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Immunity following natural infection or immunization may wane, increasing susceptibility to infection
with time since infection or vaccination. Symptoms, and concomitantly infectiousness, depend on resid-
ual immunity. We quantify these phenomena in a model population composed of individuals whose sus-
ceptibility, infectiousness, and symptoms all vary with immune status. We also model age, which affects
contact, vaccination and possibly waning rates. The resurgences of pertussis that have been observed
wherever effective vaccination programs have reduced typical disease among young children follow from
these processes. As one example, we compare simulations with the experience of Sweden following re-
sumption of pertussis vaccination after the hiatus from 1979 to 1996, reproducing the observations lead-
ing health authorities to introduce booster doses among school-aged children and adolescents in 2007
and 2014, respectively. Because pertussis comprises a spectrum of symptoms, only the most severe of
which are medically attended, accurate models are needed to design optimal vaccination programs where
surveillance is less effective.
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This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

infectious than fully susceptible hosts who experience typical dis-
ease Mims et al. (2001).
Mathematical models have been used to study the effects

Hosts may have immunological memory following vaccination
or recovery from infection that protects from subsequent disease if
not infection. If T- or B- cell populations decay, as they do against
most bacterial and some viral pathogens, immunity declines, but
can be boosted by re-vaccination or subsequent infection. Hosts
with insufficient immunity to protect them from disease may ex-
perience moderate or mild symptoms and be concomitantly less
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of vaccination Anderson and May (1982), age Anderson and
May (1985), and waning of immunity Mossong et al. (1999) on the
dynamics and persistence of infectious diseases. The importance of
the boosting of immunity corresponding to sub-clinical infection
in individuals whose immunity has waned has also been identified
Glass and Grenfell (2003). Boosting of immunity by re-exposure
prolongs the period of protection, but may also maintain oscilla-
tions in the prevalence of disease Lavine et al. (2011).

Several theoretical papers have been devoted to understand-
ing the dynamical consequences of immune system boosting. Their
authors use various mathematical approaches: ordinary differen-
tial equations Dafilis et al. (2012), partial differential equations
Barbarossa and Rost (2015), delay differential equations Barbarossa
et al., 2017, and renewal equations Diekmann et al. (2018). Biolog-
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Fig. 1. Schematic of the PDE system given in Eq. (2)-Eq. (4) for one age group. Sy, Sz, S3, S4, and Ss (blue shaded boxes) represent susceptible individuals who are immuno-
logically naive, have some immunity, are moderately immune, were recently vaccinated, and are fully immune, respectively. I, I, I3, and I, (red shaded boxes) represent
infected individuals with typically severe symptoms who are maximally infectious, moderate symptoms and reduced infectiousness, mild symptoms and even less infec-
tiousness, and neither symptoms nor infectiousness, respectively (we set Is = 0 in the text for ease of notation). Recovery from disease leads to a fully immune state (orange
dash-dotted line). As individuals age, susceptible ones with incomplete immunity, including naive (S;), some (S,), moderate (S3), and vaccine-induced (S4) immunity, can be
infected (red solid line) and become infectious. After infection, they recover (dot-dashed orange lines) fully immune (Ss). However, as individuals age, their immunity wanes
(black wavy lines). The immunologically naive group (S;) can become immune (S4) through primary or re-vaccination (black solid line). Groups with some (S,), moderate
(S3), and vaccine-induced immunity (S;) can become fully immune (Ss) through re-vaccination (green dotted lines) . (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

ical assumptions on the nature of boosting also influence disease
dynamics Heffernan and Keeling, 2009; Barbarossa et al., 2018;
Leung et al. (2018).

We are interested in quantifying the distribution of host popu-
lation immunity and effects of immunity-modified disease on the
spread and persistence of pathogens in host populations. Immune
system memory and response dynamics may change with age as
fewer naive T-cells remain to be programmed to respond to par-
ticular antigens Mims et al. (2001). As the force of infection also
varies with age, symptom severity and infectiousness may vary too.
In addition, vaccination programs usually are age-specific. It is thus
necessary to consider the effects of host age in studies of the wan-
ing and boosting of immunity.

Accordingly, we study a model that involves host age and im-
mune status, which determine symptoms and concomitant infec-
tiousness. Our model consists of a system of partial differential
equations that track susceptible, vaccinated and infected hosts over
time in defined age and immune classes. The model is applicable
to many diseases, including that caused by B. pertussis, which we
examine as a proof-of-principle application.

Several age-structured models of pertussis transmission
dynamics have been proposed (e.g., Hethcote (1997, 1999);
Campbell et al. (2015)). The authors of these and many subse-
quent articles use multiple epidemiological classes to account
for recovered and vaccinated individuals with different levels
of immunity and infected individuals experiencing more or less
severe symptoms. Our model has a simpler epidemiological struc-
ture (fewer compartments), yet is consistent with the underlying
immunological processes, and allows us to include various levels
of immunity, re-vaccination, and boosting by natural exposure.
Previous modelers also assumed that individuals differing in
immune status share the same susceptibility, and hence that the
force of infection is uniform within age groups. To better reflect
immunological knowledge, susceptibility depends on immune
status in our model.

Despite the existence of safe and effective vaccines, pertus-
sis (whooping cough) continues to affect human populations
around the globe. After effective childhood vaccination programs
markedly reduced typical disease among young children, outbreaks
were observed among adolescents, generally of immunity-modified
disease. Explanations for these resurgences range from secular
changes in mixing patterns and other social phenomena Aguas et
al., 2006; Rohani et al. (2010) to deficiencies in immunity induced
by the acellular vaccines licensed decades ago Gambhir et al., 2015.

An alternative is that effective routine vaccination programs,
initially with the whole-cell vaccine, unmasked the waning of nat-
ural immunity that had been boosted by the exposure of older
children to infectious younger ones. People with mild symptoms
rarely seek care, but - because symptom severity depends on im-
munity, a function of time since vaccination or most recent expo-
sure - by the time that adolescents were exposed, their immunity
was no longer able to protect them from clinical disease.

We apply our model of the waning and boosting of immu-
nity to pertussis in Sweden after the 17-year hiatus in vaccination
during which clinical trials of the current generation of acellular
vaccines were conducted Olin et al., 1997; Storsaeter et al., 1990;
Trollfors et al. (1995); Gustafsson et al. (1996). Because vaccina-
tion changes the epidemiology of disease, programs must be dy-
namic. We evaluate Swedish health authorities’ decisions about re-
vaccination and, coincidentally, test our explanation for the resur-
gence.

2. The model
2.1. Model formulation

We track individual age, infection and immune status by mod-
eling ages 0-19 years in single year groups, 20-44 years in 5-
year groups, 45-74 years in 10-year groups, 75+ years (a total of
29 age groups) in a single group, and several susceptible (S) and



R.-M. Carlsson, L.M. Childs and Z. Feng et al./Journal of Theoretical Biology 497 (2020) 110265 3

Table 1

Variables and parameters used in the PDE system given in Eqs. (2), (3), and (4). Immune status is classified as immunologically naive,
somewhat immune, moderately immune, recently vaccinated, and completely immune. There are only four infectious classes as Ss is
completely immune. For the ODE system, similar variables are used for Si;(t) and Ij(t) with i, j (1 <i < 5, 1 < j < 4) indexing immune

status and n age groups.

