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Abstract10

We consider the maintenance of “product” cell populations from “progenitor” cells via a sequence11

of one or more cell types, or compartments, where each cell’s fate is chosen stochastically. If there is12

only one compartment then large amplification, that is, a large ratio of product cells to progenitors13

comes with disadvantages. The product cell population is dominated by large families (cells descended14

from the same progenitor) and many generations separate, on average, product cells from progenitors.15

These disadvantages are avoided using suitably-constructed sequences of compartments: the amplification16

factor of a sequence is the product of the amplification factors of each compartment, while the average17

number of generations is a sum over contributions from each compartment. Passing through multiple18

compartments is, in fact, an efficient way to maintain a product cell population from a small flux of19

progenitors, avoiding excessive clonality and minimising the number of rounds of division en route. We20

use division, exit and death rates, estimated from measurements of single-positive thymocytes, to choose21

illustrative parameter values in the single-compartment case. We also consider a five-compartment model22

of thymocyte differentiation, from double negative precursors to single-positive product cells.23

1 Introduction24

Cell populations in organs and tissues are continuously replenished. There are many biological systems25

in which a small flux of progenitor cells continuously replenishes large populations of “product” cells via26

a structured developmental journey through a sequence of intermediate cell types [1–3]. Each cell type is27

referred to as a “compartment”, whether or not it corresponds to a physical location. In different contexts,28

product cells may be termed “mature”, “exhausted”, “fully differentiated” or “effector” cells [4–6]. We model29

such systems, assuming that cells in each compartment may die, divide or “transit” to the next compartment,30

according to probabilistic rules. Only cells that reach the end of the sequence are called product cells. The31

set of product cells descended from a single progenitor is called a family. Theoretical and experimental32

arguments suggest that variability of family sizes is unavoidable if the fates of individual cells are subject to33

chance [7–10].34

The dynamics of cellular developmental pathways is studied using recently-developed heritable labels,35

where individual progenitor haematopoietic and immune cells are tagged and their progeny counted [9–12].36

Different experimental definitions of what constitutes a compartment are adopted: most often, human or37

mouse cells are classified by the abundance of one or more types of molecules on their surface, measured38

using flow cytometry. For example, in a study of the specific CD8+ T-cell response to persistent Toxoplasma39

gondii infection, the surface markers CXCR3 and KLRG1 were used to identify an intermediate T-cell subset40

between memory and effector cells [13].41

Maturation and selection of T cells in the thymus takes place via a sequence of cellular phenotypes, from42

bone-marrow progenitors to single-positive (SP4 or SP8) thymocytes [14–17], leading, in the case of an adult43
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mouse, to about one million T cells per day exiting the thymus [18, 19]. In an adaptive immune response,44

naive antigen-specific T-cell populations expand dramatically. The numbers and phenotypes of descendants45

of individual naive T cells are highly variable, but the magnitude of the total response is reproducible when46

the output of many families is combined [9,10,20]. Variability of family sizes is confirmed by direct time-lapse47

observations in vitro [8].48

Hundreds of billions of blood cells are replaced every day in a typical adult, all descended from small49

numbers of haematopoietic stem cells (HSCs) [21–23]. HSCs produce multipotent progenitor cells (MPPs) [2,50

10,24] through a hierarchy of cellular states [25]: more primitive HSC1s and more mature HSC2s, followed by51

MPP1, MPP2 and MPP3 cells. Low rates of division of cells in early compartments of a lineage is conjectured52

to reduce the risk that potentially cancerous mutations accumulate [26–28]. Increased risk of T-cell acute53

lymphoblastic leukaemia [29,30] is indeed found if the early compartments of the usual thymic sequence are54

absent [31, 32].55

Here, we examine the amplification of a small flux of progenitor cells to continuously replenish a product56

cell population from a theoretical perspective, based on stochastic rules governing the fates of individual57

cells. We calculate the probability distributions of the number of product cells per progenitor cell, and of the58

number of rounds of division that separates them. Our particular focus is on how these distributions depend59

on the number of compartments. Every cell in each compartment undergoes one of three fates: the cell may60

divide, die or make a transition to the next compartment [33–36]. The “transition” event, corresponding to61

cell differentiation in many biological contexts, is called “exit” for short. The balance of probabilities between62

fates depends on the compartment but each cell in a compartment chooses its fate independently. In this63

sense our scheme is simpler than models that include interaction and competition between cells [37, 38]. A64

consequence of our assumption of independence is that a cell’s division probability must be less than one half65

(otherwise the mean number of cells that descend from it would be infinite).66

We analyse the possible descendants of one progenitor cell, families of cells that journey through the67

sequence of compartments. The number of cells from one family that become product cells is the random68

variable R. To model the case where a small input flux of progenitors replenishes a larger product population,69

the mean of R will be large. In Section 2 we find the probability distribution of R as the ultimate state of a70

multitype branching process [39]. The mean number of product cells per progenitor, IE(R), is denoted N . If71

there is a constant mean influx, φ, of progenitor cells, then there is a constant mean outflux, Nφ, of product72

cells. The single-compartment case is illustrated in Figure 1. It may be termed “direct differentiation” because73

only one such event is needed to convert a progenitor cell to a product cell. We note that the product cell74

population (red circles) consists of cells that become product cells at different times. Similarly, the solid blue75

circles in Figure 1 represent cells that are born, and may die, at different times. In this single-compartment76

scheme, large values of N are always associated with a high degree of clonality. Excessive “clonality”, where77

the variation in family size, from one progenitor to another, causes the population of product cells to be78

dominated by a few large families, may increase the risk of cancerous mutations becoming established in the79

population [40,41]. For example, the mean of R is equal to 10 if ten percent of progenitors yield 100 product80

cells, and the remainder yield none. One of our main results is that large values of N are possible without81

excessive clonality when the number of compartments, C, is greater than one, as illustrated in Figure 2.82

The ability of product cells to perform their function may be negatively affected by the number of rounds83

of cell division that separates them from their progenitor, because every round of division brings with it a risk84

of mutation [42, 43]. For this reason, as well as identifying an individual cell by the compartment it belongs85

to, c = 1, . . . , C, we label it by generation, n = 0, 1, . . .. The progenitor cell is said to be in generation 0.86

Whenever a cell in generation n divides, the result is two cells in generation n+ 1 [44,45]. From this point of87

view, the population of product cells is heterogeneous because it is made up of cells of different generations88

