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Simple Summary: Diffuse intrinsic pontine glioma (DIPG) is a neuro-radiologically defined tumor
of the brainstem, primarily affecting children, with most diagnoses occurring between 5 and 7 years
of age. Surgical removal in DIPGs is not feasible. Subsequent tumor progression is almost universal
and no biomarker for predicting the course of the disease has entered into clinical practice so far.
Under these premises, it is essential to develop reliable biomarkers that are able to improve outcomes
and stratify patients using non-invasive methods to determine tumor profiles. We designed a study
assessing circulating miRNA expression by a high-throughput platform and divided patients into
training and validation phases in order to disclose a potential signature with clinical impact. Our
results for the first time have proved the usefulness of blood-circulating nucleic acids as powerful,
easy-to-assay molecular markers of disease status in DIPG.

Abstract: Diffuse midline gliomas (DMGs) originate in the thalamus, brainstem, cerebellum and
spine. This entity includes tumors that infiltrate the pons, called diffuse intrinsic pontine gliomas
(DIPGs), with a rapid onset and devastating neurological symptoms. Since surgical removal in
DIPGs is not feasible, the purpose of this study was to profile circulating miRNA expression in DIPG
patients in an effort to identify a non-invasive prognostic signature with clinical impact. Using a
high-throughput platform, miRNA expression was profiled in serum samples collected at the time of
MRI diagnosis and prior to radiation and/or systemic therapy from 47 patients enrolled in clinical
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studies, combining nimotuzumab and vinorelbine with concomitant radiation. With progression-
free survival as the primary endpoint, a semi-supervised learning approach was used to identify a
signature that was also tested taking overall survival as the clinical endpoint. A signature comprising
13 circulating miRNAs was identified in the training set (n = 23) as being able to stratify patients by
risk of disease progression (log-rank p = 0.00014; HR = 7.99, 95% CI 2.38–26.87). When challenged in
a separate validation set (n = 24), it confirmed its ability to predict progression (log-rank p = 0.00026;
HR = 5.51, 95% CI 2.03–14.9). The value of our signature was also confirmed when overall survival
was considered (log-rank p = 0.0021, HR = 4.12, 95% CI 1.57–10.8). We have identified and validated a
prognostic marker based on the expression of 13 circulating miRNAs that can shed light on a patient’s
risk of progression. This is the first demonstration of the usefulness of nucleic acids circulating in the
blood as powerful, easy-to-assay molecular markers of disease status in DIPG. This study provides
Class II evidence that a signature based on 13 circulating miRNAs is associated with the risk of
disease progression.

Keywords: neuro-oncology; circulating miRNAs; diffuse intrinsic pontine gliomas; prognosis

1. Introduction

H3K27 altered diffuse midline glioma (DMG) is a rare group of malignancies included
in the 2016 WHO Classification of Tumors of the Central Nervous System (CNS) and
validated in the fifth one [1]. It refers to gliomas originating in the thalamus, brainstem,
cerebellum, and spine with a dismal prognosis that has persisted despite the biomedical
revolutions of the last century [1,2]. These tumors harbor somatic mutations in the H3F3A
or HIST1H3B/C genes, resulting in lysine to methionine substitutions at amino acid residue
27 (K27M) in the histone H3 variants H3.3 or H3.1. The DMGs that infiltrate the pons are
called diffuse intrinsic pontine gliomas (DIPGs), and they primarily affect early school-aged
children. They are characterized by a rapid onset of symptoms in a previously healthy
child [3]. DIPG is usually diagnosed based on the patient’s symptoms and magnetic
resonance imaging (MRI). The tumor is typically hyperintense on T2-weighted imaging
and on fluid-attenuated inversion images, while on T1-weighted imaging, the tumor is
rather hypo- or isointense [4,5].

DIPGs originate intermixed with healthy tissue in the pons, a region of the brainstem
containing many structures crucial to basic bodily functions; hence, it cannot be removed
surgically [6,7]. Radiotherapy (RT) is effective for palliation in most cases, achieving tran-
sient improvements in neurological function and a progression-free survival (PFS) benefit,
representing currently the mainstay of treatment [8]. In the last 30 years, DIPG patients
have participated in more than 250 clinical trials worldwide, testing RT in combinations
with a variety of chemotherapy drugs and small-molecule targeted inhibitors (alone or
together with other drugs) [9–12]. A retrospective meta-analysis found that adjuvant
systemic therapy was associated with a longer survival than radiation alone [13]. When
tumor progression occurs, the median survival is reportedly 11 months, the overall survival
proportion is 10% at 2 years, but less than 2% at 5 years after undergoing RT and any other
adjuvant treatments [14,15].

