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Abstract: Several revolutionary applications have been built on the distributed ledgers of blockchain
(BC) technology. Besides cryptocurrencies, we can find many other application fields in smart
systems exploiting smart contracts and Self Sovereign Identity (SSI) management. The Hyperledger
Indy platform is a suitable open-source solution for realizing permissioned BC systems for SSI
projects. SSI applications usually require short response times from the underlying BC network,
which may vary highly depending on the application type, the used BC software, and the actual
BC deployment parameters. To support the developers and users of SSI applications, we present
a detailed latency analysis of a private permissioned BC system built with Indy and Aries. To
streamline our experiments, we developed a Python application using containerized Indy and Aries
components from official Hyperledger repositories. We deployed our experimental application on
multiple virtual machines in the public Google Cloud Platform and on our local, private cloud using
a Docker platform with Kubernetes. We evaluated and compared their performance with the metrics
of reading and writing response latency. We found that the local Indy ledger reads 30–50% faster, and
writes 65–85% faster than the Indy ledger running on the Google Cloud Platform.

Keywords: blockchain; Self Sovereign Identity; Hyperledger Indy; latency analysis

1. Introduction

Distributed ledger technology (DLT) is a data storage technology managed by mul-
tiple nodes in a decentralized way. Blockchain (BC) [1] is a special case of DLT, where
blocks contain the data, and every block references the hash of the previous block, which
makes it more temper-proof. This technology is utilized for enhancing trust in distributed
computing applications and managing distributed ledgers (DL). Applications integrated
with permissionless BCs benefit from high levels of security and trust, where BCs provide
a fully immutable log of transaction (TX) history without the control of a central author-
ity. Similarly, permissioned BCs utilize a distributed trusted third party for providing
services typically requested from a central trusted third party. In applications that require
trusted BC nodes, permissioned BCs, typically referred to as Miners, Minters, Verifiers, or
Validaters, are used to maintain a consistent and trusted DL. Initially, those participants
apply to become BC nodes to a committee that votes for acceptance. Permissionless BC
solutions have been designed first for realizing digital cryptocurrencies [2], but nowadays
they address a wide variety of environments, such as document management [3], smart
applications for eHealth [4], or Internet of Vehicles [5]. In such an access model, any party
can join the BC network and collaborate in validating and confirming new pieces of data
added to the DL, without a network size limit. For applications that require a distributed
yet controlled trusted third party, permissioned BC solutions are suitable, where a limited
number of verifiers vote for appending data into the DL and for accepting new verifiers.
Examples of applications that require such a BC model include distributed voting [6], Self
Sovereign Identity (SSI) [7], and credential management [8].
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Specifically, classical internet applications lack an identity layer [9]. Web applications,
for instance, use usernames and passwords to identify their clients, yet the use of these
attributes is typically limited to the specific contexts of individual applications. Such a
framework is considered inconvenient and implies several security issues (e.g., identity
theft and fake users) [10]. Global identity [11] providers, such as Google or Meta, have
attempted to develop their access framework to enhance usability. However, data leaks are
still argued to remain an open issue [12]. Additionally, the loss of clients’ control over their
private data, which is typically saved on centralized servers, implies trust issues. Some
solutions allow users to request the deletion of their data, in order to comply with the
European General Data Protection Regulations (GDPR), yet users have to also trust the
provider to delete them. SSI concepts enable users to anonymously identify themselves, and
verify some private attributes about them, while maintaining full control and permissions
over their private data.

Although permissioned BCs have shown unprecedented abilities to maintain DLs with
high security and trust measures, compared with non-BC-based DLs, they still suffer from
high latency compared with centralized solutions. Furthermore, different permissioned BC
solutions are designed differently according to their application and the different layering
of the solution. This usually causes a fluctuation of latency measures among different
permissioned BC solutions and even for differently parameterized solutions. Such issues
mainly appear due to several system properties and limitations, such as the minimum
time needed to reach a consensus on a piece of data (i.e., the finality time), the average
transmission delay between network entities, the total network size, and the average
number of neighbors per miner [13]. This being said, researchers and practitioners tend to
model their applications and test several BC solutions for a decision to be made regarding
the deployment of a specific BC framework. As many solutions are being continuously
proposed, it must be a burden to utilize and test several frameworks before assuring that
the application requirements are fulfilled by a selected BC framework.

Blockchain technology is especially useful in applications where the database is man-
aged by a community and it is important for the data to be immutable. One of the most
limiting factors is the speed of the blockchain, which can be measured by latency or through-
put. A good example is Bitcoin, which is only capable of seven transactions per second. This
is remarkably slow compared with the performance of traditional databases, reaching thou-
sands of transactions per second. For a transaction to be confirmed, it takes around 10 min,
so it is clear that the performance problem requires improvements to make the technology
useful for more applications, and it implicitly requires performance measurements.

