Journal of

Cardiovascular WVI\D\PH
FZ

Development and Disease

Review

Vascular Implications of COVID-19: Role of Radiological
Imaging, Artificial Intelligence, and Tissue Characterization:
A Special Report

Narendra N. Khanna !, Mahesh Maindarkar 23(, Anudeep Puvvula 24, Sudip Paul 3(7, Mrinalini Bhagawati 3,
Puneet Ahluwalia °, Zoltan Ruzsa °(”, Aditya Sharma 7, Smiksha Munjral 2, Raghu Kolluri 8,

Padukone R. Krishnan ?, Inder M. Singh 2, John R. Laird ', Mostafa Fatemi (%, Azra Alizad '?,

Surinder K. Dhanjil 2, Luca Saba '3, Antonella Balestrieri 14, Gavino Faa 1°(", Kosmas I. Paraskevas 1607,

Durga Prasanna Misra 17, Vikas Agarwal 170, Aman Sharma Y7, Jagjit Teji '8, Mustafa Al-Maini 1°,

Andrew Nicolaides 2, Vijay Rathore !, Subbaram Naidu ??, Kiera Liblik 2>, Amer M. Johri 23, Monika Turk *,
David W. Sobel 2, Gyan Pareek 2°, Martin Miner ¥/, Klaudija Viskovic 23, George Tsoulfas 2°(,

Athanasios D. Protogerou 4(0, Sophie Mavrogeni 3°(7, George D. Kitas 3132, Mostafa M. Fouda 33

Manudeep K. Kalra 3 and Jasjit S. Suri 2*

Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India

Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA

Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India

Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India

Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA

Ohio Health Heart and Vascular, Columbus, OH 43214, USA

Neurology Department, Fortis Hospital, Bangalore 560076, India

Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA

Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science,
Rochester, MN 55905, USA

Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy

Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian

check for
updates

O ® N Ul e W N =

Citation: Khanna, N.N.; Maindarkar,
M.; Puvvula, A.; Paul, S.; Bhagawati,
M.; Ahluwalia, P.; Ruzsa, Z.; Sharma,
A.; Munjral, S.; Kolluri, R.; et al.
Vascular Implications of COVID-19:
Role of Radiological Imaging,

==
= o

R
=W N

Artificial Intelligence, and Tissue University of Athens, 15772 Athens, Greece
Characterization: A Special Report. J. 15 Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
Cardiovasc. Dev. Dis. 2022, 9, 268. 16 Department of Vascular Surgery, Central Clinic of Athens, 14122 Athens, Greece
htps:/ /doi.org/10.3390/jcdd9080268 17" Department of Immu.nology, Sanjay Gandhi Postgraduate Institute of Medical Sciences,
Lucknow 226014, India

Academic Editor: Chin Siang Ong 18 Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA

19 Allergy, Clinical Inmunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
Received: 3 July 2022 20 Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2408 Nicosia, Cyprus
Accepted: 9 August 2022 2l Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA
Published: 15 August 2022 22 Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA

23

Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
Publisher’s Note: MDPI stays neutral 24

The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
with regard to jurisdictional claims in 25 Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
published maps and institutional affil- 26 Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA
iations. 27" Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
28 Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
2 Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
By 30 Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece

Copyright: © 2022 by the authors. iz Acade.rTlic Affairs, Dudle}{ Grogp NHS F.oundation Trust, ].Dudle.zy DY1 2HQ, UK

. . Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
Licensee MDPI, Basel, Switzerland. 33 R . . . .

Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA

Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
Correspondence: jasjit.suri@atheropoint.com; Tel.: +1-916-749-5628

This article is an open access article 34
distributed under the terms and *
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /

4.0/).

J. Cardiovasc. Dev. Dis. 2022, 9, 268. https:/ /doi.org/10.3390/jcdd9080268 https://www.mdpi.com/journal/jedd


https://doi.org/10.3390/jcdd9080268
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcdd
https://www.mdpi.com
https://orcid.org/0000-0002-0813-4906
https://orcid.org/0000-0001-9856-539X
https://orcid.org/0000-0001-6804-5000
https://orcid.org/0000-0002-2474-5723
https://orcid.org/0000-0002-1941-8357
https://orcid.org/0000-0002-6603-9077
https://orcid.org/0000-0002-0189-8612
https://orcid.org/0000-0001-6865-2919
https://orcid.org/0000-0002-4508-1233
https://orcid.org/0000-0001-5043-7962
https://orcid.org/0000-0002-3825-532X
https://orcid.org/0000-0003-1089-7766
https://orcid.org/0000-0003-1790-8640
https://doi.org/10.3390/jcdd9080268
https://www.mdpi.com/journal/jcdd
https://www.mdpi.com/article/10.3390/jcdd9080268?type=check_update&version=2

J. Cardiovasc. Dev. Dis. 2022, 9, 268

2 of 51

Abstract: The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people world-
wide, with mortality exceeding six million. The average survival span is just 14 days from the time
the symptoms become aggressive. The present study delineates the deep-driven vascular damage in
the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses
an important gap in the literature in understanding (i) the pathophysiology of vascular damage and
the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further
understanding the severity of COVID-19 using artificial intelligence (Al)-based tissue characterization
(TC). PRISMA was used to select 296 studies for Al-based TC. Radiological imaging techniques such
as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected
for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for
showing the vascular damage in radiological images due to COVID-19. Three kinds of Al models,
namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study
presents recommendations for improving Al-based architectures for vascular studies. We conclude
that the process of vascular damage due to COVID-19 has similarities across vessel types, even
though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected,
the long-term effect of COVID-19 needs monitoring to avoid deaths. Al seems to be penetrating the
health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the
mortality and morbidity rate.

Keywords: COVID-19; coronavirus; vascular damage; pulmonary; renal; coronary; carotid;
artificial intelligence

1. Introduction

In December 2019, a case of an acute respiratory distress disease linked to the SARS-
CoV-2 virus was discovered in Wuhan, China [1,2]. The infection quickly spread around
the world, leading to the outbreak of a coronavirus pandemic in the year 2020. Between the
dates 31 December 2019, and 1 July 2022, about 550 million instances of coronavirus disease
2019 (COVID-19) were reported all across the world, resulting in more than six million
deaths [3]. COVID-19 is an acute infectious disease caused by the SARS-CoV-2 virus and is
an ongoing challenge for the healthcare system worldwide [4].

Previous research has delineated that COVID-19 has extrapulmonary complications [5].
Furthermore, it was found that severe SARS-CoV-2 infection damages the endothelial layer
of blood vessels, resulting in vascular dysfunction, thrombosis, and inflammation [6]. The
vascular endothelium of blood vessels has active paracrine, autocrine, and endocrine roles,
which are vital for (a) vascular tone regulation and vascular homeostasis inflammatory
balance, (b) tight connecting barriers between cells, and (c) balancing of the thrombotic and
fibrinolytic pathways [7]. Hence, endothelial dysfunction is a prime reason for evolving
vascular abnormality that is characterized by vasoconstriction and plaque deposition
followed by organ ischemia [8].

As part of supporting evidence, Varga et al. [9,10] observed that SARS-CoV-2 directly
infected endothelial cells in several patients having comorbidities such as diabetes, hyper-
tension, renal dysfunction, and coronary artery disease. Endothelin is the current evolving
concept in COVID-19 pathophysiology, causing virus-associated vascular injury due to
host immune response [11]. This principle drives the development of cytokine storms and
triggers thrombotic events as well as vascular injury [9,10]. Interestingly, another study
by Monteil et al. [12] on a series of patients with COVID-19 reported that SARS-CoV-2
can directly infect human blood vessels, showing the involvement of endothelial cells of
vascular beds in different organs [13]. The severity of damage to these vascular beds due to
COVID-19 can be characterized, which can help improve and expedite patient care [14].

Artificial Intelligence (AI) has played an important role in computer-aided diagnosis
(CAD) [15,16], particularly in the classification and detection of numerous diseases [17-20].
The application of machine learning (ML) and computer-aided diagnosis [16] has recently
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been described and has dominated the field of medical and radiological imaging, including
cardiovascular disease [21,22], liver pathologies [18], diabetes [23,24], cancers (such as
thyroid [25,26], ovarian [27], prostate [28], skin [29,30]), risk characterization using carotid
angiography [31,32], and coronary and vascular screening [33-36]. In addition, ML has
been shown to have a strong role in the field of medical and radiological imaging techniques
such as magnetic resonance imaging (MRI) [37,38], computed tomography (CT) [39], and
ultrasonography (US) [40]. All of these medical imaging modalities have the ability to
visualize COVID-19 lesions [37,38]. It has been demonstrated that deep learning (DL)
algorithms are capable of tissue characterization (TC) of plaques, including in the carotid
artery [41,42] and coronary artery [43—45], as well as segmentation of COVID-19-related
pulmonary lesions [37,46,47]. While there have been several studies demonstrating TC of
vascular damage without COVID-19, here we present a study AIbTC for risk stratification
of COVID-19 disease in pulmonary, renal, coronary, and carotid arteries. As mentioned
previously, Al models have been successful in forecasting disease severity [48-50]. Thus,
we hypothesize that AIbTC systems will be effective in the future for predicting COVID-19
severity or vascular implications in the pulmonary, renal, coronary, and carotid arteries.

Thus, there is a clear need for Artificial Intelligence-based tissue characterization
(AIbTC) of the vascular damage in pulmonary, renal, coronary, and carotid vessels due
to COVID-19.

The layout of this study is as follows: Section 2 presents the search strategy and
the statistical distribution. The route of entry of SARS-CoV-2 is shown in Section 3. The
complications of COVID-19 along with the pathophysiology of vascular complications,
namely, (ii-a) pulmonary, (ii-b) renal, (ii-c) coronary, and (ii-d) carotid vessels, are presented
in Section 4. Section 5 presents the role of medical imaging in which Al is crucial for early
diagnosis and monitoring of COVID-19-related vascular complications. Section 6 provides
discussion and critical comments, followed by conclusions in Section 7.

2. Search Strategy

The search strategy followed the PRISMA methodology, which is shown in Figure 1.
Two popular databases, PubMed and Google Scholar, were used to find and screen the

v

relevant articles using the keywords“COVID-19 and vascular complications”, “coron-

i

avirus and vascular damage”, “vascular damage due to COVID-19”, “lung damage due
to COVID-19”, “lung vascular complications”, “renal artery damage due to COVID-19”,
“coronary artery damage due to COVID-19”, “carotid arterial damage due to COVID-19”,

Za7i

“artificial intelligence and vascular damage”, “tissue characterization for risk assessment”,
“pathophysiology of pulmonary artery due to COVID-19”, “pathophysiology of renal artery
due to COVID-19”, “pathophysiology of coronary artery due to COVID-19”, “pathophys-
iology of carotid artery due to COVID-19”, “pulmonary artery imaging using MR, CT,
and Ultrasound”, “renal artery imaging using MR, CT, and Ultrasound”, “carotid artery
imaging using MR, CT, and Ultrasound”, “coronary artery imaging using MR, CT, and Ul-

"o

trasound”, “plaque tissue characterization in renal disease”, “plaque tissue characterization

o o

in pulmonary artery”, “plaque tissue characterization in coronary artery”, “plaque tissue

v

characterization in carotid artery”, “Artificial Intelligence and renal artery”, “Artificial
Intelligence and pulmonary artery”, “Artificial Intelligence and carotid artery”, “Artificial

o Y/

Intelligence and coronary artery”, “machine learning and renal artery”, “machine learning
and pulmonary artery”, “machine learning and carotid artery”, “machine learning and
coronary artery”, “deep learning and pulmonary artery”, “deep learning and renal artery”,

Y7

“deep learning and carotid artery”, “deep learning and coronary artery”, “transfer learning
and pulmonary artery”, “transfer learning and renal artery”, “transfer learning and carotid
artery”, “transfer learning and coronary artery”. A total of 204 articles on PubMed and
312 articles on Google scholar were identified. After applying advanced filters such as time
and relevance, this narrowed the search down to 336 articles. Out of these, 296 articles
were screened to be included in this review. The three exclusion criteria were (i) studies

not related to the topic of interest, (ii) non-relevant articles, and (iii) studies having insuf-
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ficient data for analysis. This excluded 76, 12, and 28 studies (marked as E1, E2, and E3),
respectively, leading to the final selection of 296 studies. The complete screening process is
shown in Figure 1.