Variable description Symbol
Fully susceptible (naive) Si(a, t)
Susceptible with limited immunity So(a, t)
Susceptible with moderate immunity S3(a, t)
Susceptible with vaccine-induced immunity Sa(a, t)
Complete immunity (resistant) Ss(a, t)
Infected with severe disease Ii(a, t)
Infected with moderate disease I(a, t)
Infected with mild disease I3(a, t)
Infected, but asymptomatic I4(a, t)

Total population of status j

Ti(a,t) =S;(a,t) +1j(a,t), 1 <j<4
Ts(a,t) = Ss(a, t)

Parameter description Symbol
Susceptibility of individuals of immune status i, age a ao;(a)
Infectivity of individuals of immune status i, age a Bi(a)
Activity rate of age a A(a)
Waning rate of individuals of immune status i w;i(a)
Vaccination rate of individuals of immune status i, age group a pi(a)
Recovery rate of infected individuals of immune status i, age a yi(a)
Birth rate of individuals aged a fla)
Natural mortality rate of individuals aged a wn(a)
Contacts between individuals aged a and 6 c(a, 6)
Proportion of the contacts between individuals aged a and those of immune status i, age 6  c;(a, 0)

infected (I) states. A schematic is provided in Fig. 1 for one age
group. We distinguish 5 immune classes (fully susceptible, some-
what immune, moderately immune, recently vaccinated, fully re-
sistant to infection), and assume not only that individuals of higher
immune status are less susceptible to infection than those of lower
status, but that that, if infected, higher status individuals will de-
velop milder symptoms and be correspondingly less infectious. Im-
munity develops after primary and re-vaccination (black solid and
green dotted lines, respectively) and infection (orange dot dashed
lines), but wanes (black wavy lines).

We use S;(a, t) and [;(a, t) to denote the density of susceptible
and infected individuals aged a (0 < a < oo) with immune status
i (1 <i<?5) at time t. The total population of individuals of age a
and immune status i is denoted by Tj(a, t), the sum of S;(a, t) and
li(a 1),

Ti(a,t) = Si(a. t) + Li(a. t),

Here, for the S group, i=1,.,5, but for the I group, 1 <i < 4
because those in S5 are fully immune (Table 1). Immunity wanes
at rate w;(a) for immune status i. Susceptible individuals who
are immunologically naive, S;(a), can be vaccinated (primary se-
ries typically consist of multiple doses) and acquire vaccine-
induced immunity, S4(a). Individuals who are immunologically
naive, have some, moderate, and vaccine-induced immunity, S(a),
So(a), S3(a) and S4(a), respectively, can receive booster vaccine
doses, by which they acquire complete immunity, Ss(a), at rate
pi(a) (1 < i < 4, respectively). The groups of susceptible individ-
uals, Si(a, t), (1 < i < 4), are assumed to have susceptibility o;(a)
and contact rate A(a) at age a. Individuals can be infected at rate
Bj(a) by infectious individuals from immunity class j (1 < j < 4).
We use a mixing function c(a, 8) to represent how the contacts of
an individual aged a are distributed among individuals of age 6.
Hence,

1<j<4,

/ c(a,0)dd =1, forany a>0,
0
and

0,
/ c(a.0)dd. for 6, =6, >0

1

and Ts(a,t) =Ss(a,t).

expresses the proportion of the contacts of an individual aged a
with individuals between ages 61 and 0,. To further describe how
many of these contacts are with individuals of immune class j
(1 <j =< 4) and age 6, we introduce c;(a, 0, t) as follows:

T;0.0)

5

PILICRS
j=1

cj(a,0,t) := c(a,b). (1)

Infected individuals I;(a, t) recover from disease at rate y;(a).

We assume that members of the population aged a have death
rate y(a), and have offspring (entering class S;(0, t)) at birth rate
fla). Therefore, we consider the system of equations

dS;i(a,t) 9Si(a,t)
ot da
Susceptible classes: 1<i<4
= — «oj(@A(a)S;(a,t)A(a,t)
loss of susceptibility due to infection
—pu(@Si(a.t) +wi1(a)Siq(a.t) — wi(@)Si(a.t)
waning out of class
pi(@)Si(a, t) (2)
————

loss of susceptibility by vaccination

natural death waning into class

+ Yip1(a)Si(a,t) -
—_—

immunity acquired by vaccination

855 (a, t) 855 (a, f)
at da
Completely immune class (i = 5)

= —u(a)Ss(a. t) — ws(a)Ss(a, t)

waning out of class

natural death

4 4
+ Y vi@iat) + ) pi@Siat) 3)

j=1 j=2

immunity acquired by infection immunity acquired by booster dose
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dli(a,t) 9dlL(a,t)
at da
Infected classes: 1<i<4
= «a(a)A(a)Si(a,t)A(a,t)

entering infected class due to infection

- p(@)li(a, t) - yi(@)(a, t) (4)
natural death recovery
4
_ mcj(a,e,t)ﬁj(é’)lj(@,t)
a.t) = ]lefo .0 do, (5)

with the following boundary conditions:

[;(0,t) =0, for 1 <i<4,

5 e
5,00,1) = Z/O FO)[8;(6.0) +1;6,0)]d6,
j=1

S;(0,t) =0, for 2 <i<5,
and constraints
1, ifi=4,
vi= {O, otherwise, (6)
and
wi(a) =0, (7)

where i and j refer to immune status. Here, the function ¥ is in-
troduced for notational convenience, so that in Eq. (6) primary
vaccination only moves individuals from the fully susceptible class
to the recently vaccinated class. Eq. (7) reflects the fact that the
immunity of naive individuals cannot wane.

2.2. Ordinary differential equation model

To make system (2)-(4) more tractable, we discretize the partial
differential equations. Discretization requires us to assume propor-
tionate mixing (i.e., contacts of a person aged a are distributed
over those of all ages including their own in proportion to the
contacts (i.e., products of per capita contact rates and numbers) of
members of those age groups (Hethcote, 2000)). We assume that
there are N such groups in the population defined by age inter-
vals [a,_1,an), where 0 =ag <a; <... <ay_1 < ay = oo, and that
each group has aging rate 7,, death rate w(a) = un, and fertility
rate f(a) = f. Additionally, we assume that the transfer rates be-
tween susceptible and infected classes are given by o, ®in, Pins
Bjm» and ¥ jm, where i(j) and n(m) denote the immunity status and
age group of the S(I) classes, respectively. Parameter definitions are
given in Table 2. The discretization is outlined in Appendix A and
follows the steps described in Hethcote (2000). The ODE system is
as follows:

5 N
Sii =D fuTjm — TS — AnuSu — 1S + @nSx1 — puSu,
=1 m=1
9 = —T1S21 — A21S21 — 1521 + W31S31 — @21521 — P25,
51 = —T1531 — A31S31 — 1531 + Wa1S41 — 31531 — P31531,
1 = —T1Sa1 — AqSa1 — 41541 + 051551 — W4 Sy
+ 11811 — P41Sa1,
4 4
Ss1 = —T1Ss1 — 1Ss51 — W51S51 + Z Vil + Zpﬂsﬂ,
=1 =2

Sin = Tn1Sin-1) — TaSin — AinSin — UnSin

n

+ @is1.0Si41.0 — DinSin + YiL12S1n — PinSins
Tn-1S5(n—1) — TnSsn — MnSsn — WspSsp

4 4
+ Z Vinlin + ijnsjm
i =

Iy = =il + AaSin — il — vala,
I, = taoalin-1y — Talin + AinSin — nlin = Vinlin.

1<i<4,2<n<N (8)

where, N = 0, and Aik(t) = otikAk)\ik (t), with

!
5n

4 N
Z Amﬁjm’jm(t)
j=1m=1
N >

> AnPn
m=1

A derivation of the expression for A (t) can be found in
Appendix A.
The parameters used in system (8) are given in Table 2.

Ai(t) = 1<i<5 1<k<N.

3. Analytical results

We begin by finding the steady states of our ODE model, system
(8). Then we consider the stability of the disease-free equilibrium
through calculation of the basic and control reproduction numbers,
Ro and Ry.

3.1. Steady states
Recall that the total population of age group i is given by P =

Si +I;. Under our assumption of no disease-induced mortality, ob-
serve that

&
(T; =Y fnPn— (11 + 1)P,
m=1
dp,
T; = T(n—l)P(n—l) — (Tn + Mn)Pn, 2 =n=< N — 1v
dPy

T Tn—1)P(n—1) — UNDy.

Following (Hethcote, 2000), we assume that

N
D fnPn = (t1 + i1 + OBy,

m=1

where P, is the size of the first age group at steady state. Then,
given that P;, P; are known, all Py, 2 < m < N can be solved.
Under these conditions, the growth rate q can be solved using the
following equation

fi Hn
+ + -
T+ +q (4 p+@) (T + 1 +q)
INTv-1)T(v—2) - T2Th

MN(T<N_1)+M(N_1)+Q) (T + (T + 1+ )

=1. 9)
In addition, the basic reproduction number of the population is
given by
Rpop = F(0).