As several recent works have utilized Hyperledger Indy [14], and several projects
are currently investigating its deployment for their SSI applications, the aim of this work
is to analyse Hyperledger Indy in terms of latency. To reach these aims, we propose a
deployment architecture using Indy and Aries suitable for SSI applications. We have
developed a Python application with containerized Indy and Aries components, building
on the official open-source Hyperledger projects. This work is an extension of our previous
work [15], where we deployed and examined our application in multiple virtual machines
in the Google Cloud Platform. Now, we revise and extend these experiments with detailed
performance evaluation and comparison with our locally deployed application in the
private Kubernetes Cluster, using different scenarios with a variable number of BC nodes
and TX arrival rate. An example of the utilization of these results may be to help decide if
it is practicable to use Indy for a latency-sensitive application.

The remainder of this paper is as organized as follows: Section 2 discusses recent
related works. Section 3 presents a brief architectural and technical background of Hyper-
ledger Indy, and details the considered architecture and the research methods. Section 4
presents the results we obtained by running our experiments both in a public and private
cloud, which are discussed in Section 5. Finally, Section 6 concludes the paper.
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2. Related Works

EBSI (https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EBSI, accessed
on 26 September 2022) and BCDiploma (https://www.bcdiploma.com/en-GB, accessed on
26 September 2022) are examples of services built for providing verifiable credential (VC)
supportive platforms utilizing decentralized identifiers (DIDs). The BC acts as the trusted
third party (TTP) where system entities save their data. However, the standard recommen-
dation of W3C (https://www.w3.org/TR/vc-data-model/#introduction, accessed on 26
September 2022) and the solutions following it did not consider the issuer accreditation
issue, assuming any entity should be able to own a DID and issue any type of VCs. The
BCDiploma platform directly saves all issued VC hashes on the BC, which means that they
can never be deleted, and it uses a PoW-based BC with a linear DL model. Additionally, an
issuer accreditation service is not provided. Specifically, EBSI utilizes the general purpose
Hyperledger Fabric (https://www.hyperledger.org/use/fabric, accessed on 26 September
2022) which uses the Raft Consensus algorithm.

In [16,17], a BC-based data management system that could be used for the Global Legal
Entity Identifier System (GLEIS) is proposed. Towards realizing this, the authors utilized
Hyperledger Indy and their previously proposed GraphChain [18]. The implementation
and utilization model of the proposed solution were presented, in which some challenges
were faced, such as the limited message size of Indy.

Bhattacharya et al. [19] examined certain scenarios of personal data disclosure via
credential exchanges between different identities and the risks of man-in-the-middle attacks
in a BC-based identity system utilizing Hyperledger Indy. On the basis of the findings, the
authors proposed enhancing Indy with a novel attribute sensitivity score model for SSI
agents to ascertain the sensitivity of attributes shared in credential exchanges. Additionally,
they proposed a method for mitigating man-in-the-middle attacks between peer SSIs.
Finally, they proposed a novel quantitative model for determining a credential issuer’s
reputation based on the number of issued credentials in a window period, which is then
utilized to calculate an overall confidence level score for the issuer.

Malik et al. [20] proposed an architecture for decoupling identities and trade activities
on BC-enabled supply chains, namely TradeChain. The authors demonstrated the feasibility
of TradeChain by implementing a proof of concept on Hyperledger Fabric and Indy. The
limited latency evaluations provided in this study are within the ranges we obtained by
our experiments.

Prakash et al. [21] proposed that Indy and Aries agents can be implemented and
utilized to realize a connected vehicle information network solution. The authors described
several challenges they faced when utilizing those two projects, including the high latency
and scalability limitations. However, the paper did not provide specific latency measures
and settled for a description of the solution.

A detailed and comprehensive study related to different BC platforms, including Indy
and Aries, is presented in [22]. Here, well-documented tutorials and implementations
can be found, as well as descriptive methods and algorithms for different consensus and
block confirmation approaches. Additionally, architectural and low-level details have been
differentiated between the studied BC platforms.

Usually, the performance evaluations [23] can be classified into two categories: ana-
lytical modelling and empirical analysis. The empirical evaluation includes monitoring,
benchmarking, experimental analysis, and simulation.

