads to a rather high cost. One of the simulations is shown in Fig. 2. The
Linear method gives a worse parameter estimation than the NN method, in terms
of mean and variance. The CE gives huge controls (which are saturated at ±100)
when the parameter mean is close to zero, which causes large peaks in the output.
Finally, we note the turn-off phenomenon for the cautious controller CC, where the
control is set to zero and the variance remains large during a time interval.

5. Conclusions

We have described an algorithm for approximate computation of the optimal dual
control law for a discrete-time linear system with time-varying parameters. The
algorithm can be used with any appropriate method for selecting evaluation points
for the value function and for interpolating between these points. By studying an
example, we have shown that this can lead to improved control performance relative
to a dual control method assuming constant parameters, as well as two standard
methods from adaptive control. In the example, we have used the simplest possible
neural network type for interpolation; a network with only dense layers. It has been
trained by only 100 values in each recursion. For larger examples, a more advanced
structure would probably be needed, but we see it as promising that even this simple
structure can perform relatively well. With the wide variety of different structures
and parameters that could be used for a neural network, there should be excellent
opportunities to conduct further investigations in order to improve the approach
and apply it to more advanced settings. Alternative ways of interpolation as well as
evaluation point selection are also promising subjects for future research.
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Paper II

Dual Control by Reinforcement Learning
Using Deep Hyperstate Transition Models

Christian Rosdahl Anton Cervin Bo Bernhardsson

Abstract

In dual control, the manipulated variables are used to both regulate the sys-
tem and identify unknown parameters. The joint probability distribution of the
system state and the parameters is known as the hyperstate. The paper pro-
poses a method to perform dual control using a deep reinforcement learning
algorithm in combination with a neural network model trained to represent hy-
perstate transitions. The hyperstate is compactly represented as the parameters
of a mixture model that is fitted to Monte Carlo samples of the hyperstate. The
representation is used to train a hyperstate transition model, which is used by
a standard reinforcement learning algorithm to find a dual control policy. The
method is evaluated on a simple nonlinear system, which illustrates a situation
where probing is needed, but it can also scale to high-dimensional systems. The
method is demonstrated to be able to learn a probing technique that reduces the
uncertainty of the hyperstate, resulting in improved control performance.

Originally published in the 14th IFAC Workshop on Adaptive and Learning Control
Systems ALCOS 2022, Casablanca, Morocco, June 29 – July 1, 2022. Reprinted
with permission.
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1. Introduction

When controlling dynamical systems whose characteristics are not fully known, the
controller needs to balance between achieving good control quality based on current
information and experimenting with the system to facilitate better future control.
Research into such dual controllers goes back to the work of [A. A. Feldbaum,
1960], who described that control inputs to uncertain systems should have a probing
effect for active learning and uncertainty reduction, in addition to actively regulating
the system dynamics. For surveys of dual control theory, see [Wittenmark, 1995]
and [Mesbah, 2016]. The same problem formulation occurs in the area of Bayesian
reinforcement learning, see [Klenske and Hennig, 2016] and the references therein.
For a survey linking the field with recent advances in reinforcement learning, see
[Matni et al., 2019].

Various methods have been proposed to achieve this so-called exploration–
exploitation trade-off. From a theoretical perspective, the situation can, as Feld-
baum showed, be formulated as a traditional optimal control problem and solved
through dynamic programming using a Bellman functional equation, see [Åström,
1965; Bertsekas, 1987]. However, this requires a representation of the system using
the conditional probability of the extended system state – the so-called hyperstate
– consisting of the probability distribution of the state and the parameters of the
system. This is usually computationally intractable. Explicitly incorporating model
uncertainty into an optimal stochastic control problem, and minimizing a one-step-
ahead error, leads to myopic control, also called cautious control, because control
inputs will typically become small (cautious) when the uncertainty is large [Witten-
mark, 1995]. Small inputs will, in turn, generate less information about the system,
which might eventually lead to a so-called turn-off phenomenon.

There are many suggestions on how to encourage exploration, a popular choice
being a simple ε-greedy approach, where the control signal is chosen randomly
with probability ε at each time instance. A more structured approach is to extend
the goal function with a penalty reflecting model uncertainty, see, e.g. [Filatov and
Unbehauen, 2000]. An approximate dual control for linear systems is constructed
in [Tse et al., 1973; Tse and Bar-Shalom, 1973] using a quadratic expansion around
a nominal trajectory to describe the cost of small parameter uncertainties, assuming
that the hyperstate can be described by a Gaussian distribution. The nominal tra-
jectory is constructed from the mean system using the certainty equivalence princi-
ple. The method is extended to a nonparametric Gaussian process dynamics model
in [Klenske and Hennig, 2016], allowing for nonlinear features in the system dy-
namics. Examples are provided for the use of the framework describing the uncer-
tain system dynamics as either an (approximate) Gaussian process or a feedforward
neural network, producing structured exploration strategies. Furthermore, in recent
years, several suggestions have been presented on how to incorporate dual con-
trol elements into the model-predictive control (MPC) framework, for example, in
[Heirung et al., 2017; Soloperto et al., 2019; Parsi et al., 2020; Arcari et al., 2020].
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2 The Dual Control Problem

The computation of optimal dual control policies requires solving stochastic
dynamic programming equations with a hyperstate of high (often infinite) dimen-
sion P(xk,θk | Dk) where x,θ ,D denote the state, parameters, and available data,
respectively. Solutions have been computed only for small toy examples, and scal-
ing up to realistic problems requires overcoming the “curse of dimensionality” in
representing the evolution of the hyperstate,

P(xk+1,θk+1 | Dk+1) = T (P(xk,θk | Dk),yk+1,uk) , (1)

where yk+1 and uk are the most recent measurement and control signals, respec-
tively. The operator T is unfortunately often intractable since it involves multidi-
mensional integrals. Nonlinear estimation methods have been developed to find use-
ful approximations, such as extended Kalman filters, Gaussian sum filters, and the
particle filter; see, e.g., [Sorenson and Alspach, 1971; Arulampalam et al., 2002].
The paper [Bayard and Schumitzky, 2010] also describes a sampling-based ap-
proach to dual control that combines a particle filter with a policy iteration method
for forward dynamic programming. Simulation results indicate that such methods
can systematically improve closed-loop performance compared to other more com-
mon stochastic control approaches.

In this paper, we propose a method for representing the hyperstate as a mix-
ture model and approximating the nonlinear hyperstate transition mapping using a
deep neural network. The method assumes that we have a model of the system, with
uncertain state and/or parameters that can be used for simulations to generate train-
ing data, as well as probability distributions of the system parameters and the initial
state. Once the hyperstate transition model has been trained with the simulated data,
it is used in combination with a reinforcement learning algorithm to train a policy,
which then can be used for carrying out dual control on the real system.

The rest of the paper is outlined as follows. In Sec. 2, the dual control problem is
formulated. Sec. 3 describes our hyperstate transition model. In Sec. 4, we describe
an example similar to that proposed in [Alspach, 1972], illustrating that interesting
issues of dual control can arise even for a simple scalar system with known dynam-
ics, as long as the measurement equation is nonlinear. Sec. 5 presents results for the
hyperstate transition model training in the example. Sec. 6 describes the reinforce-
ment learning algorithm used, and Sec. 7 shows results from using the hyperstate
transition model for control, both directly and in combination with reinforcement
learning to find a dual control law. Sec. 8 concludes the paper.

2. The Dual Control Problem

A general discrete-time system with state xk, control signal uk, and measurement
signal yk is given in the form

xk+1 = f (xk,uk,wk;θ
f

k ),

yk = g(xk,ek;θ
g
k ),

(2)
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where θk = (θ f
k ,θ

g
k ) are time-varying parameters and wk and ek are disturbances

with known stochastic properties. We consider the problem of finding an optimal
control policy π that minimizes some cost J. The policy can use past inputs and
current and past outputs given by

Dk = {yk,uk−1,yk−1,uk−2, . . .}. (3)

The information that is relevant to determine the progression of the system is the
current probability distribution of the state and the parameters of the system, condi-
tioned on the available data Dk. This probability measure is named hyperstate and
is denoted by

ξk(A) = P((xk,θk) ∈ A | Dk) . (4)

It is known that an optimal control policy depends on the history Dk solely through
the hyperstate ξk [Bertsekas, 1987]. Therefore, the dual control problem can be
formulated as finding a policy π(ξk) that minimizes the cost

Jk(π,ξk) = E

{
k+T−1

∑
i=k

ci(xi+1,ui)

∣∣∣∣∣ξk

}
, (5)

where ui = π(ξi) is the control action, ci(xi+1,ui) is the step cost, and T is some
time horizon. The hyperstate ξ0 represents initial knowledge of the state and the
parameters.

In principle, the optimal control policy can be computed by dynamic program-
ming, but due to the non-Gaussianity of the hyperstate and its nonlinear evolution,
the problem is in general intractable even for low-dimensional, fixed-parameter
systems with Gaussian disturbances, since the hyperstate, describing a continuous
probability measure, in general is an infinite-dimensional object. Hence, approxi-
mate methods are required for anything but toy examples, with the LQG control
problem being a notable exception.

3. Hyperstate Transition Model

In general, the hyperstate is a highly complex and multivariate probability distribu-
tion. Therefore, it is often intractable to calculate it and update it at each time step,
when Dk is replaced by Dk+1. For this reason, we want to find a way to compactly
represent an approximation of the probability distribution using a relatively small
set of parameters. We can then devise a method to quickly and efficiently update
this compact representation at each time step, using the newly obtained data.

3.1 Hyperstate Representation
We will assume that the hyperstate ξk can be approximately described by a mixture
model consisting of a convex combination of c components fi, each with a parame-
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ter vector β i
k and weighted by λ i

k, i.e., a probability density

fξk
(ξ ) =

c

∑
i=1

λ
i
k fi(ξ ;β

i
k). (6)

The hyperstate can then be represented by the vector

αk =
[
λ 1

k . . . λ
c−1
k (β 1

k )
T . . . (β c

k )
T
]T

. (7)

In this paper, we use Gaussian mixture models, where parameters β i
k capture the

mean and covariances of the components fi at time k. Given samples {ξ i
k}n

i=1 from
the hyperstate, the vector αk can easily be estimated by the Expectation Maximiza-
tion (EM) algorithm, see Ch. 8.5 in [Hastie et al., 2001]. The number of components
c is treated as a user parameter and is here, for simplicity, held fixed.

Our goal is to construct a computationally efficient hyperstate transition model
(HTM)

αk+1 = THTM (αk,uk,yk+1) , (8)

which updates the hyperstate representation when new data (uk,yk+1) become avail-
able. In this paper, we will use neural networks that have a good ability to represent
complex nonlinear mappings and, once trained, are able to compute the mapping ef-
ficiently. This is essential to later be able to train a dual control policy in an efficient
way.

3.2 Simulation to Obtain HTM Training Data
To train the HTM neural network, we use the system model to simulate a number of
episodes using a suitable controller (more on the choice of this later). At time step
k in an episode, we use αk, assumed known, to sample a set of values {ξ i

k} from the
corresponding mixture model. Each of these values is propagated through the sys-
tem model, together with the same input uk as in the main simulation. The resulting
outputs {ξ pri,i

k+1} then correspond to samples of the prior distribution at time k+ 1.
By sampling (with replacement) from this set, with weights corresponding to the
probability of obtaining the measurement yk+1 given the state and parameters pre-
scribed by each ξ i

k, we obtain a set of values {ξ i
k+1} corresponding to the hyperstate

samples at time k+ 1. Fitting the parameters of the mixture model to these values
gives us the new target vector αk+1. The initial α0 is obtained by sampling {ξ pri,i

0 }
from some initial assumption of the prior hyperstate, and applying weighted sam-
pling by the initial measurement y0 in a similar fashion. The procedure is illustrated
in the top part of Fig. 1.

3.3 Model training and application
The data from the simulation are used to train the HTM neural network to produce
an estimate α̂k+1 of αk+1 given (α̂k,uk,yk+1), as shown in the middle part of Fig. 1.
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Figure 1. Illustration of the HTM construction procedure (top two boxes) and ap-
plication of the HTM (bottom box). For description, see Algorithm 1.