Research suggests that neoplastic DIPG cells release a wide array of soluble molecules,
some of which may enter the bloodstream [16]. Accordingly, these might serve as markers
of response to therapy, or enable a new, functional classification of this tumor of potential
relevance to its clinical course. In an effort to improve patient outcomes, it is essential to
develop better prognostic tools and to better stratify cases by using alternative ways to
ascertain tumor profiles.

Following an experimental workflow that included a discovery and a separate valida-
tion phase, we explored the potential of noninvasive blood biomarkers for improving the
prognostic stratification of DIPG patients in terms of their risk of progression. We hypothe-
sized that pursuing this approach could unveil a noninvasive biomarker of clinical utility



Cancers 2022, 14, 4307 3 of 16

in cases of DIPG, to better orient patients’ clinical management and ultimately, hopefully,
improve their chances of survival.

2. Materials and Methods
2.1. Standard Protocol Approvals and Patient Consents

This study involved patients with DIPGs, who were treated between 2009 and 2017
at a referral center for pediatric solid tumors (Fondazione IRCCS Istituto Nazionale dei
Tumori, Milan, Italy (INT)) and who were enrolled in either of two trials that combined
nimotuzumab and vinorelbine with concomitant RT. This study thus had 47 cases: 23 in
the pilot phase [17], which formed the “training set”, and 24 cases from the DIPG-INT 2015
(EudraCT: 2015-002185-23, 29 July 2015; ClinicalTrials.gov: NCT03620032, 2 November
2015), which served as the “validation set”.

The methods were performed in accordance with relevant guidelines and regulations
and approved by the local Ethical Committee of INT that approved the study design
(INT 07/12 and INT 94/15); all parents, legal guardians or patients (if over 18 years old)
signed to their informed consent to the use of their biological material and data for
research purposes.

2.2. Clinical Endpoints

The primary clinical endpoint of our investigation was progression-free survival
(PFS). PFS times were calculated in months from the date of diagnosis to the date of
any radiological or clinical evidence of progression, or death, due to the disease, and
censored at the date of latest follow-up for patients still progression-free and alive. Disease
progression was defined as established by the RAPNO working group [18]: (i) neurological
deterioration confirmed by MRI (≥25% increase compared with smallest measurement
at any timepoint from baseline in the 2D product of the perpendicular diameters using
T2-weighted or FLAIR sequences); (ii) global deterioration in a participant’s physical
condition not attributable to other causes, regardless of the radiological assessment. Clinical
re-evaluation by the radiation oncologist and/or pediatric oncologist/neurologist was
performed according to the standard practice. When pseudo-progression was suspected,
a patient was retained in the study until disease progression was definitive, but the date
of disease progression was backdated to the initial questionable progression timepoint if
progression was ultimately confirmed on subsequent assessments. All images were also
centrally reviewed both at diagnosis and during all the treatment phases by an expert
neuroradiologist that was external to our protocols and not aware of clinical status. Tumor
biopsies were not compulsory and performed only in the case of doubtful images.

Grade III, IV and V adverse events were registered using the CTCAE (Common
Terminology Criteria for Adverse Effects), version 4.0.

As a secondary clinical endpoint, our ct-miRNA model was tested for its ability to
identify differences in overall survival (OS). OS times were calculated in months from the
date of diagnosis to the date of death due to the disease, and censored at the date of latest
follow-up for patients that were still alive or who died of other causes.

2.3. Statistical Analysis

We first derived a survival model using the training data set. A biomarker complex
score based on ct-miRNA expression and related to PFS was identified using a standardized,
semi-supervised principal component method devised by Bair and Tibshirani [19].

Our proposed biomarker’s ability to predict survival risk was examined
non-parametrically by using Kaplan–Meier curves, for which statistical significance be-
tween the at-risk patient groups (i.e., low vs. high risk) was assessed with the log-rank test.
A univariate Cox’s proportional hazards regression was used to analyze the relationship
between our ct-miRNA signature and PFS or OS. We also implemented a multivariate Cox’s
regression in a follow-up analysis to determine whether our model provided predictions
that were more accurate than, and independent from, the two covariates (i.e., patient age
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and hydrocephalus). Model checking and performance (goodness-of-fit) were assessed in
terms of its (i) prediction error, based on Brier scores; (ii) calibration; (iii) discrimination;
(iv) decision curve analysis.