The diversity of consensus algorithms and APIs makes it impossible to use tradi-
tional benchmarking tools for blockchains. The three most popular benchmarking tools
for blockchains are Hyperledger Caliper [24], DAGbench [25], and Blockbench [26]. Block-
bench, by default, can work with Ethereum, Parity, HLF, and Quorum, but it is possible
to implement adapters to use other platforms. It measures throughput, latency, scalabil-
ity, and fault-tolerance in private blockchains. The main focus of Hyperledger Caliper is
Hyperledger blockchains, such as Hyperledger Fabric, Sawtooth, Iroha, Burrow, and Besu.
DAGbench is dedicated to benchmarking DAG distributed ledgers such as IOTA, Nano,

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EBSI
https://www.bcdiploma.com/en-GB
https://www.w3.org/TR/vc-data-model/#introduction
https://www.hyperledger.org/use/fabric
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and Byteball. Scalability, throughput, latency, resource consumption, transaction fee, and
transaction data size can all be measured.

Though these works investigate SSI issues with Indy and Aries, none of them has per-
formed such detailed latency analysis with different system settings as we have, concerning
network sizes and TX arrival rates.

3. The Proposed Evaluation Architecture Using Indy

Hyperledger Indy [14] is an open-source project, administered by the Linux foundation,
which aims to support verifiable credential systems based on the public-permissioned BC
approach. The project implementation provides a platform for decentralized identifiers
rooted in BCs, or other DLs, so that they are inter-operable across administrative domains,
applications, etc., and are usable for validating VCs. The project deploys privacy-preserving
mechanisms such as zero-knowledge proofs and digital signatures. Additionally, Indy takes
good care of what is saved on-chain, aiming for adherence with the GDPR. The Plenum
Consensus Algorithm is used in Indy, which is a special-purpose Redundant Byzantine
Fault Tolerance Consensus Algorithm [27]. A live example of an Indy-based solution is the
Sovrin BC [28], providing a general purpose, global, DID-supportive platform.

As depicted in Figure 1, Indy requires a small group of miners that serves as a dis-
tributed trusted third party. Indy miners, or validators, are computers administered by
publicly known parties, added by a voting scheme between miners themselves. The miners’
main purpose is to maintain the liveness and consistency of the DL by accepting new TXs.
Several types of BCs consist of different types of TXs that need to be saved on-chain. Three
of those BCs are depicted in the figure: the Domain TXs BC, the Pool TXs BC, and the
Config TXs BC. On these BCs, public data about the admins of miners, TXs meta data, and
network configurations are saved, respectively.

Indy miners are added to the system in a decentralized fashion, if they fulfil certain
conditions. Indy allows this by utilizing a voting scheme, where available miners accept or
decline a new miner application. A steward miner is an authorized Indy node that is needed
to be able to add new nodes to the network. Only one node can be added per steward, so
an equal number of stewards and miners need to be present. The available sample code at
the official Indy repository creates four steward nodes. To add the first four nodes of the
network, four wallets and four pairs of PKI keys need to be created. However, a genesis
block is created along with the initial stewards’ DIDs at the initialization phase of the
system. Here, the stewards’ data are generated by a seed defined by the developer. Then,
NYM requests are sent by the wallet admins to the network of stewards who accept/reject
the TXs. Once accepted, a new wallet is created and a block is added to the BC. Once
a minimum of four miners are active, the BC network can accept new DID and schema
TXs from end-users. Endorsers and agents are end-user entities of the system that should
be implemented using the Aries scripts. The main difference between these two types of
end-users is that agents are only authorized to read on-chain data, while endorsers are
authorized to both read and write.

To realize the deployment of Indy and Aries nodes, we designed and developed a vali-
dation architecture, as depicted in Figure 1. We implemented an Aries agent that is capable
of connecting to an Indy network, and of generating sample data (i.e., TXs) to be submitted
to it. We extracted the initial codes from the Indy-SDK repository, which is implemented us-
ing Python. We used the “build_nym_request” method to create a NYM (short for Verinym)
request. Verinym is a Hyperledger Indy-specific term that is used for the identification
role of the trust anchor. The request can be submitted by the “sign_and_submit_request”
method. For the read measurements, we used the “build_get_nym_request” method with
the “submit_request” call to obtain the results. Our agent is capable of sending up to 250 TX
requests per second, using a multi-threaded approach, to examine the system’s read and
write processing speeds. The sample TXs are constructed similarly to the standard TX
formats generated by an Aries agent. However, the codes available at the Aries official
repository allows for only 20 TXs/s; thus, we had to implement our own agent.
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We implemented Indy node scripts that are suitable to be run individually on different
machines. That is, the available modules we found, at the official Indy repository, run four
nodes on a single machine, and they were not ready for production. As a demonstration
of the requirement of the network to control different nodes by different admins, we also
utilized the Admin UI from the VON network repository, which we configured to connect
to the created Indy network.