(Figure 3), cells with different “replicative histories” [23] or “replicative ages” [46]. Our analysis centres on89

the random variable G, defined to be the generation number of a randomly-selected product cell.90

The paper is organised as follows. Sections 2, 3 and 4 consist of the main theoretical results and a set of91

remarks. In Section 2, we analyse the case C = 1. Explicit expressions for the distribution of family sizes92

are obtained via the probability generating function. In Section 3, we consider sequences of compartments:93

cells may make a transition from compartment c to compartment c + 1, for c = 1, . . . , C − 1. We treat94

the structured journey of development from a single progenitor cell to a population of product cells as a95

realisation of a multitype branching process [47, 48]. By contrast, we note that discretised age-structured96

models [49] are different from sequences of compartments because birth events produce new individuals in the97
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first compartment only. Since we are interested in the ultimate fate of the system, we proceed as in the theory98

of discrete-time branching processes, by defining relationships between random variables using probability99

generating functions. For instance, the probability generating function of the number of cells that exit the100

final compartment, descended from one progenitor cell, is given as a composition of probability generating101

functions. Note that, while mean quantities can also be obtained by solving linear systems of ordinary102

differential equations [50–54], the full distribution of R is encoded in its probability generating function. The103

product cell population, classified into generations, is examined in Section 4. In particular, we consider the104

random variable G: its mean value, D, and its distribution (as encoded in its probability generating function).105

In Section 5, we generalise our considerations to include a fourth type of event: asymmetric division; that is,106

a division event that leaves one daughter cell in the same compartment that the mother cell divided and the107

other daughter cell exits the compartment. The appendices provide additional details, not included in the108

main body of the manuscript. In particular, the recursion relations that we use to generate the probability109

that k cells exit from one or two compartments are given in Appendix A; the variance of the random variable110

R, which is proportional to N2+1/C when N is large, is calculated in Appendix B; and the generalisation of111

our methods to include asymmetric division is presented in Appendix C.112

Figure 1: The one-compartment system. A single progenitor cell (shown on the left, green) is the founder
of the population. In the compartment (represented by the dashed box), each cell (shown as a blue filled
circle), independently, may die, divide, or “exit”. An exit event is the differentiation of a cell to product cell
type (shown as a red empty circle). The random variable R is the number of product cells when no cells
remain in the compartment. We count the product cells as a cumulative total and do not consider any death
or division events of product cells. The quantity N = IE(R) is the “amplification factor”: the mean number
of product cells per progenitor.

2 How many cells exit a compartment?113

The case of one compartment is illustrated in Figure 1. Three types of single-cell events contribute to the114

creation of a family of product cells from a single progenitor: individual cells may divide, die or transit115

(or differentiate) to a different cell type, or compartment. Our assumption is that every cell in a given116

compartment follows the same rules, independently, which is a fundamental assumption in branching pro-117

cesses [55,56]. Here, we restrict ourselves to counting cells, ignoring both inter-event times and the total time118

taken for progeny to disappear from all intermediate compartments and exit from the last one.119

Analyses based on ordinary differential equations can calculate mean quantities, such as the mean number120

of product cells per progenitor. We, instead, calculate full distributions using first-step arguments and the121

probability generating function. The full distribution is of particular relevance in experiments where only122
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Figure 2: The multiple-compartment system. A single progenitor cell (shown on the left, green) is the founder
of the population. Each cell in compartment c, independently, may die, divide or transit from compartment
c to compartment c + 1, where c = 1, . . . , C − 1. Cells that exit compartment C are product cells (shown
in red). The overall amplification factor N is the mean number of product cells per progenitor, which is the
product of the amplification factors in each compartment.

Figure 3: We classify the set of product (red) cells according to generation (number of divisions from the
progenitor cell). The progenitor cell is said to be in generation 0. Whenever a cell in generation n divides,
the result is two daughter cells in generation n + 1. The final state of the process is a population of red
cells, each having made the transition at a different time and each with its own generation number. The case
C = 1 is illustrated here. If C > 1 then the mean number of divisions in the product population is the sum
of the mean numbers of divisions in each compartment.

a finite number of families can be tracked. When the rules at the level of a single cell are stochastic, some123

progenitors do not yield any product cells, while some found large families.124

In this Section we analyse the case of one compartment, C = 1. Each cell in the compartment, in-125

dependently, may die, divide, or exit the compartment, with respective probabilities pd, pb and pe, where126

pd + pb + pe = 1. We assume that127

pd + pe > pb, (H1)

so that extinction is the ultimate fate of the population of (blue) cells in the compartment. Exit has the128

same effect as death on the population in the compartment because exited cells play no further part in the129

dynamics of that compartment. Although the ultimate fate of the system is not affected by the inter-event130

time distributions, it is useful to keep in mind some examples that satisfy the assumptions that every cell,131

independently, dies, divides, or exits with probabilities pd, pb and pe, repectively.132

• A continuous-time birth-death-migration Markov process with exponential waiting times, where the133

probabilities pb, pd, and pe are related to the rates of death, division and exit (i.e., migration) , µ, λ134
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and ν, respectively, by135

pd =
µ

µ+ ν + λ
, pb =

λ

µ+ ν + λ
, pe =

ν

µ+ ν + λ
. (1)

Sawicka et al. [14] estimated µ, λ and ν for SP4 and SP8 thymocytes based on experimental data [57].136

The estimated division rates were λ4 = 0.181 day−1 and λ8 = 0.085 day−1; death rates µ4 = 0.040137

day−1 and µ8 = 0.110 day−1; and exit rates ν4 = 0.231 day−1 and ν8 = 0.152 day−1, respectively for138

SP4 and SP8 (see Section 3.3, Table 2 of Ref. [14]).139

• A population in which each cell is assigned three independent random variables: a death time τd, a140

division time τb, and a differentiation time τe. The fate of the cell is whichever is the minimum of the141

three times [8, 58]. Then, probabilities can be defined as follows142

pd = P (τd < τb and τd < τe), pb = P (τb < τd and τb < τe), and pe = P (τe < τb and τe < τd).