These analyses, sample processing, as well as other methods and materials above, are
described in more detail in the Supplementary Methods.

3. Results
3.1. Study Sample: Recruitment and Clinical Characteristics

Serum samples were collected at the baseline from 47 DIPG patients treated at INT in
Milan from 2009 to 2017 and who were enrolled in a pilot study and in the control arm of the
DIPG-INT 2015 (EudraCT 2015-002185-23). The samples were divided into training (n = 23)
and validation (n = 24) data sets as explained earlier (Consort Diagram in Figure S1).

The demographic and clinical characteristics of our two patient data sets are shown in
Table 1. There were no significant differences found between the training and validation
sets in terms of their age, gender, hydrocephalus (at diagnosis or during the course of the
disease), or their pattern of cancer progression.

Table 1. DIPG tumor cohorts.

Training Set
(n = 23)

Validation Set
(n = 24) p-Value

Age (median, range) 6.68 (2–17 y) 7.07 (2–21 y) 0.512
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from the spectrophotometric analysis. The training and validation sets had similar HS 
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A high-throughput microRNA screening approach was used to identify miRNA 
profiles in serum samples at the baseline in the training data set. Data analysis yielded a 
matrix containing 293 detectable circulating miRNAs. To develop a prognostic model 
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3.2. Development of a ct-miRNA Signature

All serum samples involved in our investigation of circulating miRNA profiles were
checked for hemolysis levels. No hemolysis was observed in any of the samples considered,
as confirmed by the low hemolysis scores (HS) for all 47 patients (Figure S2A) from the
spectrophotometric analysis. The training and validation sets had similar HS (Figure S2B).

A high-throughput microRNA screening approach was used to identify miRNA pro-
files in serum samples at the baseline in the training data set. Data analysis yielded a matrix
containing 293 detectable circulating miRNAs. To develop a prognostic model associated
with PFS as the main clinical endpoint, a semi-supervised method of risk prediction was
applied. This generated a signature containing 13 miRNAs, the first principal component
of which retained 83.04% of the variation in their expression. Since we intended to ascertain
whether circulating miRNA expression could predict the PFS, we considered the linear
combination of our 13 miRNAs as a prognostic biomarker.

We assessed skewness and kurtosis to examine the shape of the distribution of the
miRNA index in order to distinguish multimodal distributions or outliers for possible
exclusion. The data distribution of the miRNA index shows a skewness of 1.00 (p = 0.031)
and a kurtosis of 4.34 (p = 0.07); the normality of data distribution was checked by the
Shapiro–Wilk test (p = 0.0892). These properties were confirmed by the kernel density
estimation of the joint distribution function of the biomarker, with the elapsed time being
the time-to-event variable (Figure 1A). Since no relevant multimodal shapes were detected
and the residuals were normally distributed (Figure S3), the model was developed to stratify
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patients using Leave-One-Out Cross-Validation (LOO-CV) applying the median signature
value as the threshold, as detailed in Supplementary Methods. The model segregated
patients as being at high or low risk of progression, setting the dividing threshold at
0.007481 (Figure 1B). In the training set, 12 cases (54.2%) were classified as low risk, and
11 (45.8%) as high risk. As Figure 1C shows, the group predicted to be at high risk
had a significantly shorter PFS than the group predicted to be at low risk (log-rank test,
p = 0.00014; Fleming–Harrington test, p = 0.00328): the median PFS was 6 and 10.2 months
for the high- and low-risk groups, respectively. Figure 1C shows the Kaplan–Meier analysis
for the cross-validated risk groups. Our training set, however, included two long-term
survivors, so we tested the impact of these two cases on our risk stratification: after
excluding the long-term survivors, the performance of the model remained statistically
significant (Figure S4).
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Figure 1. Prognostic signature based on ct-miRNAs from the training data set. (A) Joint density
estimation for the ct-miRNA signature and time-to-event variable in the training set (x-axis = miRNA
model; y-axis = time-to-event; z-axis = density kernel estimate). (B) Heatmap of the expression levels
related to the 13 miRNAs entering the signature. On the horizontal axis are the respective miRNAs;
on the vertical axis are the patient samples (n = 23). The samples are ranked based on the signature
score, having the dividing threshold at 0.007481 defining those of a low or high risk, and the line
plot above the heatmap summarizes the score value per sample. (C) Kaplan–Meier survival curves
for patients predicted to be at high (blue, n = 11) or low (red, n = 12) risk of cancer progression.
High-risk patients had a shorter PFS (progression-free survival) than those at low risk (log-rank test,
p = 0.00014; hazard ratio (HR) = 7.99, 95% confidence interval (CI) 2.38–26.87). The permutation
test (based on 100 permutations) had a p-value of 0.03, indicating a low probability of overfitting
for the above-mentioned log-rank analysis. The Schoenfeld individual test was assessed to test Cox
regression assumption and to discard any violation considering the fast dip to zero trend for the
high-risk cases in contrast to the low-risk cases. Since the Schoenfeld individual test reaches p = 0.911,
the test is not statistically significant and, therefore, we can assume the proportional hazards.