Records identified through Additional records identified
database searching through other sources
m=204) (n=312)

Tdentification

Records after duplicates removed
(n =412) l 1
! Records excluded Non-Al
(n=76)

-1}
=
g
@
@
=1
=]
w

[ E1
Records screened e
=336 |
Non-relevant articles
excluded Non-comorbidity

Full-text articles (=12) l E2
assessed for eligibility
(n=324)
Records excluded with
insufficient data
Studies included in (n=28) pEs |
qualitative synthesis
(n=296) [ n

Included

Figure 1. Research article search strategy; I: included, E: excluded, n: number of studies.

Of these, 76% (177 out of 296) of the non-Al studies included in the main manuscript
related to vascular damage in the four arteries (Pulmonary, Renal, Coronary, and Carotid),
and 23% were COVID-19-related, dealing with the impact of the SARS-CoV-2 virus on
various organs. The focus of this manuscripts is on Al-based tissue characterization for
COVID-19 severity based on vascular damage to the pulmonary, renal, coronary, and
carotid arteries. The total number of Al-related studies was 119; about 68% of the studies
explain AI, ML, and DL’s role in the diagnosis of vascular damage to the four arteries
(Pulmonary, Renal, Coronary, and Carotid) using radiological, CT, MRI, and US imagining
modalities. Even though our strategy adapted standardized engineering protocols for
Al-based tissue characterization, 76% of non-Al studies were included in the manuscripts.
This shows a perfect balance of Al and non-Al studies in the present study.

In Section 3, we summarize the early discoveries that contributed to the development
of our knowledge of SARS-CoV-2 infection across the intracellular viral replication cycle
and link it to our knowledge of coronavirus biology.

3. Entry Mechanism and Replication of SARS-CoV-2

The combination of host immune response to viral entry and high infectivity is a key
factor in the wide spread of SARS-CoV-2 worldwide. It is very important to understand
the molecular level changes during viral entry in order to stop SARS-CoV-2 infection from
spreading. Coronaviruses (CoVs) belong to the Nidovirales order and Coronaviridae family.
These are capsid membrane-enveloped, non-segmented, positive single-stranded, large
genome viruses measuring approximately 30 KB. Figure 2 demonstrates the schematic
replication of SARS-CoV-2 in four phases. These include (A1) attaching and uncoating,
(A2) endocytosis, (B) translation and proteolysis, (C) replication and translation, and
(D) assembly and exocytosis.
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3.1. Phase Al (Attaching and Uncoating)

Host cell entry of SARS-CoV-2 occurs due to the viral spike (S) protein attaching to the
angiotensin-converting enzyme 2 receptor (ACE2) on the surface of the host cell. These
proteins are the glycoproteins; the main role of glycoproteins is as support in binding and
attachment of the virus to the host cell [51]. Following viral attachment, the S protein
cleaves to S1 and S2 in the presence of transmembrane serine protease TMPRSS2, a process
known as S protein priming. This facilitates viral fusion to the host cell membrane and
allows it to enter the cytoplasm [52,53].

This phase is the target for vaccine development in blocking viral entry.
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Figure 2. Replication of SARS-CoV-2 in four phases. (Original image, AtheroPoint™ LLC, Roseville,
CA, USA).

3.2. Phase A2 (Endocytosis)

This phase is an alternative route for SARS-CoV-2 entry into the host cell by viral
translocation inside the vesicle and forming endosomes, followed by which endosomes
enter the host cell. This causes virus to be released into the cytoplasm in a process called
S protein priming in the presence of the endosomal cysteine proteases cathepsin B and
cathepsin L. This phase of endosomal entry can be blocked by lysosomotropic agents such
as hydroxychloroquine, as used in the COVID-19 preventive approach [54].

3.3. Phase B (Translation and Proteolysis)

After the release of the SARS-CoV-2 viral genome into the cytoplasm, it proceeds
through a process called translation and forms polyproteins (ppla and pplab). Subse-
quently, these undergo proteolysis in the presence of viral proteases and are cleaved into
smaller non-structural proteins called RNA-dependent RNA polymerase (RARP). This
phase is a therapeutic target for antiviral drugs such as remdesivir, favipiravir, and rib-
avirin (targeting RARP) [55,56], and lopinavir and ritonavir (protease inhibitors) [57,58].

3.4. Phase C (Transcription and Translation)

The viral genomic RNA in the cytoplasm is replicated by RARP, and the structural
proteins (S, E, M, and N) are translated through the endoplasmic reticulum (ER) and Golgi
complex of the host cell.
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3.5. Phase D (Assembly and Exocytosis)

Finally, these RNA genomic proteins and structural proteins assemble into novel virus
particles, leading to their release through a process called exocytosis. This newly formed
virus can be transmitted via salivary secretions to other individuals [52,53].

4. COVID-19 and Its Effect on the Vasculature

In COVID-19 patients, the leading cause of mortality is hypoxia-related acute respi-
ratory distress syndrome (ARDS) [59]. There is solid emerging evidence suggesting that
damage to endothelial cells (ECs) after COVID-19 infection contributes to the initiation of
ARDS (Figure Al) development [9,60]. The detailed stages of acute respiratory distress
syndrome formation are shown in Appendix A.

4.1. Effect of COVID-19 on Pulmonary Vascular Pathology

The effects of COVID-19 on pulmonary vascular pathology are mainly due to (A) direct
EC damage, (B) activation of bradykinin, (C) activation of the coagulation cascade, and (D)
inflammatory response.

4.1.1. Direct Endothelial Cell Damage

SARS-CoV-2 can directly infect the ECs and cause endothelial dysfunction due to the
presence of ACE2 receptors on its surface [61]. A piece of supporting evidence by Varga
et al. showed the presence of viral elements within ECs, which cause inflammation and
death of ECs in post-mortem analysis of admitted patients with COVID-19 positivity [9].
Further, EC death or dysfunction causes an alteration in vascular equilibrium, leading to
an increase in vascular permeability.

4.1.2. Activation of Bradykinin (BK)

BK is a linear non-peptide formed due to the proteolytic activity of kallikrein on
kininogens, and this has strong vasopermeable and vasodilatory effects, causing an-
gioedema [62]. Physiologically, ACE2 plays a counterbalancing role in the indirect in-
activation of bradykinin by inactivating potent ligands of bradykinin-1-receptor (B1R) such
as Lys des-Arg9-BK and des-Arg9-BK, in the lungs [63]. In COVID-19, SARS-CoV-2 viral
entry results in the downregulation of ACE2 expression and function due to its manner
of host cell entry [64]. Subsequently, reduced ACE2 levels lead to a deficiency of BIR
ligand inactivators locally in the lungs, resulting in the activation of BK [65,66]. This might
establish a direct link between the virus and pulmonary angioedema by causing vasodi-
lation. Strong published pieces of evidence support this concept, such as Fu et al. [67],
Glowacka et al. [68], and Levi et al. [69], all of whom have reported findings on the down-
regulation of ACE2 seen with SARS-CoV-1, suggesting the possibility with SARS-CoV-2
as well.

4.1.3. Activation of Coagulation Cascade

Numerous publications have demonstrated that viral entry of SARS-CoV-2 occurs
when the viral spike protein is anchored to the ACE2 receptor on type 2 pneumocytes on the
pulmonary epithelium [70]. This triggers an innate immune response causing stimulation
of macrophages followed by cytokine storm and activation of ECs [71,72]. Cytokine storm
increases the expression of P-selectin, von Willebrand factor, and fibrinogen by activating
ECs; platelets then bind to ECs, resulting in the initiation of the coagulation process [60].
This causes pulmonary microthrombosis, resulting in congestion and diminished ventila-
tion response to respiratory gas exchange, followed by an increase in vascular permeability
and alveolar edema [73].

4.1.4. Inflammatory Process

SARS-CoV-2 viral entry triggers a systemic inflammatory response, resulting in a
cytokine storm. Cytokines such as IL-1, IL-6, and TNF- increase trypsin levels, which
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causes vasodilation and loosening of inter-endothelial junctions [74]. Endothelial gaps
increase vascular permeability, resulting in vascular leakage and alveolar edema [60,75].
This process is similar to other members of the Corona family of viruses, such as SARS-
CoV-1 and MERS-CoV [76]. As stated in the previous four sections, alveolar edema causes
alveolar gas exchange disorder, which can cause the form of hypoxemia called ARDS. The
detailed route information is shown diagrammatically in Figure 3.

I [Direct Endothelial cells damage)

‘&m

(ACE2)

[Activation of Bradykinin] [
)

(Endothelial Cells)

Endothelial Dysfunction

Alteration in Vascular
Equilibrium
° |
g 4 Vascular liermeability
= Alveolar Edema
i

Figure 3. Detailed pathways of endothelial cell (EC) damage after COVID-19 infection contributing
to the initiation of ARDS development. (Original image, AtheroPoint™ LLC, Roseville, CA, USA).

4.2. Pulmonary Arterial Vascular Damage Due to COVID-19

Pulmonary arterial vascular thrombosis has been seen in patients with confirmed
COVID-19 infection. Accordingly, the morphological and molecular characteristics of seven
COVID-19 patients’ lungs were retrieved after autopsies and analyzed by Ackermann et al. [77].
The lungs from these patients were compared with those retrieved through autopsies of
patients who had passed away from ARDS as a result of HIN1 influenza infection and
with the lungs from controls who were not infected with either virus [78]. Individuals
who had influenza and patients who had COVID-19 had lungs with the same morphologi-
cal pattern, which consisted of diffuse alveolar destruction and infiltrating perivascular
lymphocytes. The angiocentric characteristics of COVID-19 could be broken down into
three categories: (1) symptoms of significant endothelial injury linked with the intracellular
SARS-CoV-2 virus and broken endothelial cell membranes [77]; (2) extensive vascular
thrombosis, microangiopathy, and blockage of alveolar capillaries in the lungs of patients
with COVID-19; (3) a mechanism known as intussusceptive angiogenesis was responsible
for the considerable creation of new blood vessels in the lungs of individuals who had
COVID-19. Even though the sample size was rather limited, the vascular abnormalities
that were discovered are consistent with the occurrence of specific pulmonary vascular
pathobiology features in certain cases of COVID-19 [79]. Figure 4A,B show the cases of
arterial vascular thrombosis in COVID-19 patients.
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Figure 4. Scanning electron micrographs of (A) microvascular corrosion casts from the thin-walled
alveolar plexus of a healthy lung and (B) the considerable architectural deformation seen in lungs
harmed by COVID-19. In (B), the disappearance of a vascular hierarchy that was visible in the alveolar
plexus is attributed to the development of new blood vessels via intussusceptive angiogenesis.
(C) The intussusceptive pillar localizations at higher magnification, indicated by the arrowheads.
(D) Transmission electron micrograph demonstrating ultrastructural aspects of the breakdown of
endothelial cells and the presence of SARS-CoV-2 within the cell membrane (arrowheads). The scale
bar corresponds to 5 micrometers. RC stands for red cells [77].

A study performed by Nonno et al. [80] presented a case study of a 61-year-old woman
who experienced abrupt unconsciousness and went into cardiac arrest. She was taken to
an emergency department in Rome, Italy. She was unable to be revived, and her death
was pronounced not long after she was brought in. ARDS and multiple organ failure are
characteristics of severe instances of COVID-19, and the patient had a history of interaction
with another patient who had confirmed COVID-19. The presence of a hypercoagulable
disease, in conjunction with thrombosis and disseminated intravascular coagulation, has
the potential to be the deciding factor in the progression to failure of multiple organs
and death [81]. It has been shown that COVID-19 is linked to coagulopathies and several
infarcts that have major clinical implications.