The method is summarized in Algorithm 1. The HTM can now be used with the
real system, or with another simulation of it, to quickly give an estimate ξ̂k+1 of the
current hyperstate, yielding an estimate α̂k+1 of the parameter vector for the mixture
model, see the lower part of Fig. 1.

4. Example System

The suggested method will be illustrated on an integrator system with a nonlinear
measurement function, given by

xk+1 = xk +uk +wk,

yk = |xk|+ ek,
(9)
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Algorithm 2 Hyperstate Transition Model – Construction
Input: Number of simulation episodes E and time steps T per episode, number of

hyperstate sample points n, initial hyperstate estimate ξ̂
pri
0 , and neural network

structure and training settings
Output: Model for estimating αk+1 from (αk,uk,yk+1)

1: for all episodes do
2: for i← 1 to n do
3: Sample ξ

pri,i
0 from ξ̂

pri
0

4: Compute weight wi = P(y0 | ξ pri,i
0 )

5: end for
6: Sample {ξ i

0}n
i=1 from {ξ pri,i

0 } with weights {wi}
7: Get α0 by fitting mixture model to {ξ i

0}
8: for k← 0 to T −1 do
9: Select uk and get yk+1 from simulation

10: Sample {ξ i
k}n

i=1 from mixture model with αk
11: for i← 1 to n do
12: Get ξ

pri,i
k+1 from simulation with uk

13: Compute weight wi = P(yk+1 | ξ pri,i
k+1 )

14: end for
15: Sample {ξ i

k+1}n
i=1 from {ξ pri,i

k+1} with weights {wi}
16: Get αk+1 by fitting mixture model to {ξ i

k+1}
17: end for
18: end for
19: Train neural network with inputs {(αe

k ,u
e
k,y

e
k+1)} and outputs {αe

k+1} from each
episode e and time step k

where the process disturbance wk and the measurement noise ek are independent
white noise processes with given probability density functions. A similar setup was
considered in [Alspach, 1972], with a quadratic measurement equation.

Note that this system does not contain any unknown parameters θk, so the hy-
perstate is given by the probability distribution ξk = P{xk | Dk}. Probing will still
be an essential element of any useful control policy; to find the sign of xk, one needs
to use a nonzero control uk, leading to a dual control behavior.

For evaluation of the methodology, we considered two different signal mod-
els. First, we assume a discrete-valued model, where wk and ek have identical dis-
crete probability functions pw,e(n) := P(wk = n) = P(ek = n) with pw,e(0) = 0.3,
pw,e(±1) = 0.2, pw,e(±2) = 0.1, pw,e(±3) = 0.05, and pw,e(n) = 0 for all other n.
Furthermore, uk and xk can only assume integer values between−10 and 10. There-
fore, the hyperstate can be represented by a 21-dimensional vector, which simplifies
the verification of the implementation.

Second, we assume a continuous-valued model with wk ∼ N (0,0.1), ek ∼
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N (0,1) (N denoting a normal distribution) and uk ∈R. Here, the hyperstate cannot
be represented by a finite-dimensional vector, but since the system is scalar, an arbi-
trarily fine approximation of the hyperstate probability distribution can be computed
for verification.

5. Hyperstate Transition Model – Results

We trained the HTM network for (9) for both the discrete-valued and continuous-
valued signal models, both of which give good results. Here, we show only the
results for the discrete-valued model, while both models were used in the control
experiments in Sec. 7.

For the HTM network, we experimented with different architectures, and finally
settled on a feedforward network with six inner dense layers, each with 64 nodes
and ReLU activation functions, and a dense layer without activation function as
output layer. After each inner layer, except for the first, we used a dropout layer
with a dropout ratio 0.3 for regularization. The inputs and outputs of the model
were normalized to zero mean and unit variance.

To generate training and test data, the example system (9) was simulated for
E = 103 episodes, each with T = 10 time steps. For each simulation step, we sample
n= 103 points from the hyperstate to estimate the posterior distribution. The control
signal is chosen as uk =−x̂k, where x̂k with 90% probability is x̂k∼ fξk

, i.e., sampled
from the current hyperstate estimate given by the mixture model, and with 10%
chance is selected uniformly randomly from all possible state values. The idea with
this control policy is that most of the time the system will behave closely to how it
will behave when reasonably well controlled (with the goal of reaching x = 0), but
that the simulation data will also contain examples of how the hyperstate changes
for arbitrary inputs.

We used 800 of the simulated episodes as training data for the HTM network and
200 episodes as test data. The model was implemented in Python with Tensorflow
and trained using 3000 epochs, a mean squared error loss, and the ADAM optimizer
with a learning rate 10−3.

We used c = 2 Gaussian components with parameters β i
k = (µ i

k,σ
i
k)

T that de-
scribe means and standard deviations for the mixture model. Typical hyperstate
representations for the first eight time steps of an episode are shown in Fig. 2, with
the exact hyperstate as a reference. For this problem, increasing c beyond 2 gave no
improvement.

To evaluate the HTM performance on the test data, we use the Wasserstein L1
distance between the predicted and actual mixture model distributions. The Wasser-
stein distance describes the amount of “work” required to transform one probability
distribution into another, in terms of the probability density that must be moved,
multiplied by the distance to be moved, see [Villani, 2009]. Costs for the 2000 time
steps in the test episodes were distributed as shown in Fig. 3. The average cost was
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Figure 2. Hyperstate representations by the mixture model (red) for some time
steps of one episode. Exact hyperstate (blue) is shown for reference. Actual state xk
(black) and measurement yk (orange) are also shown.

0.41, which indicates a reasonably good fit. Some of the predictions for the test data,
with varying Wasserstein costs (stated above each subplot), are shown in Fig. 4.

6. Reinforcement Learning Algorithm

Our goal is now to find a control policy π(ξi) that minimizes a cost of the form (5).
With T being the total time for which the system is run, we will use the cost

Jx(π,ξk) = E

{
T−1

∑
i=k

x2
i+1

∣∣∣∣∣ξk

}
. (10)
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Figure 3. Histogram of Wasserstein distances between the HTM-predicted and ac-
tual mixture model distributions for all time steps in the test data.

Assuming that ek is independent of el for l ̸= k and has zero mean, minimizing Jx is
equivalent to minimizing

Jy(π,ξk) = E

{
T−1

∑
i=k

y2
i+1

∣∣∣∣∣ξk

}
, (11)

since yk = |xk|+ ek, and ek is independent of ξk and xk. Described in reinforcement
learning (RL) terms, our state Sk, action Ak, and reward Rk at time k are

Sk = αk, Ak = uk, Rk =−y2
k , (12)

where αk represents the hyperstate ξk. The RL training aims to find a control signal
uk that maximizes the expected value of the return Gk, here chosen as

Gk = Rk+1 +Rk+2 + · · ·+Rk+h, (13)

where the horizon h could be chosen different from T . To maximize the return, it
might be optimal to select an action uk that gives a smaller reward Rk+1 in the next
time step, but leads to the collection of more information so that the following h−1
rewards can be higher. We found that a horizon h = 5 was sufficient to achieve such
an exploration effect for our simple example system (the cost of choosing a larger h
increases linearly).

By RL we want to find an action–value function Q(αk,uk) that gives an estimate
of the expected return Gk at time k, if the system is in state αk, we select action uk,
and the following actions are selected according to an optimal policy π . A neural
network is used to represent this function. The network weights ωt are updated
according to Algorithm 2. For a more detailed description of algorithms of this type
and other alternatives, see [Sutton and Barto, 2018].

We assume that the system is run for E episodes, with T time steps per episode,
with an initial hyperstate estimate at each episode described by some vector α0.
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Figure 4. Some HTM-predictions for test data, with Wasserstein distance costs.
Solid curves show correct hyperstate representations by the mixture model for cur-
rent time step k (blue) and next time step k+ 1 (red). Dashed curves show hyper-
state at time k+ 1 predicted by the HTM. Bars show the exact hyperstate at time k
(blue) and time k+1 (red). Vertical lines show xk (blue), xk+1 (red), and yk+1 (black
dashed).
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We also create a replay buffer B where we store the latest B states, actions, and
rewards. When simulating, each action uk is chosen according to an ε-greedy pol-
icy πt(αk), with αk obtained from the HTM. The policy selects a random action
uk in the interval [−10,10] with probability εt and the action uk that maximizes
Q(αk,uk;ωt) with probability 1−εt , where we let exploration decrease over time as
εt = εmin +(εmax−εmin)e−t/Tε . At the end of each episode, the b tuples (αk,uk,Gk)
are sampled from the replay buffer and used to update the weights ωt of the Q
network by moving in the direction of its gradient, with some step size η .

Algorithm 3 Reinforcement Learning Algorithm
Input: Number of episodes E and time steps T per episode, return horizon h, ep-

silon function εt , initial hyperstate representation α0, replay buffer size B, batch
size b, learning rate η , and neural network settings

Output: Action–value function Q(αk,uk)
1: Build network Q(αk,uk;ω0) with random weights ω0
2: Define an ε-greedy policy πt(αk) = epsgreedy(εt ,Q)
3: Initialize replay buffer B and total time count t← 0
4: for all episodes do
5: for k← 0 to T −1 do
6: Apply input uk = πt(αk) and save Rk+1
7: Get αk+1 = THTM(αk,uk,yk+1)
8: Update total time count t← t +1
9: end for

10: for k← 0 to T −h do
11: Compute return Gk = ∑

h
i=1 Rk+i

12: Add (αk,uk,Gk) to B
13: end for
14: Sample tuples {(α i

k,u
i
k,G

i
k)}b

i=1 from B
15: Update weights ωt+1← ωt +η ∑

b
i=1

[
Gi

k−Q(α i
k,u

i
k;ωt)

]
∇Q(α i

k,u
i
k;ωt)

16: end for

In our tests, we used a network with 3 dense inner layers, each with 8 nodes
and ReLU activation. The output layer is a dense layer of one node without any
activation. The input consists of the values αk and uk, normalized by the scaling
factors of the training data for the HTM network.

7. Control Results

7.1 Discrete-Valued System
We used the HTM to directly control the system and compare the result with some
alternative control policies. Each policy was applied in T = 104 time steps. This was
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Table 1. Mean and standard deviation for the cost – Discrete-valued system in
Section 7.1

Control policy Cost J = 1
T ∑

T
i=1 y2

u = 0 40.7±1.6
u =±y 25.5±0.36
uML =−max(ξ̂ ) 9.82±0.23

uoracle =−x 4.18±0.05

repeated 10 times with results as reported in Table 1. The policy uML = −max(ξ̂ )
corresponds to the optimal control for the most probable (maximum likelihood)
state for the current hyperstate. We compare this with the zero control policies and
u = ±y, where we let u equal the current measurement signal but with a random
sign (with equal probabilities). We also compare it with the optimal control uoracle =
−x, if x had been known. For the tested policies, the one based on the hyperstate
approximation gives the best cost out of the ones which do not require unavailable
information.

7.2 Continuous-Valued System
For the continuous-valued model, we trained an HTM using the same settings as for
the previous case. An action–value function Q was generated by Algorithm 2 and
used for control. The result was compared to simple maximum-likelihood control,
as described in the previous example.

We study a case in which each episode starts at x0 = 1 and is of length T = 10.
In this case, it is impossible for a controller to know whether a positive or negative
control signal should be used to reduce the state error, and small controls do not
lead to large enough changes to resolve the issue due to the measurement noise.
Therefore, some exploration, using larger control signals, will be useful. We run the
RL algorithm for E = 4 · 104 episodes, with εmax = 1, εmin = 10−2, Tε = 103. For
the last 5000 episodes, we set εt = 0, to obtain a Q function that approximates the
action value for the optimal policy at the end of the simulation. The values in the
initial hyperstate α0 are chosen as λ 1

0 = 0.5, µ1
0 = −1, µ2

0 = 1, and σ1
0 = σ2

0 = 1,
see Fig. 5. The replay buffer size is B = 103, and the batch size is b = 10. The
weight update is carried out by the ADAM optimizer with a learning rate 10−3.
Since the input is one-dimensional and in a bounded range, the maximization of the
Q function can be carried out by evaluating the function for all points on a grid over
this range and then for some points on a denser grid around the maximizing point.

