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Approximating Least Fixpoints

Bernhard Möller

Universität Augsburg

Working Note, March 14, 2022

Everything should be made as simple as possible, but not simpler.

– Attributed to Albert Einstein

Abstract I try to come up with general techniques for approximating least
fixpoints from below and greatest fixpoints from above. In this, I try to place
as few restrictions as possible on the underlying partial orders; in particular, I
avoid the use of linear orders. The approach is intended to abstract and thus
generalise approximation techniques used in [10,1]. I hope that I am not falling
into Einstein’s trap with this note.

1 Basics

A poset is a set P with a partial order ≤ on it. A chain of P is a non-empty
subset of P on which ≤ is linear.

A function f : P → P is isotone or monotonically increasing if x ≤ y ⇒
f(x) ≤ f(y), and antitone or monotonically decreasing if x ≤⇒ f(y) ≤ f(x)
(cf. [2], §2).

Following [14], a subset system is a function Z which assigns to each poset P
a set Z[P ] of subsets of P such that
1. there exists a poset P such that Z[P ] contains some non-empty set;
2. If f : P → P ′ for posets P, P ′ is isotone and S ∈ Z[P ] then f(S) ∈ Z[P ′].
The elements of Z[P ] are called the Z-sets of P .

We will use the following versions of Z-sets.
1. P[P ]: the set of all subsets of P .
2. ∆[P ]: the set of all directed subsets of P .
3. ℵ0[P ]: the set of all non-empty countable subsets of P .
4. Γ [P ]: the set of all countable chains of P .
5. Γℵ0

[P ]: the set of all countable chains of P .
Given a subset system Z, we say that a poset P is Z-complete iff it has a

least element ⊥ and every Z-set S of P has a supremum ⊔S ∈ P . A function
f : P → P ′ is Z-continuous if for every Z-set S in P such that ⊔S exists, we
have f(⊔S) =⊔ f(S).

A poset is countably complete (CC) if it is ℵ0-complete. By elementary order
theory, in an upper semilattice this is equivalent to Γℵ0

-completeness.
A poset is a complete lattice if it is P-complete.
Every complete lattice is ∆-complete, ℵ0-complete and Γ -complete, every

∆-complete poset is Γ -complete, but not necessarily ℵ0-complete. A counterex-
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ample is the poset

a b

⊥

In a complete lattice every subset S also has an infimum ⊓S.
For a function f : P → P and x ∈ P we define, as in Kleene’s iteration [5],

the set f̂(x) =df {f i(x) | i ∈ N}, where
f0(x) =df x f i+1(x) = f(f i(x))

f̂(x) is non-empty, since x = f0(x) ∈ f̂(x). Moreover, by construction f̂(x) is
countable.

Lemma 1.1 Assume that f : P → P is isotone.
1. f̂(x) is a chain iff x is contracted or expanded by f .

2. In particular, if P has a least element ⊥ then f̂(⊥) is a chain.

Proof.
1. (⇒) By definition x = f0(x) and f(x) = f1(x) are in f̂(x) and hence f(x) ≤

x or x ≤ f(x).
(⇐) Assume x ≤ f(x). A straightforward induction using isotony of f shows
f i(x) ≤ f i+1(x) for all i ∈ N, which entails f j(x) ≤ fk(x) for all j, k with
j ≤ k.
The proof in case f(x) ≤ x is symmetric.

2. This follows from Part 1, since ⊥ as the least element is trivially expanded
by f . 2

We use the well known fixpoint theorems. The set of fixpoints of a function
f : P → P is denoted by fix (f).

First we deal with least fixpoints.

Theorem 1.2 Let P be a ∆-complete poset and f : P → P an isotone function.
1. [3,8] f has a least fixpoint µf which is the infimum of the contracted elements

or pre-fixpoints.
2. This entails the least fixpoint induction rule

f(x) ≤ x

µf ≤ x

3. [6] If P has a least element ⊥ then ⊔ f̂(⊥) ≤ µf . If f is Γℵ0
-continuous

then this strengthens to an equality.