It is evident from the cases (Figure 5) described above that COVID-19 adversely affects
the arterial tissue of the pulmonary circulation. Consequently, early diagnosis using tissue
characterization of patients’ pulmonary arterial condition is required in order to prevent
the progression of the disease to multiple organs and reduce the risk of mortality.
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Figure 5. This figure shows findings related to pathology. (A) Gross pathological specimen of the
thrombus that was obstructing both of the patient’s pulmonary arteries. The specimen is an uneven
piece of hemorrhagic tissue that is reddish-tan and measures approximately 1.3 cm in diameter.
(B) An intravascular thrombus of a major vessel can be seen in the light microscopy image of the lung
tissue segment (arrow). (C) Inflammatory cells can be seen in the pulmonary interstitium (shown by
the arrows) and in the alveolar space of the lung parenchyma. (D) There is evidence of widespread
interstitial fibrosis in the lungs (arrow). Diffusely prevalent in the alveolar septa and around the
arteries are a substantial number of CD4+ T cells (E) and CD68+ macrophages (F) (arrows). Bars on
the scale read as follows: (A) =1 cm; (B) = 100 m; (C-F) = 50 m [80].

Pulmonary CT Images

Perfusion mosaics (areas of alternating higher and lower perfusion) were qualitatively
assessed for mosaic perfusion, focal hyperemia (areas of the relative increase in perfusion
compared with background lung), and focal oligemia (areas of the relative decrease in
perfusion compared with background lung) [82]. Figure 6 shows CT images of the lung. The
presence or absence of a rim around an area with low perfusion (compared to background
lung) was qualitatively assessed [83]. Lung blood vessel leakage is filled with additional
air sacs, resulting in shortness of breath, and can lead to ARDS.
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Figure 6. (A) 69-year-old man with fever, weakness, and chills had coronavirus illness. The patient
was hospitalized for acute intermittent tachycardia, desaturation, and shortness of breath. No
pulmonary emboli were found. Contrast-enhanced CT pulmonary angiography of the upper lungs at
lung windows showed ground-glass opacity and consolidation in the right upper lobe (arrowheads);
sub-segmental arteries within the opacities were dilated, and right upper lobe vessels proximal to the
opacity were similarly dilated (arrows). (B) Pulmonary blood volume (PBV) imaging at the same level
shows a significant peripheral perfusion deficiency with a surrounding halo of enhanced perfusion
(arrows). Heterogeneous left upper lobe perfusion. CT scan of the patient’s lower lungs showed
peripheral ground-glass opacities and consolidation with a round or wedge-shaped appearance
(arrowheads). (D) PBV picture shows perfusion deficiencies matching the opacities in (C), shown
with enlarged perfusion halos (arrows) [82] (2020).

The development of ARDS has been seen in up to 41% of patients hospitalized for
COVID-19, and in 20% of COVID-19 pneumonia cases. Conversely, individuals who
demonstrate reasonably preserved lung compliance may require intubation, which suggests
the inclusion of additional processes in parenchymal injury [84]. Recent investigations
have revealed that a loss of perfusion regulation and a loss of normal physiological hypoxic
vasoconstriction contributes to the hypoxemia that is seen in individuals with COVID-19.
The results of this pulmonary research are presented in Table 1.

4.3. Effect of COVID-19 in Renal Vascular Pathology

Other than targeting the alveolar epithelium, as shown in Section 2, SARS-CoV-2
attaches to ACE2 receptors present in the kidney, mainly in the tubular epithelium of proxi-
mal tubules, afferent arterioles, and collecting ducts. Additionally, it has been previously
demonstrated that viral nucleic acid is found in the urine, suggesting that the kidneys
are one of the targets of SARS-CoV-2 [85]. Supporting evidence by Zou et al. [86], and
Pan et al. [87] shows that the kidneys are more vulnerable to SARS-CoV-2 by stratifying
human organs with high or low expression of ACE2 receptors. In this section, we postu-
late two different pathophysiological routes by which SARS-CoV-2 affects renal tissues:
(1) direct renal invasion, and (2) indirect renal invasion (shown in Figure 7).
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Figure 7. Renal vascular damage due to COVID-19 through direct and indirect invasion. (Original
image, AtheroPoint™ LLC, Roseville, CA, USA) (A): Direct Invasion, (B): Indirect Invasion.

4.3.1. Direct Renal Invasion

A noteworthy observation made by Diao et al. [88] and Su et al. [89] has shown the
presence of SARS-CoV-2 nucleocapsid protein and viral particles in tubular structures,
podocytes, and tubular epithelial cells of the kidney. Both these solid pieces of evidence
suggest that direct renal invasion exists due to SARS-CoV-2. The sequence of steps in this
process includes: (1) the viral spike protein attaches to the ACE2 receptor, and the TMPRSS
gene on the surface of renal epithelial cells aids viral invasion and replication in podocytes;
(2) it enters the tubular fluid; (3) it binds to ACE2 receptors on the apical brush border of
proximal tubular cells of the kidney, resulting in viral invasion and replication in proximal
tubular cells [90]; (4) this causes albuminuria and proteinuria, leading to acute tubular
necrosis [91]. However, a more data-based study is needed to support this process.

Table 1. The effect of COVID-19 on Pulmonary.

SN Citations PS ME Comorbidities Outcome Vascular Damage Imaging Modalities  Treatment
Hasan et al. COVID-19—A COVID-19—A
1 [92] (2020) NR LBBM NR vascular disease vascular disease cT NR
In COVID-19 Pulmonary vascular
. dilatation can occur not
pneumonia, . e
just within lung
pulmonary vascular ities. but also 1
Lang et al anomalies such as opacities, buta'so ina
2 ’ 45 LBBM Cancer regional pattern CT NR

[82] (2020)

vessel hypertrophy
and regional mosaic
perfusion patterns
are frequent.

outside of parenchymal
opacities, and it can
even affect the
subpleural lung.
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Table 1. Cont.

SN Citations PS ME Comorbidities Outcome Vascular Damage Imaging Modalities Treatment
The greater degree of
endothelialitis and
thrombosis in the
lungs of patients
Ackermann with intussusceptive i
3 etal. [93] 07 LBBM  Hypertension angiogenesis th?:i%iil?rlﬁﬁeaﬁi CT NR
(2020) observed in these &
patients may have
contributed to tissue
hypoxia in both
groups of patients.
Li COVID-19 etiology The pulmonary arterial
ins et al. . . .
4 [04] NR LBBM NR involves pulmopary density and tiny blood CT NR
(2020) hemogynamlc vessel Volume were
changes in the lung. determined.
Hékimian Pulmonary infarction
5 etal. 51 LBBM  Hypertension and agenesis Pulmonary infarction CT NR
[95] (2020) observed
It is possible that PE
Espallargas Elevation of D-dimer primarily affects the
6 etal. 804 LBBM NR increases the risk of segmental arteries and CT NR
[96] (2020) pulmonary embolism the right lung in
COVID-19 individuals.
Radiological
characteristics of
COVID-19 included
traction
bronchiectasis,
organising Ground-glass opacities
Kho et al. neumonia, airspace and areas of
7 [97] (2020) 15 LBBM Dyspnoea F opacificationr,) consolidation near cT NR
inter/intra-lobular the base
septal thickening,
and bilateral
peripheral subpleural
ground-glass
opacities.
. D-dimer increases
8 Miré et al. 62 LBBM CVD, . risk of pulmonary Pulmonary infarction CT NR
[98] (2021) Hypertension .
embolism
Although focal vessel
enlargement within
ground-glass
opacities was vasculopathy was a
Scholkmann described in direct viral effect on
9 etal. [99] 01 LBBM NR early imaging endothelial cells or CT NR
(2021) investigations of perivascular
COVID-19, we have inflammation
noted additional
extensive vascular
abnormalities.
Faggiano COVID-19 increased CO\SE&EEPI‘II:S;OHM
10 etal. 07 LBBM CVD risk of venous CT NR

[100] (2021)

thromboembolism

frequently rise two to
three-fold

PS: Patient size, ME: Method of Evaluation, CVD: Cardiovascular Disease, LBBM: Laboratory base biomarker, NR:
Not reported, CT: Computer Tomography.

4.3.2. Indirect Renal Invasion

Many studies performed on the pathophysiology of acute kidney injury (AKI) due to
SARS-CoV-2 infection show the possibility of direct damage by viral invasion and replica-
tion as well as indirectly through cellular damage due to inflammatory response [88,101].



J. Cardiovasc. Dev. Dis. 2022, 9, 268 13 of 51

In this process, patients with SARS-CoV-2 infection show marked lymphopenia, mainly
due to a significant reduction in T cell counts (i.e., CD8, CD4, and NK lymphocytes) [102].
Simultaneously, increased activation of neutrophils and macrophages results in the secre-
tion of proinflammatory cytokines [103], particularly, high levels of interleukins (IL) IL-2,
IL-6, IL-10, and interferon (IFN)- v generated due to inflammatory response in a recognized
as a cytokine storm [104]. In general, T cells are responsible for diminishing the effects of an
overactive innate immune response during any viral infection [105]. As per this hypothesis,
Lagunas-Rangel et al. have shown that reduced T cell levels results in increased concen-
trations of proinflammatory cytokines after COVID-19 infection. Furthermore, the same
study demonstrated that increased IL-6/IFN- y is due to cytokine storms [106]. Cytokine
storms associated with inflammatory response can result in renal failure due to endothelial
dysfunction and fibrosis [101]. Conversely, cytokine storms can lead to a hypercoagulability
state due to the release of tissue factors and the activation of coagulation factors. This
hypercoagulability state favors microangiopathies, which weaken renal perfusion, in turn
leading to renal ischemia and cortical necrosis [90]. Recent clinical autopsy reports from
China and the United States have confirmed that the cause of microangiopathy in several
organs is due to hypercoagulability after SARS-CoV-2 infection [107,108].

Studies such as those included in Table 2 indicate that the kidney, with its high concen-
tration of cellular ACE2 receptors, is a likely viral target. The glomerulus, mesangial cells,
podocytes, and distal nephron are the primary cellular structures in which these receptors
are found. In diabetic renal patients, researchers found that reactive oxygen species (ROS),
kidney fibrosis, collagen deposition, mesangial matrix expansion, and podocyte loss were
all present. In addition, infection with COVID-19 has been linked to anomalies in coag-
ulation and to complement-mediated extensive thrombotic microvascular damage [109].
These patients were found to have high readings of D-dimer, fibrin degradation product,
and fibrinogen, as well as an elevated international normalized ratio, normal values for
partial thromboplastin time, and normal platelet count values [110].

4.3.3. CT Images of the Renal Artery

In the present study, it was observed that severe COVID-19 pneumonia was respon-
sible for inducing a prothrombotic condition, which ultimately led to ascending aortic
thrombosis. This thrombus most likely dislodged itself, although it is possible that the renal
artery experienced an isolated neothrombosis concurrently [111]. This thromboembolic
disorder was characterized by renal infarction as its primary symptom. The case of renal
artery thrombi is shown below in Figure 8.

Table 2. The effect of COVID-19 on renal artery.

SN Citations PS ME Comorbidities Outcome Vascular Damage Imaging Modalities Treatment

Necrosis of renal
01 LBBM CVD artery due to Renal Thrombosis Us NR
COVID-19

Acharya et al.
[112] (2020)

Due to increased
inflammation,
platelet activation,
endothelial
Philipponnet cvD dysfunction, and
2 etal. [113] 01 LBBM Diab J stasis, COVID-19 may Renal Thrombosis CT NR
iabetics .
(2020) predispose
individuals to
thrombotic illness in
both the venous and
arterial circulation.

Direct invasion of
SARS-CoV-2 into the
renal parenchyma, an immunomodulatory
unbalanced RAAS, Renal Thrombosis MRI drugs,
and micro thrombosis anticoagulation
lead to kidney
disease.

Gabarre et al. Hypertension,
[114] 020) 116~ LBBM Diabetics
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Table 2. Cont.

SN

Citations

PS

ME

Comorbidities

Outcome

Vascular Damage Imaging Modalities

Treatment

Yarijani et al.
[115] (2020)

NR

LBBM

Diabetes
mellitus,
hypertension

SARS-CoV-2 enters in
kidney and destroys
cells, disrupting the
renin-angiotensin—
aldosterone system
balance, activating

coagulation
pathways, and
damaging the renal
vascular endothelium
are all effects of the
COVID-19.

Acute Kidney

Damage us

Remdesivir,
Doxycycline,
Azithromycin,
Chloroquine and
hydroxychloroquine,
Favipiravir

Singh et al.
[116]
(2020)

01

LBBM

Mucormycosis

Renal artery
thrombosis in a
COVID-19 patient led
to renal infarction
and nephrectomy.