F(q) =

+

Using this relationship, we find the disease-free equilibrium
(DFE)

’{rn:Pm’ Szmzsgm:Sflm:s;m:qm:@m:@m:IZmZO*
1<m<N,
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Table 2

Parameter definitions for the PDE and ODE systems given in Eqs. (
Section 2. Subscripts i and j refer to immune status (1 <i<5,1<j
we assume that several parameters are age-independent; i.e., o, =

disease-induced mortality; i.e., ¥jm = 0.

(7) and Eq. (8), respectively, and notations used in
4) and m and n refer to age groups. For simulations,

. Wi =i, Bjm = P;j. and yj, = y;. We also ignore

2)-
=<
o

Parameter Definition
fa fertility rate of individuals in age group n
Wn natural mortality rate of individuals in age group n
T aging rate of individuals in age group n
An per capita contact rate of individuals in age group n
P population size of age group n
P population size of the first age group at stable age distribution
Uiy susceptibility of individuals from S;,
Win rate of immunity waning of individuals from S;,
Pin vaccination (primary and booster doses) rate of individuals from S;,
Bim infectivity of infected individuals from I,
Yim recovery rate of infected individuals from I,
Notation Biological Interpretation
Ain = AinAnA force of infection for immune state i and age group n
AinSin incidence for immune state i and age group n
ZAmSm incidence for age group n
i
ZAinSin incidence for immune state i
n
> AiSin  incidence for immune state i and age group n
i n
d; average lifetime of an infected I, with immune status j and age m defined in Eq. (B.1)
T jm survival probability of an infectious individual in group (j, m) to next age group defined in Eq. (11)
T,- total population in group (j, m) at the DFE
q growth rate of the total population at stable age distribution
Rpop population reproduction number
Ro basic reproduction number
Ry control reproduction number

where the total population of each age group m is denoted by Pp,.
The endemic equilibrium is found by solving the linear sys-
tem, EmSm = Um, Where Sm = (Sim. ... Ssm)T, Um = Tan_1)Sam_1) +

v v 4
(0.0,0,0.i(m_1))". ign-1) = i1 (VimdjmTm-1)ljm-1)), and the
coefficient matrix is

En =
"m —Wm 0 0 0
0 om —W3m 0 0
0 0 3m —W4m 0 s
—P1m 0 0 T4 —Wspm
_Flm _F2m — P2m _F3m — P3m _F4m — Pam I'sm

with T, = YjmdjmAjm for 1 < j <4 and 1 < m < N. Derivation
of this linear system is found in Appendix B. Note that matrix Ep
is column strictly diagonally dominant thus invertible, whereupon
we can solve for sy = E,;] Vm, Where the elements of v, are known
from step m — 1. By the method of mathematical induction, we
then obtain the steady state solutions for system (8).

3.2. Reproduction numbers Ry and Rq

We first consider the control reproduction number R,. Let ij

and P, denote the population sizes corresponding to Tjm and P,
respectively, at the disease-free equilibrium. Now, let

AnTim

Ejm =N , (10)
> AP
r=1

T[ijdejm, (11)

where dj;;, the average sojourn of an infected individual I, with
immune status j and age m, is given by Eq. (B.1), and 7, is the
survival probability of an infected individual from group (j, m) to

the next age group (m + 1). Recall that
iy =djAjSji. im = djmAjmSjm + djmTm-1ljm-1) -
Then, iteratively, we find

Iim = QjmA,

where A is defined in Eq. (A.4), and

Qjm = djm@jmAmSjm + djmTj(m-1)%j(m-1)Am-1Sj(m-1)

(12)

+ oo+ dimITjn-1)Tjm-2) * - T jm—k) X jm—toAm—kSj(m-—k)
+o A ITjn-1)Tjm-2)Tjm-3) - - Tpn&jAiSj,

giving
m m—1
Qjm =djm [ 175 )eiAiSic
k=1 \ s=k
k-1
Note that 1_[ 7js = 1. Now, substituting Eq. (12) into Eq
s=k
have

N
4 ZAm,Bijjm
A= Z m:l -
Yy A

Dividing by A, we obtain

N

4 E Amﬂijjm

=1
122 mszvi
= E E Aerjr

j=1r=1

(13)

. (A4), we
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aging: ;i aging

Ik D Lik+1)

D Ljm-1)

Susceptible at DFE: Tjk,

1<j<41<k<N

Fig. 2. Diagram showing the total number of secondary infections generated by an infectious person who became infected while in the (j, k) group. The horizontal progres-
sions indicate that infectious people may age to the next group (infectious and alive) with probability 7.

Denoting by Q]Qm what we get by substituting A =0 into Qjn
(meaning that the S compartments are at the disease-free equilib-
rium), we have

m m—1

Q?m = djm Z l_[ 7Tjs ajkAijk’

k=1 \ s=k

where Tjk denotes the susceptible individuals at the DFE. Now we
define

N
4 ZAmﬂmeJQm
Ro=) "S5 5 N
AT
j=1r=1
4 N Eim m [m-1 _
= Z Z = Bjmdjm Z l_[ s ) o ikArTik
j=1m=1"jm k=1 \ s=k
4 N m _ m—1 T'k
= Z Z ZajkAijm/gjmdjm l_[ Tjs | =—- (14)
j=1m=1k=1 s=k jm

Interchanging the latter two sums, the above equation leads to our
expression for R, in Theorem 1.

Theorem 1. When proportionate mixing, given by (A.3), is used in
system (8), the control reproduction number R, (v for vaccination) is
given by

=ZZZWJI<AkC]m,8]m jm l—[Tf]s ..7. (15)

j=1 k=1 m=k jm

The fraction Tj/Tj, can be interpreted according to the trans-
mission term in the model. That is, T]-k is the total number of sus-
ceptible individuals in group (j, k) at the disease-free equilibrium
who are capable of being infected, and 1/ij is the probability that
a contact is with the initially introduced infectious individual while
in group (j, m).

Before we present the proof of Theorem 1, we provide a bi-
ological interpretation of the expression for R, given in (15). A
schematic diagram showing the total number of secondary in-
fections generated by an infectious person who became infected
while in group (j, k) is given in Fig. 2.

An infectious individual can infect susceptible individuals in
any of the 4 x N sub-groups, S;, with immune status 1 < j < 4
and age group 1 < n < N. For susceptible individuals in each of
these groups, their total contacts with all individuals in group (j,

m) are €jp. If an individual became infectious in group (j, k) with
k < m < N, the average time spent in this group would be dj,
The probabilities of this individual aging (alive and infectious) to
group (j,k+1) is 7wy and group (j, m) are ]'[;":’k1 7js. Note that
an infectious person in group (j, m) has infectivity B;,. Now, the
total number of susceptible individuals in group (j, k) at the DFE
is Tjk, and the probability of any of the susceptible individuals in
group (j, k) contacting this infectious individual in group (j, m) is
Ejm/ij. Note also that aj, denotes the susceptibility of individuals
in group (j, k) and Ay, is the per capita contact rate of individuals in
age group k.

Thus, the number of new infections generated per susceptible
individual in group (j, k) by the infected person while in group (j,
m) is

m—1 E
2AiBimdin | [ 70is T]l

s=k Jm
And, for an individual who became infectious in group (j, k), after
aging and surviving into group (j, m) (k < m < N) while still infec-
tious, the total number of new infections that s/he could possibly
generate from susceptible individuals in group (j, k) is

m-1 T'k
~ J
OljkAijm,Bjmdjm 1_[ Tjs | =—-
_ T'm
s=k J

Furthermore, the number of new infections generated from suscep-
tible individuals in group (j, k) by this infectious individual during
his/her infectious period is

Za]kC]mIBﬂﬂ Jjm l_[ 7T]S %k

]m
Therefore, for all susceptible individuals; i.e., summation over all
1 <j<4and 1 <k < N, the total number of new infections is Ry
as given in Eq. (15).