All our implemented application components are containarized using Docker, which
makes them easier to deploy for present and future works. Our implemented application is
publicly available at Github (https://github.com/sed-szeged/IndyPerf, accessed on 26
September 2022) (see Supplementary Materials), and its main management scripts are as
follows:

• indy_config.py: This file contains the configuration to run the Indy node, i.e., the name
of the network and the installation parameters.

• requirements.txt: This file contains system dependencies. We used Flask to create a
web service, which displays the genesis file extracted from the container, according to
which the admin application could connect.

• indy-node-start.sh: This script starts the server.py in a container to create a BC node.
• create_steward.py: This script can be used to add new stewards, thus adding new

nodes to the system.
• test_transactions.py: This script can be used to perform the experiments (to be detailed

in the next section). It creates a connection with the BC network, and sends the
specified TXs in multiple threads.

We performed several scenario runs using our multi-threaded Aries agent with dif-
ferent TX arrival rates (1–250 TX/s) and different network sizes (4–8). Each scenario run
was repeated 10 times, for a total BC height of 10–2500 blocks. This way, an average
latency for different heights of the BC, with different network sizes, can be extracted. We
measured the elapsed time for a TX to be sent, processed, and responded to. We have
collected the minimum and maximum latency measures, and computed their average
values. We separately examined the read and write speeds to guarantee the accuracy of
our measurements. All nodes were deployed and run individually on different virtual
machines, located in different regions of the Google Cloud Platform. We used E2-medium
VMs (up to 3.8 GHz, 2 vCPUs, 4 GB memory) running Ubuntu 16.04 OS. Visualizations of
the evaluation architecture and installation steps are provided in Figure 2.

We also performed similar read and write latency measurements in a local Docker
four-node environment, with increased TX arrival rates (1–500 TX/s), to be able to compare
the results of a system with an optimal network performance with a more real-life scenario,
where the nodes are in different regions. The architecture of the Indy ledger in the local
Docker environment can be seen in Figure 3.

https://github.com/sed-szeged/IndyPerf
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Figure 1. Our proposed blockchain architecture based on Indy [15].

Figure 2. Evaluation architecture in the Google Cloud Platform.

Figure 3. Evaluation architecture in a private cloud.

4. Evaluation Results

In this section, we present the latency measures we obtained by deploying our scripts
on multi-regional cloud servers and also on a separate local server.

4.1. Four-Node Measurements in a Public Cloud

The detailed read and write latency measurements are provided in Table 1 (partly
performed in our previous work [15]). We computed those measures for an Indy network
that consists of four nodes. We found that the size of the dataset stored on-chain does not
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affect the speed, as the ten measures we collected per scenario were very close to each
other. However, we can see a proportional relationship between the TX arrival rate and
the average latency for both read and write TXs. It is also worth noting that depending on
the TX arrival rate, the average write latency fluctuates from 2.7 to 6.3 s per TX. On the
other hand, the average read latency fluctuates from 0.088 to 1.56 s per TX, and also heavily
depends on the TX arrival rate.

4.2. Eight-Node Measurements in a Public Cloud

The detailed read and write latency measurements are provided in Table 2. We
computed those measures for an Indy network that consists of eight nodes. We also
checked if the size of the dataset stored on-chain affected the latency, and came to the same
conclusion—that it does not. We can also see that increasing the arrival rate increases the
average latency for both types of requests. Depending on the arrival rate, it is observable
in the table that the average write latency fluctuates from 2.6 to 10.4 s per TX. The same
dependency can be seen for the average read latency, which fluctuates from 0.12 to 2.49 s
per TX.

Table 1. Latency measures, in seconds, for read (R) and write (W) TXs where network size = 4.

TX Arrival Rate (TXs/s)

Type 1 50 100 150 200 250

Min (W) 1.1014 1.1014 1.1014 1.1014 1.1014 1.1014

Max (W) 2.9832 2.9138 2.9490 5.8131 6.8542 13.3811

Avg (W) 2.7388 2.5284 2.2197 4.4763 5.3511 6.3534

TX Arrival Rate (TXs/s)

Type 1 50 100 150 200 250

Min (R) 0.0108 0.0671 0.1058 0.0841 0.2469 0.0800

Max (R) 0.2160 1.1387 1.4655 2.2378 2.5302 4.7086

Avg (R) 0.0881 0.3961 0.5815 0.8964 1.1408 1.5562

Table 2. Latency measures, in seconds, for read (R) and write (W) TXs where network size = 8.