We note that (1) holds in the case where the probability densities of τd, τb, and τe are exponential.143

The random variable R is the total number of product cells, starting from a single progenitor cell. Let144

us define qk as follows:145

qk = P (R = k), k = 0, 1, 2, . . . . (2)

We make use of the following argument based on the first event that occurs in the compartment. If the first146

event is cell division, then the two daughter cells, independently, follow the same rules as their mother cell.147

Therefore, q0 satisfies the quadratic equation148

q0 = pd + pb q
2
0 . (3)

We can read (3) as a sum over the three possible first events, making use of the law of total probability:149

∑

s∈{d,e,b}
ps P (R = 0 | first event is s) = pd1 + pe0 + pbq

2
0 .

Because q0 is a probability, we take the solution of (3) in the interval [0, 1], given by150

q0 =
1 − ∆

2pb
=

2pd
1 + ∆

, where ∆2 = 1 − 4pdpb. (4)

Similarly, the mean of R can be written as151

N = IE(R) =
∑

s∈{d,e,b}
ps IE(R | first event is s) = pd0 + pe1 + pb2N, (5)

so152

N =
pe

1 − 2pb
. (6)

The condition (H1), which is equivalent to 2pb < 1, assures that N is finite. We also observe that pb must153

be close to 1
2 for N to be large.154

The probability q1 satisfies an equation similar to (3):155

q1 = pe + pb 2q0q1. (7)

Thus, we have q1 = pe

∆ . We may find further qk (for k ≥ 2) making use of the relationship156

qk = pb (qkq0 + qk−1q1 + · · · + q1qk−1 + q0qk) , so qk =
pb
∆

k−1
∑

j=1

qj qk−j , k ≥ 2. (8)
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However, it is more convenient to consider the probability generating function of the random variable R,157

defined as158

φ(z) = IE(zR) = q0 + q1z + q2z
2 + . . . . (9)

The probability generating function, like q0, satisfies a quadratic equation [59,60]:

φ(z) =
∑

s∈{d,e,b}
ps IE(zR | first event is s) = pdz

0 + pez
1 + pbφ

2(z).

Thus, taking the sign of the square root that yields φ(1) = 1, we obtain159

φ(z) =
1 − (1 − 4pbpd − 4pbpez)1/2

2pb
. (10)

Using either (10) or (8), we find160

qk =
(pb

∆

)k−1 (pe
∆

)k

ck−1, k ≥ 1, (11)

where c0 = 1 and for k ≥ 1, we have161

ck =
(2k)!

k!(k + 1)!
.

The ck are known as the Catalan numbers [61]. Examples of qk are shown in Figure 4 for two different choices162

of pb and pe. With the estimates of Sawicka et al. [14], N ≃ 2.57 (for SP4 thymocytes) and N ≃ 0.86 (for163

SP8 thymocytes).164

The distribution (11) of the random variable R is not one of the well-known distributions, such as Poisson165

or geometric. We therefore provide some remarks on its properties.166

Remark 2.1 Given any two of pd, pb, and pe, we can recover the third using pd + pb + pe = 1. In fact, we167

may parametrise the compartment in terms of any two, linearly independent, combinations of168

pd, pb and pe. We will, on occasions, use N itself along with pd. That is, using N = pe

1−2pb
, we169

can write170

pb =
N − 1 + pd

2N − 1
, and pe =

N(1 − 2pd)

2N − 1
. (12)

Remark 2.2 The variance, V , of R is given by171

V = φ′′(1) +N −N2 =
2pb
pe

N3 +N −N2, (13)

which can be rewritten as172

V =
2

1 − 2pd
(N − 1 + pd)N2 +N −N2. (14)

Thus, the standard deviation of R is proportional to N3/2 as N → +∞.173

Remark 2.3 It is convenient to generate values of qk, (k ≥ 1), via the recursion relation174

qk+1 =
2k − 1

k + 1

2pbpe
1 − 4pbpd

qk. (15)

Remark 2.4 We note that [62]175

qk <
pe√
π∆

γk−1
1 k−3/2, k ≥ 1, (16)

where we have introduced176

γ1 =
4pbpe

1 − 4pbpd
. (17)

If N ≫ 1, then we have γ1 ≃ 1 − 1−2pd

4N2 .177
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Remark 2.5 The factor k−3/2 in (16) can be understood [63–65] as resulting from the square-root singularity178

in the probability generating function (10) rearranged as follows:179

2pbφ(z) = 1 − ∆(1 − γ1z)1/2. (18)

Remark 2.6 The right-hand side of (16) is the asymptotic form of qk as k → +∞ [62]. That is, we have180

log

(

qk+1

qk

)

≃ log γ1 −
3

2
log

(

1 +
1

k

)

,

when k ≫ 1. If, in addition, N ≫ 1 then we can write181

log

(

qk+1

qk

)

≃ −1 − 2pd
4N2

− 3

2

1

k
. (19)

The decrease in qk as a function of k is primarily due to the factor k−3/2, when (1 − 2pd)k <182

6N2; thereafter, it is due to the factor γk1 (see Figure 5). We may summarise the behaviour of183

qk as having two régimes: it is first governed by the power law when k is small enough that184

γk1 ≃ 1, then by the geometric term at values of k greater than 6N2/(1 − 2pd).185

Remark 2.7 In a population of cells made up of multiple realisations of R, we can also understand the186

dominance of large families of cells by evaluating k50, the lowest value of k such that half of187

the cells are part of a family of fewer than k cells. That is,188

N

2
<

k50
∑

k=1

kqk.

Using (16), kqk <
pe√
π∆

1√
k

, so we can write189

√
π∆

2pe
N <

k50
∑

k=1

1√
k
,

√
π∆

2pe
N < 2

√

k50,

k50 >
π∆2

16p2e
N2.

(20)

Assuming N > 1 and using (12), we conclude190

k50 >
π

16

∆2

(1 − 2pd)2
(2N − 1)2. (21)

The factor ∆2

(1−2pd)2
is an increasing function of pd. In summary, for a given value of N , k50 is191

minimised by setting pd = 0. An analytical bound on this minimum is k50 >
π
16 (2N−1)2. Some192

numerical examples are: when N = 10 and pd = 0, k50 = 83 and the analytical bound (21) is193

k50 > 71; when N = 102 and pd = 0, k50 = 9, 009 and the bound is k50 > 7, 775.194

3 How many cells exit a sequence of compartments?195

We now consider the case where there are C compartments before the final population of product cells. The196

random variable R is the number of product cells, descended from one cell in the first compartment. That197

is, there are C “transition” or “differentiation” events between the progenitor and the product phenotype.198

The case C = 1 was analysed in Section 2. The case C ≥ 2 is illustrated in Figure 2.199
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Each cell, independently, may die, divide, or make a transition from its current compartment to the next,200

with probabilities201

pd(c), pb(c), and pe(c),

where pd(c) + pb(c) + pe(c) = 1 for each c, with c = 1, . . . , C. The condition (H1), that guarantees a finite
number of product cells, is imposed in each compartment:

pd(c) + pe(c) > pb(c), for each c, with c = 1, . . . , C.