When the algorithm was run, the control cost Jy =
1
T ∑

T
i=1 y2, including random

exploration at the beginning of the simulation, was 3.51. We then used the final Q
function to control the system for E = 103 episodes by selecting the maximizing
u values as control inputs. When repeated 5 times, the mean cost was 1.97± 0.05.
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Figure 5. Initial state x0 and hyperstate approximation ξ̂0 of each episode of the
example problem, and the two mixture model components f1 and f2.

Table 2. Mean and standard deviation for the cost – Continuous-valued system in
Sec 7.2

Control policy Cost J = 1
T ∑

T
i=1 y2

u = 0 2.45±0.04
uML =−max(ξ̂ ) 2.46±0.04
uRL = argmaxu Q(ξ̂ ,u) 1.97±0.05

uoracle =−x 1.20±0.02

As a reference, we repeated the same test with the policy uML
k =−max(ξ̂k), which

gave relatively good results for the previous system. This gave the mean cost 2.46±
0.04. Thus, the suggested method manages to learn a policy that improves the cost
through suitable exploration.

The signal values for 50 time steps, when the two different policies are run,
are shown in Fig. 6. We have plotted −u instead of u, since the optimal control
u = −x then corresponds to the overlapping lines. Note that the ML policy applies
controls close to zero more frequently, failing to reduce state uncertainty. This is
further illustrated in Fig. 7. The Q-function policy hence leads to better control
performance by more efficient exploration.

8. Conclusion

The paper has proposed a novel design methodology for dual controllers aimed
at optimizing the exploration–exploitation trade-off for uncertain systems. The first
design step involves developing a neural network-based hyperstate transition model,
which can be trained based on simulation data from a nonlinear process model. In
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Figure 6. Typical behavior using uk = argmaxu Q(αk,u) with learned action–value
function Q (top), or reference policy uk =−max ξ̂k (bottom).
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a second independent design step, the hyperstate model is used to find an (approxi-
mate) optimal control policy using, e.g., a variant of Q-learning. We studied a sim-
ple example problem and showed how both steps can be carried out using standard
learning methods. The methodology delivers a dual controller that beats the max-
imum likelihood-based certainty equivalence regulator and other heuristic control
policies.

Here, we have only studied a scalar example, but the proposed methodology is
general and applies to higher-order systems as well. In higher dimensions, a larger
number of mixture model parameters will be needed to represent the hyperstate
with sufficient accuracy. The actual number will depend on the type of nonlineari-
ties present in the model. For the type of measurement function studied in this paper,
leading to a bimodal distribution, a modest number of parameters will be needed,
even when the state of the system has a higher dimension. This can be compared to
the naive approach of gridding the hyperstate, which requires exponentially more
parameters as the system dimension increases. As we explore larger examples, fu-
ture work will study how the mixture model and the two neural networks and their
associated training algorithms can be tuned to the control problem at hand.
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Paper III

Model-Free Adaptive MIMO Control of a
Chiller Process Using Reinforcement

Learning

Christian Rosdahl Bo Bernhardsson Bryan Eisenhower

Abstract

A chiller is a process used to cool down water that is used for cooling of spaces.
The overall goal of the chiller control is to achieve the specified temperature
sufficiently fast in an as energy efficient way as possible. At optimal oper-
ating points, some of the internal variables tend to lie close to some of the
many process constraints. Therefore, it is important to find controllers that can
reach and remain close to an operating point with as small deviations as pos-
sible, to be able to reach good performance without exceeding any constraints.
The process has two inputs that nominally are determined by two separate PI
controllers using two separate measurement signals. We present an algorithm
based on reinforcement learning that can be used to compute a decoupling ma-
trix that combines the two PI controller outputs so that we get a multiple-input
multiple-output (MIMO) controller where each control signal depends on sev-
eral measurement signals. It is demonstrated by simulations on a process model
that this method is able to find a controller that performs better than the nom-
inal controller in terms of decreasing the size of deviations from the operating
point for some interesting signals while still following reference changes and
rejecting disturbances as desired.

Manuscript prepared for journal submission.
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1. Introduction

This section provides a brief overview of basic concerns in vapor compression sys-
tem control. Characteristics of the plant are described, including an overview of the
components and the resulting control-oriented behavior that impacts the design. In
addition to this, challenges due to large variance in architectures and system variants
are outlined. Typical control objectives are described as well as common techniques
to achieve these objectives.

A complete overview of challenges and state-of-the-art solutions to vapor com-
pression control is out of the scope of this document, but we hope that this provides
a good introduction for further reading.

1.1 Plant Characteristics
Vapor compression based cooling and heating equipment is typically realized as a
variant of a refrigeration cycle, which leverages the phase change of a refrigerant
(liquid/vapor) to move heat from one environment to another. Fig. 1 illustrates the
components of the cycle and its representation in a two-phase pressure-enthalpy
diagram for the refrigerant. The area with the dense grid is the two-phase dome,
where the refrigerant is two-phase. To the left of the two-phase dome, the refrigerant
is a liquid, and to the right of it, it is in gas phase.

Figure 1. Components of a basic vapor compression cycle (left) and the thermo-
physical process outlined on a property diagram of the refrigerant that is cycled
through the loop (right). The components and process flow are described in the text.

Starting at point 1, the refrigerant enters a compressor in a superheated va-
por state (i.e., to the right of the two-phase dome), where the refrigerant is heated
through compression, increasing its enthalpy and pressure (to point 2). The fluid
then enters the condenser, where its temperature is often much higher than the en-
vironment (in many cases, the ambient outdoor temperature) that drives the heat
transfer process, cooling the refrigerant and subsequently condensing it (to point 3).
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The refrigerant is then rapidly expanded with negligible heat transfer to a low pres-
sure (and therefore low temperature) that is much colder than the other environment
that is to be cooled (point 4). This temperature differential drives heat transfer yet
again, in this case causing the refrigerant to evaporate to the condition appropriate
for compression while cooling down an environment.

Fig. 1 is the most basic refrigeration cycle. There are a number of options for
each of the components (fixed speed, variable speed, digital, or multiple compres-
sors; electronically or thermostatically controlled expansion; water or air on the
outside of the heat exchangers; etc.). In addition to this, several different architec-
tures have been adopted to increase flexibility and system efficiency (see Section
1.1).

The range of sizes of vapor compression cycles is vast. They can be extremely
small for cooling electronics (≈ 100 watts), or they can be many hundreds of kilo-
watts for providing cooling capacity for an entire building or a group of buildings.
The range of applications can also be wide. On the one hand, it is necessary to have
a refrigerant within the cycle (a medium that has certain phase-change properties),
while outside of this circuit the heat transfer can be exchanged with air, water, or
anything else that acts as a heat source or sink (e.g. even conduction to a solid).

There are many aspects of HVAC equipment that present challenges to control
design and performance, in no order of importance: component nonlinearity cre-
ates variation throughout the operating envelope and introduces challenges during
startup and mode switching, the system is spectrally stiff (i.e., there is a large sepa-
ration between time constants for different aspects of system performance), and the
thermofluid system is in closed loop, creating coupling between all components.
From a control design and verification perspective, the schematic in Fig. 1 is as
simple as it gets, while current products typically have more complicated architec-
tures. In addition to this, a product line typically has a wide range of variants to
provide design flexibility to meet different market needs. The control design must
account for all of these factors; each is described in more detail below.

Nonlinearity. Every component in a vapor compression system is nonlinear; the
compressor and expansion device both operate on pressure–flow relationships that
vary at operating conditions, and the heat exchanger performance is fundamentally
driven by pressure-flow relationships as well as a nonlinear heat transfer coefficient.
The nonlinear pressure drop relationships follow a Bernoulli-type quadratic rela-
tionship between this drop and flow rate, while the valves often operate in a choked
state. The compressor has a flow relationship that is tightly dependent on its design
and can exhibit surge instability if the system employs a centrifugal compressor.

The heat transfer behavior varies non-monotonically through the operating
range as the relative amount of liquid or vapor changes at various conditions, as
they are both functional to the flow rate as well as void fraction of the state of the
fluid. That is, heat transfer typically increases with flow rate of the medium, while
it is also dependent on the heat capacity (fluid versus vapor), and given the boiling
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and condensing process that occurs down the flow path, this relationship becomes
complex.

At the systems level, these component nonlinearities are observed as gentle sys-
tems level variance in time constants and steady-state gain across the operating en-
velope. In [Schurt et al., 2010], a H∞ metric is used to assess clustering of dynamics
to regions suited for gain schedule-based control to handle this variation.

Stronger nonlinearity exists in certain regions of the evaporator (or condenser)
when its operation takes the state of the fluid to the boundary of the two-phase
dome (visible in Fig. 1). In these regions, the state of the fluid approaches pure two-
phase vs. single-phase, and the heat transfer and pressure drop behavior changes
drastically. This results in a rapid change in gain, and a simple SISO controller used
to control these components typically experiences what practitioners colloquially
call hunting (a control-induced limit cycle). This onset in this instability has been
termed minimum stable superheat (MSS). [Chen et al., 2002; Shang et al., 2015;
Chen et al., 2008]

Abrupt nonlinear behavior is evident during mode transitions that can include,
but are not limited to, startup and shutdown, staging (adding or subtracting a com-
pressor), and defrost (redirecting heat to melt ice that may have accumulated on a
heat exchanger). From a physical perspective, the nonlinearity occurs from rapid
migration of refrigerant charge (mass) and oil throughout the system. From a math-
ematical perspective, the system goes through a number of singularities as the poly-
gon in Fig. 1 is expanded (or contracted) from a single point. [Li and Alleyne, 2010]

Eigenvalue Spectrum. Vapor compression equipment has a wide variety of
timescales that impact modeling and control. These timescales can range a few or-
ders of magnitude, from fractions of a second for flow behaviors, to minutes for
larger thermal time constants of the equipment. [Rasmussen and Shenoy, 2012;
Gordon and Asada, 2000] On the fastest scale, thermofluid behavior of the refrig-
erant contains subsecond momentum dynamics that can be relevant to some control
objectives, often those related to pressure maintenance. On the other hand, the ther-
mal transients in the system are often governed by not only the refrigerant but also
the amount of metal in the heat exchangers and compressor, which can be square
millimeters (e.g., for a refrigerator) or square meters (for a whole-building chiller).
From an external viewpoint, excitation and disturbances are typically on the order of
minutes at the fastest (to react to grid, datacenter, or occupant demands) to months
or seasonal to react to slower operating point changes.

For local disturbance rejection and tracking analysis, first-order plus time-delay
models are sufficient for control of thermal behavior, while second order behavior
is often evident in the pressure response. However, to capture nonlinearity at all
operating points and quantify a total system design, it is necessary to assess a much
broader range of timescales for comprehensive analysis.

Coupling. Because of the closed-loop thermofluid architecture (Fig. 1), signifi-
cant coupling exists between all of the components in a vapor compression cycle.
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In steady state, the mass flow rate is equivalent for all components, which couples
the pressures (and therefore temperatures) of the system. During transients, the driv-
ing and restoring forces in the fluid interact because of feedback, and this equivalent
flow rate no longer holds as components are filled or drained of refrigerant. From
a controls perspective, it has been observed that closing the loop on mass and en-
ergy moves poles towards the right half complex plane, slowing the system down.
[Morud and Skogestad, 1996]

Historical methods of wrapping SISO controllers around various actuator-
component pairs aggravate this coupling even more. As an example, on just a simple
2 input 2 output circuit, it was shown that interactions between actuators (expan-
sion and compression) attenuate single loop gains by a factor of 4.0. [He et al.,
1997] Multi-variable control of vapor compression systems is a largely unrealized
opportunity (outside of research) and will be discussed later.

Architectures. The simple circuit in Fig. 1 is as basic as it gets. The evolution
of market applications and demand, as well as the need for flexibility and higher
efficiency, has driven significant complexity into vapor compression system archi-
tectures. Fig. 2 illustrates a few examples.

Figure 2. Non-exhaustive examples of different plant architectures (left to right,
starting from the upper left): dual circuit, economized, reversible (heat pump), multi-
evaporator, and two-stage. A product line may have some of these options as choices,
and the controller needs to be quickly configured to the option selected.

These architectures may include

• Multiple Loops: To gain flexibility in capacity at higher efficiencies, it is
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often beneficial to have two small variable capacity circuits over one larger
(but also variable) capacity circuit.