The case of greatest fixpoints is similar. However, one usually does not work
with the dual of ∆-completeness but rather with complete lattices.

Theorem 1.3 Let P be a complete lattice and f : P → P an isotone function.
1. [13] f has a greatest fixpoint νf which is the supremum of the expanded

elements or post-fixpoints.
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2. This entails the greatest fixpoint co-induction rule

x ≤ f(x)

x ≤ νf

3. [5] If P has a greatest element ⊤ then νf ≤⊓ f̂(⊤). If f is Γℵ0-co-continuous,
i.e., preserves infima of non-empty countable chains, then this strengthens
to an equality.

In the remainder of the paper we mostly deal with least fixpoints; the treat-
ment of greatest fixpoints is symmetric.

2 Some Closure Properties

For X ⊆ P , by ↓X =df {y | ∃x ∈ X : y ≤ x we denote the downward closure
or downset of X. For x ∈ P we abbreviate ↓{x} to ↓x. The upward closure or
upset ↑X is defined symmetrically.

Lemma 2.1 Consider an arbitrary x ∈ P , an isotone function f : P → P and
y, z ∈ P such that y is contracted and z is expanded by f .
1. ↓x is closed under arbitrary existing suprema and under arbitrary existing

suprema of non-empty sets.
2. ↓y and ↑z are closed under f .
3. If u ∈ ↓y then f̂(u) is a countable set with f̂(u) ⊆ ↓y. Hence, if P is CC

then ⊔ f̂(u) ∈ ↓y as well.

4. f̂(z) is a countable chain.

Proof.
1. Assume X ⊆ ↓x. Then x is an upper bound of X. Hence, if X has a supre-

mum y =⊔X then y ≤ x and hence y ∈ ↓x.
Assume Y ⊆ ↑x with Y ̸= ∅ and v = ⊔Y . Choose a u ∈ Y . By definition
x ≤ u and u ≤ v. Hence also v ∈ ↑x by transitivity of ≤.

2. Assume u ∈ ↓y, i.e., u ≤ y. Therefore isotony of f implies f(u) ≤ f(y) ≤ y
and hence u ∈ ↓y as well.
The second claim is shown symmetrically.

3. This is immediate from Parts 1 and 2.
4. This follows by an easy induction. 2

3 Relativised Fixpoints

We want to find “relativised” fixpoints of f above some element x ∈ P . For this
we define the set ufix (f, x) =df fix (f)∩↑x of fixpoints of f above x and denote,
when existing, the least element of ufix (f, x) by lfp(f, x).

To apply our earlier results we form the up-set P ′ =df ↑x and restrict f to
P ′. If P is ∆-complete then so is P ′ with least element x, and hence in P ′ we
have ⊔ ∅ = x.
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Theorem 3.1
1. x ∈ fix (f) ⇒ x = lfp(f, x).
2. The restriction f |P ′ is an endofunction on P ′ iff x is expanded by f .
3. In this case lfp(f, x) = µ(f |P ′). In particular, µf = lfp(f,⊥). In P ′ we

have the rule
f(y) ≤ y

lfp(f, x) ≤ y

4. Let Ef =df {x ∈ P |x ≤ f(x) be the set of elements expanded by f . Then
Ef is closed under f and lfp(f, ) is a closure operator on Ef . In particular,
x ≤ lfp(f, x).

5. For x, y ∈ Ef , if x ≤ y ≤ lfp(f, x) then lfp(f, y) = lfp(f, x).
6. For x, y ∈ Ef , if x ≤ y ≤ lfp(f, x) and y ∈ fix (f) then y = lfp(f, x).

Proof.
1. By assumption z ∈ ufix (f, z). Consider an arbitrary y ∈ ufix (f, x) = fix (f)∩

↑x. Then by definition x ≤ y. Thus x is the least element of ufix (f, x) and
hence x = lfp(f, x).