3.3. Independent Validation of Our ct-miRNA Signature

To check our ct-miRNA model’s performance, 24 serum samples collected at the
baseline from DIPG patients—enrolled in the first arm of the INT-DIPG2015 with assessable
clinical data and an adequate follow-up—were used as a validation data set. Their serum
samples were profiled for ct-miRNA expression in the same way as for the training data
set. The expression of the 13 circulating miRNAs in the previously identified signature
was also detectable in the validation set. We were thus able to derive a risk value for each
sample in our validation set by applying our dividing threshold. The data distribution
shows similar properties of the training set with a skewness of 0.341 (p = 0.418), a kurtosis
of 4.27 (p = 0.082), and Shapiro–Wilk test equal to p = 0.318, supporting the normality of
the distribution. The kernel density estimation of the biomarker, with time as the time-
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to-event variable, showed no relevant multimodal distributions (Figure 2A). To classify
patients by their risk of relapse, we applied the cutoff obtained in our training phase
(0.007481), which divided the cases into 12 patients at a high risk and 12 at a low risk of
progression (Figure 2B). Kaplan–Meier curves confirmed the significantly different PFS
for the two risk groups thus identified (log-rank test, p = 0.00026; Fleming–Harrington
test, p = 0.0031 (Figure 2C), corresponding to a median of 7 and 10 months for the high-
and low-risk groups, respectively. We then examined our ct-miRNA model’s ability to
stratify patients in our validation set based on the OS; its Kaplan–Meier analysis showed a
significantly different OS for the two risk groups (log-rank, p = 0.0021; Fleming–Harrington
test, p = 0.00841 (Figure 2D)), corresponding to a median OS of 11.4 and 16.7 months for
the high- and low-risk groups, respectively.
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Figure 2. Validation of the ct-miRNA signature. (A) Joint density estimation for the signature and
time-to-event variable in the validation data set (x-axis = miRNA model; y-axis = time-to-event; z-axis
= density kernel estimate). (B) Heatmap of the expression levels of the 13 miRNAs comprising the
signature. On the horizontal axis are the respective miRNAs; on the vertical axis are the patient
samples (n = 24). Samples are ranked based on the signature score; even if the rank order differs
somewhat between the two heatmaps (training vs. validation), the division between the miRNAs
remains clear; the line plot above the heatmap summarizes the score value per sample. (C) Kaplan–
Meier survival curves for patients predicted to be at a high (blue, n = 12) or low (red, n = 12) risk
of progression, taking PFS (progression-free survival) as the endpoint. High-risk patients had a
significantly shorter PFS than those at a low risk (log-rank test, p = 0.00026; hazard ratio (HR) = 5.51,
95% confidence interval (CI) 2.03–14.9). (D) Kaplan–Meier survival curves taking OS (overall survival)
as the clinical endpoint. When risk stratification by the ct-miRNA model was tested for OS, it was
significantly shorter for high-risk than low-risk patients (log-rank, p = 0.0021, hazard ratio (HR) = 4.12,
95% confidence interval (CI) 1.57–10.81). High-risk in red, low-risk in blue.
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Univariate and multivariate regression models were used to assess the prognostic
power of the ct-miRNA model compared with other covariates (age and hydrocephalus).
Univariate analysis indicated that only the ct-miRNA model significantly predicted PFS
and OS. When all the covariates were analyzed simultaneously in a multivariate model,
the ct-miRNA model maintained its significant predictive ability for PFS, whereas now the
presence of hydrocephalus and the ct-miRNA model were both independent, significant
prognostic factors for OS (Table 2).