To prove Theorem 1, we adopt the approach of Hethcote (2000).
That is, a possible formula for R, can be obtained by deriving the
threshold condition for the existence of an endemic equilibrium.
This expression for R, is then examined by considering the dom-
inate eigenvalue of the next generation matrix, as well as its bio-
logical interpretation. See Appendix C for the proof of Theorem 1.

When no vaccination program is implemented; ie., p;; =0
(1 <i<4,1<n < N) the control reproduction number R, re-
duces to the basic reproduction number, R, given by

m-1 70

4 N N (
Ro =33 > ihlimBimdim| [ 755 | 25

j=1 k=1 m=k s=k jm

4
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m-—1 70

N N
= ZalkAkElm,Blmdlm l_[ﬂls %k,

k=1 m=k s=k 1m

4

where Tﬁ( =0 for 1 <j < 4 is the total number of susceptible indi-
viduals in group (j, k) when p;; =0 (1 <i <4, 1 <n < N) because
only immune class 1 is present at the DFE absent vaccination.

4. Numerical results

To examine the effects of waning and boosting of immunity to
B. pertussis on the vaccination program in Sweden, we parameter-
ized our model with observations on demographics Nations (2015),
vaccine uptake and efficacy Gustafsson et al. (2006). We also re-
laxed the assumption of proportionate mixing used in deriving the
ODE from PDE model and in deriving expressions for the reproduc-
tion number

4.1. Simulation methods and parameterization

Age distribution. Age is partitioned as follows: 0-19 years by sin-
gle years, 20-44 years by 5-year groups, 45-74 years by 10-year
groups, and 75 years and older (an open interval whose width we
take to be 25 years). Overall, there are 29 age groups. The aging
rate t; of age group i is
= Hritd

P oe(uitgwi — 1°

where p; is the natural mortality rate in age group i, q is rate of
change of the total population, and w; is the interval width for age
group i Hethcote (2000). The natural mortality p; and natality f; of
age group i are computed from births, deaths, and population size
by age for Sweden during 2014 Nations (2015). The rate of change
of the total population q is determined by solving Eqn. (10) set
equal to one. For Sweden, the rate of change of the total population
(ignoring immigration) is ¢ = —3.15 - 103 year~!. See Table D.1 for
the natality and mortality rates by age group and Fig. D.1 for the
observed and calculated stable age distributions.

Contact rate and activity. For our simulations, we use the mixing
matrix observed in a neighboring Nordic country. Parameter values
for the contact matrix c(a, 6) were determined from Finnish partic-
ipants in the PolyMod study Mossong et al. (2008) as follows: The
contacts that each participant recorded on an average day were
tabulated by participant and contact ages using the groups mod-
eled. Then these contacts were divided by the numbers of par-
ticipants in each age group to obtain average daily rates of con-
tact per participant. Summed over all contact age groups (repre-
sented by columns of the contact matrix), these are the activities
of each participant age group (represented by rows in the matrix).
See Table D.1 for activities. Dividing the rates by their respective
sums yields the proportions of the contacts that members of each
age group have with members of all age groups including their
own, c(a). See Feng and Glasser (2018) for an example of these cal-
culations.

Immunization. We determined the proportions immunized from
the observed proportions vaccinated together with vaccine effi-
cacy. We fitted gamma distributions to observed proportions vac-
cinated by age (Tiia Lepp, personal communication). We combined
the doses that infants receive at 3, 5 and 12 months of age, to
which we refer to as primary vaccination. Together with the ex-
pert opinion that this 3-dose series is 90% efficacious against mild
disease (Patrick Olin, Birger Trollfors, personal communication), we
estimate that 35% of infants and 55% of children aged 1 year were
immunized against mild disease. Similarly, we estimate that the
immunity of 11.1% of children aged 4 years, 62% of children aged
5 years, 17% of children aged 6 years, and 0.3% of children aged
7 years was boosted by re-vaccination. And that the immunity of

6.9% of children aged 13 years, 65% of children aged 14 years, 18%
of children aged 15 years, and 0.1% of children aged 16 years was
again boosted by re-vaccination.

The immunization rates (p) were calculated from the propor-
tions immunized and time intervals during which immunization
occurred. For the interval of a year, for example, the rate is

_x(t4p)
1-x °
where
Pr(immunized) = x = #.
pP+TH+U
See Table D.2 for percents immunized and immunization rates by

age group.

Susceptibility and infectivity. We modeled susceptibility to infec-
tion as a linearly decreasing function of immune status, with those
in the fully susceptible class, Sq, having the highest value (ot; = 1)
and those in the completely immune class, S5, not being suscepti-
ble (a5 = 0). Similarly, the infectivity of infectious classes decreases
with increasing status such that Ry = 13.6 assuming proportionate
mixing. See Table D.3 for status-specific parameter values.

Recovery and waning immunity. The recovery rate is determined
as the reciprocal of the average infectious period. Individuals hav-
ing some level of immunity by virtue of prior infection or vacci-
nation (i.e., those in I, — I4) have shortened infectious periods. In-
dividuals in the completely immune class S5 also lose their im-
munity more slowly than those in other immunity classes. See
Table D.3 for the recovery rate and rates of waning immunity by
immune status.

4.2. Simulation protocol

All simulations were performed in Matlab 2016a. Initial popu-
lation sizes of each age group were set to the stable-age distri-
bution. While the numbers in each group change over time (the
Swedish population would be shrinking absent immigration), the
proportions remain fixed absent disease-induced mortality. Accord-
ingly, we present some results as proportions rather than absolute
numbers. Simulations without vaccination begin with a single in-
fectious individual in the most infectious state (I;). After 100,000
days ( ~ 275 years), oscillations have damped. Vaccination is intro-
duced to the population with endemic disease; i.e., initial condi-
tions for the introduction of vaccination are the proportion in each
age and immune status after 100,000 days without vaccination. Af-
ter another 100,000 days, a first booster dose is introduced to the
population with on-going primary vaccination; i.e., initial condi-
tions for the introduction of the first booster dose are the pro-
portion in each age and immune status after 100,000 days with
vaccination. After another 100,000 days, a second booster dose is
introduced to the population with on-going primary and booster
vaccination of young children; i.e., initial conditions for the intro-
duction of the second booster dose are the proportion in each age
and immune status after 100,000 days with primary vaccination
and first booster dose. Note that 100,000 days was chosen to en-
sure that the system reached equilibrium before a new interven-
tion (e.g., primary vaccination, first booster dose, second booster
dose) is introduced.

4.3. Simulation results

Natural infection occurs early in life. Absent vaccination, most
children experience infection by 5 years of age, and nearly all by
10 years (Figs. D.2 and D.3, A1-B1). Above 6 years of age, less than
10% of each group is fully susceptible (i.e., in S;), and by age 10
years, all proportions are less than 2%. Beyond 12 years of age, the
proportion fully susceptible slowly increases as immunity acquired



8 R.-M. Carlsson, L.M. Childs and Z. Feng et al./Journal of Theoretical Biology 497 (2020) 110265

by virtue of childhood infection wanes. Beyond 20 years, the pro-
portion exceeds 10% (not shown).

Vaccination substantially reduces incidence. Primary vaccination
greatly reduces incidence (Fig. 3, blue line). Despite increased in-
cidence among 4-12 year-olds, the reduced incidence below age
four and above age 12 compensates, reducing incidence in the
population overall. Each booster dose further reduces incidence
(Fig. 3, red and yellow lines), particularly in groups just above
their recommended ages. Both boosters also reduce incidence
among younger and older people because individuals who other-
wise would have infected them have been immunized. Despite the
incorporation of two booster doses in addition to primary vacci-
nation, incidence in the four and five-year-olds remains elevated
compared to pre-vaccination (Fig. D.4). However, this increase is
primarily in the classes with mild or asymptomatic disease.