Renal Artery

Infarction Us

Anticoagulation

El Shamy et al.

[117] (2021)

01

LBBM

Hypertension

Bilateral renal artery
thrombosis due to
COVID-19.

Renal Thrombosis Us

Kidney replacement

Watchorn et al.

[118] (2021)

03

LBBM

Hypertension,
CVD

Disrupting the
renin-angiotensin—
aldosterone system

balance

Renal Thrombosis Us

NR

Tancredi et al.
[119] (2021)

01

LBBM

Diabetes,
Asthma

The observations
shows that loss of
corticomedullary
differentiation,
increased resistive
indices, and
decreased Doppler
flow, renal cortical
echogenicity
increased.

Renal Artery

Infarction Us

NR

N

Lushina et al.
[120] (2021)

LBBM

Hypertension

RAAS and
microthrombosis
leads to CKD.

Renal

Thromboembolic cr

NR

10

Sifaat et al.
[84] (2022)

NR

LBBM

Hypertension,
Diabetics

The kidney is a likely
target for COVID-19
due to its high
number of cellular
ACE2 receptors.
These receptors are
mainly localized in
the glomerulus,
mesangial cells,
podocytes, and distal
nephron. Reactive
oxygen species (ROS),
kidney fibrosis,
collagen deposition,
mesangial matrix
expansion and
podocyte loss were
observed in diabetic
renal disease

Kidney Fibrosis us

RAAS antagonists

PS: Patient size, ME: Method of Evaluation, CVD: Cardiovascular Disease, LBBM: Laboratory base biomarker, NR:
Not reported, CT: Computer Tomography, US: Ultrasound, MRI: Magnetic Resonance Imaging.
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Figure 8. Tomography computed using angiography: (A) abdominal computed tomography angiog-
raphy (CTA), demonstrating thrombi in the left superior renal artery (thin yellow arrows) and infarcts
in the posterior mid-pole of the left kidney (thick white arrow); (B) CTA of the thorax, demonstrating
ascending aortic thrombus (arrow); (C) abdominal CTA displaying a different perspective of the left
superior renal artery thrombus (yellow arrow); (D) computed tomography abdominal angiography
in coronal projection, demonstrating the extent of the left renal infarction (yellow arrow). This image
is presented in color at www.ajmh.org (accessed on 28 March 2020). Mukherjee et al. [121].

4.4. Effect of COVID-19 on Coronary/Carotid Vascular Pathology

In the preceding sections, we have explained the possible pathophysiology of pul-
monary and renal vascular involvement in COVID-19 patients; in this section, we dis-
cuss the coronary artery. Several reports have suggested a strong relationship between
COVID-19 and cardiovascular (CV) complications [59,122]. SARS-CoV-2 is linked to CVD
due to thrombosis and thromboembolic events, mainly because of coagulation abnormali-
ties and RAAS dysregulation, as shown in Figure 9.

4.4.1. Coagulation Abnormality

COVID-19 induces a cytokine surge or storm, which causes vascular injury and
initiates a coagulation cascade via a severe inflammatory response and endothelial barrier
disruption [72,123,124].

Damaged endothelial cells upregulate tissue factors (TF) and attach to the circulating
serine protease coagulation Factor VII (Factor VIIa). Further, this arrangement results in the
formation of the TF: Factor VIla complex, which then activates Factor Xa. This stimulation
forms the prothrombinase complex by binding to factor Va in the presence of calcium and
the phospholipid membrane [125]. These steps result in the development of thrombin and
cause the recruitment of platelets. This contributes to the formation of fibrin and promotes
plaque formation [126,127].
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Figure 9. COVID-19-induced cardiovascular implications. (Original image, AtheroPoint™ LLC,
Roseville, CA, USA) (A): Coagulation Abnormality, (B): RAAS Dysregulation.

4.4.2. (B) RAAS Dysregulation

The renin-angiotensin-aldosterone system (RAAS) is a complex hormonal axis which
controls blood pressure, sodium absorption, and plaque formation [128,129]. Angiotensin
(Ang) Il is the primary physiological product of RAAS, and its functions show unpleasant
effects on the human body. Furthermore, as a counterbalancing role, Ang I breaks down to
Ang 1-7 via catalyzation of ACE2. After SAR-CoV-2 infection, significantly reduced ACE2
levels lead to dysregulation of RAAS and cause increased Ang II levels [130]. Increased
Ang II levels result in the embellishment of functions such as vasoconstriction, increased
production of cytokines, and induced organ damage [129,131,132]. In addition to vasocon-
striction and cytokine production, it causes several harmful effects on the vascular wall.
This is largely due to its action on the angiotensin II type 1 (AT1) receptor [133]. Higher
levels of endothelial Ang II trigger the production of reactive oxygen species (ROS) and
result in the breakdown of nitric oxide (NO) production by reducing endothelial nitric
oxide synthase (eNOS).

This process favors endothelial dysfunction, resulting in atherosclerosis [134]. Ad-
ditionally, increased Ang II levels promote atherogenesis by upregulating endothelial
receptors for oxidized low-density lipoprotein (OXLDL) production. This results in ox-
idative stress, leading to smooth muscle cell proliferation and collagen deposition in the
vessel wall, causing narrowing of the vascular lumen [135]. Moreover, increased Ang II
levels via activation of angiotensin 1 receptor (AT1) upregulate plasminogen activator type
1 (PAI-1) and downregulate tissue plasminogen activator (tPA) [136]. Increased PAI-1 and
decreased tPA are associated with thrombus formation due to reduced plasmin levels and
fibrinolysis [137].
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Collectively, activation of the coagulation cascade and increased Ang Il levels due to
RAAS dysregulation are major contributing factors to the development of cardiovascular
events after SARS-CoV-2 infection. According to the findings shown in Table 3, individuals
with COVID-19 have a much greater incidence of cardiovascular comorbidities, which puts
them at an increased risk of morbidity and mortality. In COVID-19, it is suggested that
clinically justified patients continue taking drugs that contain ACE inhibitors and ARBs.

Table 3. The effect of COVID-19 on the coronary artery.

SN Citations PS ME Comorbidities Outcome Vascular Damage Imaging Modalities Treatment
Palpitations, heart failure,
chest discomfort, presyncope,
and syncope are all possible
Rudski LBBM manifestations of
1 etal. [138] 240 OBBI\/f Hypertension supraventricular and Myocardial damage CT NR
(2020) ventricular arrhythmias, which
can arise throughout the
subacute and chronic phases of
the condition.
In the context of the An extreme elevation
pro-inflammatory response to of the ST segment
Rivero LBBM the disease, cardiovascular that resulted in
2 etal. [139] 01 OBBM’ NR disease (CV) may be a source myocardial damage ECG NR
(2020) of myocardial damage in or infarction has been
people who have been infected observed on several
with SARS-COVID-19. occasions.
Patients who require
emergency coronary
Aghagoli Myocardial damage in people artery bypass
3 etal. [140] 21 LBBM Diabetes who have been infected with grafting, repair of an CT NR
(2021) SARS-COVID-19. aortic dissection, or
replacement of the
aortic valve
Ir}ﬂammatlop pers1st§ over Patients with CAD
Gupta time and raises the risk of who were treated
4 etal[i4] 180  LBBM High BMI atherosclerotic disease as well 4, COVID-19 had a cT NR
OBBM as acute proinflammatory - .
(2021) . X . . higher risk of
situations like the cytokine .
myocardial damage.
storm.
The histological finding of
diffuse endothelial
Afshar inflammation in the
5 etal [142] 23 LBBM Diabetes submucosal arteries of the 10 0 dial Infarction cT NR
(2021) small intestine in COVID-19
patients is suggestive of the
occurrence of microvascular
small-bowel injury.
Complications of the heart .
Catapano include things like myocarditis, In ﬂa]i:ri(:t}ilsrl'tl?; the
6 etal. [143] 12 LBBM hypertension acute coronary syndrome, and X CT NR
. submucosal arteries
(2021) thromboembolic events, . R
of the small intestine
amongst others.
Patients who require
emergency coronary
Aghagoli Myocardial damage in people artery bypass
9 etal. [140] 21 LBBM Diabetes who have been infected with grafting, repair of an CT NR
(2021) SARS-COVID-19. aortic dissection, or
replacement of the
aortic valve
Inﬂ'ammatlon ?hat };191’51.5;(5 ofver Patients with CAD
Gupta time and raises the risk o who were treated
) LBBM, . atherosclerotic disease as well .
10 etal. [141] 180 OBBM High BMI as acute proinflammator with COVID-19 had a CT NR
(2021) P y higher risk of

situations like the cytokine
storm.

myocardial damage.

PS: Patient size, ME: Method of evaluation, CVD: Cardiovascular Disease, LBBM: Laboratory base biomarker,
OBBM: Office base biomarkers, NR: Not reported, CT: Computer Tomography, US: Ultrasound, MRI: Magnetic

Resonance Imaging.

4.5. Coronary and Carotid Artery Images

The COVID-19 virus has been linked to acute coronary syndrome in several investi-
gations as well as case reports [144]. Researchers in Italy reported a study of 28 patients
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with verified COVID-19 who had undergone a coronary angiogram for diagnosis of ST-
elevation myocardial infarction. Eighty-six percent of these patients had an ST-elevation
myocardial infarction as the initial presentation of COVID-19. Seventy-nine percent of
these patients presented with normal chest pain, while twenty-one percent did so with
dyspnea in the absence of any chest pain. This shows that COVID-19 was responsible for
acute coronary syndrome (ACS) even though there was not a significant amount of inflam-
mation throughout the body [145]. Figure 10 shows an electrocardiogram that confirms
inferolateral ST-segment elevation and specular decline in right precordial leads during
chest pain episodes.
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Figure 10. (a) An electrocardiogram shows inferolateral ST-segment elevation and specular decline
in right precordial leads during a chest pain episode; (b) an intracoronary OCT image of the proximal
left circumflex coronary artery (LCX) shows a stable fibrous plaque with a minimal lumen area.
Erosion or rupture as an ACS cause was ruled out (asterisk denotes wire artifact). (c,d) Urgent
coronary angiography demonstrating proximal and distal LCX lesions [144].

Myocardial hyperinflammation can lead to acute coronary syndrome, myocarditis,
heart rate variability, heart failure, cardiac arrhythmias, and even unexpected death [146].
The early stages of COVID-19 are characterized by a high level of cardiac troponins and
natriuretic peptides, which is indicative of acute damage to the myocardium. Acute
coronary syndrome, myocarditis, heart failure, cardiac arrhythmias, and sudden death are
among the potential outcomes of hyperinflammation in the myocardium.

An acute myocardial injury is indicated by the high levels of cardiac troponins and
natriuretic peptides which are present early on in the course of COVID-19. Table 4 shows
studies related to the effect of COVID-19 on carotid vascular damage. Figures 11 and 12
show a significant amount of thrombus in the carotid artery. A man in his 50s who went to
the doctor complaining of weakness in his left wrist was found to have positive serology
for COVID-19.