• Compressor Economizer: In this circuitry, the expansion process is broken
into two stages with some of the refrigerant entering the second stage of the
compressor, requiring less lift when compressed. This reduces total refrig-
erant flow and compressor power consumption for some conditions in the
operating envelope, improving system efficiency.

• Reversible Cycle: For heatpumps, a series of valves are used to switch the
direction of flow through each of the main heat exchangers. The condensation
and evaporation are alternated in a given heat exchanger depending on the
mode. This application is used to both heat or cool an environment (not at the
same time).

• Multi-Evaporator Systems: Multiple evaporator systems are used to dis-
tribute cooling to multiple locations using the refrigerant circuit (rather than
distributing cooling through air or water).

• Two-Stage Systems: For applications with a large temperature difference be-
tween the two environments, two isolated systems can be used to achieve
more flexibility and efficiency. These types of systems are often used in re-
frigeration settings (e.g. food, medical supplies, etc.).

Although the architecture of a system often does not change once designed,
tools and techniques for control design need to be flexible and easily adapted to a
variety of architectures. This variety presents a significant challenge to a practicing
engineer.

Variants. To maintain a small design and manufacturing base and to balance needs
for a large variety of capacity and efficiency, vapor compression products are often
designed with a large number of variants. As an example, a water cooled chiller sold
by Carrier, designed for an application range of 1,055 to 2,461 kW with a variety of
other options for installation specifics or to impact system efficiency, includes the
options in Table 1.

Although these options may be correlated (e.g. larger sized heat exchangers
typically only pair with larger sized compressor options), the number of variants
can exceed many hundred thousand considering the options in Table 1 and others
not listed. These are needed to ensure widest market penetration and longevity of
the duration of the manufacturing lifetime.

The controller needs to be configurable to all of these variants and offer ac-
ceptable performance for any option. This is a significant challenge as it is nearly
impossible to test every potential configuration prior to their sale and field commis-
sioning.
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Table 1. Example number of options for one chiller line. [Carrier, n.d.]

Component Number of variants
Refrigerant 2

Evaporator frame 3
Evaporator length 2

Evaporator passes, tube diameter, tube count 12
Voltage supply frequency 4

Motor size 3
Economizer option 2
Condenser frame 3
Condenser length 2

Condenser passes, tube diameter, tube count 8

1.2 Control Objectives
In this section, a high-level description of the problem formulation for control is
provided. There are three main goals of the control system: (1) to protect the equip-
ment from self-destruction, (2) to provide sufficient cooling or heating capacity,
and (3) to provide this capacity at the lowest energy expenditure possible (highest
efficiency).

Component Protection. The compressor in these systems is often known as its
heartbeat. It is often the most complicated and expensive component, and it pro-
vides the propulsion for the refrigerant. Moving parts inside the compressor often
require lubrication (oil) that circulates through the circuit in Fig. 1 as a normal pro-
cess. However, in some cases excessive oil circulation can occur based on controller
behavior, including poor control of the degree of evaporator superheat (point 1 in
Fig. 1). Loss of this superheat results in the state of the refrigerant entering the two
phase dome, resulting in some amount of liquid in its state.

Flooding of liquid refrigerant at the compressor inlet can create problems; many
compressors are intended to compress vapor, not liquid, and the additional liquid
refrigerant washes oil from its surfaces. This creates two issues: its lubrication is
necessary for the longevity of the compressor, and excessive oil circulation through
the cycle decreases heat transfer between the refrigerant and heat exchanger walls,
diminishing performance and efficiency. Therefore, precise control of the inlet of
the compressor is essential.

A compressor envelope is typically provided as a steady-state design constraint
to ensure compressor health. One objective of the controller is to maintain operation
within these boundaries. Fig. 3 illustrates an example protection constraint for a
Copeland compressor.

Protections exist for other components. Often, these exceed the boundaries of
the compressor protection envelope, yet are activated on different timescales. For
instance, high pressure limits may exist for short interval spikes that may rupture
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Figure 3. Typical protection envelope for a compressor used in a vapor compres-
sion system. [Emerson, n.d.] The control system needs to regulate system variables
within this map while meeting the capacity and efficiency targets.

pipes or other components. This protection is needed on a shorter timescale than
those driving longer-term degradation (as with the oil management listed above).
Another common protection for systems exposed to subfreezing conditions is frost
protection.

Capacity Delivery. Capacity is the amount of cooling or heating that a vapor com-
pression system delivers. In most cases, the capacity is delivered through convective
heat transfer using a medium (typically air or liquid) that passes through or over
the refrigerant piping in the heat exchangers. Vapor compression systems are com-
monly designed using any combination of liquid or air over the evaporator(s) and
condenser(s).

Systems are designed and sold based on rated, nominal, or part load capac-
ity descriptors. These values describe system performance under industry-standard
conditions (much like fuel efficiency in an automobile). The conditions often in-
clude a small number of steady-state values and at times a dynamic or cycling test
that are aggregated as a single performance metric. [CEN, 2018; AHRI, 2017]

The objective of the control system is to meet the published conditions robustly
and provide sufficient performance off of these conditions. Unfortunately, much like
in the automotive industry, system performance is not as published in the real world.
In [O’Hegarty et al., 2022], actual tests indicated 40% lower than the rating value
performance in the field due to a number of reasons, including poor test definition
(not enough climate zones or assumptions on typical humidity), neglect of some
heat losses in actual products, and underestimating the effects of on-off cycling.
With more attention on remote monitoring and connectivity, actual observed and
measured controlled performance is becoming more relevant as this becomes more
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widely measured.

Optimal Efficiency. Providing adequate capacity is of primary importance. How-
ever, in vapor compression systems, it is possible to achieve this capacity in multiple
ways. Heat transfer is driven by a temperature difference in a closed environment.
In an open environment with flow, convective heat transfer is enhanced by the flow
of media as well. Due to the variety of actuators, and the bilinear nature of con-
vective heat transfer (flow multiplied by a temperature potential), and because of
the nonlinear behavior of thermofluid flows, there is often flexibility in steady-state
operation (setpoints) that provide safe and optimized operation – high flow with
low temperature potential can provide the same capacity as lower flow and higher
temperature potential.

The steady cooling capacity for the system in Fig. 1 is calculated as the flow of
the refrigerant in the circuit times the enthalpy difference (point 1 minus point 2).
Given the constraint that point 1 shall not enter the dome, system efficiency can be
altered (for the same capacity) by adjusting the degree of evaporator superheat (dis-
tance between the dome and point 1) as well as point 3 (subcooling at the condenser
outlet).

At the component level, evaporation efficiency is enhanced by the turbulent ac-
tivity of bubble formation as well as the presence of liquid (higher heat capacity).
For the same flow rate, the vapor has a much smaller heat exchange gain, and there-
fore it is beneficial to maintain point 1 as close as possible to the two-phase dome.
On the other hand, refrigerant charge is conserved in the circuit and what is present
in the evaporator must be taken from the condenser. The condenser has similar effi-
ciency behavior as a component, and therefore systems-level efficiency is critical.

Several techniques are used in practice to maximize system efficiency without
excessively complicating the control system. These approaches typically involve
setpoint maps or extremum seeking that set or seek system efficiency at different
operating conditions. These approaches are discussed below.

1.3 Control Technologies
Control systems for vapor compression cycles have evolved from purely on–off and
mechanical to the gradual use of more electronically controlled components (com-
pressors, valves, pumps, fans) in most applications. Unlike in building systems con-
trol, where controls technology is either suggested by standards [ASHRAE, 2021],
or described in textbooks [Mitchell and Braun, 2012], local equipment control tech-
niques are often proprietary to the manufacturer.

A review of control technologies with a focus on control-oriented modeling was
performed in [Goyal et al., 2019]. A small number of examples are referenced in
conventional, high performance (e.g. MPC, MIMO), and intelligent techniques (ma-
chine learning, fuzzy logic). An analog is provided in [Afram and Janabi-Sharifi,
2014] with the scope expanded to building energy systems (not onboard equipment
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control). Given the brevity of literature on this topic, a brief review of technologies
used in vapor compression control is provided below.

A generic block diagram of a plant (cycle in Fig. 1) is presented in Fig. 4. The
components of the control system include (but are not limited to) the ones listed in
Table 2, and the variables are described in Table 3.

-
Supervisor

Figure 4. Typical closed-loop system on the plant P(s) using the regulator K(s)
and setpoint specifier (Supervisor). The variables are described in Table 3.

Table 2. Components of the generic control system.

Supervisor A decision maker that specifies setpoints for the controller to
track based on disturbances, the objective of the system, and
feedback (often slow). The supervisor may include logic for
protections and overrides (which would select different outputs
and references to track with the controller K(s)).

K(s) This regulator contains elementary control functions like PI
controllers.

P(s) The plant or system to be controlled.

Variables that are communicated between the components in the block diagram
may include:

State Machines. State machines are typically employed in vapor compression
control systems as a way to manage the control objectives listed above. The state
machine may set or infer the operating state, or perform lower level management of
setpoint tables or status of on-off devices. An obvious choice of states of the system
is the operating modes, whether it be the startup or shutdown state (an example is
described in [Pršić and Vičovac, 2017]) as well as protection, overrides, or other
operating objectives.

Although the authors are unaware of the use of formal methods to assess sta-
bility and performance of the resulting hybrid control systems for all protection
and mode handling, there has been work to understand subsets of these functions,
including on–off commands. [Zhang et al., 2015; Li et al., 2012] The study in
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Table 3. Variables in the control system.

o Objective. This is the high level objective of the machine (e.g.
cooling vs. heating, defrost or normal operation, free cooling
mode).

dP Ambient conditions and disturbances. Outdoor conditions,
flow rates (specified outside of the system). These disturbances
take the system to different operating points (nonlinearity) and
may disturb the dynamics as well (small signal disturbance).

ν Actuator input(s). Valve, compressor, and fan or pump com-
mands.

z Performance variables. Conditions of the system that are im-
portant but not fed back to the controller (difficult to measure),
but may be used in design or analysis.

y Process feedback. Variables that are used in the regulator.
These variables may change based on conditions, objectives,
or overrides.

r Reference(s). Tracking variables.
e Error. Difference between the reference and system output.
u Controller output. Commands sent to actuators including valve

opening, speed, or on-off state as examples.
du, n Disturbances. Input and output disturbances or noise.

[Uhlmann and Bertsch, 2012] quantified the efficiency loss due to cycling a heat-
pump on and off to regulate its capacity.

Among the issues related to state machine stability and performance are design
tools and strategies (considering the variants and architectures listed in Section 1.1),
as well as effective sensing strategies. In many cases, it is unrealistic to measure
all of the states that drive transitions, leading to expensive or unique sensing (e.g.
imaging for frost formation as in [Zheng et al., 2019] or [Xiao et al., 2009]).

Regulation and Disturbance Protection. The inner loops of a vapor compres-
sion system controller provide actuator commands to the compressor, valves, and
fans or pumps in the system. Disturbance rejection is often the primary concern, as
these systems are rarely designed to track complicated setpoint reference trajecto-
ries. However, in some cases supervisory control re-defines setpoints as a means to
respond to demand or to optimize performance.

Like many process systems, one of the most popular control techniques for
vapor compression system regulators is PI control – although given the evolution
towards more complicated architectures and variable actuation, limits are quickly
being realized in these traditional approaches.

Among many challenges is component and system nonlinearity (Section 1.1)
driven by the need for compressor protection. The evaporator leaving superheat
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(which enters the compressor) is of key concern; this is often actuated by the expan-
sion valve. The evaporation process and the input-output relationship are nonlin-
ear, which often results in suboptimal performance, typically observed as control-
induced oscillations. Gain scheduling can help with this, but given the number of
variants, architectures, and variance across the operating envelope, it is a challenge
to guarantee that this works well. Nonlinear control techniques have proven to be
beneficial for dealing with this nonlinearity.