Primary vaccination significantly decreases the proportion of the
population that is fully susceptible. The inclusion of a primary vac-
cination series, 2 doses during the first year of life, and third at
1 year (i.e.,, completed early during the second year), substantially
decreases the proportion of children ( < 10 years) that are fully
susceptible; i.e., in Sy (Fig. 4, Al, red line), and upon infection
most infectious; i.e., in I; (Fig. 4, B1, red line). This decrease in
the fully susceptible class is mirrored by an increase in vaccine-
induced immunity; i.e., S4 (Fig. 4, Al, pale blue line). However, as
vaccination replaces natural infection, the proportion of individuals
in the completely immune class decreases markedly; i.e., S5 (Fig. 4,
A1, dark blue line). This decline is largest for young children (4-
6 years), but persists even among older ages, and results in in-
creases in infectious classes whose members experience immunity-
moderated symptoms, and concomitantly decreased infectivity (i.e.,
I, — I4), among children ( < 10 years) (Fig. 4, B). Despite a decline
in the completely immune class Ss, the increase in vaccine-induced
and other partially immune classes (i.e., S, —S4) more than com-
pensates, reducing the overall incidence of disease, as measured by
AS;, (Fig. 3). Primary vaccination reduces the number of infectious
individuals in the population by 1.6%.

A booster dose among young children increases immunity among
adolescents and results in mostly asymptomatic infections. When a
first booster dose among young children (4-8 years) is included,
nearly the entire population above age 5 is in the fully or one
of the partially immune states (i.e., S, — S5). The majority of chil-
dren receive this booster dose at 5-6 years (Fig. D.3, A3). It sub-
stantially increases the proportion of older children in the com-
pletely immune class (i.e., S5) compared with primary vaccination
alone (Fig. 4, A2, dark blue line), and shifts the burden of infec-
tions largely to the asymptomatic class I4 (Fig. 4, B2). Below 4 and
above 15 years of age, the proportion in the fully immune class is
less than that with primary vaccination alone (Fig. 4, B2). Nonethe-
less, this booster further reduces incidence relative to primary vac-
cination alone (Fig. 3, red line) and leads to an additional 8.1% re-
duction in the total number of infections (Fig. D.5). Although the
reduction is negligible above age 25 years (Fig. 3), it is apparent
for the youngest age groups ( < 5 years).

A second booster dose among adolescents increases their immu-
nity and that of young adults, and results in more asymptomatic in-
fections. The inclusion of a second booster dose among adolescents
(13-16 years), along with primary vaccination and a booster dose
among younger children, increases the proportion of the popula-
tion in the fully immune class (i.e., S5) through age 25 compared to
primary vaccination plus a single booster (Fig. 4, A3). This booster
also leads to a strong relative increase in the proportion of in-
fections that are asymptomatic (and not infectious), particularly
among ages 15-25 years. Similar to a single booster dose compared
to primary vaccination alone, this increase in the proportion of in-
dividuals in S5 at intermediate ages results in a decrease in those
who are completely immune at younger ( < 12 years) and older

( > 25 years) ages (Fig. 4, A3). Also apparent is a slight relative
increase in the most infectious class Iy among children ages 2-12
years (Fig. 4, B3). In all age groups, despite changes in the propor-
tion completely immune, incidence is reduced relative to primary
vaccination alone. Comparing the second booster to the first, the
reduction in incidence (Fig. 3) is most apparent among individuals
aged 14-25 years, but also among young children ( < 6 years), and
there is a further 6.7% reduction in the total infectious population.

Ages of booster doses correspond with waning of immunity. The
timing and efficacy of primary vaccination and booster doses were
estimated from Swedish observations (described in Section 4.1).
Decisions about the ages at which booster doses should be in-
troduced were based on preschool data from enhanced pertus-
sis surveillance Gustafsson et al. (2006), nationwide data on anti-
diphtheria immunity in children, and what at the time was be-
lieved the optimal dosing interval for diphtheria/tetanus boost-
ers. The rate of immunity decay following infection or vaccination,
which our model does not distinguish, was determined indepen-
dently from a cross-sectional serological survey Feng et al. (2015),
longitudinal studies Teunis et al., 2002, 2016, and clinical trials Olin
et al., 1997.

Following primary vaccination alone, simulations indicate a
marked decline in the partially immune classes at 5 years of age
(Fig. 4, A1). Examination of all infections with and without pri-
mary vaccination (Fig. 5, C, crossing of blue and red lines) suggests
an increase around 5 years of age following primary vaccination.
If only infections with severe symptoms were observable, the in-
crease might not be apparent until around 7 years of age (Fig. 5, A,
crossing of blue and red lines). To prevent this observed increase,
a booster dose in slightly younger age groups, such as starting at
four years, might be recommended.

Note that simulations indicate a switch from an increase in the
completely immune class to a decrease at approximately age 15
years following implementation of the first booster dose (Fig. 4,
A2, dark blue line). This can also be seen in Fig. 5, C. To prevent
this, a second booster dose in slightly younger age groups, such as
starting at thirteen years, might be recommended.

Proportionate mixing enhances the apparent effectiveness of vacci-
nation. While we assumed that mixing was proportionate to derive
analytical expressions for the reproduction numbers, we used the
mixing actually observed in Finland for our simulations. Had we
assumed proportionate mixing, the burden of infection in younger
age groups would have been greater (Fig. D.5). This affects the ap-
parent impact of vaccination, making it seem more effective and
its effect to last longer than with actual mixing. This can be seen
by the age under which the infectious classes are larger with vac-
cination than without (Fig. D.6).

Reproduction numbers indicate that pertussis cannot be elimi-
nated. Using the next generation matrix approach (van den Driess-
che and Watmough, 2002), we find these basic and control repro-
duction numbers: Ry = 14.82 and R, = 12.41, 10.01, and 8.45 with
primary vaccination alone, primary plus the first booster, and pri-
mary plus both boosters, respectively. Note that nonrandom mixing
increases reproduction numbers Feng et al. (2015), so this estimate
of R is greater than that assuming proportionate mixing, which
for the same parameter values is Ry = 13.6.

5. Discussion

Following vaccination or recovery from infection, hosts may
be immune. Such immunity may be temporary or lifelong, and
vaccine-induced immunity may differ from that acquired naturally,
e.g., not last as long. If immunity decays, as it does against most
bacterial and some viral pathogens, it may be boosted by exposure
to infectious hosts or re-vaccination. Several vaccine doses may be
needed to prevent disease following exposure to infectious hosts,
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Fig. 3. Relative change in incidence by age. Comparisons of incidence by age group under different vaccination strategies: Scenario 1 - primary relative to no vaccination
(blue); Scenario 2 - primary vaccination plus a single booster dose relative to primary vaccination alone (red); and Scenario 3 - primary vaccination plus two booster doses
relative to primary vaccination with one (orange). The large panel is a composite of the smaller ones, which are for individual S classes. Negative values on the y-axes
indicate that vaccination strategies reduce incidence. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

i.e., to achieve full or sterilizing immunity. The severity of clini-
cal symptoms that infected hosts experience may depend on their
immune status when exposed, a function of time since recovery,
vaccination, or most recent exposure, as well as infectious dose.
And their infectiousness may depend on symptoms (e.g., coughing
for pathogens transmitted via aerosols) as well as the intensity and
duration of contact.

To design effective vaccination programs against the pathogens
causing such diseases, one must appreciate how the prevalence of
clinical disease - the tip of a proverbial iceberg, especially when
surveillance is based on laboratory-confirmed infections - results
from relations between host immunity, symptoms and infectivity.
Such an understanding is also needed to appreciate the impact
of vaccination, which changes the epidemiology of disease. Conse-

quently, vaccination programs must be dynamic. In such situations,
accurate transmission modeling can be invaluable. We devised a
model that is faithful to the processes by which immunity waxes
and wanes. Our model population is stratified by age largely be-
cause transmission is age-dependent, as consequently are vaccina-
tion schedules. As a proof-of-principle application, we attempt to
reproduce the Swedish experience with pertussis.

The history of pertussis in Sweden offers a unique opportu-
nity to explore the evolution of a vaccination program. Owing to
universal healthcare, vaccination rates were high historically. How-
ever, in 1979, decreased efficacy of the whole-cell vaccine, together
with some concerns about safety, led to the withdrawal of pertus-
sis from the childhood vaccination schedule Romanus et al., 1987.
In 1996, following clinical trials of several acellular candidates, vac-
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cination was resumed Olin et al. (2003). Consequently, the experi-
ence of a 17-year cohort informs understanding of infection and
the waning of natural immunity. Changes in incidence on resump-
tion of vaccination further inform understanding of patterns invari-
ably observed, but not necessarily as clearly as in Sweden, when-
ever pertussis is included in national vaccination programs.