TX Arrival Rate (TXs/s)

Type 1 50 100 150 200 250

Min (W) 0.2614 1.7064 1.5032 1.3114 1.2914 1.5289

Max (W) 2.9949 2.9607 5.2011 8.5050 7.4365 16.9094

Avg (W) 2.6118 2.5993 2.5347 4.8506 5.5883 10.4323

TX Arrival Rate (TXs/s)

Type 1 50 100 150 200 250

Min (R) 0.0092 0.0567 0.0927 0.0667 0.0350 0.0219

Max (R) 0.7147 1.1744 1.4469 1.9189 2.4340 5.6863

Avg (R) 0.1203 0.3718 0.5430 0.8163 1.0652 2.4928

4.3. Four-Node Measurements in a Private Cloud

For the experiments, we used our local, private cloud deployed on a Synergy 480
Gen10 Server, which has two CPUs; both of them are Intel(R) Xeon(R) Gold 5118 with
12 cores running on 2.30 GHz. The server has 384 GB RAM. The Indy ledger consisted
of four Docker containers, created from the official Indy-SDK images, using the official



Future Internet 2022, 14, 282 8 of 13

Docker Compose description file. The test script was written in Python and executed in a
Jupyter notebook, just like the official Indy demo commands.

Table 3 provides the detailed read and write latency measurements with a four-node
network. We also evaluated an eight-node local network; the results can be found in Table 4.
We found once again that the size of the dataset stored on-chain does not affect the latency.
We can also see that increasing the arrival rate increases the average latency for both types
of requests. It is observable in the table that the average write latency fluctuates from 1.8
to 7.1 s per TX in the four-node network, and from 2.0 to 7.7 s per TX in the eight-node
network, depending on the arrival rate, as Figure 4 shows. On the other hand, the average
read latency fluctuates from 0.03 to 1.4 s per TX in the four-node network, and from 0.03 to
2.4 s per TX in the eight-node network, as shown in Figure 5.

Table 3. Latency measures, in seconds, for read (R) and write (W) TXs in a local Docker environment
where network size = 4.

TX Arrival Rate (TXs/s)

Type 1 50 100 150 200 250 300 350 400 450 500

Min (W) 0.1011 1.6937 1.8288 1.9917 4.4555 4.8983 5.1942 5.5093 5.7745 6.0929 6.3293

Max (W) 2.0067 2.1450 2.2595 4.3912 5.0304 5.1658 5.6114 6.2726 6.5005 6.9145 10.1340

Avg (W) 1.7733 1.7860 1.9137 3.9115 4.7391 5.0067 5.3868 5.8393 6.1832 6.5251 7.1020

TX Arrival Rate (TXs/s)

Type 1 50 100 150 200 250 300 350 400 450 500

Min (R) 0.0178 0.0856 0.2053 0.2155 0.4517 0.6864 0.6904 0.7717 0.8427 1.0742 1.1358

Max (R) 0.0474 0.2229 0.4658 0.6657 0.8918 1.1936 1.2290 1.4729 1.7036 1.9957 2.1096

Avg (R) 0.0266 0.1401 0.2849 0.4032 0.5625 0.7290 0.8534 0.9997 1.1217 1.3038 1.3950

Table 4. Latency measures, in seconds, for read (R) and write (W) TXs in a local Docker environment
where network size = 8.

TX Arrival Rate (TXs/s)

Type 1 50 100 150 200 250 300 350 400 450 500

Min (W) 0.1004 1.6858 1.4348 2.3036 4.7245 5.1294 4.5748 5.8767 6.3978 6.7831 7.1836

Max (W) 2.0020 2.2518 3.3587 4.8211 5.0167 5.4596 5.9855 6.3402 6.8323 8.5989 7.7109

Avg (W) 1.7919 1.8107 1.7563 3.9873 4.8259 5.2884 5.6173 6.1577 6.6395 7.1475 7.4985

TX Arrival Rate (TXs/s)

Type 1 50 100 150 200 250 300 350 400 450 500

Min (R) 0.0143 0.1694 0.2172 0.3529 0.6244 0.5323 0.7636 0.8521 0.9900 1.3708 1.3517

Max (R) 0.0263 0.2425 0.4751 0.7329 0.9451 1.1434 1.3563 1.5009 1.7062 2.0700 2.3891

Avg (R) 0.0214 0.1526 0.2926 0.4009 0.5749 0.7272 0.8616 0.9998 1.1941 1.3387 1.4752
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Figure 4. Latency of write TXs (in seconds) measured with a local Indy-based BC and different arrival
rates (1–500).

Figure 5. Latency of read TXs (in seconds) measured with a local Indy-based BC and different arrival
rates (1–500).