Table 2. Results of Cox’s proportional hazard regression analysis.

Univariate Analysis (PFS) Multivariate Analysis (PFS)

PFS HR (95% CI) p-value HR (95% CI) p-value

Hydrocephalus (presence vs. absence) 0.807 (0.33–1.971) 0.638 1.481 (0.517–4.246) 0.465

Age 0.9926 (0.92–1.07) 0.849 1.009 (0.935–1.09) 0.825

ct-miRNA (high vs. low risk) 5.506 (2.034–14.9) 0.000786 6.525 (2.129–20.0) 0.00103

Univariate analysis (OS) Multivariate analysis (OS)

OS HR (95% CI) p-value HR (95% CI) p-value

Hydrocephalus (presence vs. absence) 1.936 (0.787–4.759) 0.15 2.8751 (1.111–7.44) 0.0295

Age 0.998 (0.925–1.076) 0.961 0.994 (0.922–1.072) 0.8846

ct-miRNA (high vs. low risk) 4.119 (1.57–10.81) 0.0042 5.351 (1.939–14.771) 0.0012

p-Values < 0.05 are in bold; HR, hazard ratio; 95% CI, 95% confidence interval.

3.4. Performance of Our ct-miRNA Signature

To test the utility of our proposed signature in clinical practice, and to see whether its
merit was not simply an artifact of our data sets’ small sample sizes, the model’s perfor-
mance was quantified using the validation set. For this, a significant relationship between
the patients’ risk class and PFS was confirmed in the Kaplan–Meier analysis. We derived es-
timates for continuous and/or binary response models, quantifying how close predictions
came to actual (observed) outcomes. In particular, we considered: (i) measures of overall
performance, using the Brier score; (ii) discrimination, using sensitivity and specificity
metrics; (iii) calibration, using plots of predicted vs. observed outcomes; (iv) clinical benefit,
based on a decision curve analysis. For this analysis, our estimates took into account the
model’s performance over time, or, alternatively, we used the median follow-up time point
for the validation set (=8.5 months).

To corroborate the validity of our model, an overall estimate was explored first, and
the prediction error of our model in fitting the survival information was examined with
the Brier score (Figure 3A). These results showed that the expected Brier score was lower
than the reference scenario’s score when it took the risk identified by the ct-miRNA model
into account. The LOO-CV estimate of the Brier score for the ct-miRNA signature at the
median time of 8.5 months was 0.126, while that for the reference scenario was 0.270 when
the patients were not stratified. This supports the ct-miRNA model’s worthiness, since
when the Brier score approaches zero the closer predicted values fit the actual (observed)
ones at each follow-up time point. Finally, as a summary measure of the Brier scores,
the cumulative prediction error (IBS) over an interval ranging from 0 to 16 months was
0.055 for the ct-miRNA signature, which was almost half the 0.106 value achieved for the
reference scenario.
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Figure 3. Assessment of the model’s performance. (A) Prediction error curves for Brier scores based
on the miRNA signature stratification, and also on estimates for all patients without any stratification
applied (reference scenario curve). For a single patient, the Brier score at the time t is defined as
the squared difference between the observed survival status and the predicted outcome probability.
Red dotted line = IBS for the ct-miRNA model; black dotted line = IBS for the reference scenario.
(B) Calibration plot for PFS (progression-free survival) at the landmark follow-up time point of
8.5 months. The plot shows the predictions obtained by the model on the x-axis and the observed
outcomes on the y-axis. (C) Area under the ROC curves (AUC) based on our ct-miRNA model’s fitting
of the PFS, obtained from a time-dependent ROC analysis. (D) DCA (decision curve analysis) for the
model’s efficacy at predicting progression in DIPG, and to assess the clinical utility of the proposed
miRNA model. DCA shows, graphically, the clinical usefulness of the ct-miRNA model based on
a continuum of potential thresholds for patients’ risk of progression (x-axis) and the net benefit
of using the ct-miRNA model to stratify patients (y-axis). The horizontal black line indicates the
all-true negative rate (corresponding to the risk assumption that no patients had disease progression
at 8.5 months) and the diagonal gray line indicates the all-true positive rate (corresponding to the
risk assumption that all patients had disease progression at 8.5 months). The dotted line indicates an
improvement in the prediction achieved by the ct-miRNA model.
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The calibration of a model refers to the agreement between the predicted outcome
of interest and the observed outcome. Here, we found that the calibration line tracks
closely the 1:1 correspondence (diagonal), suggesting a reasonable agreement between the
probability estimated by the ct-miRNA model and the actual PFS (Figure 3B). Hence, this
indicated the predictions are adequate, and so is the model’s performance.