Compared with most earlier pertussis models, ours includes
fewer states (Fig. 1). Between fully susceptible and immune,
we distinguish only three, the highest of which (S4) is attained
on completion of the primary vaccine series. If infected or re-
vaccinated, hosts become completely immune. Immune state when
infected determines host symptoms, which range from typically
severe through moderate and mild to none. Generally, hosts seek
medical care for typical and, to a lesser extent moderate dis-
ease. And laboratory confirmation is rarely sought, even among
the youngest hosts for whom it could have therapeutic value (pre-
sumptive treatment is recommended in Sweden). Insofar as those
with moderate and mild symptoms are nonetheless infectious,
transmission and disease are largely occult. Infants, for whom per-
tussis may be fatal, especially during their first six months, are of
special concern, as they may may have sufficiently intimate and
prolonged contacts with mildly symptomatic caregivers for infec-
tion.

We formulate our model of waning and boosting as a sys-
tem of partial differential equations (PDEs) with discrete immu-
nity classes, but continuous age and time. Because most informa-
tion is available for age ranges, we use the same approach as in
Hethcote (2000) to convert it into a system of ordinary differen-
tial equations (ODEs) with 29 age classes. This requires the above-
mentioned assumption of proportionate mixing that we relax in
subsequent simulations performed to evaluate the impact of vac-
cination. We derive the reproduction numbers and determine the
existence and characteristics of the disease-free and endemic equi-
libria. We provide intuitive explanations of model terms and all
analytical results. Table 2, for one example, provides biological in-
terpretations of various functions. Fig. 2, for another, illustrates the
average number of secondary infections due to a host who was in-
fected while in immune state j and age group k.

We used other observations made in (e.g., age distributions of
vaccination, which we have courtesy of Tiia Lepp, Public Health
Agency of Sweden) or appropriate for Sweden (e.g., the contact
rates and mixing matrices used in our analyses and simulations
were derived from observations of Finnish participants in the Poly-
Mod study, which we have courtesy of John Edmunds, London
School of Public Health and Tropical Medicine) for our simulations.
Where observations were lacking, we used the opinions of Swedish
subject-matter experts.

We compared primary vaccination to none, the first booster to
primary vaccination alone, and the second booster to primary vac-
cination plus the first by simulation. We found that primary and
re-vaccination shifted the age-distributions of immunity at steady-
state (Fig. 4), despite always reducing the total incidence. The in-
fant series reduced typical disease among pre-school children, but
we observed more mild and moderate disease among elementary
school children (Fig. 3). On simulating the booster administered
from 4 to 7 years, we found much less immunity-modified dis-
ease among those children, but an increase among adolescents.
Similarly, on simulating the booster administered from 14 to 17
years, we found a decrease in immunity-modified disease among
members of this age group. Significantly, by virtue of the age-
distribution of the force of infection Feng et al.,, 2014, the ado-
lescent booster did not shift immunity-modified disease into the
reproductive years.

To facilitate converting the PDE system with which we began
into an ODE system and derive analytical expressions for the re-
production numbers, we assumed that the probability of contact-

ing a member of any group is proportional to the product of their
per capita contact rate and population. This assumption, called pro-
portionate mixing, is random with respect to available contacts.
But, as mentioned, we used the contact rates observed in a nearby
Nordic country in our simulations. As heterogeneity and non-
random mixing affect reproduction numbers Feng et al. (2015),
we compared simulations with proportionate and actual mixing,
in which there are preferential contacts between parents and chil-
dren as well as among contemporaries Glasser et al., (2012). Be-
cause vaccination does not seem as effective or long lasting with
preferential as proportional mixing, the resurgence of immunity-
modified disease seems to depend to some extent on non-random
mixing Rohani et al. (2010).

Of the several attempts to explain the changing epidemiology
of pertussis that accompanies successful routine vaccination pro-
grams, that by Lavine et al. (2011) is by far the most compelling.
To an otherwise conventional SIR model, they add an immune
state between fully susceptible and recently recovered or vacci-
nated. Unlike others who have considered boosting, they argue -
based on the sensitivity of primed B- and T-cells - that previously
infected hosts are more likely to have their immunity boosted
than naive ones are to be infected. In our model, which includes
only two more immune states, immune status is a function of
time since previous exposure (infection, vaccination or boosting),
and we assume that susceptibility and infectiousness both vary
inversely with immune state. The result is a much more general
model suitable for diseases caused by pathogens against which im-
munity wanes.

Public health officials learn about typical and to some extent
moderately severe pertussis, possibly only among some of those
for whom laboratory confirmation has therapeutic value. (Addi-
tionally, samples must be collected properly and shipped correctly
for accurate laboratory results.) With transmission models that are
faithful to the mechanisms underlying observed phenomena, how-
ever, they could consider the complete burden of disease. As far as
we can tell from our simulations, the number and ages of booster
doses are correct given the unusually effective primary series in
Sweden. The steady-state analyses reported here do not permit
evaluation of the timing of booster introductions. But public health
officials in Sweden and elsewhere could use our model to monitor
the information in Fig. 5, introduce boosters as needed, and evalu-
ate their impact.

While our estimates of the control reproduction numbers sug-
gest that pertussis cannot be eliminated, vaccination has substan-
tial impact. The infant series reduces infections the most. Con-
ditional on it, the booster among young children has less im-
pact. Similarly, the adolescent booster has even less. The infant
series also mitigates the most severe disease, followed by succes-
sive boosters. However, insofar as the adolescent booster not only
reduces circulation of B. pertussis, but ensures that young adults
are immune, it may prevent mildly symptomatic caregivers from
infecting infants with tragic consequences. Finally, with regard to
other hypothesized causes of the apparent resurgence of pertussis,
we note that - together with vaccination - the waning and boost-
ing of immunity is sufficient. We cannot disprove alternatives, but
no other mechanism is necessary. And parsimony is a virtue in sci-
ence.
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Appendix A. Discretization

We first consider the mixing function. The assumption of pro-
portionate mixing allows us to express c(a, 6) as

5
AB) Y T,0.0)
c(a,0) = =
/ A(G)ZT(G t)d9

j=1

(A1)

where T;(0, t) is the total population of individuals of age ¢ and
immune status j at time t. We assume that the population has
already reached its stable age distribution, i.e., T;(a,t) = T;(a)e™%,
where ¢ is a measure of the rate of change in the total population.
Thus, there is no time dependence in the expression for contacts,
c(a, 6). Thus, the proportion of the contacts between an individuals
aged a and individuals aged 6 and immune status j, given by Eq. 1,
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s ,
o) ~ A A~
/ AB) Y T;(0, 1)d0
0 et
where 1 < j < 5 Thus, to discretize to N age groups, we have

/OOOA(G)ﬂj(G)Ij(G,t)dG

/oo 6(@.6. 08,00,
T;(0,t T e 5

° ©.0 / AD)S T;0, t)d0

0 =

N
ZAmﬁijjm

_ m=1
ZAmZT;m
m=1

where 1 < m < N refers to age group m (e.g., T;, denotes the total
population size in the first immune status (naive) and second age
group). Let P, denote the population size of age group m (regard-
less of immune status),

5
Pm = Zijv
j=1

ij:Sjm+Ijm, 1§j§5,

Then, we obtain the corresponding expression for A(a) in the dis-
crete case:

Zm 1Am/3]m ]m(t) Z?:l Z#l:‘l Am,Bijjm(t)
A
K= Z 7 et An X Tim et AP

where i and k refer to immune status and age group, respectively.
Note that Ay is time dependent as the I, are time dependent. Re-
call that proportionate mixing assumes that the proportion of con-
tacts of susceptible people in group (i, k) with people in group (j,
m), Cixjm» depends only on the fraction of contacts by group (j, m).
That is,

. (A2)

5
AmZij

Cik jm = T]m ! = :mT]m , (A.3)
Z ij Z Z T]m Z AmPn
m j=1 m=1

which corresponds to the expression of ¢j(a, 8) in the discrete case
because ages a and 6 are now age groups k and m, respectively.
Using the mixing function given in (A.3), we again obtain the same
expression as in Eq. (A.2) for the corresponding expression for
XA(a) in the discrete case. Note from (A.2) that A is in fact inde-
pendent of i and k. Also, cij, is independent of i and k. For ease
of notation, denote Ay by A and cjjm by ¢j; ie., let

A(t) == Ap(t), 1<i<5 1<k<N (A4)
and
Cjm :=Cigjm» 1<i=<5, 1<k<N.