An uneven plaque at the left internal carotid artery bifurcation and an intraluminal
filling defect in the left internal carotid artery, which corresponds to the ruptured plaque
with clot development, can be seen in the CT angiography of the head and neck [144].
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Table 4. Effect of COVID-19 on carotid vascular damage.
SN Citations PS ME Comorbidities Outcome Vascular Damage Imaging Modalities Treatment
Alkhaibary Large-vessel Csoi\;Ii]fDi-clai’fiiI;stfa
1 etal. [147] 01 LBBM NR occlusion due to tI%romboembolic CT NR
(2019) COVID-19 infection .
disease
The COVID-19 virus
has the potential to Patients with
cause the rupture of COVID-19 infection
Mohamud susceptible who have usual
2 etal. [144] 06 LBBM Hypertension atherosclerotic vascular risk factors MR NR
(2020) plaques, which can are at a higher risk of
lead to thrombosis LVO as a result
and acute of ICT.
ischemic stroke.
The source of stroke
should be sought by
cervical CTA
covering from the
aortic arch to the
vertex; nevertheless,
Viguier et al. . common carotid Acute ischemic
3 [1%8] (2020) 28 LBBM Diabetes arteries should not be stroke. MRI NR
overlooked, and the
requirement for
COVID-19
coagulopathy
therapy should
be stressed.
Cardiovascular Vascular reactivity
Jud et al, alterations may be and arterial stiffness
4 [149] (2021) 01 LBBM NR caused by may be altered in CT NR
endothelial distinct ways by
dysfunction. SARS-CoV-2.
Edema of the cortex
Doo et al. ' or sub cortex as a Caroti(jl thrombosis
5 [150] (2021) 02 LBBM Hypertension  result of a breach in with large MRI NR
the blood-brain ischemic stroke
barrier
Increasing the rate of
poor outcomes
Qureshi et al. . COVID-19 effects on among patients with
6 [151] (2021) n LBEM Hypertension carotid strength iSCheI%lEf stroke and cT NR
transient
ischemic attack.
The consequence is
more likely to occur Patients in COVID-19
in individuals who who had a
are older and who large-vessel ischemic
Ojo et al have a more severe stroke after sub
7 ) 221 LBBM CKD, CVD disease; nevertheless, occlusive acute NR NR

[152] (2020)

large-vessel
occlusion is
increasingly being
documented in
younger people.

restriction of the

common carotid
artery and
thrombosis
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Table 4. Cont.

SN Citations

PS

ME

Comorbidities

Outcome

Vascular Damage

Imaging Modalities

Treatment

o]

[153] (2021)

Munjral et al.

NR

LBBM,
OBBM

BP, Diabetes

The importance of
low-cost surrogate
CVD tests, such as
ultrasound screening
of the carotid artery,
can contribute to
accurate Al-based
risk assessment and
the monitoring of
atherosclerotic
disease.

Highlighted the role
that poor nutrition
and vascular damage
induced by
SAR-CoV-2 played in
causing damage to
the brain and heart.

Us

NR

Villadiego
9 etal. [154]
(2021)

04

LBBM

NR

The most distinctive
feature of patients
with COVID-19 is

that they
demonstrate severe
hypoxemia, with
arterial levels of
oxygen (O2) tension
even lower than 50
mmHg, and they do
so without
manifesting obvious
signs of distress
(dyspnea) or a
significant increase in
the rate at which they
are breathing.

Vascular damage
induced by
SAR-CoV-2

NR

NR

Crispy et al.

10 1155] 2022)

15446

LBBM,
OBBM

Diabetes,
CVD

Endothelial
Dysfunction results
carotid alternation

Carotid
Revascularization

us

NR

PS: Patient size, ME: Method of evaluation, CVD: Cardiovascular Disease, LBBM: Laboratory base biomarker,
OBBM: Office base biomarkers, NR: Not reported, CT: Computer Tomography, US: Ultrasound, MRI: Magnetic
Resonance Imaging.

Figure 11. A significant amount of thrombus in the carotid artery. A man in his 50s who went to the

doctor complaining of weakness in his left wrist was found to have positive serology for COVID-19.

A significant subocclusive thrombosis of the right common carotid artery that extended into the

internal and external carotid arteries was seen on the head and neck (a) CT angiography (arrows).

The CT perfusion analysis revealed an acute infarct in the right superior frontal lobe as well as a wide

area of elevated Tmax in the right cerebral hemisphere which involved both the right frontal and

parietal lobes, indicating an area that may be at risk for additional infarction (box). (b) Immediately

afterwards, endovascular chemical thrombolysis of the right carotid artery was carried out [144].
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Figure 12. Patient 2. (A) 78-year-old woman with COVID-19 and an NIHSS score of 25.The CT of
the head without comparison shows an evolving ischemic infarct in the left frontal brain paracentral
cortex (dotted circle) and a smaller infarct in the left parietal cortex. (B-D), Axial, coronal, and curved
reimaged images from CT angiography of the head and neck show an irregular plaque at the left
internal carotid artery bifurcation and a capillary filling defect (arrow) extending superiorly in the
left internal carotid artery, which matches the ruptured plaque with clot formation [144].

5. Role of Artificial Intelligence-Based Tissue Characterization

Al has played a vital role in the vascular management of COVID-19 patients. This
section highlights the role of Al in the management of four different organs using the
vasculature components. Sections 5.1-5.3.4 discuss the role of Al in pulmonary vessels,
renal artery disease, and coronary and carotid arterial disease, respectively, in the presence
of COVID-19.

ML is a class of Al algorithms that applies statistical characterization methods to
manually extracted features (generally numerical) based on various image properties, i.e.,
brightness, contrast, and texture. A series of studies have been conducted for TC using
different medical organs and medical imaging modalities [15-17,20,37,38,156]. Figure 13
shows a typical ML model to predict vascular disease. It has two components, namely,
an offline training system and an online prediction system. Data acquisition can be seen
for four kinds of images, namely carotid, coronary, renal, and pulmonary vasculature.
The machine system can be executed for any kind of vascular disease, as shown by the
“vascular artery switch”. The offline system consists of offline feature extraction, where the
grayscale features are extracted. These features undergo training model generation using
(i) training-based grayscale features, (ii) gold standard labels, and (iii) classifier type. The
prediction system consists of testing-based grayscale features, which are then transformed
by the training model to predict the vascular disease risk label type, which is a two-class
system (disease vs. controls). Several examples of ML systems for different applications
have been developed previously [157]. The result of the predicted system is sent to the
performance evaluation system, which uses the result of the predicted system and the gold
standard to figure out the receiving operating curves (ROC).
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Figure 13. Machine learning model to predict vascular disease.

5.1. Al-Based Tissue Characterization for Pulmonary Disease Diagnosis in COVID-19

The intensity of the severity of lung infection due to COVID-19 is currently being
quantified by radiologists through various imaging modalities, including X-ray, MRI,
CT, and ultrasound [40]. In this regard, different schools of thought envision Al-based
automated solutions for the detection and quantification of the severity of COVID-19-
induced ARDS from lung images. There are two parts to this analysis: (a) segmentation of
the lung using model-based techniques [158], and (b) classification of COVID-19 disease
in these segmented lungs. For these tasks, Al algorithms are further divided into two
categories, machine learning (ML) [159] and deep learning (DL) [160-162].

DL is a class of Al algorithms that uses a neural network to mimic the visual cortex of
the brain for segmentation and AIbTC [163]. It has been found that although DL models
are costly in terms of computational time and storage, they are more accurate than ML
strategies. The DL characterization module is shown diagrammatically in Figure 14a,
while the segmentation module is shown in Figure 14b. DL-CNN uses a sequence of
convolutional, ReLu, and pooling layers to extract features that are then passed to fully
connected layers to perform characterization [164,165]. On the other hand, DL-FCN models
use upsampling and skipping of layers to perform semantic segmentation [166]. CNN is a
neural network model that extracts picture representations. It examines an image’s original
pixel data, trains a model, and automatically extracts features for better categorization.
Fully Convolutional Networks segment semantic data, and solely use convolution, pooling,
and upsampling.

Figure 15 depicts the AIbTC architecture that has been proposed to scan the internal
carotid artery in the cloud domain. It is comprised of the following five components:
(a) image capture, (b) preprocessing, (c) artificial intelligence-based models, and (d-f)
performance assessment and verification. In order to acquire the plaque region of interest,
these scans are first normalized and then manually delimited in the pre-processing phase
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(ROI). The augmentation block was included as a part of the pre-processing phase block,
as the cohort size was quite modest. This block assists in determining whether plaques
are symptomatic or asymptomatic. This is accomplished by having trained AIbTC models
perform a transformation on the image of the testing plaque.
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Figure 14. (a) DL-CNN model for characterization, (b) DL-FCN model for segmentation [44].
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Figure 15. Deep learning model to predict vascular disease using AIbTC [44].
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Altogether, seven schools of thought (SOT) have been used extensively in AIbTC
area. For convenience, the groups have been named the Beijing group, Changsha SOT,
Wuhan SOT, Macau SOT, Trento SOT, Bethesda SOT, and Molise SOT. The Beijing SOT
has used several models of DL, i.e., ResNet, VGGNet, DenseNet, and UNet (architecture
details are shown in Appendix B) for multiview fusion, video-based real-time prediction,
and semi-quantitative prediction of COVID-19-induced ARDS severity [167-171]. The
Changsha SOT has used a biomarker-based model for severity detection in 3D lung ab-
normalities. The DL models used were Resnet34 with logistic regression and Dense UNet
for CT, MRI, and ultrasound [172,173]. The Wuhan SOT applied DL models extensively
to CT, MR, and ultrasound lung images for characterization [174-177]. The Macau SOT
used a combination of DL and ML algorithmes, i.e., Resnet with Gradient Boosting, for
the characterization of ARDS severity [178]. The Trento SOT used ML models, such as
the Hidden Markov Model, SVM, and Random Forests, for ARDS detection and charac-
terization, i.e., pleural line identification, automatic severity assessment, and exploration
of severity-related features [179,180]. The Bethesda SOT used a combination of DL and
TL for ARDS characterization from different imaging modalities [181,182]. The Molise
SOT used a combination of ML, DL, and TL models for the classification of COVID-19
disease [183-185]. The various DL model architectures are explained in Appendix B.

5.2. Al-Based Tissue Characterization for Renal Disease in COVID-19

As previously stated, COVID-19 damages the kidneys both directly and indirectly. In
the direct form of damage, the proximal tubular cells of the kidney are directly damaged
due to the intrusion of the SARS-CoV-2 virus [186]. In the indirect invasion, COVID-19-
induced cytokine storms and the subsequent hypercoagulable state of tissue factors lead to
renal ischemia and cortical necrosis [187]. These abnormalities are easily observed in renal
images and diagnosed by radiologists. In recent years, Al-based measures, especially DL
models [188] and model-based imaging [189], have increasingly found prominence in the
detection of abnormalities [190] and in the segmentation of kidney images [191]. Several of
these works are discussed below.

Hermsen et al. [192] used the DL model for automated segmentation of five structures
within the kidney, i.e., glomeruli, proximal tubuli, distal tubuli, arterioles, and capillaries,
with a high degree of accuracy. The accuracy of DL primitive FCN, U-net, and M-FCN
appears to be better. Except for capillaries and arterioles, which scored about 30% lower,
the majority of classes scored close to 90%. Kolachalama et al. [193] used the DL model to
classify different stages of chronic kidney disease (CKD), serum creatinine, and nephrotic-
range proteinuria. The DL model’s accuracy and area under curve were better than in
previous models. Nephrologists employ kidney length, volume, cortical thickness, and
echogenicity to assess kidney damage. The very short renal length (8 cm), whitish cortex,
and contracted capsule contour indicates permanent kidney failure. In the aforementioned
study, the ResNet model was discussed as having an accuracy of 87%. Kuo et al. [194] used
transfer learning for the identification of CKD status using kidney ultrasound images. This
is the first study to link the retina and kidney using an Al-based Deep Learning Accelerator
(DLA), showing the potential of retinal pictures to diagnose and screen CKD illness in the
population. DLAs could be implemented into retinal cameras as a complement to serum
creatinine and estimated glomerular filtration. Multimodality imaging plays a vital role in
better disease detection and is very helpful in monitoring and validating the clinical results.
This requires image registration [195-198].

5.3. Al-Based Tissue Characterization for Carotid/Coronary Disease Diagnosis in COVID-19

COVID-19 induces endothelial barrier interruption and causes harm to the vascular
wall due to major action on angiotensin II type 1 (AT1) receptors. The degradation of the
epithelial layer leads to the acceleration of atherosclerosis disease [199]. As atherogenesis
sets in, low-density lipoprotein (LDL) cholesterol accumulates along the artery walls,
leading to their hardening [200]. Other materials, such as macrophages and fibrous tissue,



J. Cardiovasc. Dev. Dis. 2022, 9, 268

25 of 51

enter the arterial wall, leading to the formation of a complex necrotic core representing the
plaque with a vulnerable thin fibrous cap [201]. With time, the fibrous tissue may rupture,
leading to thrombosis and subsequent stroke [202]. Thus, imaging-based characterization
is necessary for stroke risk estimation [203,204]. Accordingly, an iterative approach to
examining epithelial cellular health can be applied using AIbTC and classification [189,205]
in medical imaging.