Discrimination analysis of the derived risk model generated the sensitivity and
specificity of our model, which was assessed by generating a ROC curve. The AUC
at the landmark follow-up time of 8.5 months had a value of 0.96 (95% CI: 0.888–1)
(Supplementary Figure S5) with the sensitivity, specificity, positive predictive value (PPV)
and negative predictive value (NPV) equal to 88.9, 81.8, 80, and 90%, respectively. Nev-
ertheless, the AUC only indicates the discriminatory ability of our model at a given time
point; so, a time-dependent ROC curve was calculated for our ct-miRNA model to take
into account the censoring pattern of patients over the whole period (Figure 3C). To as-
sess the practicability of the ct-miRNA model, a DCA was fitted to our data to reveal the
potential net benefits of the model for clinical decision-making. Viewed graphically, the
DCA demonstrated the ct-miRNA model has a positive net benefit for predicted probability
thresholds in the range between 1 and 54%, corresponding to the intercept between the
two reference conditions (i.e., all true negative, and all true positive rates) (Figure 3D).
For very low threshold probabilities (<10%), however, in which patients receive treatment
despite a relatively low risk of progression, the net benefit is marginally higher if patients
are stratified by the ct-miRNA model, but this is insufficiently valuable to improve their
care. However, for threshold probabilities ranging from 10 to 54%, a decision based on
the ct-miRNA model’s results is a superior option. For threshold probabilities of >54%, a
threshold at which unnecessary investigations and treatments may be a concern, the option
offered by the ct-miRNA model holds a significant value.

Likewise, discrimination and calibration examinations were made to establish the
prognostic performance of the model’s fit but with OS as the endpoint, which further
confirmed its merit (Supplementary Figure S6).

4. Discussion

DIPGs are rapidly growing tumors associated with dismal survival. Biopsy is difficult
and may be dangerous to obtain due to the anatomical location of these tumors (i.e., the
brainstem). In addition, concerns about the information provided by biopsy specimens
have arisen, since the representativeness of tumor heterogeneity and the inability to cover
the course of the disease, providing only a snapshot at the time of resection, impairs their
utility [20]. An alternative to tissue biopsies is liquid biopsies, requiring minimally invasive
procedures to analyze nucleic acids or proteins in blood and cerebrospinal fluid (CSF) for
the tumor-specific genetic signatures. For instance, the driver mutation H3K27M can be
detected in circulating DNA (ctDNA) from peripheral blood, enabling reliable monitoring
during and after treatment with a decreased content of ctDNA if the tumor had receded [21].

MicroRNAs are non-coding small RNA molecules that can be secreted into the cir-
culation and exist in remarkably stable forms, representing a remarkable opportunity in
liquid biopsy translational research [22]. In the present study, we have pursued an ongoing
exploratory project that focused on miRNAs in blood with two goals in mind: improve our
understanding of DIPGs and avoid the need for invasive and complicated routine biopsies
in the young patients affected.

We designed and conducted a study on a total of 47 homogeneously-treated patients,
applying a signature development framework, and dividing the cases into a training data
set (n = 23 patients) and a separate validation data set of a nearly equal size (n = 24). Our
initial findings from the former were confirmed by the latter, hence we had identified a
ct-miRNA signature that could be used in prospective projects and trials to stratify patients
by their high or low risk of progression, or as a surrogate of tumor resistance or sensitivity
to RT. Our sample size (i.e., number of patients) was limited when compared with the large
number of features assessed (i.e., 2006 miRNAs initially checked for), so we considered
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the issue of overfitting in our data analysis. This happens when a model fits its behavior
in a training set to the extent that it negatively affects its performance with new data,
prompting an unrealistic overestimation. To address this issue, we estimated the predictive
performance of our ct-miRNA model in the validation set. This was done using various
methods and traditional measures of survival outcomes, including the Brier score (to
indicate a model’s overall performance), the area under the ROC curve, and goodness-of-fit
statistics for calibration. Decision curve analysis (DCA) was also reported to assess if a
predictive model could be useful for clinical decisions. DCA combines a clinical intuition
regarding the usefulness of a diagnostic testing with an assessment of whether the test
is really worth performing. In fact, the decision curve applied to our ct-miRNA model
suggested a relative net benefit when patients were segregated by the model for predicting
the probability of progression at an 8.5-months follow-up.