2. The implication (⇒) is immediate from the definition of ↑x, while (⇐) fol-
lows from Lm. 2.1.2.

3. This follows by Th. 1.2.1 and 1.2.2 with Lm. 1.1.2.
4. First, by definition, isotony of f and definition again,

x ∈ Ef ⇔ x ≤ f(x) ⇒ f(x) ≤ f(f(x)) ⇔ f(x) ∈ Ef

Next, by Part 3 lfp(f, x) exists for all x ∈ Ef . Now we show the properties
of a closure operator.
– Extensivity: By definition lfp(f, x) ∈ ↑x, i.e., x ≤ lfp(f, x).
– Isotony: We have x ≤ y iff ↑y ⊆ ↑x. Hence x ≤ y implies ufix (f, y) ⊆
ufix (f, x), and hence the least element lfp(f, x) of ufix (f, x) is below all
elements of ufix (f, y), particular below lfp(f, y).

– Idempotence is immediate from Part 1.
5. Assume x ≤ y ≤ lfp(f, x). From the first inequation and Part 4 we infer

lfp(f, x) ≤ lfp(f, y). From the second inequation and again Part 4 we infer

lfp(f, y) ≤ lfp(f, lfp(f, x)) = lfp(f, x)

6. Immediate from Parts 5 and 1. 2

Parts 5 and 6 generalise to arbitrary closure operators.

Theorem 3.2 Consider a ∆-complete countable upper semilattice P which ad-
ditionally is Noetherian, i.e., has no infinite properly ascending chains and let
f : P → P be isotone.
1. For every x ∈ P we have lfp(f, x) =⊔ f̂(x), even if x is not expanded by f .
2. lfp(f, x) is computed by the following basic iterative algorithm:

y := x ; z := x
{ inv y ≤ lfp(f, x)}
while (f(y) ̸= y)
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do y := y ⊔ z ; z := f(z)
od {y = lfp(f, x)}

Proof.
1. We define yi =df

⊔
j≤i

f j(x). The yi are well defined, since P is an upper

semilattice. Clearly yi ≤ yi+1 and hence the yi form a countable ascending
chain. Set u =df

⊔
i∈N

yi. By Noetherity f is Γℵ0
-continuous. Therefore, as in

Kleene’s theorem, u ∈ fix (f). By construction, x ≤ u and thus u ∈ ufix (f, x).
Consider an arbitrary v ∈ ufix (f, x). We show by induction on i that v is an
upper bound of the f i(x) and the yi.
i = 0. By v ∈ ufix (f, x) and the definitions,

y0 = f0(x) = x ≤ v

i → i+ 1. First, by the first part of the induction hypothesis f i(x) ≤ v.
Hence by the definitions, isotony of f and v ∈ fix (f),

f i+1 = f(f i(x)) ≤ f(v) = v

Second, by the definitions, the second part of the induction hypothesis and
the just shown inequation,

yi+1 = yi ⊔ f i+1(x) ≤ v ⊔ v = v

Therefore u ≤ v, as claimed.
2. Termination of the algorithm follows by the assumed Noetherity. The ini-

tialisation establishes the invariant. The variable z successively contains the
f i(x) and, as shown in the proof of Part 1, therefore the loop body preserves
the invariant. By standard Hoare logic, after the loop also the negated loop
condition holds, i.e., y ≤ lfp(f, x) ∧ y = f(y). By the initialisation x ≤ y
and hence y ∈ ufix (f, x). Since lfp(f, x) is least in ufix (f, x), we conclude
y = lfp(f, x). 2

Example 3.3 An example where the starting element is not expanded is the
complete lattice

⊤

0 1 2 3 · · ·

⊥
with the isotone function f(⊥) = ⊥, f(⊤) = ⊤ and f(i) = i + 1. None of the

i ∈ N is expanded by f and yet lfp(f, i) = ⊤ =⊔ f̂(i) = {j | j > i}.
Here the loop for x = i stops after the second pass, since then y = ⊤ =

lfp(f, x). 2

4 Under-Approximating Least Fixpoints

Th. 3.1.4 provides a first rule for showing that an element is below a least
fixpoint, namely x ≤ lfp(f, x). However, we want to find other ones in which the
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element and the fixpoint are less tightly coupled, i.e., where the fixpoint is given
“independently” of the element.