In [Rasmussen et al., 2006] it was shown through reduced order modeling that
if the moving length of the superheated region is used as an output variable (tra-
ditionally: superheat temperature), and the evaporator mass flow as input variable
(traditionally: expansion valve command), a linear system is formed – which sig-
nificantly simplifies the PI design approach. Similar work was done in [Elliott and
Rasmussen, 2010], where a cascaded algorithm was used to reduce the nonlinearity
to avoid gain scheduling. Nonlinear PI analysis and control using describing func-
tion methods was performed in [Rehrl et al., 2009], while the scope of the plant was
HVAC-to-building integration rather than onboard equipment control.

In [Vinther et al., 2013], extremum seeking is used to attempt to find the in-
flection (slope change) of the nonlinear evaporation phenomena, resulting in a
measurement-based approach for predicting the onset of instability (i.e., the small-
est stable superheat for a certain operating condition). Similarly, in [Jolly et al.,
2000], MSS line theory is used as a primary design element for stable superheat
control.

As mentioned in Section 1.1, the coupling in the system is a source of chal-
lenges and an avenue for closed-loop performance improvement. The seminal work
in [He et al., 1997] outlined a MIMO-based control strategy, and several research
groups have maintained activity in this area over the years. In [Anderson et al.,
2002], MIMO control design of a 3× 6 system provided 3–5 times improvement
in transient response, and in [Shah et al., 2004], a detailed workflow is given to
design estimation, multivariable control, and adaptation for a vapor compression
system. The benefit of a MIMO LQG controller over a set of SISO-PI controllers
was demonstrated in [Jackson et al., 2019].

Common to all of these studies are detailed model-based analysis and single-
variant designs, which in many cases are proven or demonstrated in a modeling
environment or using an isolated experiment. The hardening and scaling of the de-
sign process for industrial implementation remains a challenge.

Supervisory and Optimization. Supervisory control can be used to select between
different active control regulators, constraints, or setpoints based on the current op-
erating conditions. A common approach to handle this logic is through operating
condition maps – lookup tables or low-order polynomials that provide setpoints or
logic based on current operating conditions. These algorithms are often designed us-
ing models, experimental results, component manufacturer data, or past experience.
As this is very cumbersome, and because all variants of a system cannot be tested,
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there are efforts to provide online optimization and updates to such algorithms.
System efficiency is predominately driven by compressor operation, as it is of-

ten the largest power consumer. The intention is to compress the refrigerant just
enough and no more than necessary to provide the capacity requested. Heat ex-
changer efficiency also plays a role in system efficiency. Filling the heat exchangers
appropriately with two-phase refrigerant typically leads to optimal performance.
This is often measured by the degree of subcooling for the condenser (as optimized
in [Yang and Yeh, 2015]), and evaporator superheat.

Due to the large variance in both steady-state performance (i.e. where optimal is)
and dynamics, online setpoint optimization has been suggested as a solution to pro-
vide real-time optimization of system setpoints or controls. Multivariable extremum
seeking was performed in [Dong et al., 2015] on a mixture of inner and outer loop
control variables (inner loop – fan speeds, outer loop – superheat setpoint), resulting
in energy savings of 7.6% in a model-based evaluation. Optimal subcooling through
extremum seeking illustrated 9% performance improvement [Koeln and Alleyne,
2014], and a number of other studies have been performed to address the issues of
time scale overlap that can make implementation of such approaches in the field
impractical. [Burns et al., 2018; Dong et al., 2018]

Fault Handling and Diagnostics. Vapor compression systems and their com-
ponents can experience sudden failure or long-term degradation, observed as off-
design performance or frequent overrides and shutdown. Unlike personal consumer
products, the installation and commissioning of these systems is non-exact, and poor
performance can be experienced even when they are new because of installation er-
ror. If we consider faulty operation as malfunctioning or anomalous deviations from
expected behavior, the list of reasons is large, including mechanical, software, or
procedural sources of error.

Typical fault sources include poor performance of heat exchangers, compres-
sor(s), or valves, as well as issues with electronics or installation. Controls is often
a leading cause of poor performance. In [Breuker and Braun, 1998], control and
electronics were the source of 40% of faulty behavior (controls was identified as
a leading cause in [Madani and Roccatello, 2014] as well). Most of the published
work in fault analysis of vapor compression systems is in identifying key faults,
modeling faulty behavior, and developing monitors and diagnostic tools.

Quantifying, ranking, and subsequently generating diagnostic algorithms for
faults has been performed to identify which faults matter. A number of single-
variant experiments have been performed that quantify and rank the impact of me-
chanical faults on system performance. [Kim et al., 2006] The amount of refrigerant
charge in the circuit is crucial to system performance. Since the system is closed-
loop, the charge is conserved, yet leakage is a significant concern. [Choi and Kim,
2002; Goswami et al., 2001] It is unrealistic in almost all cases to maintain a mea-
surement of the mass of the system (and therefore the mass of charge in the system),
and so a number of approaches are used to infer the charge quantity from common
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sensor readings (typically pressure and temperatures).
Vapor compression system models (both steady-state and transient) are often

used for component and control system design. Off-design conditions are often part
of the testing and development process, while capturing catastrophic failure is often
out of the scope of most studies. In most cases, model-based analysis takes physi-
cal component parameters to their limit of validity to analyze the resulting perfor-
mance. As an example, models for non-standard charging, heat exchanger fouling,
compressor valve leakage, and liquid line restriction can be found in [Cheung and
Braun, 2013].

For online diagnostics, the industrial focus has been in further connectivity (over
the air control updates, remote monitoring and data collection), while fault tolerant
control is in its infancy. A recent review of the status of diagnostics in HVAC sys-
tems can be found in [Bellanco et al., 2021]. Because of the coupling in the ther-
mofluid circuit, and moreover feedback controls, the observability of system states
contributing to faulty behavior as well as identifiability of parameters leading to
a fault may not be possible with a low-count sensor set. In [Li and Braun, 2007],
virtual sensors generated from first principles were assessed based on their ability
to decouple different faults, and [Lu et al., 2022] found a benefit of well derived
algorithms over excessive sensor sets.

Charge loss is one of the most frequently observed faults that garners significant
attention. [Tassou and Grace, 2005] provides an example of charge loss diagnostics
(steady state), while dynamic considerations in [Yun and Chang, 2021] found that
charge loss can be identified by the dynamic response of the condensation temper-
ature and degree of subcooling during system startup in laboratory conditions.

2. Problem Formulation

In this report, we consider the problem of constructing an adaptive multiple-input
multiple-output (MIMO) controller for control of a chiller process. The main com-
ponents of the process in question are illustrated in Fig. 5. The purpose of the pro-
cess is to cool down water that in turn is used for cooling of some given space,
e.g. a room in a building. This is achieved by letting the water circulate between
the space to be cooled and the evaporator. The primary goal of the chiller process
is to decrease the temperature of this water so that it attains some specified value
when leaving the evaporator. As a secondary goal, we would like to achieve this in
a way that is as energy efficient as possible. Our aim is thus to find a controller that
achieves both these goals, within the limits and constraints of the process.

Heat that is extracted from the evaporator water is transferred to a separate water
circulation, through the condenser, where it is transported away to the outdoor air.
Heat transfer is achieved by means of a refrigerant that circulates between the evap-
orator and condenser, while undergoing pressure changes. The refrigerant cycle is
illustrated as the black curve in the ph diagram in Fig. 6, where p is the pressure
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Figure 5. The main components of the chiller process are an evaporator that cools
down water used for cooling down a building, and a condenser that extracts the heat
using a secondary water circulation. The heat transfer is carried out by means of
a refrigerant, of which the pressure is varied using a compressor and an expansion
valve.

and h is the specific enthalpy (enthalpy per unit mass) of the refrigerant. The blue
curve shows the border for where some phase transition starts, and the orange lines
are some level curves for the temperature. The pressure is changed by means of
the compressor and an expansion valve. These are our two actuators, and thus the
control signals will be the compressor frequency and the degree of opening of the
expansion valve.

The primary measurement signal used for feedback control is the evaporator
leaving water temperature (eLWT). As for the choice of a secondary measurement
signal, there are several options. One option is the level of refrigerant in the evap-
orator. For efficient cooling performance, the refrigerant should almost cover the
water pipes in the evaporator. However, if the level is too high, the performance will
decrease. Hence, it is assumed that making sure that the refrigerant level is always
close to covering the water pipes is a good aim for efficient operation of the process.
In practice, this level can usually not be measured. Therefore, it is interesting to also
consider other signals that could provide some information about the performance
but that are measurable. One such signal is the subcooling, which is the difference
between the temperature of the refrigerant when leaving the condenser (point 3 in
Fig. 6) and its boiling temperature. In this report, we will use the eLWT and the
subcooling as feedback signals for our controller.

The controller should be able to achieve both good reference following for the
two feedback signals and good disturbance rejection. Some disturbances that can
occur are, e.g., variations in temperature or flow in the water passing through the
evaporator or the condenser. Since variations in the condenser water tend to have a
smaller effect on other interesting signals, we will focus on variations in the evapo-
rator water.
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Figure 6. The refrigerant cycle for the chiller process. The black curve shows the
pressure p and the enthalpy h of the refrigerant at each stage of the refrigerant cycle.
The blue curve shows phase transitions, and the orange curves are level curves for
the temperature.

In conclusion, the system model that we consider will have

• control signals:

– u1 = expansion valve opening (u1 ∈ [0,1]),

– u2 = compressor speed (u2 ∈ [0,210]),

• feedback signals:

– y1 = subcooling,

– y2 = evaporator leaving water temperature (eLWT),

• disturbances:

– d1 = evaporator entering water temperature (eEWT),

– d2 = evaporator water flow (eFlow).

In the controller structures that are common for controlling this type of pro-
cesses in practice today, the compressor speed u2 is only determined by feedback
from the eLWT y2, while the expansion valve opening u1 is only determined by
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feedback from the other feedback signal y1, which in our example is the subcool-
ing. The purpose of our study is to investigate whether using a combination of sev-
eral measurement signals to determine each control signal can lead to better control
performance compared to this nominal case.

In practical operation, the system has many constraints on different signals that
must be satisfied. An example of this is that the pressure of the refrigerant when
entering and leaving the compressor must stay within certain bounds. Another ex-
ample is that the heating of the refrigerant in the evaporator must be large enough
to ensure that the refrigerant is completely in gas phase when entering the com-
pressor. Not satisfying this might damage the equipment. The most energy efficient
operation is probable to occur at points when some signals are close to some of the
constraints. It is therefore important to construct a controller that keeps the maxi-
mum deviations from the nominal value of these signals as small as possible. This
allows one to choose setpoints such that the efficiency is large without exceeding
the constraints.

Besides constructing a controller that minimizes variations in relevant signals
induced by disturbances and reference changes, we would also like the controller to
be adaptive. Since the process in practice is adapted to each customer and circum-
stance, there is a huge number of variants of the process. For this reason, we would
like to have a controller structure that has the ability to adapt to different process
variants. The adaptivity could also allow for the possibility to adjust the controller
for a specific process with time when some process parameters change slightly. If
we have a sufficiently accurate known process model, we could use model-based
control, using the model with known or estimated parameters to construct the con-
troller. Another approach is, however, to use model-free control, where the con-
troller adapts to the current process without needing an accurate model. Our main
goal will be to present an algorithm for constructing a model-free controller. How-
ever, we will compare the performance of a controller obtained by this method with
a model-based controller on a simulated example process.

3. Preliminaries

3.1 Static and Dynamic Input Decoupling
A simple control strategy for a system P with two inputs and two outputs is to
use two separate PI or PID controllers to control it. This decentralized PI control
architecture is illustrated in Fig. 7. The process P is divided into two interacting
blocks, P1 and P2, each containing one input and one output. In this solution, we
have two PI controllers, C1 and C2, which are responsible for one of these blocks
each. Thus, C1 only uses output y1 to determine input u1, and analogously for C2,
y2 and u2. The decentralized control structure is easy to understand intuitively. The
main drawback is that there will be strong interactions between the two control
loops, and to maintain a closed-loop stable system one might have to detune the
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closed-loop bandwidth, resulting in a quite slow system, increasing the problem
with disturbance attenuation.