In comparison with the ledger on the Google Cloud Platform, in terms of the perfor-
mance in the metrics of reading and writing response latency, we found that the local Indy
ledger reads 30–50% faster, and writes 65–85% faster than the Indy ledger running on the
Google Cloud Platform. The explanation may be that the network latency is much better in
a local Docker environment, than in a close-to-real-life scenario, where the different VMs
are in different regions in the Google Cloud Platform.

5. Discussion

As we can observe in the results presented in the previous section, increasing the
number of Indy nodes and/or the arrival rate increases the average response latency. These
measures are important to consider when Indy is considered as a framework for a given
BC-based application. The scenarios we tested, and their results, shall help those who tend
to utilize Indy and Aries when making the decision as to whether to adopt or exclude
this platform from their project. To further clarify the results we obtained, we present our
results in Figures 6 and 7.
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Figure 6. Latency of write TXs (in seconds) measured with different Indy-based BC network sizes
and different arrival rates.

Figure 7. Latency of read TXs (in seconds) measured with different Indy-based BC network sizes and
different arrival rates.

In the case of read TXs, we can observe that the average latency measurement is almost
linearly proportional to the arrival rate up to 200 TXs/s. After that, the latency starts to
increase according to the number of nodes deployed. In the case of write TXs, we can
observe that the average latency measurement is almost constant up to an arrival rate of
100 TXs/s. After that, the latency starts to increase depending on the system buffer size
and the utilized processing power.

Furthermore, one can see that the average write latency is generally higher when
deploying more nodes for different arrival rates. The read latency, on the other hand, is
generally lower when deploying more nodes as more servers are available to process the
received TXs. An example of the utilization of these results may be a latency-sensitive
application that requires an average write latency of less than 2 s per TX, which shall
not adopt the Indy framework. Note that this measurement is for the least number of
Indy nodes (i.e., four nodes). Adding more nodes shall increase the write latency as
discussed above.

If we compare the latency of the local Indy ledger with the same node in the Google
Cloud Platform, it is obvious that the local ledger performed better both in writing and
reading. The explanation could be the much better network performance between the
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nodes in the local environment. The dependency of the arrival rate is also shown in both
experiments. In Figures 8 and 9, the 30–50% better read latency and the 65–85% write
latency can be seen.

Figure 8. Average write latency comparison of a 4-node GCP and a local Docker Indy ledger.

Figure 9. Average read latency comparison of a 4-node GCP and a local Docker Indy ledger.

During the implementation and deployment of Indy and Aries nodes, we faced the
following drawbacks/challenges. DLs in Indy are maintained linearly, which implies that
high DL consistency depends on a high block finality time [29]. This causes additional
write latency on top of the latency required for reaching a consensus. Providing global
information regarding what accreditation bodies approve/disapprove, and on which
reference criteria blocks are confirmed, cannot be achieved using the currently available
open-source code of Indy and Aries. The maximum recommended number of nodes
participating as BC miners is 25. Adding more nodes is likely to introduce an inefficient
system with very high latency. The open-source code currently available allowed us to
perform very limited modifications, and we found that the deployment of an enterprise
Indy solution requires deep background knowledge of its technicalities. For example, we
tried to deploy the Indy node codes on a recent version of the Ubuntu OS but we could not
because of the very restrictive dependencies of the deployed libraries. We have not found
a clear and proactive trust model for adding new endorsers or stewards. Thus, adding
endorsers does not necessarily mean they are accredited in the associated legacy system.
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6. Conclusions

In this paper, we proposed a deployment architecture for SSI applications, and devel-
oped a Python application with containerized components for its realization. We evaluated
our proposed architecture in terms of latency by deploying its components in the Google
Cloud Platform, in different regions with individual VMs. We executed several test sce-
narios to obtain average latency measures for different system settings, namely different
network sizes and different TX arrival rates. For arrival rates between 1 and 250, we found
that the write response latency of an Indy-based BC containing four and eight nodes ranges
between 1 and 16 s, while the read response latency with similar settings ranges between
0.01 and 5 s. We also compared the results with a local ledger in a Docker environment
in our private cloud. In the future, we plan to enhance the scalability of our application
by dynamic, automated BC node addition and removal. We have also started to design
a solution for some of the mentioned performance issues in a global accreditation and
credential verification application, and we have proposed a privacy-aware Fog-enhanced
blockchain-based online credential solution in [30].

Supplementary Materials: All our implemented application components are containarized using
Docker, which makes them easier to deploy for present, and future works. Our implemented
application is publicly available at Github. Available online: https://github.com/sed-szeged/
IndyPerf (accessed on 26 September 2022).