Considering the dismal prognosis for patients with DIPGs, identifying those with
a temporarily better or worse prognosis within the same trial might seem pointless. As
pediatric oncologists, however, it is also our ethical responsibility to ensure our patients
(especially those with a poor prognosis) do not receive useless or even toxic/painful
treatments. The innovative clinical importance of our ct-miRNA signature lies in the fact
that it enables us to predict which patients will respond poorly to RT, and thus avoid further
courses of this treatment, or re-irradiation at relapse, which has become almost a standard
for patients with recurrent DIPG [23].

Additional tests would be required to determine the true nature of each of the miR-
NAs identified here, by exploring their behavior in vivo. We identified a signature with
13 circulating miRNAs, but little is known about their biological functions in neurological
diseases (Table 3) [24–26]. The overexpression of miR-4714-3p, miR-551b and miR-4505 is
related to a better prognosis in our patients. miR-4505 is reportedly involved in the nervous
system, midbrain development, and nerve growth factor receptor signaling pathways, and
its overexpression has been associated with the onset of generalized anxiety disorder [27].
MiR-551b is overexpressed in gliomas, while miR-4714-3p has been reported to be dys-
regulated in patients with multiple sclerosis [24,28]. The overexpression of the remaining
10 miRNAs of our signature (i.e., miR-6090, miR-6089, miR-3960, miR-936, miR-1207-5p,
miR-202-3p, miR-3676-5p, miR-4634, miR-4539, and miR-4299) is related to a worse progno-
sis. All 10 miRNAs are involved in various biological processes, such as cell proliferation,
gliomagenesis, pathological brain conditions, and radioresistance. Wang and colleagues in-
vestigated the role of miR-936 in glioma tissue specimens, providing evidence that miR-936
is correlated with tumor grade and a worse survival [25]. MiR-4299 is reported to be ex-
pressed in glioma cells and it influences the tumor microenvironment [26]. MiR-3676-5p has
been investigated in pituitary adenomas, where it plays a role in regulating genes involved
in tumor invasiveness [29]. Some of the miRNAs we found—particularly miR-6090, miR-
4505, miR-6089, miR-3960, miR-1207-5p, and miR-4634—were reportedly overexpressed in
patients with intracerebral hemorrhage, so they may be related to a pathological condition
of brain tissues [30]. Recent studies have revealed that differences in miRNA expression
can influence radiosensitivity in various tumors, including glioblastoma, and miR-4539 is
linked to radioresistance in atypical meningioma patients [31,32].

Since the blood–brain barrier impacts the release of putative biomarkers into the
systemic circulation, it has been hypothesized that the cerebrospinal fluid (CSF) can serve as
a source of biological material reflecting the brain physiological and pathological conditions
better when compared to peripheral blood [33]. Thus, the analysis of the 13 circulating
miRNAs in CSF is warranted to enable more precise prognostic approaches. Although the
signature was validated in an independent validation set, a multicenter prospective study
should be designed to confirm its prognostic value; for this purpose, activities are required
to transpose the signature into a useful clinical grade assay following the guidelines defined
by the Institute of Medicine [34]. and REMARK [35].
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Table 3. Literature information.

Gene Id Weights (wi)
Circulating miRNA

in Liquid Biopsy
Involment in

Neurological Diseases

Suggested/Documented
Functional Role in

Neurological Disease
References Reported in Other

Tumors

Suggested/Documented
Functional Role in Tumor

Other Than Brain
References

hsa-miR-4714-3p −0.889482 Reported blood from patients with
multiple sclerosis not investigated Keller, 2014 [28]

Head-Neck
squamous cell

carcinoma
not investigated Huang Y,

2020 [36]

hsa-miR-6090 0.401593 Reported
cerebrospinal fluid from

patients with intracerebral
haemorrhage

pathological condition
of brain Stylli, 2017 [30]

downregulatd in
Multiple Myeloma

patients
not investigated Zhang, 2019

[37]

hsa-miR-4505 −0.402474 Reported

nervous system

nervous system
development, nerve

growth factor receptor
signaling

Chen, 2016 [27] Myeloma Patients downregulation is associated
with progression of disease