The quantity Nc =
pe(c)

1 − 2pb(c)
is the mean number of cells exiting compartment c for each cell that makes a202

transition to that compartment (from compartment c− 1). If Rc is the number of cells exiting compartment203

c, descended from one cell in compartment c, then the probability generating function of Rc is204

φc(z) =
1 −

[

∆2
c − 4pb(c)pe(c)z

]1/2

2pb(c)
, c = 1, . . . , C, (22)

with ∆2
c = 1 − 4pd(c)pb(c). We can write Nc = IE(Rc) = φ′c(1).205

We seek Qk(C), the probability that the number of product cells, descended from a single progenitor via206

C intermediate compartments, is equal to k. We can write207

Qk(C) = P (R = k), k = 0, 1, 2, . . . . (23)

The probability generating function of R is given by208

ΦC(z) = IE(zR) = Q0(C) + zQ1(C) + z2Q2(C) + · · · . (24)

If C = 1 (there is only one compartment) then we recover the results of Section 1. That is, Qk(1) = qk and209

Φ1(z) = φ1(z). If C = 2, we may write210

R =

R1
∑

i=1

R2,i, (25)

where the R2,i are identical and independent random variables with the same distribution as R2. Using (25),211

we find [55,56,60]:212

Φ2(z) = φ1(φ2(z)). (26)

In general, we have213

ΦC(z) = φ1(φ2(· · ·φC(z))). (27)

We maintain the notation that R is the number of product cells, N the mean and V the variance of R. The214

overall amplification factor is then given by215

N =

C
∏

c=1

Nc. (28)

Remark 3.1 The definition (24) relates the probability generating function to a set of probabilities. Different216

algorithms exist for extracting numerical values of the probabilities in situations where the217

probability generating function is known [66]. Because we have found it convenient to generate218

values of Qk(C) using a recursion relation similar to (15), we show how to obtain such relations219

in Appendix A.220

Remark 3.2 An interesting feature of the distribution of R is the universality of its large-k behaviour:221

Qk(C) ∝ γkC k−3/2, as k → +∞. (29)

We may determine γC by locating the square-root singularity of ΦC(z) [63–65]. We find that222

γ1 = 4pb(1)pe(1)/∆2
1 and γ2 satisfies 4pb(1)pe(1)φ2(γ−1

2 ) = ∆2
1.223
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We define224

χC(z) = φ2(φ3(· · ·φC(z))), (30)

so that (18) is generalised to225

[1 − 2pb(1)ΦC(z)]
2

= ∆2
1[1 − γ1χC(z)]. (31)

We expand around z = 1, making use of the fact that χ(1) = 1 and χ′(1) = N/N1, to obtain226

1 − γ1χC(z) ≃ 1 − γ1[1 − (1 − z)N/N1] = [γ1(N/N1 − 1) + 1]

(

1 − γ1N/N1

γ1(N/N1 − 1) + 1
z

)

.

We are then able to identify227

γC =

(

1 +
1 − γ1
γ1N/N1

)−1

. (32)

If N1, N ≫ 1 then 1 − γ1 ≃ 1
4N2

1
and we can approximate γC by the following expression228

γC ≃ 1 − 1 − 2pd(1)

4N1N
. (33)

Remark 3.3 If C > 2, we may make further progress with some assumptions to reduce the number of229

parameters. For example, consider the case where Nc is independent of c and pd(c) = 0 in each230

compartment. Then231

• the variance of R is proportional to N2+ 1
C as N → +∞ (for details, see Appendix B),232

and233

• the constant γC can be written as follows234

γC = 1 − 1

4

1

N1+1/C
+

1

16

1

N2(1+1/C)
+ · · · . (34)

Figure 6 shows k3/2Qk(C) as a function of k, with parameters chosen as just described above.235

In all three cases shown, the mean number of product cells, N , is equal to 25 and Nc is236

independent of c. We shall see, below, that this choice of parameters is optimal from the237

perspective of minimising the mean number of divisions per cell. The fact that the most238

efficient arrangement of compartments is found when each has the same amplification factor239

does not rule out different dynamics in different compartments. Indeed, a common scenario in240

cell biology is each compartment has faster rates than its predecessor [67–69].241

Remark 3.4 One effect of the presence of multiple compartments can be understood by comparison with242

the k50 values in Remark 2.7 (for a single compartment). If C = 2, N = 10 and pd = 0, then243

the k50 value is 33; if C = 2, N = 100 and pd = 0, it is 1010. The corresponding k50 values244

when C = 3 are 25 and 528, for N = 10 and N = 100, respectively.245

4 The population of exiting cells: how many divisions?246

The progenitor cell is in generation 0. Daughter cells of the progenitor cell are said to be in generation 1.247

Daughter cells of a cell in generation n are in generation n + 1. In this way, the product cell population is248

classified by generation number, which is the number of divisions that separates a cell from the progenitor, or249

the depth of the cell in the tree that begins with the progenitor [70]. In Sections 2 and 3, we calculated the250

distribution of R, the number of product cells per progenitor, its mean and variance. In this Section, we derive251

the probability generating function of the random variable G, the generation number of a randomly-selected252

product cell.253
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4.1 Classifying cells by generation: a single compartment254

To define the random variable G, we begin with two simple random variables, U and V, with state space255

{0, 2} and {0, 1}, respectively, and such that256

P (U = 0) = 1 − pb, P (U = 2) = pb, and P (V = 0) = 1 − pe, P (V = 1) = pe.