Author Contributions: Software, T.P.; Writing—review & editing, T.P., H.B. and A.K. All authors
have read and agreed to the published version of the manuscript.

Funding: The research leading to these results has received funding from the national project
TKP2021-NVA-09 implemented with the support provided by the Ministry of Innovation and Tech-
nology of Hungary from the National Research, Development and Innovation Fund, and from the
UNKP-21-4 New National Excellence Program of the Ministry for Innovation and Technology from
the source of the National Research, Development and Innovation Fund.

Data Availability Statement: Not applicable.

Acknowledgments: The experiments presented in this paper are based upon work supported by
Google Cloud.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nofer, M.; Gomber, P.; Hinz, O.; Schiereck, D. Blockchain. Bus. Inf. Syst. Eng. 2017, 59, 183–187.
2. Abraham, I.; Malkhi, D.; Nayak, K.; Ren, L.; Spiegelman, A. Solidus: An incentive-compatible cryptocurrency based on

permissionless byzantine consensus. arXiv 2016, arXiv:1612.02916.
3. Karasek-Wojciechowicz, I. Reconciliation of anti-money laundering instruments and European data protection requirements in

permissionless blockchain spaces. J. Cybersecur. 2021, 7, tyab004.
4. Krawiec, R.; Housman, D.; White, M.; Filipova, M.; Quarre, F.; Barr, D.; Nesbitt, A.; Fedosova, K.; Killmeyer, J.; Israel, A. et.

al. Blockchain: Opportunities for Health Care. Available online: https://www2.deloitte.com/content/dam/Deloitte/us/
Documents/public-sector/us-blockchain-opportunities-for-health-care.pdf (accessed on 26 September 2022).

5. Javaid, U.; Aman, M.N.; Sikdar, B. A scalable protocol for driving trust management in internet of vehicles with blockchain. IEEE
Internet Things J. 2020, 7, 11815–11829.

6. Bistarelli, S.; Mercanti, I.; Santancini, P.; Santini, F. End-to-End Voting with Non-Permissioned and Permissioned Ledgers. J. Grid
Comput. 2019, 17, 97–118.

7. Kondova, G.; Erbguth, J. Self-sovereign identity on public blockchains and the GDPR. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing, Brno, Czech Republic, 30 March–3 April 2020; pp. 342–345.

8. Jirgensons, M.; Kapenieks, J. Blockchain and the future of digital learning credential assessment and management. J. Teach. Educ.
Sustain. 2018, 20, 145–156.

9. Tobin, A.; Reed, D. The inevitable rise of self-sovereign identity. Sovrin Found. 2016, 29, 18.
10. Thomas, K.; Pullman, J.; Yeo, K.; Raghunathan, A.; Kelley, P.G.; Invernizzi, L.; Benko, B.; Pietraszek, T.; Patel, S.; Boneh, D.;

et al. Protecting accounts from credential stuffing with password breach alerting. In Proceedings of the 28th USENIX Security
Symposium (USENIX Security 19), Santa Clara, CA, USA, 14–16 August 2019; pp. 1556–1571.

11. Makri, K.; Papadas, K.; Schlegelmilch, B.B. Global social networking sites and global identity: A three-country study. J. Bus. Res.
2021, 130, 482–492.

https://github.com/sed-szeged/IndyPerf
https://github.com/sed-szeged/IndyPerf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/public-sector/us-blockchain-opportunities-for-health-care.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/public-sector/us-blockchain-opportunities-for-health-care.pdf


Future Internet 2022, 14, 282 13 of 13

12. Boysen, A. Decentralized, Self-Sovereign, Consortium: The Future of Digital Identity in Canada. Front. Blockchain 2021, 4, 11.
13. Kertesz, A.; Baniata, H. Consistency Analysis of Distributed Ledgersin Fog-enhanced Blockchains. In Proceedings of the

European Conference on Parallel Processing, Lisbon, Portugal, 30–31 August 2021.
14. Linux Foundation. HyperLedger Indy. 2020. Available online: hyperledger.org/use/hyperledger-indy (accessed on 26 September

2022).
15. Baniata, H.; Pflanzner, T.; Feher, Z.; Kertesz, A. Latency Assessment of Blockchain-based SSI Applications Utilizing Hyperledger

Indy. In Proceedings of the 12th International Conference on Cloud Computing and Services Science—CLOSER. INSTICC,
SciTePress, Online, 27–29 April 2022; pp. 264–271. https://doi.org/10.5220/0011082300003200.

16. Sopek, M.; Grakadzki, P.; Kuzinski, D.; Trojczak, R.; Trypuz, R. Legal Entity Identifier Blockchained by a Hyperledger Indy
Implementation of GraphChain. In Proceedings of the Research Conference on Metadata and Semantics Research, Limassol,
Cyprus, 23–26 October 2018; pp. 26–36.