Let P be Z-complete and X,Y ∈ P [Z]. Then Y is a majorant of X if for
every x ∈ X there is a y ∈ Y with x ≤ y. This implies ⊔X ≤⊔Y .

Theorem 4.1 Assume an isotone function f : P → P , an element x expanded
by f and and a sequence (yi)i∈N of yi ∈ P such that y0 = x and yi+1 ≤ f(yi)
for all i ∈ N.
1. f̂(x) is a majorant of the set Q =df {yi | i ∈ N}.
2. ⊔Q ≤ lfp(f, x).

Proof.
1. We show yi ≤ f i(x) by induction on i.

i = 0: by reflexivity and the definitions,

y0 = x ≤ x = f0(x)

i → i+ 1: by the assumption, the induction hypothesis with isotony of f and
the definitions,

yi+1 ≤ f(yi) ≤ f(f i(x)) = f i+1(x)

2. Immediate from Th. 1.2.3 and Part 1 with order theory. 2

This results abstracts and generalises the result in Lemma 3.4 of the paper [10]
that the inference rule

∀n ∈ N : [[ pn ]] a [[ pn+1 ]]

[[ p0 ]] a
∗ [[

∨
n∈N

pn ]]
(Iteration)

of Incorrectness Logic is sound.

5 Star-Like Recursions

We now study recursions in the form of Kleene’s classical definition [6] of the
star operator. However, we abstract from semirings or quantales as discussed
in [4,7,12].

Assume a CC upper semilattice P as well as an isotone “step function” g :
P → P . We define the isotone function f : P → P by

f(x) =df x ⊔ g(x) (1)

Example 5.1
1. In a quantale S the recursion for a∗ has the pattern a∗ = f(a∗), where

P = S,⊔ = + and g(x) = a · x.
2. In a modal Kleene algebra S the recursion for q =df ⟨⟨a∗||p has the pattern

q = f(q), where P = test(S),⊔ = + and g(x) = ⟨⟨a||x. 2

Theorem 5.2 Let f be given as in (1) and assume a sequence (zi)i∈N of zi ∈ P
such that z0 = x and zi+1 ≤ g(zi) for all i ∈ N.
1. ⊔ ĝ(x) ≤ lfp(f, x).
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2. If g is Γℵ0
-continuous then so is f and the above inequation strengthens to

an equality.

Proof.
1. Setting yi =df x⊔zi establishes the assumptions of Th. 4.1. Hence the claim

follows by Th. 4.1.1.
2. Immediate from Th. 1.3. 2

6 Approximation by Measure

In this section we try to generalise an approach by Baldan et al. [1]. There some
kind of measure function is employed. It tells “how far” elements are from the
closest fixpoint and allows showing that elements are below or above extremal
fixpoints without using standard fixpoint iteration, as in the previous sections.

Since the main theorem centrally uses greatest fixpoints, in this section we
first work with complete lattices rather than cpos.

We present the abstraction right away, because is is fairly simple. After that
we show how it mirrors the approach of [1].

6.1 Basic results

Let P be a complete lattice. The aim is to study isotone endofunctions f : P →
P . In particular, we are interested whether νf ≤ x for some element x ∈ P . For
this, we proceed as follows, leaning notationally on [1].
– Find a complete lattice Q of “measures”
– and a function γ : P ×P ×P → Q such that γ(x, y, δ) yields the “distance”

between two P -elements relative to a threshold δ.
– γ is required to be to be antitone in its first argument. The motivation for
this is given in the proof of Th. 6.1 below.

– Moreover, γ needs to be “sharp” in that

(∀ δ : δ ̸= ⊥ ⇒ γ(x, y, δ) = ⊥) ⇒ x ≤ y

– Next, find a simulation operator # : (P → P ) × P → (Q → Q) which
“mimics” the action of an endofunction f on P in the measure lattice Q. For
abbreviation we denote #(f, x) by f#

x and call a function f #-well-behaved
when for all δ ̸= ⊥ we have

γ(f(x), f(y), δ) ≤ f#
x (γ(x, y, δ))

and f#
x is isotone. An example is provided by the non-expansive functions

of [1].
This admits the following result.