5.3.1. The General Framework for PTC using CNN

DL with a convolutional neural network can be used to improve features or obtain
useful information from images. Figure 16 shows how the extraction of features can be
carried out in two ways, either a 1D or a 2D way. CNN technology has four main features:
max pooling, convolution, non-linearity, and classification [206,207].
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Figure 16. The general structure of CNN architecture (courtesy of AtheroPoint™, Roseville, CA,
USA) [206,208].

Early AIbTC screening is vital for plaque identification and risk stratification [33].
The plaque area is measured in terms of carotid intima-media thickness (cIMT) and total
plaque area [209]. The plaque type is generally characterized as either symptomatic or
asymptomatic. With regard to cIMT and TPA measurement, the plaque area is first seg-
mented and corresponding measurements are made. Several DL models have been used to
segment the plaque area accurately. Biswas et al. [210] developed a single-stage DL model
for segmenting plaques with significantly lower bias concerning contemporary methods
in the same domain. Guadrado et al. [211] used a similar strategy to compute the TPA. In
2020, Biswas et al. [212] developed a two-stage DL model for cIMT and TPA measurement,
with even better results. Several recent techniques using DL have been developed for
area measurements using Jain et al. [32,213,214]. Numerous AIbTC methods are used for
stroke risk assessment [35,215]. In the area of plaque characterization, Lekadir et al. [216]
used the AIbTC model for determining the composition of plaques with fair accuracy. In
2020, Skandha et al. [217] used the DL-CNN model for the characterization of plaques with
better accuracy.

Saba et al. [218] demonstrated a plaque characterization approach using CT scans on
symptomatic subjects with bilateral intraplaque hemorrhage (Figure 17). The authors
measured plaque components such as calcification (value > 130 HU), mixed plaque
(values > 60 and <130 HU), lipid (value > 25 and <60 HU), and intraplaque hemorrhage
(value < 25 HU). The authors showed that the IPH/lipid ratio was higher on the symp-
tomatic side (0.596 versus 0.171, p = 0.001).

In the advanced stages of COVID-19 infection there is an increased production of
cytokines, inducing organ damage; medical imaging with Al can help in the advanced
diagnosis of the recent pathophysiology of the patient [219]. The several DL-based tools
discussed above can help in faster detection of vascular abnormalities with a lower risk
of infection.
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Figure 17. Carotid plaque with bilateral intraparenchymal hemorrhage [218]. (Carotid plaque right

side, (A): 3D view, (B): top view, (C): side view, Carotid plaque left side (D): 3D view, (E): top view,
(F): side view.)

5.3.2. Coronary and Carotid Plaque Tissue Characterization Using Machine Learning

ML and DL methods for the carotid plaque tissue characterization (PTC) approach [24,220]
are needed to delineate how high the risk of CVD is in mild COVID-19 patients versus
severe COVID-19 patients. In the field of clinical imaging, ML has been used to implement
popular classifiers such as random forest (RF), support vector machine (SVM), decision
tree (DT), and AdaBoost. Due to changes in US, PTC can meet diagnostic and therapeutic
needs while keeping costs down. Saba et al. [221] used a PCA method based on polling in
an ML framework to pick the most important traits for better performance. The majority of
cardiologists use ML to determine the risk of CHD before stenting and percutaneous coro-
nary intervention [35]. This study used a method that used intravascular ultrasonography
(IVUS), greyscale plaque morphology, and cIMT to measure the risk of CVD.

Using the AIbTC of symptomatic and asymptomatic plaque from US images, vascu-
lar radiologists can promptly elucidate patient diagnoses. Acharya et al. [31] looked at
346 pictures of US plaques, of which 196 showed symptoms and 150 showed no symptoms.
Figure 18a,b shows two examples of plaque with symptoms and plaque with no symptoms.
The photos were first processed to eliminate noise, then a discrete wavelet transform (DWT)
was used to pull out the features.

(a) Symptomatic (Sample of 4 Patients)

i e | WD
a5 W

(b) Asymptomatic (Sample of 4 Patients)
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Figure 18. Delineated plaque in B-mode US: (a) symptomatic plaque and (b) asymptomatic plaque
(Courtesy of AtheropointTM, Roseville, CA, USA) [44].
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In the framework of ML, a wide range of studies have been carried out to investigate
various aspects of risk assessment for CTAD and COAD [222-224]. In addition, ML was
used to identify people with COAD by assessing the greyscale features of left ventricular
ultrasound data [225]. Recent research has resulted in the development of a method for
forecasting the risk of COAD that is based on DL and makes use of the carotid artery as the
gold standard [44,45,226,227].

5.3.3. Plaque Tissue Characterization Using Deep Learning

The engagement and movement of smooth muscle cells (SMCs) from the media layer to
the intima layer are necessary steps in the development of a plaque. The plaque generation
process is characterized by the migration of SMCs from the media layer into the intima
layer, where they consolidate to form the majority of the cellular auxiliary matrix. These
SMCs from the media layer have the potential to infiltrate the surface, where they can form
a layer known as the fibrous cap. This layer possesses an elastic quality that protects it from
cracking, and it was created by these SMCs. The risk of producing a fracture, on the other
hand, rises as the layer in question becomes more rigid. Inflammatory cells are responsible
for destroying SMCs, which help to reinforce and stabilize the cap. Different plaque
components are depicted in the pathological pictures shown in Figure 19. The images of
plaque indicate a healthy wall with neo-vessels, calcified plaque, and intraplaque bleeding.
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Figure 19. Different plaque components depicted in pathological pictures: (A) healthy wall,
(B) neovessels, (C) calcified plaque, and (D) interplaque hemorrhage (courtesy of Dr. Luca Saba, U of
Cagliari, Italy) [222].

The stiffness index of the cap is what influences the likelihood of a plaque breaking
apart. Therefore, measuring stiffness as part of a stroke risk assessment is quite important.
This is related to the process of distinguishing between hard tissues and soft tissues [43].

5.3.4. Generalized Transfer Learning for Al-Based Tissue Characterization

The transfer learning (TL) architecture for PTC is shown to be more efficient [19,44,227,228].
This is because the initial weights are not computed, and are instead taken as pretrained
weights to start the training and prediction process. An example can be seen in Figure 20.
We demonstrate the use of three kinds of fundamental architecture, such as VGG, DenseNet,
and ResNet; each of these has different versions of the base framework. Thus, the VGG
group has VGG-16 and 19, DenseNet (Figure A2) architectures have DenseNet121 and 169,
and ResNet architectures have ResNet50 (Figure A5) and 101. The core change between
these versions is the number of neural network layers. It is important to note that the latest
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architectures such as MobileNet (Figure A6) and XceptionNet (Figure A4), Inception V3
(Figure A3) are more modern, and are well-adapted in the Al industry, showing faster
optimization paradigms. Various DL models with descriptions are shown in Appendix B.
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Figure 20. Transfer learning model to predict vascular disease [44].

6. Discussion
6.1. Principal Findings

In this review, we have focused on the deep causes of vascular damage, whether
in the pulmonary, renal, carotid, or coronary vessels. Thus, it is vital to understand the
vascular pathophysiology in these four vascular territories. This special report has helped
with understanding of (i) the pathophysiology of vascular damage and the related role
of radiological imaging, and (ii) AIbTC for understanding the vascular damage caused
by COVID-19. Furthermore, this study provides new dimension in which to understand
COVID-19 severity using different kinds of Al models in these vascular beds. Table 5 shows
various studies depicting pulmonary, renal, coronary, and carotid artery vascular damage
due to COVID-19.

Medical imaging methods such as MRI, CT, and ultrasound can be used for imaging
the four kinds of vasculature infected by COVID-19 [229]. Several studies have shown
that the extent of vascular damage and the characterization of COVID-19 can be facilitated
using Al such ML, DL, and transfer learning paradigms [230]. Suri et al. presented several
studies that focus on challenges in AIbTC (carotid, coronary) and present recommendations
for improving AIbTC vs. control patients [32,66,156,224].
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6.2. Benchmarking of Four Types of Vasculature Studies

Vascular damage to the renal, pulmonary, coronary, and carotid arteries due to COVID-
19 has been linked in a few studies utilizing various imaging and non-imaging modalities
such as MRI, CT, US, ECG, and X-ray, according to an overview of the data. Al’s function in
the severity of vascular damage of four different kinds due to COVID-19 is rarely discussed
in the literature. Only a few articles in the COVID-19 framework use the AIbTC model to
describe the severity of vascular damage. Table 6 reports the benchmarking scheme for
selected pulmonary, renal, coronary, and carotid artery AIbTC abnormalities studies.

6.3. Pulmonary Vasculature Studies

Harmon et al. [231] proposed DL models that were trained on a diverse global cohort
of 1,280 patients to localize forebrain pleura/lung parenchyma followed by classification
of COVID-19 pneumonia. The DL model resulted in an accuracy of 85.50%, with 84%
sensitivity, 0.94 AUC, and 93% specificity. Estépar [232] presented a CNN model and their
interpretation of the pulmonary vasculature observations of 1,024 patients. Pulmonary
function test (PFT) pattern identification and diagnosis were 100% and 82% accurate,
respectively, using the automated method.

Table 5. Comparison of pulmonary, renal, carotid, and coronary artery damage due to COVID-19.

SN COVID-19 Attributes Pulmonary Renal Coronary Carotid
ACE2 receptors on the
ACE2 receptors on  surface of glomerular
1 Viral invasion surface of type 2 cells, tubular Myocytes [233] ACE2 receptors
pneumocytes epithelium, and
podocytes of kidneys.
Acute kidney injury, Plaque variability, Atherloa scizrotlc
acute tubular necrosis,  abnormality in blood vulneI;ab(}li tv and
2 Manifestations ARDS cortical necrosis, and flow, Myocardial 4
. S . . i promotes a
renal ischemia, tissue ischemia, myocarditis, .
L . thrombogenic
abnormalities. and heart failure .
environment.
Systemic abnormalities . .
3 (e, DM, HTN, Primary Secondary Psr:gﬁé’;“d P ;‘;ﬁ’;ﬂd
ARDS, CVD) y y
4 Anticoagulants May be Not beneficial [235] Beneficial [236] Beneficial [236]
beneficial [234].
CT shows
subpleural and
5 Imaging Modalities peripheral areas CT, US, and MRI CT, US, MRY, CT, US, and MRI
ground-glass and X-ray
opacities” and con-
solidation [236].
ML [237], DL [238], ML [239], DL [240], ML [204], DL [242],
6 Al Models HDL [46] HDL [241] HDL [243] ML, DL, HDL
7 Classifier Types SVM, DT, CNN, RF SVM, DT, CNN, NB SVM, DT, CNN, RF SVM, DT, CNN,

RF, NB
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Table 5. Cont.

SN COVID-19 Attributes Pulmonary Renal Coronary Carotid
Remdesivir is a
prodrug for its action Chloroquine
it metabolizes to phosphate,
Remdesivir hydroxychloroquine
Remdesivir is a triphosphate. Both sulphate and .
. . . . - Chloroquine
Drues commonly used prodrug for its Remdesivir and its azithromycin usage hosphate
& y action it active metabolite individually or in phospiate,
8 in COVID-19 may . . . L hydroxychloroquine
induce these conditions metabolizes to eliminate renal (i.e., combination may sulphate, and
Remdesivir 74%). AKI with this increase in QTc azithrorr{ cin
triphosphate drug may be transient.  interval prolongation y

Hence it is not advised
in patients with
eGFR < 30 mL/min

and torsades de
pointes or ventricular

arrhythmias [245,246].

per 1.73 m? [244].

Li et al. [247] demonstrated the DL model for finding lung lesion segmentation via CT
scan using 4,332 patient images utilized for the analysis. The model used a combination of
the CNN algorithm for feature extraction followed by classification using an SVM extractor.
The model showed a high sensitivity of 90% (95% confidence interval (CI): 83% to 94%) and
a high specificity of 96% (95% CI: 93% to 98%). For COVID-19 and community-acquired
pneumonia, the areas under the receiver operating curves were 0.96 (95% CI: 0.94, 0.99) and
0.95 (9% CI: 0.93, 0.97), respectively.