17. Raclawickie, A. Legal Entity Identifier Blockchained by a Hyperledger Indy Implementation of GraphChain. In Proceedings of
the Metadata and Semantic Research: 12th International Conference, MTSR 2018, Limassol, Cyprus, 23–26 October 2018; Revised
Selected Papers; Springer: Berlin/Heidelberg, Germany, 2019; Volume 846, p. 26.

18. Sopek, M.; Gradzki, P.; Kosowski, W.; Kuziski, D.; Trojczak, R.; Trypuz, R. GraphChain: A distributed database with explicit
semantics and chained RDF graphs. In Proceedings of the Companion Proceedings of the The Web Conference 2018, Lyon,
France, 23–27 April 2018; pp. 1171–1178.

19. Bhattacharya, M.P.; Zavarsky, P.; Butakov, S. Enhancing the Security and Privacy of Self-Sovereign Identities on Hyperledger
Indy Blockchain. In Proceedings of the 2020 International Symposium on Networks, Computers and Communications (ISNCC),
Montreal, QC, Canada, 20–22 October 2020; pp. 1–7.

20. Malik, S.; Gupta, N.; Dedeoglu, V.; Kanhere, S.S.; Jurdak, R. TradeChain: Decoupling Traceability and Identity inBlockchain
enabled Supply Chains. arXiv 2021, arXiv:2105.11217.

21. Prakash, N.; Michelson, D.G.; Feng, C. CVIN: Connected Vehicle Information Network. In Proceedings of the 2020 IEEE 91st
Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–6.

22. Mohanty, D. Blockchain From Concept to Execution: BitCoin, Ethereum, Quorum, Ripple, R3 Corda, Hyperledger Fabric/SawTooth/Indy,
MultiChain, IOTA, CoCo; BPB Publications: Noida, India, 2018.

23. Finck, M. Blockchain and the General Data Protection Regulation. Can Distributed Ledgers be Squared with European Data
Protection Law? Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2019/634445/EPRS_STU(2019)6
34445_EN.pdf (accessed on 26 September 2022).

24. Caliper, H. Hyperledger Caliper Architecture. Electronic Article. 2019. Available online: https://hyperledger.github.io/caliper/
docs/2_Architecture.html (accessed on 26 September 2022).

25. Dong, Z.; Zheng, E.; Choon, Y.; Zomaya, A.Y. Dagbench: A performance evaluation framework for dag distributed ledgers.
In Proceedings of the 2019 IEEE 12th international conference on cloud computing (CLOUD), Milan, Italy, 8–13 July 2019;
pp. 264–271.

26. Dinh, T.T.A.; Wang, J.; Chen, G.; Liu, R.; Ooi, B.C.; Tan, K.L. Blockbench: A framework for analyzing private blockchains. In Pro-
ceedings of the 2017 ACM International Conference on Management of Data, Chicago, IL, USA, 14–19 May 2017; pp. 1085–1100.

27. Aublin, P.L.; Mokhtar, S.B.; Quéma, V. Rbft: Redundant byzantine fault tolerance. In Proceedings of the 2013 IEEE 33rd
International Conference on Distributed Computing Systems, Philadelphia, PA, USA, 8–11 July 2013; pp. 297–306.

28. Windley, P.J. How Sovrin Works; Windely.com: Hoboken, NJ, USA, 2016.
29. Baniata, H.; Anaqreh, A.; Kertesz, A. DONS: Dynamic Optimized Neighbor Selection for smart blockchain networks. Future

Gener. Comput. Syst. 2022, 130, 75–90.
30. Baniata, H.; Kertesz, A. PriFoB: A Privacy-aware Fog-enhanced Blockchain-based system for Global Accreditation and Credential

Verification. J. Netw. Comput. Appl. 2022, 205, 103440. https://doi.org/10.1016/j.jnca.2022.103440.

hyperledger.org/use/hyperledger-indy
https://www.europarl.europa.eu/RegData/etudes/STUD/2019/634445/EPRS_STU(2019)634445_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2019/634445/EPRS_STU(2019)634445_EN.pdf
https://hyperledger.github.io/caliper/docs/2_Architecture. html
https://hyperledger.github.io/caliper/docs/2_Architecture. html

	Introduction
	Related Works
	The Proposed Evaluation Architecture Using Indy
	Evaluation Results
	Four-Node Measurements in a Public Cloud
	Eight-Node Measurements in a Public Cloud
	Four-Node Measurements in a Private Cloud

	Discussion
	Conclusions
	References