We recall the random variables of a discrete-time branching process [55,56,71]. Let us introduce Z0 = 1 and257

Zn+1 =

Zn
∑

i=1

Ui, n = 0, 1, 2, . . . , (35)

where, for each i, Ui is an independent copy of U. Zn is the number of cells in generation n, whatever their258

fate, and each Ui is the number of daughter cells from one cell. Here, we also need to define259

Yn =

Zn
∑

i=1

Vi, n = 0, 1, 2, . . . , (36)

where each Vi is an independent copy of V. Yn is the number of product cells in generation n. The random260

variables R and G are defined via261

R =

+∞
∑

n=0

Yn, and P (G = n) =
1

N
IE(Yn). (37)

One realisation of the process is shown in Figure 7.262

The mean values of Yn are given by263

IE(Yn) = peIE(Zn) = pe(2pb)n. (38)

The condition (H1) is equivalent to 2pb < 1. Hence, as n→ +∞, E(Zn) → 0 and E(Yn) → 0.264

Recall that the average number of product cells is N =
pe

1 − 2pb
. The average generation number in the265

product cell population is given by266

D = IE(G) =
pe
N

+∞
∑

n=1

n(2pb)n =
2pb

1 − 2pb
. (39)

Using (37), we find that the variance of G is given by var(G) = D(D + 1).267

In Figure 8, N and D are displayed as functions of pb and pd: lines of constant N are blue and lines268

of constant D are red. Also shown (in green) are the estimates of Sawicka et al. [14]: pb = 0.4004 and269

pd = 0.0885 (SP4 thymocytes) and pb = 0.2449 and pd = 0.3170 (SP8 thymocytes). We note the following270

limits: (i) as pb → 1
2 with pd fixed,

D

N
→ 2

1 − 2pd
; (ii) as pb → 0 with pd fixed, N → 1 − pd and D → 0.271

Remark 4.1 As in Section 2, we make use of the freedom to express all single compartment quantities in272

terms of N and pd. Combining (5) and (39) gives the following linear relationship between D273

and N :274

D =
2N − 1

1 − 2pd
− 1. (40)

Given N > 1, the minimum possible value of D is found when pd = 0:275

Dmin = 2(N − 1). (41)

Remark 4.2 We may express all single compartment quantities in terms of variables which can be experi-276

mentally measured, such as number of product cells and generations, N and D. In particular,277

we have278

pb =
1

2

D

D + 1
, and pe =

N

D + 1
.

These relationships could enable pb, pd and pe, to be determined from experimentally-measurable279

quantities, N = IE(R) and D = IE(G) [9, 10, 20]. The corresponding variances have simple280

expressions: V = var(R) = N2(D − 1) +N and var(G) = D(D + 1), respectively.281
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4.2 Classifying cells by generation: a sequence of C compartments282

Cells that transit from compartment c to compartment c + 1, with c = 1, . . . C − 1, retain their generation283

number. Cells that exit compartment C are product cells. To analyse the multi-compartment system, we284

define the following sets of random variables, Zn(c) and Yn(c), as follows:285

• For n ≥ 0 and 1 ≤ c ≤ C, Zn(c) is the number of generation n cells in compartment c, whatever their286

fate. We assume that Z0(1) = 1.287

• For n ≥ 0 and 1 ≤ c ≤ C, Yn(c) is the number of generation n cells that exit compartment c. That is,288

Yn(c) ≤ Zn(c).289

Then290

Z0(c) = Y0(c− 1), c = 2, . . . , C.

To express the relationships between the random variables Zn(c) and Yn(c), we introduce for 1 ≤ c ≤ C, the291

random variables U(c) and V(c), with state space {0, 2} and {0, 1}, respectively, such that292

P (U(c) = 0) = 1 − pb(c), P (U(c) = 2) = pb(c), and P (V(c) = 0) = 1 − pe(c), P (V(c) = 1) = pe(c).

The relation (35), standard in branching processes, is generalised to one that may appear in a branching293

process with immigration. For c ≥ 2, we have Zn+1(1) =
∑

Zn(1)
i=1 Ui(1) and294

Zn+1(c) = Yn+1(c− 1) +

Zn(c)
∑

i=1

Ui(c), c = 2, . . . , C, n = 0, 1, . . . , (42)

and295

Yn(c) =

Zn(c)
∑

i=1

Vi(c), c = 1, . . . , C, n = 0, 1, . . . , (43)

The number of product cells is the number of cells exiting the final compartment:296

R =

+∞
∑

n=0

Yn(C). (44)

A realisation of the multi-compartment process is illustrated in Figure 9. The random variable G is the297

generation number of a randomly-selected product cell:298

P (G = n) =
1

N
IE(Yn(C)). (45)

We consider the two mean quantities that characterise each compartment:299

Nc =
pe(c)

1 − 2pb(c)
, and Dc =

2pb(c)

1 − 2pb(c)
, c = 1, . . . , C. (46)

Thus, Nc is the mean number of cells exiting compartment c, descended from a single cell in compartment c,300

whileDc is the average increase in the generation number in the compartment (the average number of divisions301

undergone). We now introduce the following probability generating functions (for details, see Appendix C.2),302

to keep track of the increase in generation number in compartment c, for c = 0, 1, . . . , C:303

ξc(z) =
pe(c)

Nc

+∞
∑

n=1

(2zpb(c))
n

=
1 − 2pb(c)

1 − 2pb(c)z
. (47)

For the whole sequence of compartments, let N be the mean number of product cells for every progenitor304

cell, and D be the average generation number of a product cell. Then305

N = IE(R) = N1N2 · · ·NC , and D = IE(G) = D1 +D2 + · · · +DC . (48)
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The difference between a single compartment and a sequence of multiple compartments is already apparent306

if we compare C = 1 to C = 2, given the same value of N . In Figure 10 we plot the average generation307

number, D, as a function of the mean number of exiting cells, N . In the examples with C = 2, shown on the308

right in Figure 10, N1 = N2. The green lines show cases where there is no cell death. Given a value of N , D309

is lower when C = 2 (proportional to
√
N as N → +∞) than when C = 1 (proportional to N as N → +∞).310

Figure 11 illustrates the probability distribution of G for different values of C with N fixed. The distribution311

narrows as the number of intermediate compartments increases.312

Finally, the probability generating function of G, defined as Ξ(z) =

+∞
∑

n=0

P (G = n)zn, is given by the313

product314

Ξ(z) = ξ1(z)ξ2(z) · · · ξC(z), (49)

where, for each c = 1, . . . , C, ξc(z) has been defined in (47).315

4.3 Minimising the average generation number316

Since excessive “clonality” may increase the risk of cancerous mutations becoming established [40, 41], and317

because every round of division brings with it a risk of mutation, senescence or exhaustion [72–75], we now ask318

ourselves, how should a sequence of C compartments be constructed in order to yield a given amplification319

of progenitor to product cells, while minimising the average number of divisions? Thus, given N , we seek to320

minimise D, given by (48). We write (46) as follows321

Dc = αcNc − βc, where αc =
2

1 − 2pd(c)
, and βc =

2 − 2pd(c)

1 − 2pd(c)
.