In order to decrease the problem with interactions between different parts of
the process, we can use a method called input decoupling. [Skogestad and Postleth-
waite, 2005] The structure of the method is shown in Fig. 8. Here, the decoupling
block

D =

[
D11 D12
D21 D22

]
can consist of either constant gains (static decoupling), or dynamic transfer func-
tions (dynamic decoupling). We can view the structure as that we use both outputs,
y1 and y2, for determining each of the inputs u1 and u2. Alternatively, we can view
the decoupling matrix as a part of a modified process P̃(s) that has two inputs ũ1
and ũ2, which are determined by two separate PI controllers, and which define the
inputs to the original process P(s) according to

u1 = D11ũ1 +D12ũ2,

u2 = D21ũ1 +D22ũ2.

Static Input Decoupling. The most common choice is to use static decoupling
and first choose D to achieve perfect decoupling in stationarity, i.e.,

P(0)D = I, (1)

and then apply decentralized controller design for the transformed system

P̃(s) := P(s)D.

For the chiller process, this could for example mean that the control system consists
of two parts, where

PI controller C1: Measures and maintains the desired condenser subcooling
by manipulating the control signal combination ũ1,

PI controller C2: Measures and maintains the desired evaporator leaving water
temperature, eLWT, by manipulating the control signal combination ũ2,

see Fig. 8.
An interesting alternative to the conventional input decoupling is so-called in-

verted decoupling, illustrated in Fig. 9. This architecture is claimed to have some
advantages in [Hägglund, 2012], specifically when it comes to the design of an anti-
windup mechanism, responsible for handling situations of controller saturation.

If the decoupling equation P(0)D = I is satisfied, then the two control loops are
perfectly separated, in stationarity. This means, for example, that a setpoint change
in the reference level for y2 – for instance corresponding to the evaporator leaving
water temperature – would not result in any stationary change in y1, which could
be the condenser subcooling. This would be an advantageous property for optimal
energy-efficient operation of the chiller.
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Figure 7. Decentralized PI control. A problem with this architecture is that the
interactions between the two loops can lead to reduced closed-loop performance,
since it is often hard to achieve a fast closed-loop system.

Figure 8. Control by conventional decoupling. The elements in the decoupling
matrix D are chosen to minimize the interaction between the control loops for vari-
ables y1 and y2. These elements can either be static gains, or dynamic elements. The
decoupling architecture typically allows for higher controller loop bandwidth and
better control performance. It might be a challenge to find a D that is suitable for the
entire range of operation of the chiller system.

Dynamic Decoupling. The stationary decoupling equation P(0)D = I results in a
controller that achieves decoupling in stationarity but will still give transient inter-
actions between the two loops. Often these transients have only marginal impact on
performance and is something that can be accepted. But in situations where these
transient interactions need to be reduced, instead a dynamic design equation of the
form P(s)D(s) = I should be solved.

In practice, the resulting solution D(s) = P−1(s) is however not possible to im-
plement, since it would result in infinite gain at high frequencies. Therefore, only

79



Paper III. Model-Free Adaptive MIMO Control of a Chiller Process Using RL

Figure 9. Control by inverted decoupling as described in [Hägglund, 2012].

approximate dynamic decoupling is targeted, where a design equation such as the
following can be used to find D(s)

min
D(s)
∥W (s)(P(s)D(s)− I)∥,

where W (s) describes a frequency weight and where a suitable system norm, such
as H2 or H∞, is used. The weighting W (s), usually chosen to be in diagonal form,
is a design variable. The dynamic decoupling design is more complicated and will
require more modeling knowledge, whereas static decoupling only requires infor-
mation about the static gain of the system.

A simple alternative to the optimization-driven design described above is to use
the dynamic decoupling

D(s) = (P(s))−1F(s),

where F(s) is a low-pass filter with suitable bandwidth and sufficiently high roll-off,
for instance of the form

F(s) =
1

(1+ sTf )n I,

where the time constant Tf and filter order n are properly chosen.

3.2 Reinforcement Learning
Reinforcement learning (RL) is a branch of machine learning that can be useful for
finding a control policy without needing a model of the system to be controlled. The
basic setup is illustrated in Fig. 10. We have an environment that we can affect by
applying some action At at each discrete time step t. We assume that the environ-
ment can be described as a Markov decision process. This means that, at time t, it
can be described by a state variable St . Given the state St and the action At , the en-
vironment will transition at the next time point into a new state St+1. The new state
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agent

environment

actionstate reward

wait for
next
time
step

Figure 10. Reinforcement learning.

is given by a random variable that is determined by the current state St and action
At , but does not depend on any previous states or actions. This is called the Markov
property. After the state transition, we obtain a reward Rt+1 from the environment.
This is a number that depends on the previous state St and the action At and is a
measure of how good the immediate effect of this state-action combination was.
The reward is, in general, also a stochastic variable, meaning that different rewards
can be obtained for the same state-action combination when it is repeated.

In the RL setup in Fig. 10, we have illustrated the environment that is affected
by an action At and which outputs a new state St+1 and a reward Rt+1. The second
component of the setup is the agent, which is our RL algorithm. The agent’s task
is to decide which action At to apply to the environment. To do this, it can use
information about all previous states, actions and rewards. The goal of the agent
is to select actions such that the expected value of some weighted sum of future
rewards is maximized. This weighted sum is often chosen as

Gt =
∞

∑
k=0

γ
kRt+k,

where γ ∈ [0,1) is called the discount factor and Gt is called the return. In this
report, we will use the simple case of letting the return be equal to the immediate
reward, i.e., Gt = Rt . This corresponds to a discount factor γ = 0. For our purpose,
this seems to work well enough without complicating the algorithm unnecessarily.

In order for the agent to decide which action to choose, it can use a so-called
value function V (St) that gives an estimate of the expected return Gt when being in
state St and choosing actions according to some given policy. Assume that we know
the transition probabilities P(St+1 | St ,At) for each possible new state St+1 given
that each possible action At is applied from the current state St . If the value function
is a good representation of the expected return for an optimal policy, we can then
choose the optimal action as

At = argmax
A

∑
St+1

P(St+1 | St ,A)V (St+1). (2)
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However, if the value function is not a good enough representation of the expected
return, more exploration is needed, in terms of trying out more different actions.
This generates more data about how different actions affect expected returns, which
can be used to improve the value function V (St), so that it gives a more accurate
representation. The algorithm should thus find a balance between exploration, to
improve the value function, and exploitation, in the sense that we exploit the value
function to select an action according to (2).

A common and rather simple method of balancing exploration and exploitation
in RL is the ε-greedy method. In this method, we use a variable ε ∈ [0,1] that defines
the probability of exploration. At each time step, a random action from the action
set is chosen with probability ε , while an action is chosen according to (2) with
probability 1− ε . The variable ε is usually decreased with time, so that we get a
high degree of exploration initially, when the value function is a less good estimator
of the expected return, and a higher degree of exploitation at later times, when the
value function is a better estimator and is more likely to lead to an action that is
close to optimal. More details about different RL algorithms and RL in general can
be found in e.g. [Sutton and Barto, 2018].

4. Method Description

4.1 Method Structure
Our goal is to investigate whether using a combination of several measurement sig-
nals to determine each control signal can improve control performance compared to
a nominal decentralized control structure. We will investigate two different methods
for achieving this and compare the results with the nominal case. The first method
is ordinary model-based static decoupling, where the decoupling matrix D is com-
puted according to (1). The second one, which is the focus of this report, is also
a static decoupling, but where the decoupling matrix is determined by a reinforce-
ment learning algorithm instead of being explicitly computed based on a process
model.

The setup we will use is illustrated in Fig. 11. The chiller process P(s) is affected
by the two control signals u1 and u2, and disturbances d1 and d2. As outputs from
the process, we have the feedback signals y1 and y2, and some other measurement
signals yi for i = 3, . . . ,m. The reference signals r1 and r2 define the desired values
of the feedback signals y1 and y2. The controller consists of two PI controllers C1(s)
and C2(s) whose outputs are combined by a static decoupling matrix D, and then
used as inputs for the process P(s). Some reasons for using a PI controller based
control structure are that this limits the number of degrees of freedom, which should
make it easier to find a well-working controller, and that this results in a transparent
and well-known structure that can be examined easily.

The nominal case corresponds to the decoupling matrix D being equal to the
identity matrix, i.e., D11 = D22 = 1 and D12 = D21 = 0. We will assume that we
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PI-controllersdecoupling
—

—

Figure 11. Setup for the closed-loop system. The chiller process P(s) is controlled
using the inputs u1 and u2, and has outputs y1, . . . ,ym. The first two outputs y1 and
y2 are used as feedback signals for the controller to determine the control signals.
These should follow given references r1 and r2. Moreover, the process is affected by
disturbances d1 and d2. The references and disturbances are viewed as closed-loop
inputs uc. Each output yi should be as little affected by each closed-loop input uc

i as
possible, except for that y1 and y2 should follow r1 and r2, respectively.

know some PI controllers C1(s) and C2(s) that have been tuned to give reasonable
(but not optimal) performance for this case. The problem we will consider is then
whether the four elements of the decoupling matrix D can be chosen such that the
control performance is improved compared to the nominal case, while keeping the
PI controllers fixed. The control performance is measured in terms of a cost function
that depends on the control and measurement signals of the system P(s) obtained
when making some reference changes and applying some disturbances. The cost
should make sure that the tracking of the reference signals is good enough while
minimizing problematic variations in some relevant measurement signals, by ap-
plying well-behaved control signals within some specified bounds.

4.2 Goal of the Algorithm
As seen in Fig. 11, our controller K is in the frequency domain described by[

U1(s)
U2(s)

]
=

[
D11 D12
D21 D22

][
C1(s) 0

0 C2(s)

]
︸ ︷︷ ︸

K

[
E1(s)
E2(s)

]
,

where Ui(s) is the Laplace transform of input ui(t), and Ei(s) is the Laplace trans-
form of the control error ei(t) = ri(t)− yi(t). The decoupling matrix D is parame-
terized as

D =

[
D11 D12
D21 D22

]
=

[
S1

1 0
0 S1

2

][
θ1 θ2
θ3 θ4

][
S2

1 0
0 S2

2

]
= S1D̂S2, (3)

where the matrix D̂ contains the four parameters θ1, θ2, θ3 and θ4 to be determined,
and S1 and S2 are predefined diagonal scaling matrices. The purpose of the scaling
matrices is to make sure that the parameters to be determined have the same order
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of magnitude. This is supposed to make it easier for the algorithm to find a good
solution. For given scalings S1 and S2, and given PI controllers C1(s) and C2(s), the
complete controller K is thus defined by the parameter vector θ = (θ1,θ2,θ3,θ3)

T,
i.e., K = K(θ), and the goal of our algorithm is to find a good value of θ .

4.3 Cost
To evaluate the control performance for a given parameter vector θ , we sequentially
apply a test input signal to each of the inputs of the closed-loop system, which are
the reference signals r1 and r2, as well as the disturbance signals d1 and d2. The
test input signals that we use consist of taking one step up and back, and then one
step down and back, as shown in Fig. 12. The step magnitudes are different for the
different signals. We denote the vector of closed-loop inputs by uc =(r1,r2,d1,d2)

T.
The vector of the resulting measurement signals is denoted by y=(y1, . . . ,ym)

T. The
part of the measurement signal y j that corresponds to the time range [t0

i , t
f
i ] where

a test input as in Fig. 12 is applied to the closed-loop input uc
i is denoted by yi j.

The total time of a test run, where all test inputs are applied for a controller with a
certain decoupling matrix, is denoted by T .

After a test run, we evaluate a cost for the obtained measurement and control
signals y and u. The cost that we use is

cost(y,u) =
4

∑
i=1

∑
j∈Ji

w j max
t
|yi j(t)|+αA(y)+βB(u)+ γC(u),

where Ji = { j = 1, . . . ,m : j > 2 or j ̸= i},

A(y) =
m

∑
i=1

1

t f
i − t0

i

∫ t f
i

t=t0
i

wi
(
max{0,yi(t)− ymax

i (t)}+max{0,ymin
i (t)− yi(t)}

)
dt,

B(u) =
2

∑
i=1

max
t

(
[wu

i max{0,ui(t)−umax
i }]2 +[wu

i max{0,umin
i −ui(t)}]2

)
,

C(u) =
2

∑
i=1

1
T

∫ T

t=0
wu

i |u′i(t)|dt.