Saba et al. [238] proposed six models to differentiate between COVID-19 pneumonia
(CoP) and non-COVID pneumonia. A 100-patient dataset was used for the purposes of
experimentation. Three kinds of Al models were used, two conventional ML (k-NN and
RF), two TL (VGG19 and InceptionV3), and two DL models (CNN and iCNN). For CT lung
characterization, a K10 cross-validation (90% training, 10% testing) protocol was used on
an Italian cohort of 100 patients with CoP and 30 patients without CoP. The study results
showed that K-NN, VGG19, IV3, CNN, and iCNN all had accuracies in the range of 74.58%
to 96.74%; the associated AUCs were 0.74, 0.94, 0.96, 0.98, 0.99, and 0.99, respectively, all
having p-values = 0.00001.

Agarwal et al. [46] demonstrated a novel Al-based method for COVID-19 disease
classification, characterization, and severity measurement in lung CT scans on an Italian
cohort. The presented work explains a two-stage CADx system involving (i) segmentation
and (ii) classification. The classification system included a CNN, five transfer learning
algorithms, random forest, a decision tree, and ANN soft classifiers. The system included
block imaging, bispectrum analysis, and entropy analysis for lung AIbTC. Diagnosis odds
ratio, receiver operational parameters, and CADx system statistics were used to evaluate
the performance. CNN and Random Forest were the top soft classifiers, with 99.41 & 5.12%
accuracy and AUC 0.991, p < 0.0001, respectively. The characterization system showed the
most accurate color-coded probability maps in COVID-19 patients’ inferior lobes.

6.4. Renal Vascular Studies

Tseng et al. [248] analyzed the relationship between cardiac surgery and acute kidney
damage (CSA-AKI). There can be a significant complication known as cardiac surgery-
associated acute kidney damage (CSA-AKI), which can lead to an increased risk of death
as well as an increased risk of morbidity. A total of 671 individuals who were scheduled
to have heart surgery were included in the study. Logistic regression, support vector
machine (SVM), random forest (RF), extreme gradient boosting (XGboost), and ensemble
(RF + XGboost) were among the ML algorithms used for analysis. The effectiveness of
these models was assessed by calculating the AUC. RF exhibited the greatest AUC of
0.839, 95% accuracy, and CI 0.772-0.898 when compared to the efficacy of the single model
that most accurately predicted the outcome; however, the AUC of the ensemble model
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(RF + XGboost) was even greater than that of the RF model alone, with 0.843, 95% accuracy
and CI 0.778-0.899.

Zang et al. [249] developed an Al-based pulse-coupled neural network (PCNN) for
enhancing ultrasonic image information, and this algorithm was compared against the
histogram equalization and linear transformation methods. The model was built using a
CNN-based algorithm. This was later used in hospital settings to aid in the ultrasonic image
diagnosis of 31 patients who were suffering from acute sepsis in conjunction with an AKIL
The condition of each patient was diagnosed based on (a) ultrasound image performance,
(b) the change in renal resistance index (RRI), (c) the ultrasound score, and (d) an analysis
of the ROC.

Ying et al. [250] proposed a PCNN method for the diagnosis of severe sepsis compli-
cated by AKI using an ultrasonic image. Their study explains their CNN-based ultrasonic
image enhancement technique, which was later compared with the histogram equalization
and linear transformation algorithms. Twenty patients with severe sepsis and AKI were
then diagnosed using ultrasonic imaging. The algorithm resulted in an AUC of 0.78.

Bouteldja et al. [251] proposed a DL-based CNN model for verification of vascular
abnormalities in the kidney using 60 renal AIbTC scans. Their paper differentiates six
important renal structures, including the glomerular tuft, the glomerulus, Bowman’s
capsule, the tubules, the arteries, the arterial lumina, and the veins. The implemented
model shows 81% accuracy and 0.80 AUC.

Kalisnik et al. [252] explained an ML model using an SVM classifier for early detection
of AKI after cardiac surgery with a cohort of 288 patients. After cardiac surgery, AKI was
detected with an area under the curve of 88%, a sensitivity of 78%, a specificity of 78.1%,
and an accuracy of 82.1%.

6.5. Coronary Vasculature Studies

Colak et al. [253] proposed the prediction of coronary artery disease using the ANN
model. Their experimentation included 124 consecutive patients with CAD (at least one
coronary stenosis > 50% in main epicardial arteries). In total, 113 patients with normal
coronary arteries (group 2) served as angiographic controls. Their ANN architecture used
a multi-layered perceptron. The ANN models were trained on 237 training (n = 171) and
testing (n = 66) record sets. The proposed model showed 71% sensitivity, 76% specificity,
and 80% accuracy.

Correia et al. [254] presented an ML-based algorithm for detecting coronary disease
in individuals having chest pain and compared it to the classical statistical model, using
962 chest pain patients. An ML method and a classical logistic model were created utilizing
the first two-thirds of patients. The remaining one-third of the patients had these two
prediction techniques tested. The final logistic regression model had just 5% significant
variables. The sample was 59 + 15 years old, 58% male, and 52% had coronary disease. The
model had nine independent predictors. All predictor candidates were in the ML algorithm.
In the test sample, the ML algorithm’s ROC curve for coronary disease prediction was 0.81
(95% CI = 0.77-0.86), identical to the logistic model (0.82; 95% CI = 0.77-0.87), p = 0.68.

Cheng et al. [255] suggested a ANN model that achieved satisfactory performance
in the prediction of MACE in patients who required coronary artery syndrome (CAS)
treatment. The study used 317 patients for the experiment. The accuracy of the model was
80.76%. When neurologists recommend patients to cardiologists, as well as before patients
are treated by cardiologists, a model ANN can be useful for detecting high-risk patients
who have CAS. It might also serve as a communication reference when patients are referred
to cardiologists.

6.6. Carotid

Jain et al. [256] proposed an Al model for the examination of atherosclerotic plaques
in the internal carotid artery. These plaques may rupture and cause embolism of cerebral
blood vessels, resulting in a stroke. A total of 970 ICA B-mode US pictures from 99 high-risk
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patients were incorporated into the database. Difference area thresholds of 10 mm? between
Al and GT yielded AUC values of 0.91, 0.911, 908.9, and 905, (CE-loss models) and 0.98
(Al-loss models), respectively, for DSC-loss models, all with p-values of less than 0.001. An
Al plaque area and a GT plaque area had correlations of 0.98, 0.96, 0.97, 0.97 (for CE-loss
models), whereas a correlation of 0.98, 0.98, 0.97, 0.97 (for GT plaque area) was found in
the study for DSC-loss models. Online plaque segmentation takes less than a second. The
HDL and SDL models behave equally, confirming our hypothesis. SegNet-UNet had the
best performance.

Skandha et al. [257] proposed a plaque characterization approach utilizing CT im-
ages on symptomatic participants with bilateral intraplaque bleeding (Figure 18). The
authors examined plaque components such as calcification (value > 130 HU), mixed plaque
(values > 60 and <130 HU), lipids (value > 25 and <60 HU), and intraplaque bleeding
(value < 25 HU). The authors showed that the IPH/lipid ratio was greater on the symp-
tomatic side (0.596 versus 0.171, p = 0.001).

In the benchmarking section, we discuss the pathophysiology of pulmonary, renal,
coronary, and carotid vasculature damage in patients with COVID-19, as well as the
current evidence for these consequences. All four mentioned organs are common in
individuals with COVID-19 who are in severe condition, and all are linked with a high
fatality rate. The role of Al methods such as ML, DL, and transfer learning paradigms is
seen in various mentioned studies, and can aid in determining the level of vascular damage
and characterizing patients’ COVID-19 condition. However, no studies were able to explain
bias in Al systems.

Table 6. Benchmarking scheme for four types of COVID-19 vascular damage.

C1 C2 C3 C4 C5 Cé C7 C8 C9
SN Citat?olﬁl;zr;’Year Vi}l?;:iar ™M T;?;e ]I;i;ttiaesr::tt Sl:El!:?tlil;)en Classifier Type Aif/zl)racy 1[&01-}1(]:
1 Harmon et al. [231] (2020) Pulmonary CT DL 1280 NR NR 85.50 0.94
2 Estépar [232] (2020) Pulmonary CT DL 1024 PCA CNN 92.00 0.80
3 Li et al. [247] (2020) Pulmonary CT DL 4332 SVM CNN 94.00 0.96
4 Saba et al. [238] (2020) Pulmonary CT DL 130 SVM CNN 74.58 0.74
5 Agarwal et al. [46] (2021) Pulmonary CT DL 30 DT CNN 99.41 0.99
6 Tseng et al. [248] (2020) Renal CT ML 61 SVM RF + XGboost 79.00 87
7 Zang et al. [249] (2021) Renal MRI DL 31 PCA CNN NR NR
8 Ying et al. [250] (2021) Renal us DL 20 NR PCNN NR 0.78
9 Bouteldja et al. [251] (2021) Renal us DL 60 SVM CNN 81.00 80
10 Kalisnik et al. [252] (2022) Renal CT ML 288 SVM RF 81.00 88
11 Colak et al. [253] (2008) Coronary CT DL 237 NR CNN 97.08 0.92
12 Lee et al. [258] (2021) Coronary CT DL 2985 NR CNN 93.03 NR
13 Correia et al. [254] (2021) Coronary ECG ML 962 SVM LR 93.02 0.93
14 Upton et al. [243] (2022) Coronary CT DL 832 NR CNN 92.07 0.93
15 Gao et al. [259] (2022) Coronary Us ML 539 RF LR 89.05 NR
16 Cheng et al. [255] (2017) Carotid US,CT DL 317 NR ANN 80.76 0.80
17 Skandha et al. [227] (2020) Carotid CT DL 1000 NR CNN 95.66 0.95
18 Konstantonis et al. [260] (2020) Carotid us ML 542 PCA RF 98.39 0.98
19 Jain et al. [256] (2021) Carotid us HDL 970 PCA CNN 91.23 0.91
20 Skandha et al. [257] (2022) Carotid us HDL 877 DT CNN 99.78 0.99

IM: Imaging modality, Al: Artificial Intelligence, CT: Computer Tomography, US: Ultrasound, ECG: Electrocardio-
gram, ML: Machine Learning, DL: Deep Learning, HDL: Hybrid Deep Learning, SVM: Support vector machine,
PCA: Principal Component Analysis, RF: Random Forest, CNN: Convolution neural network, LR: Logistic
regression, MRI: Magnetic resonance imaging. NR: Not Reported.
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6.7. A Special Note on Vascular Damage Due to COVID-19

Vascular abnormalities increase the risk to both the heart and the brain [261]. This
link has been extensively noted, as the genetic makeup of carotid and coronary arteries
is similar [262,263]. The aortic arch, coronary artery, and carotid artery each have char-
acteristics that are comparable to one another [264]. These arteries travel in opposite
directions, even though each one branches off of a distinct major artery (Figure 21). Patho-
logical changes such as polymorphonuclears, T-lymphocytes, histiocytes, monocytes, and
mononuclear giant cells have been found in all specimens in the thrombus formation and
all layers of vessels, in addition to endothelial proliferation and vascular endothelial, as
well as varying degrees of collagen deposition and myofibroblastic proliferation [265,266].

These findings were found in conjunction with endothelial proliferation and vascular
endothelium damage to the endothelium, which can lead to thromboembolism in the
vasculature of the limbs and the aorta in addition to severe vascular events such as acute
arterial hypoxia [267]. These promote LDL accumulation and oxidation, plaque formation,
and arterial lumen narrowing [268,269]. Consequently, carotid artery disease has the
potential to serve as a replacement biomarker for coronary heart disease in CVD patients
who have COVID-19 [35]. COVID-19 is the agent that causes thrombosis in the veins and
arteries, and is also the agent responsible for the unbalanced inflammatory state known as
a cytokine storm, which affects endothelial cells as well [270].

Left Common

Right Common
Carotid a.

Carotid a.

Thyrocervical
. trunk
Costocervical a. _

Vertebral a. 7
Right Left
Subclavian a. Internal Subclavian a.
Mammary a.

Innominate a.

Figure 21. The inception of the left and right carotid arteries [271].