Let us imagine that the probabilities pd(c) are fixed, but the probabilities pb(c) are variable. Using the322

Lagrange multiplier method, we impose the constraint N = N∗ by defining323

L(pb(1), . . . , pb(C),Λ) = D − Λ(N −N∗) =

C
∑

c=1

2pb(c)

1 − 2pb(c)
− Λ

(

C
∏

c=1

1 − pb(c) − pd(c)

1 − 2pb(c)
−N∗

)

. (50)

We make use of the partial derivatives324

∂L

∂pb(c)
=

2

(1 − pb(c))2

(

1 − Λ
N∗

αcNc

)

, c = 1, . . . , C,

to find the following conditions325

α1N1 = α2N2 = · · · = αCNC . (51)

We continue the analysis by defining the arithmetic and geometric means of the αc:326

ᾱ =
1

C

C
∑

c=1

αc, and α̃ =

(

C
∏

c=1

αc

)1/C

. (52)

Then, the optimal values of Nc have the property that327

αcNc = N1/C α̃, for each 1 ≤ c ≤ C. (53)

The corresponding minimum value of D is then given by328

Dmin =

C
∑

c=1

(αcNc − βc) = C

(

α̃N1/C − 1

2
ᾱ− 1

)

, (54)

which is an increasing function of each of the pd(c) for 1 ≤ c ≤ C.329

An interesting observation that can be made from the conditions (51) is that, if pd(c) does not depend330

on c, then Nc is also independent of c. That is, if the death probability does not vary from compartment to331
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compartment, then the optimal arrangement of division rates is such that each compartment has the same332

amplification factor, Nc = N1/C . Then, we have333

Dmin =
2C

1 − 2pd

(

N1/C − 1 + pd

)

. (55)

Given N and C, Dmin is an increasing function of pd. We observe that Dmin is a decreasing function of C.334

As C → +∞, Dmin → 2 logN , recovering the logarithmic behaviour characteristic of binary trees [42, 76].335

5 Asymmetric division336

A subject of recent research is the possibility of asymmetric cell division, where one daughter cell remains337

in the mother’s compartment while the other transitions to the next compartment [9, 38, 46, 77–83]. From338

the point of view of Markov processes, an asymmetric division event is unusual, in that division and change339

of cell type are supposed to be simultaneous. From a biological point of view, on the other hand, defining340

such an event may be natural: the mother’s intra-cellular and cell-surface proteins will not be exactly evenly341

partitioned between the two daughters, who may experience different conditions during the process of cell342

division [84,85]. From a modelling perspective, one could imagine the constant flux of progenitor cells in our343

scheme as being produced by a constant pool of stem cells undergoing asymmetric division.344

The mathematics of asymmetric division is accommodated, as detailed in Appendix C, by introducing a345

fourth type of event, asymmetric division, and its corresponding probability, pa. It is also possible to consider346

a fifth, where both daughter cells exit their mother’s compartment at birth [76], and to incorporate “de-347

differentiation”: cells moving backward in the hierarchy [86]. Böttcher et al. [46] developed a mathematical348

model with three types of event that all involve division: both daughter cells may remain in a compartment,349

both may transition, or one may remain and one transition. In this Section, we explore and apply our350

methods to a biological system in which asymmetric cell division may play a role: T cell development [81].351

The development of thymocytes involves waves of proliferation, intertwined with differentiation, apoptosis352

and self-renewal to produce mature T cells, each with a unique T cell receptor (TCR). T cell development takes353

place in the thymus and starts with lymphoid precursor cells, lacking expression of CD4 and CD8 co-receptors,354

known as double-negative (DN) thymocytes. The structured journey of development of these precursor cells355

involves the following stages, each of them defined by the cell-surface expression of developmentally regulated356

markers: DN1, DN2, DN3a, DN3b, DN4, and double-positive (DP) thymocytes [87,88]. Transition from the357

DN1 to DN2 stage marks the initiation of gene rearrangement at the TCRβ gene locus [87]. The DN3 stage358

is characterised by the expression of the pre-T cell receptor (pre-TCR). It is at this stage that β-selection359

takes place; a checkpoint which defines the transition from the pre-selection DN3a to the post-selection360

DN3b stage. The DN3b population gives rise to the DN4 subset, which in turn undergoes proliferation and361

differentiation [88]. Further development involves the up-regulation of both CD4 and CD8 co-receptors to362

generate DP cells. Finally, DP cells go through gene rearrangement at the TCRα gene locus and the resulting363

αβ TCR heterodimer then undergoes MHC-mediated selection to yield SP4 or SP8 cells.364

Mammalian T cell development suggests a possible role for asymmetric cell division [81] during the β-365

selection stage; subsequent divisions are predominantly symmetric. Pham et al. experimentally studied the366

DN3a to SP transition and defined a deterministic mathematical model of the process [81] (see Figure 12).367

Cells of the first compartment, DN3a-pre, can only die or undergo asymmetric cell division [81]. Thus, cells368

have already divided at least once when they arrive in the second compartment, as experimentally observed.369

The finding of Pham et al. that the death rate was larger than the rate of asymmetric division at the DN3a-370

pre stage implies, in the context of our model, that the probability of asymmetric cell division in the first371

compartment, pa(1), is smaller than 1
2 , with pa(1) + pd(1) = 1. Cells in compartments two (DN3a-post),372

three (DN3b), four (DN4), and five (DP) can die, divide (symmetrically) or differentiate (transition to the373

next compartment). We then write pb(c) + pd(c) + pe(c) = 1 for c = 2, 3, 4, 5. DN3 thymocytes undergo374

β-selection, which raises their probability of death. Accordingly, we choose pb(c) < pd(c) for DN3a-post and375

DN3b. By contrast, DN4 and DP thymocytes are more likely to divide than to die [87, 88] (see Table 1).376