The first term of the cost is designed to keep the deviations in all measurement
signals as small as possible, except for yi when uc

i is a reference signal, when chang-
ing the closed-loop input uc

i for i = 1, ...,4. The different measurement signals are
weighted by the non-negative output weights w j for j = 1, ...,m. Optimally, input
uc

1 = r1 should only affect output y1, input uc
2 = r2 should only affect output y2,

and otherwise the inputs uc
i should not affect any other measurement signals. The

term A(y) is the cost of tracking errors. The measurement signal should be close
to the corresponding reference signal, and we specify how close we would like it
to be by two curves ymin and ymax, as exemplified in Fig. 13. When the signal is

84



4 Method Description

Figure 12. A test input of this type is applied sequentially to each closed-loop
input uc

i in order to evaluate the performance of the controller for a certain parameter
vector θ .

0 100 200 300 400 500
time [s]

1.0

0.5

0.0

0.5

1.0 reference signal
ymin

ymax

Figure 13. Tracking specification example. We want the measurement signal y to
track a reference signal (black curve). When the measurement signal is between the
specification curves ymin (green dashed) and ymax (red dashed), no cost is added
to the cost function. When the measurement signal is outside of this area, a cost
proportional to the deviations is added.

between these curves, no cost is added; and otherwise, we add a cost proportional
to the deviation from the area. The next term, B(u), is zero when each control signal
ui remains within some specified range [umin

i ,umax
i ], and gives a quadratic penalty

for the largest deviation from each endpoint of this interval. The non-negative co-
efficients wu

i are control signal weights. Finally, the term C(u) is added to avoid
solutions where the control signal has many rapid variations. The relative weights
of the cost terms are set by the constant non-negative coefficients α , β and γ .

4.4 Algorithm
To find good parameter values, we use a reinforcement learning algorithm to train
a neural network that approximates a value function V (θ) that predicts the value
of the reward of a simulation with a decoupling matrix defined by the parameter
values θ = (θ1,θ2,θ3,θ4)

T. The vector θ is the reinforcement learning state. Each
parameter is assumed to lie within some known range θi ∈ [θ min

i ,θ max
i ], so that the
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state set S is given by

S = {θ : θi ∈ [θ min
i ,θ max

i ] for i = 1,2,3,4}.

The reward R of one test run is normally the cost multiplied by −1. However, if
some rewards are much smaller than those that are close to the maximum reward,
difficulties can occur in accurately representing the value function both close to the
optimum and for values that deviate significantly from the optimum. Therefore, we
introduce a lower limit Rmin for the reward, so that the reward is given by

R(y,u) = max{Rmin,−cost(y,u)}.

Furthermore, each action consists of making some particular change to the pa-
rameter vector θ . The action set A is designed to contain nine different actions,
eight of which correspond to a positive or negative change of each entry in θ , and
the ninth one corresponding to not changing anything. The size of the change in
each case is determined by a relative step size δ n ∈ [0,1). The superscript n de-
notes the iteration number of the algorithm, and indicates that this step size can be
changed between iterations. For the action a corresponding to a positive change of
θi, we get

θi← θi +δ
n(θ max

i −θ
min
i ), (4)

and for the action corresponding to a negative change of θi, we get the same but
with the plus sign replaced by a minus sign.

The idea of the algorithm is to use an epsilon-greedy policy to select an action
a ∈A corresponding to a change in the parameter vector θ , run the system with the
test inputs for this parameter value, and evaluate the result. The resulting reward is
saved and then used to train the neural network that approximates the value function
V (θ). This is then repeated with a decreasing epsilon, corresponding to decreasing
the degree of exploration and increasing the degree of exploitation, so that more and
more of the iterations lead to a high reward. The step size δ n is also decreased with
time. The purpose of this is that a large part of the state set S should be covered
in the initial exploration phase, but that the changes should be small enough to find
parameter values close to the optimum in the later exploitation phase.

The algorithm is listed in Algorithm 4. The first requirement for using the al-
gorithm is to define the structure of the controller K(θ). This includes the two PI
controllers C1(s) and C2(s), the parameter limits θ ∈ S , as well as the scaling matri-
ces S1 and S2. We also have to specify the cost of measurement signals y and control
signals u resulting from a particular run of the controller, consisting of applying test
inputs as in Fig. 12 to all closed-loop inputs uc

i . For this, we use the cost defined in
the previous section. Also the lower limit for the reward, Rmin, must be specified.
The amplitudes of the test input steps as well as their duration, given by [t0

i , t
f
i ], must

be provided as well. We also define an epsilon function εn and a step size function
δ n that are non-increasing functions of the iteration number n.
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The experience gained from iteration n of the algorithm can be summarized as
a pair (θ n,Rn) of the new parameter value and the corresponding reward. This pair
is stored in a replay buffer B to be used to train the value function neural network.
The buffer keeps data from the B latest iterations. After each iteration, b samples are
selected (with replacement) from this buffer and used to train the neural network.
The purpose of this procedure is to make better use of the data from previous iter-
ations, by reusing it in the training step, and to improve the convergence properties
of the algorithm by using the previous samples in a random order and thus avoid-
ing using unnecessarily correlated samples consecutively for updating the function
approximating neural network. The reason for not keeping too old samples is that
most of these correspond to a lower reward, and thus they are less relevant when the
goal is to approximate a value function that should be used to maximize the reward.
Discarding old data also allows the controller to adapt to process changes.

Further information that must be provided to the algorithm is (1) the learning
rate η used when updating the weights in the neural network during training and (2)
the structure of the network, e.g., the number of layers and the number of nodes in
each layer.

As seen in Algorithm 4, the neural network is first initialized with some random
weights ω0. The initial parameter vector is θ = (1,0,0,1)T, corresponding to a
diagonal decoupling matrix D. In each iteration, a random action is chosen from the
action setA with probability εn, and the action that leads to a new parameter vector
θ n that maximizes the current value function approximation V (θ ;ωn−1) is chosen
with probability 1−εn. The random choice is implemented by generating a random
number r from a uniform probability distribution U(0,1) on the interval [0,1] and
choosing the first case if εn < r and the second case otherwise.

After choosing the action in iteration n, the parameter is updated according to
the chosen action a, by the update function θ update(θ ,δ n,a) that works as described
in and around equation (4). Then, the system is run with the test inputs using the
controller defined by θ n. The reward is computed to evaluate the parameter value
θ n, and saved in the replay buffer B. After this, b samples are randomly selected
from the buffer (with replacement) and used to update the weights ωn of the neural
network according to the gradient descent method with a gradient step size given
by the learning rate η , so that the value function approximation V (θ ,ωn) better
represents the values in the samples.

When enough exploration has been carried out, the value of εn as well as of
the step size δ n should be small, and the parameter values θ n resulting from each
iteration should remain close to the optimal value of θ .

5. Test Problem – Linearized Model

To test the method, we use a Modelica model of the system that is linearized around
an operating point. The model has in total 162 states. At the stationary operating
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Algorithm 4 Reinforcement Learning Algorithm
Input: Controller structure K(θ), cost function cost(y,u), minimum reward Rmin,

test inputs uc, epsilon function εn, step size function δ n, replay buffer size B,
batch size b, learning rate η , and neural network settings

Output: Value function V (θ)
1: Build network V (θ ;ω0) with random weights ω0

2: Initialize replay buffer B
3: Initialize parameter vector θ 0 = (1,0,0,1)T

4: for iteration n = 1,2, . . . do
5: Get a random number r ∼U(0,1)
6: if r < εn then
7: an ∼ rand(A)
8: else
9: an = argmaxa∈AV (θ update(θ n−1,δ n,a);ωn−1)

10: end if
11: Parameter update θ n← θ update(θ n−1,δ n,an)
12: Run system with controller u(t) = K(y(t);θ n) and test inputs uc

13: Get reward Rn = max{Rmin,−cost(y,u)}
14: Add (θ n,Rn) to B
15: Sample tuples {(θ k,Rk)}b

k=1 from B
16: Update weights ωn← ωn−1 +η ∑

b
k=1

[
Rk−V (θ k;ωn−1)

]
∇V (θ k;ωn−1)

17: end for

Table 4. Values of control variables as well as flows and temperatures of the evap-
orator and condenser water at the used linearization point. The listed variables are
compressor frequency (compressor), expansion valve opening (exv), evaporator en-
tering water temperature (eEWT), evaporator leaving water temperature (eLWT),
evaporator water flow (eFlow), condenser entering water temperature (cEWT), con-
denser leaving water temperature (cLWT) and condenser water flow (cFlow).

compressor exv
150 Hz 0.70

eEWT eLWT eFlow cEWT cLWT cFlow
12◦C 7◦C 0.085 m3/s 30◦C 35◦C 0.112 m3/s

point, the control signals are kept at constant values. We use a point where the
compressor frequency (u2) is set to 150 Hz and the expansion valve opening (u1)
is 0.7, i.e., the valve is 70% open. For the stationary point corresponding to these
inputs, the temperatures and flows of the water that circulates through the evaporator
and compressor are listed in Table 4.

To evaluate the solution obtained from the examined method, which we refer to
as model-free decoupling control, we compare it with two alternative approaches.
The first one is decentralized PI control, where we use two separate single-input
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Table 5. PI-controller parameters used for the different control methods.

control method kP
1 kI

1 kP
2 kI

2

SISO 0.08854 0.01337 0 −12.8
model-based decoupling 2.622 0.6745 0 0.1708
model-free decoupling 0.08854

S1
1S2

1

0.01337
S1

1S2
1

0 −12.8
S1

2S2
2

single-output (SISO) controllers, each using only one of the feedback signals to
determine one of the control signals, as shown in Fig. 7. We refer to this case as
SISO control. The second control approach is to use a decoupled controller, where
the decoupling matrix is the inverse of the transfer function matrix that describes
the input-output system Pio(s) with our two control signals u1 and u2 as inputs,
and the feedback signals y1 and y2 as outputs, evaluated at s = 0. Thus, we use
the controller structure shown in Fig. 8 and get a multiple-input multiple-output
(MIMO) controller[

U1(s)
U2(s)

]
= P−1

io (0)
[
C1(s) 0

0 C2(s)

][
E1(s)
E2(s)

]
,

with the decoupling matrix D = P−1
io (0). We refer to this case as model-based de-

coupling control. The model-based decoupling matrix is computed to

Dmodel = P−1
io (0) =

[
0.01212 −0.2153
−3.222 −53.86

]
.

The PI controllers C1 and C2 used for each of the methods are selected using
the MATLAB function pidtune. One set of PI controllers is selected for the SISO
case, and another set of controllers for the model-based decoupling case. For the
model-free decoupling case, the PI controllers are selected such that the closed-
loop system is equal to the SISO control system when the scaled decoupling matrix
D̂ (see (3)) is equal to the identity matrix, i.e., θ = (1,0,0,1)T, which is the case
when the algorithm is initialized. Parameterizing the PI controllers as

u j(t) = kP
j e j(t)+ kI

j

∫ t

0
e j(τ) dτ, j = 1,2,

where e j(t) = r j(t)− y j(t) is the control error, the used parameters kP
j and kI

j are
listed in Table 5. Note that kI

2 is negative in the SISO case. This is explained by the
fact that increasing the compressor speed (u2) usually causes a decrease in eLWT
(y2), since the cooling effect increases. In the model-based decoupling case, this
sign switch is incorporated into the decoupling matrix.

When running the model-free decoupling algorithm, we use the decoupling ma-
trix factorization (3) with scaling matrices

S1 =

[
1 0
0 150

]
and S2 =

[
1 0
0 1

]
.
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The choice of the first scaling matrix reflects that the typical range of the com-
pressor speed is [0,150], while the range of the expansion valve opening is [0,1].
Furthermore, we assume that the entries of the scaled decoupling matrix, i.e. our
parameters to be determined, satisfy

θi ∈ [−10,10], for i = 1,2,3,4.