Theorem 6.1 Consider some δ ̸= ⊥, an element x ∈ P and a #-well-behaved
function f : P → P such that νf#

x = ⊥.
1. If x is contracted by f , i.e., satisfies f(x) ≤ x, then νf ≤ x.
2. If x is even a fixpoint of f then x = νf .
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Proof.
1. We first show that γ(x, νf, δ) is expanded by f#

x :

f#
x (γ(x, νf, δ))

≥ {[ f is #-well-behaved ]}
γ(f(x), f(νf))

= {[ νf is a fixpoint of f ]}
γ(f(x), νf, δ)

≥ {[ x is contracted by f and γ is antitone in its first argument ]}
γ(x, νf, δ)

Hence the Knaster-Tarski theorem entails γ(x, νf, δ) ≤ νf#
x = ⊥. Since δ is

arbitrary, the claim now follows by sharpness of γ.
2. Since νf is the greatest fixpoint of f , we know x ≤ νf . Moreover, since every

fixpoint is contracted by f , Part 1 shows the reverse inequation. 2

Note that nowhere a (component) order is assumed to be linear.
In using this result it has to be efficiently checkable whether νf#

x = ⊥. This
can hopefully be achieved if a finite set Q is used.

The result only shows “soundness”, i.e., f(x) ≤ x ∧ νf#
x = ⊥ ⇒ νf ≤ x.

For “completeness” f(x) ≤ x ∧ νf ≤ x ⇒ νf#
x = ⊥ one would need stronger

assumptions on f#
x .

6.2 A Concrete Instance of the Results

As announced, we now present the example of [1]. The essential operators there
are addition ⊕ and subtraction ⊖ of measures, axiomatised by MV-algebras
(e.g. [11]). We use a simplified axiomatisation, not using a complement operator,
that is sufficient for our purposes.

A difference algebra is a commutative monoid (M,⊕, 0) with a partial order
≤ in which 0 is the least element and there is another binary operator ⊖ :
M ×M → M satisfying the Galois connection

x⊖ y ≤ z ⇔ x ≤ y ⊕ z

In this, the function fy(x) =df x− y is the lower and gy(z) =df y+ z the upper
adjoint. Therefore, by standard Galois theory, existence of ⊖ can be guaranteed
when M is a completely distributive complete lattice und ≤, since then gy is uni-
versally conjunctive, and hence determines ⊖ uniquely. This holds, in particular,
when M is a complete Boolean algebra or a complete chain.

The above axioms entail most of the negation-free properties mentioned in [1]:

x ≤ x⊕ y x⊕ y ≤ 0 ⇒ x ≤ 0
y ≤ z ⇒ x⊕ y ≤ x⊕ z x ≤ y ⇒ x⊕ z ≤ y ⊕ z
y ≤ z ⇒ x⊖ z ≤ x⊖ y x ≤ y ⇔ x⊖ y ≤ 0
x⊖ 0 = x y ⊖ x ≤ y
x⊖ x = 0 0⊖ y = 0
x⊖ (y ⊕ z) = (x⊖ y)⊖ z (x⊕ y)⊖ y ≤ x
x⊖ (x⊖ y) ≤ x y = x⊕ (y ⊖ x) ⇒ x ≤ y

∃ z(y = x⊕ z) ⇒ x ≤ y
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They are readily automatically proved by Prover9 [9] in no time.
The approach of [1] can be represented with difference algebras as follows.

One uses a finite set Y and a linearly ordered difference algebra M having a
greatest element 1. Then P =df MY ; this is the set of all Y -tuples over M .
The lattice Q is simply the power set of Y . For x ∈ MY one defines its norm as
||a|| = max{a(u) |u ∈ Y }. Linearity of the order ≤ has been assumed to make
this well defined. If linearity is undesired then one can axiomatise a supremum
operator ⊔ by

x ⊔ y = x+ (y ⊖ x) y ⊔ x = x ⊔ y

This is the negation-free analogue of the corresponding axioms in [11]. Then one
can set ||a|| = ⊔u∈Y a(u).