Zhang, 2019
[37]

cerebrospinal fluid from
patients with intracerebral

haemorrhage

pathological condition
of brain Stylli, 2017 [30]

metastatic-
intramucosal

carcinoma patients
not investigated Kim S, 2020

[38]

patients with generalized
anxiety disorder not investigated Wu, 2018 [24]

upregulated in
colon cancer

pantients
not investigated Wang, 2017

[39]

hsa-miR-551b-5p −0.850107 Reported glioblastoma tissue not investigated Wu, 2018 [24]
downregulated in

Gastric Cancer
patients

regulation of
ubiquitin-dependent protein

catabolic process, cell
division, and mRNA stability

Jiang X, 2019
[40]

hsa-miR-6089 0.54622 Reported
cerebrospinal fluid from

patients with intracerebral
haemorrhage

pathological condition
of brain Stylli, 2017 [30] Ovarian Cancer

promotes cancer cell
proliferation, migration,
invasion and metastasis

Liu L, 2020
[41]

hsa-miR-3960 0.431525 Reported
cerebrospinal fluid from

patients with intracerebral
haemorrhage

pathological condition
of brain Stylli, 2017 [30]

downregulated in
Bladder Cancer

patients
not investigated Usuba, 2018

[42]

hsa-miR-936 0.170501 Not reported glioma tissue
downregulation is

associated to worse
overall survival

Wang, 2017 [25] nasopharyngeal
carcinoma not investigated Wang 2020

[43]
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Table 3. Cont.

Gene Id Weights (wi)
Circulating miRNA

in Liquid Biopsy
Involment in

Neurological Diseases

Suggested/Documented
Functional Role in

Neurological Disease
References Reported in Other

Tumors

Suggested/Documented
Functional Role in Tumor

Other Than Brain
References

hsa-miR-1207-5p 0.466562 Reported
cerebrospinal fluid from

patients with intracerebral
haemorrhage

pathological condition
of brain Stylli, 2017 [30] gastric cancer

tissues

downregulation promote
proliferation, invasion and
induces cell cycle arrest in
gastric cancer cells in vitro

and in vivo

Chen L, 2014
[44]

hsa-miR-202-3p 0.345363 Reported glioma tissue

involvement in cell
proliferation,

migration and
proliferation

Yang, 2017 [45]
differentially
expressed in

cervial cancer
not investigated Yi, 2016 [46]

hsa-miR-3676-5p 0.151234 Reported pituitary adenoma
regulation of tumor

suppressor genes
involved in invasion

Wu S, 2017 [29] lung cancer not investigated Qin, 2017
[47]

hsa-miR-4634 0.46722 Reported
cerebrospinal fluid from

patients with intracerebral
haemorrhage

pathological condition
of brain Stylli, 2017 [30] non-small cell lung

cancer cells

overexpression is associated
with better prognosis of

NSCLC patients.

Liu S, 2020
[48]

hsa-miR-4539 0.066802 Reported atypical meningioma
downregulation is

associated to
radioresistance

Zhang, 2020 [32] gastric cancer
patients not investigated Zhang C,

2018 [49]

hsa-miR-4299 0.069597 Reported pediatric glioma stem cells
exosomes

influence of tumor
microenviron-

ment/normal neural
stem cells

Tuzesi, 2017 [26] non-small cell lung
cancer cells

overexpression inhibits the
proliferation, migration and

invasion in vitro

Yang, 2018
[50]



Cancers 2022, 14, 4307 13 of 16

5. Conclusions

Our results ought to be combined with those obtained in tissues or fluids (serum
or CSF) by other research groups. Liquid biopsy techniques are expected to provide a
relevant molecular landscape of the disease. Ideally, the integration of clinical status,
imaging characteristics, and liquid biopsy-based molecular characterization will offer
a novel monitoring approach able to provide a comprehensive clinical and molecular
snapshot of the tumor in space and time. Given the paucity of available tissue, and the
generally low incidence of the disease, greater collaborative efforts to improve its prognosis
have been one of the few positive notes in recent decades in the clinical world of DIPG.
Not-for-profit foundations have sponsored its research, leading to the creation of DIPG
registries pooling clinical, radiological, pathological, and molecular data. Thanks to these
efforts, DIPG research continues to grow, and with it sustaining new hope for the future.
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