The analysis of Pham et al. was purely deterministic and therefore only considered mean numbers of cells377

in each compartment. In Figure 12, we show the distributions of two biologically significant random variables378

in our stochastic model: the number of product cells in a family founded by one progenitor and the generation379
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DN3a-pre DN3a-post DN3b DN4 DP

pb(c) 0 0.25 0.25 0.45 0.45

pe(c) 0 0.3 0.3 0.3 0.3

pd(c) 0.55 / 0.9 0.45 0.45 0.25 0.25

pa(c) 0.45 / 0.1 0 0 0 0

Nc
9
11 / 1

9 0.6 0.6 3 3

Dc
20
11 / 10

9 1 1 9 9

Table 1: Parameter values for the five-compartment thymocyte development model. For any 1 ≤ c ≤ 5, pb(c)
is the probability that a cell in compartment c divides, pd(c) is the probability that a cell in compartment
c dies, pe(c) is the probability that a cell in compartment c transitions to compartment c + 1, and pa(c) is
the probability that a cell in compartment c undergoes an asymmetric division event, where one daughter
remains in compartment c and one transits to compartment c + 1. The values of Nc and Dc are calculated
using (6) and (39), (71) and (83).

number of a cell in the product cell (here, SP) population. Two cases are shown pa(1) = 0.1 and pa(1) = 0.45.380

In the first, 90% of DN3a-pre cells die, so the average family size in the product population, N = 0.36, is381

smaller, on average, than in the second case, when only 55% of DN3a-pre cells die and N = 2.651. (These382

values are the product of the Nc values in Table 1.) Nevertheless, in both cases families of over 102 cells are383

not uncommon. Single-positive thymocytes are released from the thymus to the periphery, where families384

of cells correspond to T cell receptor clonotypes [18, 19, 89–91]. In a mouse, where division of naive T cells385

in the periphery is rare, the diversity of the T cell repertoire (the number of different TCRs simultaneously386

present) and the distribution of family sizes are determined by the distribution of family sizes at the time of387

release from the thymus [90–94].388

The distributions of generation number G are also shown in Figure 12. They are relatively narrow:389

product cells with G > 100 are rare. The difference between the distributions with pa(1) = 0.1 and pa(1) =390

0.45 is small because, in both cases, the majority of cells that make the transition DN3a-pre to DN3a-post391

do so in the first generation. The mean values, D = 21.1 and D = 21.9 respectively, may be obtained by392

summing the values of Dc, c = 1, . . . , 5 given in Table 1.393

In the example we have analysed in this section, the intermediate compartments have a rationale related394

to TCR selection that is independent of family sizes and the distribution of generation numbers: we may395

conclude nature has made a virtue of the necessity of passing through multiple stages. However, intermediate396

compartments are also found in other cellular replenishment systems without an obvious independent reason.397

6 Conclusion398

Cells of the same phenotype are often thought of as belonging to a compartment, which may correspond399

to a spatial location, a biological function, or simply a set of cell-surface attributes which can be measured400

with flow cytometry. In many circumstances, a population of “product” cells performing a specific role is401

maintained, via a sequence of compartments, from a much smaller progenitor population. Why are multiple402

such compartments so often observed rather than a simpler one-step differentiation from progenitor to product403

cell? Using theoretical arguments, we show why such schemes are advantageous. In our model, individual cells404

in a compartment may die or divide (in the compartment), or transition to the next compartment, meaning405

that they change phenotype or “differentiate”. Our mathematical approach is based on two fundamental406

biological (or empirical) observations: amplification (from progenitor cell to product cell populations) and407

stochasticity (of the fate of individual cells). Thus, we assume that each cell in a given compartment,408

independently, chooses one of the available fates according to a shared set of probabilities: pb, pe and pd409

are the probabilities of division, transition and death, respectively. When a cell divides, its daughter cells,410
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independently, follow the same rules as their mother. Hence, all population properties are deduced from411

a complete understanding of the possible progeny of a single progenitor. Furthermore, the population of412

product cells is the sum of families, each founded by a single progenitor cell. We do not consider inter-event413

times. Rather, each realisation is a sequence of events that ultimately results in extinction of the progeny in414

the pre-product compartment or compartments, with only product cells surviving. We construct sequences415

of C compartments, where cells may transit from compartment c to compartment c+1, with c = 1, . . . , C−1.416

Given an overall amplification factor, N , the dominance of large families of cells in the product cell population417

decreases as C increases. Using probability generating functions, we find Qk(C), the probability that the418

number of product cells, descended from a single progenitor via C intermediate compartments, is equal to k.419

When k is large, Qk(C) ∝ γkC k−3/2, with γC < 1.420

Our model deals in probabilities, which we relate to two important quantities, N and D, that can be421

measured in some experiments. The first, N , is the average number of product cells descended from a single422

progenitor, which can be measured if the progenitor cell is given a heritable label. The second, D, is the mean423

generation number of the product cell population, which can be measured if progenitor cells are stained with424

a fluorescent dye that dilutes with division, such as cell trace CFSE or cell trace violet. A recently-developed425

genetic tracing technique called DivisionRecorder makes it possible to measure the mean number of divisions426

of immune cell populations up to dozens of rounds of division [20]. The analysis presented in this manuscript427

shows that both N and D have long-tailed distributions when there are no intermediate compartments, and428

it allows us to quantify the reduction of clonality and long-term division history in product cell populations429

as the number of compartments is increased [95].430

When there is only a single compartment (that is, when progenitor cells differentiate directly into product431

cells) the mean number of product cells per progenitor is related to an individual cell’s division and exit432

probabilities by N = pe

1−2pb
and the mean generation number in the product cell population is given by433

D = 2pb

1−2pb
. Thus, large values of N , found when the value of pb is less than but close to 1

2 , lead to large434

values of D. The presence of intermediate compartments is advantageous from this point of view: the mean435

generation number, D, decreases as C increases. Given N , the minimum value of D, found when pd is zero,436

is given by Dmin = 2C(N1/C −1). Whatever the value of pd, the most efficient arrangement of compartments437

is found when each has the same amplification factor.438

Our theoretical analyses are found in Section 2 for a single compartment, Section 3 for a sequence of439

compartments, and Section 4 for the number of divisions in the compartmental system. We find that a440

sequence of compartments achieves the amplification of progenitor to product cells required in tissue organ-441

ization and homeostasis while avoiding excessive clonality and minimising the average number of divisions.442