In the cost function, the only measurement signals that are considered are the
feedback signals y1 and y2, i.e., the number of measurement signals is m = 2. Fur-
thermore, we use the weight values α = 30, β = 1000 and γ = 150. The tracking
specification curves ymin and ymax are chosen as in Fig. 13 (scaled by the step height
for each test input) for both feedback signals. This means that no cost is added if the
step responses are faster than the step response of a first-order system with a time
constant of 10 seconds and if there are no overshoots. The control limits for the
expansion valve opening u1 are chosen to u1 ∈ [−0.3,0.3], since the linearization
is around the value 0.7, and the maximum valve opening in the nonlinear model
corresponds to the value 1. The control limits for the compressor speed u2 are set to
u2 ∈ [−150,60], since the linearization is around the value 150, and the compressor
speed must be non-negative, but should not be too high. The control weights are
set to wu

1 = 1/0.3 and wu
2 = 1/50, to take into account the different ranges of the

control signals. The output weights are chosen as w1 = w2 = 1, and the lower limit
of the reward is selected as Rmin =−15.

For the test inputs, as shown in Fig. 12, we set the duration t f
i − t0

i to 500 sec-
onds for all i. The step amplitude is set to 1 for i = 1,2,3, corresponding to the
subcooling reference r1, the eLWT reference r2 and the eEWT disturbance d1. For
i = 4, corresponding to the eFlow disturbance d2, the amplitude is 0.01.

The functions εn and δ n that should decrease with the iteration number n are set
to decrease exponentially, so that

ε
n = εmin +(εmax− εmin)e−n/Tε and δ

n = δmin +(δmax−δmin)e−n/Tδ .

Their values start at εmax and δmax, and approach asymptotically εmin and δmin. The
rate of decrease is determined by the time constants Tε and Tδ . We use the values
εmax = 1, εmin = 0.01, Tε = 2000 for the εn function, and δmax = 0.1, δmin = 0.01,
Tδ = 1000 for the δ n function.

The state and reward from each iteration are stored in a data buffer of size
B = 5000. After each iteration, b = 500 values are randomly selected (with replace-
ment) from this buffer and used to train the value function network V (θ ;ω). This
network is selected to have 3 inner layers, each with 16 nodes. All layers have a
ReLU activation function, except for the output layer that does not have an activa-
tion function. For training, we use the Adam optimizer with learning rate η = 0.001.
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Table 6. Resulting reward for the different controllers.

control method SISO model-based decoupling model-free decoupling
reward −6.64 −4.61 −3.70

6. Results

The method was applied to the example setup described in the previous section.
The reward obtained at each iteration is shown in Fig. 14. A smoothed version of
the same data, using a 50-step moving average, is shown in Fig. 15. We see that
after some initial exploration during the first 1000 iterations, the algorithm finds a
solution that gives a relatively high reward. Some additional exploration is done for
the following 500–1000 iterations, until the reward is stabilized around the highest
found value for almost all remaining iterations.

The corresponding parameter values for each iteration are shown in Fig. 16.
Here, the initial exploration where large changes are tried out during the first 1000
iterations is clearly visible. After 2000 iterations, the remaining variations are small,
and the parameters remain close to values that correspond to the largest obtained
reward.

The final reward, after 5000 iterations, is in Table 6 compared to the reward
obtained with SISO control and with model-based decoupling control. We see that
the method manages to find a decoupling matrix that results in better control per-
formance than the alternative methods, in terms of the cost function used.

The different non-zero terms of the reward for the different control methods are
shown in Fig. 17. Note that the scale on the y-axis is upside down, and that a lower
bar corresponds to a higher reward and thus is better. We see that the model-based
decoupling control gives better or similar performance compared to SISO control
for all parts of the reward. The model-free decoupling control gives much better
performance than the other methods for some of the terms, and performance similar
to the model-based decoupling control for almost all of the remaining terms. Out
of the three terms for which the model-free decoupling control performs notice-
ably worse than the model-based decoupling control, two consist in that the control
signal derivative varies slightly more. This part of the reward is mainly a regulariza-
tion to make sure that we avoid too rapid control signal variations, and these small
reward differences should not lead to any significant disadvantage, as long as the
actuators can be adjusted sufficiently fast. The third term in which the model-free
decoupling control performs worse is the effect of the subcooling reference change
on the eLWT. Although model-based decoupling is better in this case, the reward
is rather large in both cases, compared to the other terms, and the performance is
better than for the SISO controller even for this term. Overall, the method seems to
be effective in finding a controller that gives small or at least similar values in all
terms of our defined cost function, compared to the values obtained using the two
reference controllers.
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Figure 14. Reward at each iteration of the algorithm when starting out from a
decentralized controller.
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Figure 15. 50-step moving average of reward at each iteration of the algorithm
when starting out from a decentralized controller.
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Figure 16. Parameter values θ defining the decoupling matrix at each iteration of
the algorithm when starting out from a decentralized controller.
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Figure 17. Values of the non-zero terms of the reward of the final solution. Values
closer to zero are better. The first eight terms correspond to the effect on the reward of
changes in the measurement signals subcooling and eLWT due to reference changes
and disturbances. The last two terms correspond to the effect on the reward of control
signal derivative variations.

The test inputs to the closed-loop system used are shown in Fig. 18. The result-
ing measurement and control signals are shown in Fig. 19. For the first measurement
signal, the subcooling, both decoupling methods contribute significantly to reduc-
ing the deviations from the nominal value compared to the SISO case. The effect
is clearly strongest when the model-free control is used. For the second measure-
ment signal, eLWT, the overall performance is similar between all three methods,
although the decoupling methods give a slightly higher reward.

In Fig. 20, we show the evaporator refrigerant level, eLevel. This signal is usu-
ally not measurable and is not used for control or in the design of the controller.
However, we know that it is one of the signals for which it is important to keep the
variations small, and it is therefore interesting to examine. We see that the effect
on this signal from the model-free decoupling control is very similar to the effect
from the SISO control for our test example. The performance for the model-based
decoupling control is, however, slightly worse with respect to this signal.

Finally, we look at the control signals exvOpening and compressorSpeed in
Fig. 19. We see that the signals satisfy the bounds that we defined in the cost, which
means that the corresponding cost terms are zero. For the change of the subcooling
reference, during the first 500 seconds, the model-free decoupling leads to control
signals that are quite large during a short time, compared to the other methods.
However, during the same time interval, the deviation in the exvOpening from the
nominal value is smaller for the model-based decoupling control than for the SISO
control, so the relatively large control signals do not seem to be a necessary conse-
quence of a decoupled controller that performs better than the SISO controller. If
one would like to decrease this effect, it should therefore be possible to do that by
taking it into account in the cost function, while still maintaining relatively good
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Figure 18. Test inputs for the linearized closed-loop system model. The shown
inputs correspond to deviations from the operating point at which the model was
linearized.

performance. For the rest of the simulation time, the decoupling controllers lead to
control signals that are similar to the SISO control signals, but with smaller over-
shoots. The difference is clearest for the model-free decoupling control, where the
control signals do not have any overshoot at all during this time interval.

The resulting scaled decoupling matrix for the model-free case is

D̂RL =

[
2.9880 0.4071
−3.4801 0.5736

]
.

Note that the scaled decoupling matrices for the different cases are not directly
comparable since different PI controllers and scaling matrices are used. To compare
the controllers, we look at the complete controller K, where U(s) = K(s)E(s), for
the Laplace transform of the control signal vector U(s) = (U1(s),U2(s))T and the
Laplace transform of the control error vector E(s) = (E1(s),E2(s))T. The complete
controllers for the SISO case, KSISO, the model-based decoupling case, Kmodel, and
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Figure 19. Measurement signals and control signals. The shown signals corre-
spond to deviations from the operating point at which the model was linearized.
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Figure 20. Evaporator refrigerant level. The shown signal corresponds to devia-
tions from the operating point at which the model was linearized.

the model-free case, KRL, are given by

KSISO =

[
0.08854+ 0.01337

s 0
0 − 12.8

s

]
,

Kmodel =

[
0.03178+ 0.008175

s −
(
8.448+ 2.173

s

)
− 0.03677

s − 9.199
s

]
,

KRL =

[
0.2646+ 0.03995

s −
(
46.22+ 6.979

s

)
− 0.03474

s − 7.342
s

]
.

We see that the decoupled controllers compute the second control signal, compres-
sor speed, in similar ways, while the model-free decoupling controller has a clearly
higher gain for computing the first control signal, expansion valve opening. The dif-
ferences between the decoupled controllers and the SISO controller are very signif-
icant, with large diagonal elements for the decoupled controllers that clearly affect
the control behavior significantly.

7. Discussion

This report presents a method for constructing a multiple-input multiple-output
(MIMO) controller for a chiller process, with the property that it tracks reference
changes while keeping variations in other relevant signals small. We would like the
method to be able to automatically adapt the controller to new variants of the pro-
cess. This should preferably be possible without needing an accurate model of the
process to compute the controller.

Such a method was presented and tested on a simulated process, consisting of
a model that was linearized around a specific operating point. The method uses a
simple reinforcement learning approach in order to determine a decoupling matrix
that in combination with two PI controllers makes up a MIMO controller with two
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feedback signals and two control signals. The resulting controller was compared
with a controller with the same structure, but where the decoupling matrix instead
was computed using the static gain of an input-output model of the system, i.e.,
model-based decoupling. It was also compared to a decentralized controller, con-
sisting of two separate single-input single-output (SISO) PI controllers, each using
only one feedback signal to determine one control signal.

The performance of the controllers is measured in terms of a cost that is de-
signed to represent the aim of keeping variations in measurement signals small
while maintaining sufficiently good tracking and disturbance rejection performance.
In terms of this cost, the MIMO controllers perform significantly better compared to
the decentralized SISO controller structure. Furthermore, the model-free reinforce-
ment learning based approach generates a controller that outperforms the model-
based controller as well. This method also allows for the possibility to adapt the
controller based on measurements after applying some test inputs. Thus, we have
achieved the goal of creating a method for construction of a model-free adaptive
MIMO controller that performs better than two separate SISO controllers.

Since the method was tested on a simulated system model, it was possible to run
many iterations of the RL algorithm relatively quickly. With the settings in the test
problem, we note that it takes around 2500 iterations before the parameter values
and the reward have stabilized close to their final values. Running this many itera-
tions on the real process would be very time consuming. The question is therefore
how this method could be used practically.

First of all, we note that we have not put much effort into optimizing the perfor-
mance of the RL algorithm. The purpose of this study has been to demonstrate that
the method is a possible approach for determining a decoupling in a MIMO control
setting. Therefore, we have chosen some reasonable default settings for the algo-
rithm but have not emphasized trying many different combinations of these settings.
Since there are many different settings to adjust, it is probable that selecting these
with care could lead to significantly increased performance. Settings that could im-
pact the performance are, e.g., the functions εn and δ n that describe how the ε in
the epsilon-greedy method is decreased, and how the step size for changing the pa-
rameters in each iteration is decreased. The amount of training data b used in each
iteration, as well as the structure and settings of the neural network that represents
the value function, are also factors where many variants could be tested and could
impact performance. Future work would thus be to examine different combinations
of these algorithm settings in order to optimize the performance.

Secondly, we must keep in mind that we initialize the method from a situa-
tion corresponding to the fully decentralized control case. The purpose of this is to
demonstrate that even starting from a case with no decoupling structure at all, the
algorithm is able to find a well-performing decoupling matrix. When using the algo-
rithm in practice, it is more realistic to assume that we initialize the algorithm using
parameters that are closer to optimal. When the algorithm is used to find controllers
for many different but similar processes, we can initialize it with the values from
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a previous similar process, instead of assuming no decoupling at all initially. If we
have a model of the process that can be used for simulating it, we can also first run
the algorithm on the model, to find parameter values that are close to optimal, and
then run some iterations on the real process to optimize it further.

For practical use on a real process, one also has to take into account that the con-
trollers resulting from the algorithm should be safe to run. One way to accomplish
this could be to define the limits of the parameters θ so that any choice from the
set of allowed parameter vectors leads to a safe controller. The question of how to
determine such limits has not been considered in this report. However, even if this is
not done, the real process should deactivate the controller and switch to another safe
controller if some constraints are about to be exceeded, which, in any case, would
lead to a low reward.

Besides examining different algorithm settings and the effect of different initial-
ization points, future work should involve trying out the algorithm on a nonlinear
model and eventually on real processes in the lab. Testing the algorithm on a non-
linear system, it is interesting to examine how the result differs depending on the
operating points. An interesting question is whether it would be advantageous to use
several different controllers for different operation ranges, i.e. to use gain schedul-
ing, or if one controller would be sufficient for all operating points.
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