The operators ⊕,⊖ are extended pointwise to tuples. Then we can adapt the
definition of γ from [1]:

γ(x, y, δ) =df {u ∈ Y |x(u) ̸= 1 ∧ y(u)⊖ x(u) ≥ δ}
For antitony of γ we have, assuming x ≤ x′,

u ∈ γ(x, y, δ)

⇔ {[ definition ]}
x(u) ̸= 1 ∧ y(u)⊖ x(u) ≥ δ

⇐ {[ x ≤ x′ and antitony of ⊖ in its right argument ]}
x′(u) ̸= 1 ∧ y(u)⊖ x′(u) ≥ δ

⇔ {[ definition ]}
u ∈ γ(x′, y, δ)

To see sharpness of γ, we use the contrapositive x ̸≤ y ⇒ ∃ δ : δ ̸= ⊥ ∧
γ(x, y, δ) ̸= ⊥ = ∅. By the Galois connection the premise is equivalent to x⊖y ̸≤
0 and hence δ =df ||x ⊖ y|| ̸≤ 0. In this case there must be a u ∈ Y with
(x⊖ y)(u) = δ, so that γ(x, y, δ) ̸= ∅.

Next, Th. 10.a of [1] shows that the non-expanding functions are #-well-
behaved.

Finally, an assumption of νf ̸≤ x is by the Galois connection equivalent to
δ =df νf⊖x ̸≤ 0 and hence δ ̸= 0, so that Th. 6.1 yields νf ≤ x, a contradiction.

6.3 Dualising to Least Fixpoints

To deal with least fixpoints one essentially employs the order in a “mirrored
way”. Only this time we do not require P to be a complete lattice but are
satisfied with a cpo. However, for Q we still use a complete lattice because we
are still working with greatest fixpoints of endofunctions on measures. This leads
to the following requirements and definitions.
– Find a function γ′ : P×P×P → Q such that γ(x, y, δ) yields the “distance”
between two P -elements relative to a threshold δ.

– γ′ is now required to be to be isotone in its first argument and sharpness
now means

δ ̸= ⊥ ∧ γ′(x, y, δ) = ⊥ ⇒ y ≤ x

10



In the concrete instance of Sect. 6.2 this can be achieved by swapping the
roles of the first and second arguments of γ, i.e., by setting

γ′(x, y, δ) =df {u ∈ Y |x(u) ̸= 1 ∧ x(u)⊖ y(u) ≥ δ}
– Next, find again a simulation operator # : (P → P )×P → (Q → Q). For
abbreviation we denote now #(f, x) by fx

# and call a function f #-co-well-
behaved when for all δ ̸≤ ⊥ we have

γ′(f(x), f(y), δ) ≤ fx
#(γ

′(x, y, δ))

and fx
# is isotone.

This admits the following result.

Theorem 6.2 Assume some δ ̸= ⊥ and a #-co-well-behaved function f : P →
P such that νf#

x = ⊥.
1. If x ∈ P is expanded by f , i.e., satisfies x ≤ f(x), then x ≤ µf .
2. If x is even a fixpoint of f then x = µf .

Proof.
1. We first show that γ′(x, µf, δ) is expanded by fx

#:

γ′(x, µf, δ)

≤ {[ x is expanded by f and γ′ is isotone in its first argument ]}
γ′(f(x), µf, δ)

= {[ νf is a fixpoint of f ]}
γ′(f(x), f(µf))

≤ {[ f is #-co-well-behaved ]}
fx
#(γ

′(x, µf, δ))

Hence the Knaster-Tarski theorem entails γ′(x, µf, δ) ≤ νf#
x = ⊥ and the

claim follows by sharpness of γ′.
2. Since µf is the least fixpoint of f , we know µf ≤ x. Moreover, since every

fixpoint is expanded by f , Part 1 shows the reverse inequation. 2
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