6.8. Role of Anticoagulants in COVID-19

Research indicates that prophylaxis with low molecular weight heparin, such as
fondaparinux, or oral anticoagulants, such as apixaban or rivaroxaban, may be considered
in COVID-19 patients [272,273]. Heparin binds tightly to the spike proteins of the virus,
resulting in impeded entry of SARS-CoV-2, downregulates cytokine storms, and reduces
immune activation. Recent studies have shown that anticoagulants reduce mortality in
COVID-19 patients. However, the role of anticoagulation in ARDS has been shown to
not be beneficial [234]. Using anticoagulants and antiplatelets may be beneficial in the
heart [236,274]. Further another study by Arnold E. et al. [235] shows using anticoagulants
in the renal area is not beneficial.

6.9. Bias in Deep Learning Systems

The training model design step of DL algorithms is highly dependent on the sample
size employed. Furthermore, lack of (i) clinical testing of Al techniques, (ii) scientific
validation, (iii) not satisfying the gold standard, (iv) comorbidities in sample sets, (v) lack
of big data configuration, and (vi) not judging the proper disease severity ratio can all lead
to bias in an Al As a result, when COVID-19 results in vascular damage (or related risk
factors) are examined as inputs to an Al model, it is critical that the Al model be stable
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and accurate and have minimal Al bias [37,275-278]. It may be noticed that the database
contains geographically specific patient characteristics. As a result, the model may produce
deceptive positive or negative findings when used for other regions due to the introduction
of bias into the model [279,280].

6.10. Strengths, Weakness, and Extensions

The main strength of the current study is the identification of vascular damage in
the pulmonary, renal, coronary, and carotid arteries due to COVID-19. DL offers better
training and risk prediction due to superior non-linear adjustment between the covariates
and the gold standard. In addition, the system offers better coverage of covariates such as
image modalities of CT, US, MRI, and X-ray. Furthermore, CNN represents a very powerful
approach to DL system design for AIbTC vascular damage risk prediction. Lastly, the DL
system is generalized, which can be altered by adding more covariates and comorbidities,
thereby designing a multiclass system [19]. While DL offers strengths, it needs to be ensured
that the system is optimized. This requires several iterations of systematic hit-and-trial
attempts to achieve optimal DL solutions. Furthermore, a DL system requires a solid gold
standard for CT lesion annotations for vascular damage and their respective gold standard
collection in cohorts, which requires a considerable length of time and costs.

Lastly, DL systems are susceptible to Al bias due to overperformance in terms of
accuracy and lack of interpretability along with clinical evaluation. In terms of extensions,
superior DL systems can be designed using ensemble-based methods. Big data can be
considered as an option for improving DL systems by using more sources of data and a
larger sample size. Even though our strategy adapted standardized engineering protocols
for Al-based tissue characteristics for vascular damage due to COVID-19, a more exhaustive
search could be adopted using Embase, Medline, and The Cochrane Library.

The DL system can be improved by adding augmentation designs, should the cohort
size be small. Note that a new wave of pruning then needs to be incorporated into the
DL system for smaller-size training storage models [281] and evolutionary methods [282].
Lastly, integration of advanced image processing methods can be integrated for better loss
function designs [283].

7. Conclusions

This is the first special report of its kind to focus on vascular damage due to COVID-19
along with the role of radiological imaging of the pulmonary, renal, coronary, and carotid
vessels. We demonstrated the pathophysiology of these four arterial vasculatures based on
the hypothesis a link exists between vascular damage and COVID-19 severity. We showed
the role of radiological imaging techniques such as MR, CT, X-rays, and US for acquiring
vascular data, which can then be used in the design of AIbTC systems. It was this AIbTC
that was used for risk stratification of COVID-19 damage in pulmonary, renal, coronary,
and carotid arteries. In terms of Al, this is the first kind of special report to demonstrate
that, for case studies of four vascular damage types due to COVID-19, AIbTC models
such as the machine learning, deep learning, and transfer learning paradigms can aid in
determining the level of vascular damage and characterizing patients” COVID-19 condition.
In addition, the study focuses on obstacles and provides ideas for strengthening Al-based
architectures for risk stratification of COVID-19 severity.

Finally, the development of big data and artificial intelligence-based paradigms will
likely lead to the development of future vascular risk assessment technologies that are
more advanced.
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Abbreviations

SN Abb. Definition

1 ACC American College of Cardiology

2 AIbTC Artificial Intelligence-based tissue characterization
3 ARDS Acute respiratory distress syndrome
4 ASCVD  Atherosclerotic cardiovascular disease
5 ANS Autonomic nervous System

6 AUC Area under curve

7 Al Artificial Intelligence

8 BMI Body mass index

9 CAD Coronary artery disease

10 CAS Coronary artery syndrome

11 CHD Coronary heart disease

12 CKD Chronic kidney disease

13 CT Computed Tomography

14  CUSIP Carotid ultrasound image phenotype
15 CV Cross-validation

16 CVD Cardiovascular disease

17 CVE Cardiovascular events

18 DL Deep learning

19 DM Diabetes mellitus

20  EEGS Event-equivalent gold standard

21  EMG Electromyography

22 EC Endothelial Cell

23 ER Endothelium reticulum

24 FH Family history

25 GT Ground truth

26 HIN Hypertension

27  HDL Hybrid deep learning

28 ICAM Intercellular adhesion molecule

29 VCAM Vascular cell adhesion molecule

30 LBBM Laboratory-based biomarker

31 MedUSE Medication use

32 ML Machine learning

33 MRI Magnetic Resonance Imaging

34 NR Not reported

35 NPV Negative predictive value

36 NB Naive Bayes

37 NO Nitric Oxide

38 nOH Neurogenic orthostatic hypotension
39 Non-ML Non-machine learning

'S
s

OBBM Office-based biomarker
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41 OH Orthostatic hypotension

42 OxLDL  Oxidation of low-density lipoprotein
43 QTc Chaotic heartbeat

44 PE Performance evaluation

45 PPV Positive predictive value

46 PCA Principal component analysis

47 PRISMA  Preferred Reporting Items for Systematic Reviews and Meta-Analyses
48 PTC Plaque tissue characterization

49 RA Rheumatoid arthritis

50 PR The period measured in milliseconds
51 RF Random forest

52 ROS Reactive Oxides Stress

53 RoB Risk of bias

54 ROC Receiver operating-characteristics

55 RNA Ribonucleic acid

56 SCORE  Systematic coronary risk evaluation
57 SMOTE  Synthetic minority over-sampling technique

58 SVM Support vector machine

59 TPA Total plaque area

60 TC Tissue Characterization

61 US Ultrasound

62 tPA tissue plasminogen activator
Appendix A

Acute Respiratory Distress Syndrome (ARDS)

Coronavirus infection causes lower levels of ACE2 to proliferate in the lung parenchyma
cells. This is the outcome of the virus’s influence on the lungs; it causes a worsening of the
accumulation of neutrophils, an increase in vascular permeability, as well as the generation
of diffuse alveolar and interstitial exudates. As a consequence of this process, patients
can develop pneumonia as well as acute respiratory distress syndrome (ARDS) [284].
Significant abnormalities in blood gas composition, which lead to low blood oxygen
levels, are characteristic of ARDS. These abnormalities are the outcome of an oxygen and
carbon dioxide imbalance that causes ARDS [285]. It has been established that this type of
prolonged hypoxia leads to ischemia of the myocardium and damage to the heart [286,287].
In the brain, hypoxia speeds up the rate of anaerobic metabolism in the mitochondria
of brain cells [288]. This causes cerebral vasodilation, edoema, and a reduction in blood
flow, all of which are adverse effects of hypoxia. There is a chance of cerebral ischemia or
acute cerebrovascular diseases such as acute ischemic stroke [288]. The sequence of events
leading to ARDS is depicted in Figure AT.

An imaging technique is required in order to diagnose the anomalies in the lung, and
x-rays and computer tomography are the two medical imaging techniques that play the
most significant roles in the detection and diagnosis of COVID-19 [39,289]. CT has shown a
great degree of sensitivity as well as reproducibility. Additionally, it is able to identify a
variety of opacities, including ground-glass opacity (GGO), consolidation, and additional
opacities [290,291], all of which are largely seen [292,293]. The outstanding potential exists
for AIbTC systems to replicate conventionally established processes, which in turn enables
quicker illness identification and diagnosis [291,294,295].
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Figure Al. Stages of acute respiratory distress syndrome formation [296]. A: virus entry: Lung
infection, C Alveoli complication, D: SARS-CoV-2 entry, 1: ACE2 binding, 2: Inflammatory mediators,
3: Alveolar Macrophage, 4a: cytokine storm, 4b: Polymorphic Neutrophils, 5: Diffuse exudate,
6: Platelets, 7:Fibrin clot, 8: Endothelial wall damage 9: Alveolar Edema, 10:Alveolar Collapse,
11: Alveolar gas exchange disorder, 12:ARDS.

Appendix B
Appendix B.1. DenseNet Architecture

The vanishing gradient problem in deep neural nets is solved by the DenseNet design.
Dense blocks are included in this design. After batch normalization (BN) and a pool of
convolution layers with 3 x 3 filters to 1 x 1 filters, it uses “ReLU” activation on each layer.

Figure A2. The general structure of Densenet architecture (courtesy of AtheroPoint™, Roseville,
CA, USA) [44].

Transition bricks are used to connect these thick blocks. Two-by-two filters with
dropout and convolution layers, as well as pooling and convolution layers, are included in
each transition block. DenseNet’s attractiveness is that it has parallel connections to keep
the features from being lost.

Appendix B.2. InceptionV3 Architecture

The DenseNet design overcomes deep neural nets’ vanishing gradient problems. This
model features chunky building blocks. Every layer uses “ReLU” activation, and it has a
pool of convolution layers that go from 3 x 3 filters to 1 x 1 filters. Finally, it uses batch
normalization (BN).
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Figure A3. The general structure of the InceptionV3 architecture [44].

These transition blocks are utilized to concatenate these dense blocks. Every transition
block has dropout layers, convolution, and pooling layers, ranging from 22 to 11 filters.
The fact that there are parallel connections within the DenseNet prevents any features from
being lost, which is one of the network’s many appealing qualities.

Appendix B.3. XceptionNet Architecture

Chollet et al. from Google suggested a change to the IV3 algorithm. As part of this
update, the inception modules would be switched out for modified depth-wise separable
convolution layers. This architecture is comprised of a total of 36 layers or strata. When
compared to IV3, XceptionNet is quite lightweight and has the same number of parameters.
The accuracy of this architecture in the top-one position is 0.790, and the accuracy in the top-
five position is 0.945; both of these figures are higher than the performance of InceptionV3.
Figure A4 shows an illustration of the architecture of the Xception-system.

XceptionNet
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Figure A4. The general structure of XceptionNet architecture [44].
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Appendix B.4. Resnet50 Architecture

The ResNet model can be utilized to tackle the vanishing gradient problem. Residual
blocks include the ability to skip connections in their entirety. These connections bypass
the training levels and go straight to the output. By skipping layers, the model is able
to pick up more complicated patterns. In contrast to other models, this TL model makes
use of data from CIFAR-10. Figure A5 illustrates ResNet. The architecture consists of two
convolution layers that are each 3 x 3. The outputs and inputs of these pairs are merged
before being sent to the pair that comes after them. Here, 64-512 filters are listed. Following
the final 3 x 3 convolution layer, which has 512 filters, a flatten layer is used for vectorizing
2D features and the output is forecast with softmax activation.

EReshetog®

2 13| |5 3 3 " =]
b e e e L e e —

Residual Il_ea rring Block Re-architect fully-connected layers

[ 2048 x1 |
7l g
identity
- 0 QO
St x relu Softmax

Figure A5. The general structure of Resnet50 architecture [44].

Appendix B.5. MobileNet Architecture

This was the first TensorFlow-based mobile computer vision model. The Flite database
library is used for 28 layers. The architecture of MobileNet is depicted in Figure A6.
Bottleneck residual blocks (BRBs), also known as inverted residual blocks, are employed in
this model to reduce the number of training parameters.

MobileNet

BRB4 x 4 64c 52
e e BRB5 x 3 9gcsl

|
Input
Figure A6. MobileNet Architecture, BRB: bottleneck and residual blocks [44].
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