Now, the incidence for group (i, k) is o ArSikA = Ay S for all i and
k, and
Ay (t) = oty AgA(t)

is the force of infection. Although A is independent of age class
and immune status, it is time dependent as it is a function of the
infectious classes I, which change with time.

Appendix B. Endemic Equilibrium (derivation of linear system)

Before determining the endemic equilibrium, we introduce
some notation for convenience. Let

5
B= Zan jn=(T1 + i1 + QP

j=1n=1
denote the total birth rate for the population, and
1

dip=—""790——— B.1

M T+ fom + Vim (B1)
denote the average lifetime of an infected individual I;;, with im-
mune status j and age m, and let
Tim = Ajm + Tm + Um + @jm + Pjm,
with w1, =0, Asy, =0, p5,, =0, 1 <m < N, and 7y = 0. Addition-
ally, let

4

Ry = Z ijljm,
j=1

1<m<N (B.2)

where R;; can be interpreted as the sum of all individuals recover-
ing at age m (who ultimately move to S5 in Model (8)).

Seeking the steady states, we set the time derivatives zero. Then
we have the following relations for the first age group of suscepti-
ble individuals:

B =S — w2152,
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0 = 121531 — w3531,

0 = 131531 — W41541,

0 = 14154 — ws51S51 — PuSu1,
4

0=r51Ss1— Y pjnSi — Ry (B.3)
=2

Before solving for S in System (B.3), we first consider R;. From the
I equations in System (8), we have

Ij] = dj]Aj]Sj],
Thus, for m=1 in Eq. (B.2),

1<j=<4.

4 4

R =Z)’j11j1 =ZVj1dj1Aj15j1- (B.4)
j=1 j=1

Now, substituting Eq. (B.4) into System (B.3), we can rewrite the

susceptible individuals in the first age group as the linear system

Eys; =14, where s; = (Si1,...,S51)7, v =(B,0,0,0,0)7, and the
coefficient matrix is
M -2 0 0 0
0 21 —w31 0 0
E| = 0 0 31 —W41 0
—pn 0 0 Ty —Ws1
-I'n —-Ta—-—pn -T31—pn -Tg—-pu Is1

where T'j; = yj1dj1Aj for 1 < j < 4. Note that the matrix E;
is column strictly diagonally dominant (because dj;¥j1 < 1, rj; =
Ajp+T+ i+ +pep > Apdjyp +wpn+pp, for 1 <j < 4),
hence invertible, giving rise to the unique solution s; =E1“v1.
Given sy, using Eq. () it is possible to determine the infectious
components of the first age group iy = (I, ..., Is)7.

Now we consider the other age groups of susceptible individu-
als, sm = (Sym».-.»Ssm)T, (1 < m < N), and assume that

T
SS(m—])) and

I4(m—1))T

are already calculated. For the susceptible compartments in System
(8), we have these steady-state equations,

Sm-1) = (Sl(m—1)7 e,

i(m—]) = (Il(m—l)’ ey

T(m—])sl(m—l) = I'mStm — W2mSam,

Tm-1)S2(m-1) = T2mS2m — @3mS3m.

Tmn-1)S3(m-1) = M3mS3m — WamSam.

Tn-1)Sa@m-1) = T4mSam — WsmSsm — P1mS1m,
4

Tm-1)S5(m—1) = TsmSsm — Z PimSjm — Rm.
=

To specify Ry, from the I-equation in System (8), we first have
Iim = djm (A jmSjm + Tan-1)ljm-1))
and thus

4 4
Rm = Zyjmljm =

Z (ijdijjmsjm + ijdjmrm—llj(m—l))~
i

Appendix C. Definition of R,

We use the next generation matrix method van den Driessche
and Watmough, 2002 to prove that the definition for R, (Eqn. (14))
is valid. We restrict ourselves to the sub-model of infected people,
[Ijm]T. We form two matrices, F and V, which determine new infec-
tions and transitions among infectious states, respectively. To form
these matrices, we require the partial derivatives of the infected
equations from System (8) evaluated at the DFE.

For 1 <i <4 and 1 < n < N, differentiating A in (A.4) with
respect to I;,, we have

N 5 N 4
9 ﬁinAn(Z ZAm(sjm + Ijm)) - (Z Z,Bijijm>An

m=1 j=1 m=1 j=1

aIin N 5
(Z ZAm(Sjm + Ijm))

m=1 j=1

Evaluating at the DFE, we further get

D) Pt
ol TN ’
DFE ZZ
Arn jm
m=1 j=1

Matrix F is an 4N x 4N matrix whose row indices change co-
ordinately with indices i and n for 1 <i <4and 1 <n < N and
whose column indices change coordinately with indices j and r for
1 <j<4and 1 <r < N. Its elements, denoted by Fj,j,, are as
follows:

E _ ainAnTin,BjrAr _ OlinAl’tTinEjr,Bjr
injr= "N 5 = T ,
~ Jr
33 Anfin
m=1 j=1

where ¢j, is defined in Eq.
following 4 x 4 block matrix,

(10). Then, matrix F is given by the

F=(Fj), for 1<ij<4,

where each block is an N x N matrix given as follows
Fijn  Fijp Fijn
Foj1 Fajp Fa jn o

Ej= . . . . , for 1<i j<A4.
Exnji FEnj2 En jn

Matrix V is an 4N x 4N matrix given as follows,
Vi 0 0 O
o ¥V 0 O
o 0 v o0}
0O 0 0 Vg

where V; (1 <i < 4)is N x N matrix and given as follows,

L0 .. 0 0 0
-7 d]? 0 0 0
0 —T3 di 0 (X 0
i3 .

. ) . 1=iz4
0 0 _T(N—2) 7‘1”}71) 0
1
0 . 0 0 Ty

Hence, matrix V is a lower diagonal matrix and diagonal dominant.
This implies that matrix V-1 exists, and is as follows,
Vi 1 0 0 0

o v,' o 0

0 0 V3‘1 0

0 0 o v!
Let a; be the (i, j) entry of V;"!. Then
0, i<j,
di i=]

i-1

dunfkd]k,

k=j

aij =

j<li
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Matrix V; 1, V5!, and VT can be expressed similarly with the only
change being from 1 to 2, 3, and 4, respectively.

Note also that all columns of F are multiples of each other,
which implies that rank(F) = 1. Using the result that, when A is
an m x n matrix and B is an n x k matrix,

rank(AB) < min(rank(A), rank(B)).
Then, for the next generation matrix FV~1, we know that
rank(FV-1) = 1.

Hence, the spectral radius of the next generation matrix FV~! is
given by the sum of diagonal elements of the 4N x 4N next gener-
ation matrix. It is exactly R, given in Eq. (15). This can be verified
as follows.

For the first N rows of the next generation matrix, the diagonal
elements are given by

-1 _;@@L, s
(FV )11 - N Zﬂ1mAmd]m H?le s
> Y Al ™ .
m=1 j=1
A T m-1
(Fvil)zz = M Z BimAmdim 1_[ Tk |»
Z ZA’" ~jm m=2 k=2
m=1 j=1
AsTis & m—1
(FV71)33 = NO[BSA ZﬁlmAmdlm Tk |
DS EAC
m=1 j=1

- nAn-nTin-1)

> Y Al

(Fvil)(N—l)(N—l) =

m=1 j=1
N m-1
Z ,BlmAmdlm l_[ Tk
m=N-1 k=N-1
B o NANT
(FV 1)NN =N “\; S BuvAndin.
2 2 AnTim
m=1 j=1

Adding the above N equations leads to

N AT,
Z Lk Tk Z/B1mAmd1m l_[7T1s

k]Zlej 1Am1””mk

N N m—1 T”
= Z Z A1 ACimBimdim l_[ T1s Tf(
k=1 m=k s=k im

Similarly, for the second, third, and fourth N rows of the next gen-
eration matrix, their sums are similar expressions with the only
change being from sub-index 1 to 2, 3, and 4, respectively. The sum
of these four sums is exactly the expression of R, in Eq. (15).

Appendix D. Additional Tables and Figures
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Fig. D.1. Population age distribution. The observed distribution (blue circles) is de-
termined from information in Table D.1. The simulation age distribution is also
shown (red squares). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Table D.1

Standard life-history parameters by age used for numerical simulations. The growth
rate of the total population is calculated from the age-dependent parameters and found
to be g =—-3.15.103 year'.

Age group  Age range  Mortality rate  Activity Fecundity

n (years) In (year—1) An (contacts - day™')  f, (year—!)

1 0-1 2.1160- 103 6.36 N

2 1-2 2.7200- 103 8.37 -

3 2-3 2.7200-10°° 9.44 -

4 3-4 2.7200-107° 9.39 -

5 4-5 2.7200-10° 10.20 -

6 5-6 1.4300- 103 10.27 -

7 6-7 1.4300- 103 13.89 -

8 7-8 1.4300-10°> 14.77 -

9 8-9 1.4300- 10> 14.11 -

10 9-10 1.4300- 10 15.38 -

11 10-11 1.4100- 103 15.88 -

12 11-12 1.4100- 10> 17.81 -

13 12-13 1.4100- 103 19.31 -

14 13-14 1.4100- 10> 10.71 -

15 14-15 1.4100- 10> 17.54 -

16 15-16 4.9300- 103 14.35 7.8453.1076
17 16-17 4.9300- 103 11.40 7.8453.1076
18 17-18 4.9300-10°> 12.14 7.8453.10°6
19 18-19 4.9300-107° 13.31 7.8453.1076
20 19-20 4.9300- 103 11.62 7.8453.1076
21 20-25 4.4820-10~* 9.16 1.8044-10°3
22 25-30 4.7730- 104 11.15 2.2112-102
23 30-35 6.1370-10~* 10.60 5.7899 .10
24 35-40 5.6260- 10~ 13.98 6.2700 - 102
25 40-45 9.1520-10* 11.87 2.9840 - 102
26 45-55 1.9470-103 11.10 3.6000- 103
27 55-65 5.3598-103 8.48 1.8500- 103
28 65-75 1.3707 - 102 6.18 -

29 75+ 7.5648 - 102 2.67 -

Table D.2

Immunization by age. Here, the percent immunized is determined from the percent vaccinated
and efficacy of the vaccine as described in the Section 4.1. Age groups that receive neither primary
vaccination nor booster doses are omitted.

Age group Age range Percent immunized Immunization Rate Application

n (years) (% per year) pn (year—1)
1 0-1 34.98 0.5382 Primary vaccination
2 1-2 55.02 1.2250 Primary vaccination
3 2-3 0 0 -
4 3-4 0 0 -
5 4-5 11.06 0.1245 1st booster dose
6 5-6 62.01 1.6345 1st booster dose
7 6-7 16.61 0.1995 1st booster dose
8 7-8 0.29 0.0029 1st booster dose
9 8-9 0 0 -
10 9-10 0 0 -
11 10-11 0 0 -
12 11-12 0 0 -
13 12-13 6.93 0.0745 2nd booster dose
14 13-14 65.07 1.8658 2nd booster dose
15 14-15 17.88 0.2180 2nd booster dose
16 15-16 0.12 0.0012 2nd booster dose
17 16-17 0 0 -
18 17-18 0 0 -
19 18-19 0 0 -
20 19-20 0 0 -

Table D.3

Immune-status-dependent parameters used for numerical simulations. The subscript i
refers to the immune status ranging from 1 (fully susceptible) to 5 (completely im-

mune).
Immune status  Susceptibility  Infectivity Immunity waning  Recovery
i o Bi(day™!) o (year™) yi (day ™)
1 1.00 8.67-102 - 1/14
2 0.75 8.28.102 1/4 1/11
3 0.50 7.59.10-2 1/5 1/9
4 0.25 0.00 1/6 1/7
5 0.00 - 1/10 -
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Fig. D.2. Distribution of individuals in each age class by immune status. The proportion of susceptible (A) or infected (B) individuals from the total population of each status
with no vaccination (A1)-(B1), with primary vaccination alone (A2)-(B2), with primary vaccination plus one booster dose (A3)-(B3), with primary vaccination plus two booster
doses (A4)-(B4). (Column (A)) Colors represent the level of susceptibility: fully susceptible S; (red), low partial immunity S, (orange), medium partial immunity S3 (yellow),
vaccinated immunity S4 (light blue), and complete immunity Ss (blue). (Column (B)) Colors represent the level of symptoms and transmissibility: severe symptoms and full
transmissibility I; (red), moderate symptoms and transmissibility I, (orange), mild symptoms and low transmissibility I; (yellow), and neither symptoms nor transmissibility
I (light blue). The height of the bars in the top row indicates the total proportion in each age class while the bottom row is normalized by age group. Colors from
Brewer (2013). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



R.-M. Carlsson, L.M. Childs and Z. Feng et al./Journal of Theoretical Biology 497 (2020) 110265 17

Susceptible &

Infected

20

20
1
1)
c =
S mEmEEEE
5 0.5
Q.
e [ | L
o

0 5 10 15 20 0 5 10 15 20
Age (years) Age (years)

Fig. D.3. Distribution of individuals in each age class by immune status. The proportion of susceptible (A) or infected (B) individuals from the total population of each status
with no vaccination (A1)-(B1), with primary vaccination only (A2)-(B2), with primary vaccination plus one booster dose (A3)-(B3), with primary vaccination plus two booster
doses (A4)-(B4). (Column (A)) Colors represent the level of susceptibility: fully susceptible S; (red), low partial immunity S, (orange), medium partial immunity S; (yellow),
vaccinated immunity S, (light blue), and complete immunity Ss (blue). (Column (B)) Colors represent the level of symptoms and transmissibility: severe symptoms and full
transmissibility I; (red), moderate symptoms and transmissibility I, (orange), mild symptoms and low transmissibility I; (yellow), and neither symptoms nor transmissi-
bility I (light blue). The height of the bars in the top row indicate the total proportion in each age class while the bottom row is normalized by age group. Colors from
Brewer (2013). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. D.4. Relative change in incidence by age. Comparisons of the incidence of in-
fection by age group under different vaccination strategies: Scenario 1 - primary
relative to no vaccination (blue); Scenario 2 - primary vaccination with a single
booster dose relative to no vaccination (red); and Scenario 3 - primary vaccination
with both booster doses relative to no vaccination (orange). The large panel is a
composite of the smaller ones, which are for individual S classes. Negative values
on the y-axis indicate a reduction in incidence. In contrast to Fig. 3, the baseline of
comparison is absence of vaccination. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. D.5. Relative change in incidence by age. Comparisons of the incidence of in-
fection by age group under different vaccination strategies: Scenario 1 - primary
relative to no vaccination (blue); Scenario 2 - primary vaccination with a single
booster dose relative to no vaccination (red); and Scenario 3 - primary vaccination
with both booster doses relative to no vaccination (orange). The large panel is a
composite of the smaller ones, which are for individual S classes. Negative values
on the y-axis indicate a reduction in incidence. In contrast to Fig. 3, proportion-
ate mixing is assumed. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. D.6. Infectious population by symptomatic class under the assumption of proportionate mixing. The proportion of infectious individuals with severe symptoms (A),
severe and moderate symptoms (B) or any symptoms (C) under no vaccination (blue), primary vaccination alone (red), primary vaccination with the first booster dose
(yellow) and primary vaccination with both booster doses (purple). Note the y-axis log scale. In contrast to Fig. 5, proportionate mixing is assumed rather than the observed
mixing matrix. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.jtbi.2020.110265
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