Section 5 applies our methods to the structured development journey of thymocytes, where we generalise our443

considerations to include asymmetric division; that is, a division event that leaves one daughter cell in the444

same compartment that the mother cell divided and the other daughter cell exits the compartment. Addi-445

tional details have been provided in the appendices: the recursion relations to obtain the probability that k446

cells exit from one or two compartments are given in Appendix A; the variance of the random variable R is447

calculated in Appendix B; and the generalisation of our methods to include asymmetric division is presented448

in Appendix C.449
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Ken R Duffy, Rob J de Boer, Ferenc A Scheeren, et al. Replicative history marks transcriptional and524

functional disparity in the CD8+ T cell memory pool. Nature Immunology, pages 1–11, 2022.525

[21] Janis L Abkowitz, Daniela Golinelli, David E Harrison, and Peter Guttorp. In vivo kinetics of murine526

hemopoietic stem cells. Blood, 96(10):3399–3405, 2000.527

[22] Ron Sender and Ron Milo. The distribution of cellular turnover in the human body. Nature medicine,528

27(1):45–48, 2021.529

[23] Jason Cosgrove, Lucie SP Hustin, Rob J de Boer, and Lëıla Perié. Hematopoiesis in numbers. Trends530

in immunology, 42(12):1100–1112, 2021.531

[24] Nils B Becker, Matthias Günther, Congxin Li, Adrien Jolly, and Thomas Höfer. Stem cell homeostasis532
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renew symmetrically or gradually proceed to differentiation. Available at SSRN 3787896, 2020.654
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A Recursion relation for the probabilities Qk(C)686

In principle, the whole distribution of a random variable can be obtained once its probability generating687

function is known. In practice, an algorithm is required to compute the numerical values of the desired688

probabilities [66]. Here, we describe equations that we have used, relating the probability that the random689

variable R is equal to k to the probability that it is equal to k− 1, in the simplest case (C = 1), and to k− 1690

and k − 2 in other cases (C = 2).691

A.1 Recursion relation: a single compartment692

In the case C = 1, we rewrite (10) as 2pbφ(z) = 1 − w(z), where w2(z) = 1 − 4pbpd − 4pbpez. We now693

compute the first derivative of φ(z). One can show that w(z)φ′(z) = pe and that φ(z) satisfies the following694

differential equation695

w2(z)φ′(z) + 2pepbφ(z) − pe = 0. (56)

Inserting φ(z) =

+∞
∑

k=0

qkz
k in (56), and matching terms proportional to zk yields the recursion relation (15).696

A.2 Recursion relation: two compartments697

We next consider the case C = 2. In what follows we obtain a differential equation for Φ2(z) of the form698

T (z)Φ′′
2(z) +R(z)Φ′

2(z) + S(z) (1 − 2pb(1)Φ2(z)) = 0, (57)

with T (z), R(z) and S(z) polynomials in z (with real coefficients), and given by699

T (z) = t0 + t1z + t2z
2, R(z) = r0 + r1z, and S(z) = s0.
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Then, given that Φ2(z) = φ1(φ2(z)) =
+∞
∑

k=0

Qkz
k,700

t0(k + 2)(k + 1)Qk+2 + [t1k
2 + (r0 + t1)k + r0]Qk+1 + [t2k

2 + (r1 − t2)k + s0]Qk = 0. (58)

Let us write ∆2
c = 1 − 4pd(c)pb(c) and w2

c (z) = ∆2
c − 4pb(c)pe(c)z, for c = 1, 2. We have 2pb(1)Φ2(z) =701

1 − w1(φ2(z)) and702

Φ′
2(z) =

pe(1)

w1
φ′2(z) =

pe(1)pe(2)

w1w2
, (59)

where w1 is shorthand for w1(φ2(z)), and w2 is shorthand for w2(z). Now, we compute the second derivative703

of Φ2(z):704

Φ′′
2(z) =

2pe(1)p2e(2)

w3
1w

3
2

[

pb(1)pe(1)w2 + pb(2)w2
1

]

. (60)

Multiplying through by w3
1w

3
2, we can write705

2pe(1)p2e(2)
[

pb(2)w2
1 + pb(1)pe(1)w2

]

T (z) + pe(1)pe(2)w2
2w

2
1R(z) + w3

2w
4
1S(z) = 0. (61)

We make use of the fact that 1 − 2pb(1)Φ2(z) = w1 and that w2
1 = ∆2

1 − κ + κw2, where κ = 2pe(1)pb(1)
pb(2)

.706

Equating terms proportional to w2
2, w3

2, w4
2 and w5

2, we find707

T (z) = T2w
2
2 + T4w

4
2, R(z) = R0 +R2w

2
2, and S(z) = s0 = 2pb(1)p2e(1)p2e(2), (62)

where

T2 = −(∆2
1−κ)2, T4 = κ2, R0 = −2pb(2)pe(2)T2, R2 = −4pb(2)pe(2)T4, and s0 = 2pb(1)p2e(1)p2e(2).

Making use of (62), we obtain

t0 = ∆2
2T2+∆4

2T4, t1 = −4pb(2)pe(2)T2−8pb(2)pe(2)∆2
2T4, t2 = 16p2b(2)p2e(2)T4, r0 =

1

2
t1, and r1 = t2.

The general two-compartment recursion relation (58) is thus given by708

[

κ2∆4
2 − (∆2

1 − κ)2∆4
2

]

(k + 1)(k + 2)Qk+2 − pb(2)pe(2)[2κ2∆2
2 − (∆2

1 − κ)2](2k + 1)(2k + 2)Qk+1(63)

+p2b(2)p2e(2)κ2(16k2 − 1)Qk = 0. (64)

If pd(1) = pd(2) = 0, then ∆1 = ∆2 = 1 and (64) takes the simpler form709

(2κ−1)(k+1)(k+2)Qk+2−pb(2)pe(2)(κ2+2κ−1)(2k+1)(2k+2)Qk+1+p2b(2)p2e(2)κ2(16k2−1)Qk = 0. (65)

B The variance of the distribution of family sizes710

The distributions of family sizes that we have found have a pattern where the factor k−3/2 appears. One711

consequence of this behaviour is that the relationship between the mean and variance is different from that712

found in well-known distributions such as the Poisson distribution.713

With C compartments, the probability generating function of R is given by (27), and the variance of R714

is given by715

V = Φ′′
C(1) +N −N2. (66)

We make use of (30), to write Φ′
C(z) = φ′1(χC(z))χ′

C(z) and Φ′′
C(1) = φ′′1(1) (χ′

C(1))
2

+ φ′1(1)χ′′
C(1), where716

Φ′
C(z) = d

dzΦC(z).717

We next assume that φc(z) = φ(z), c = 1, . . . , C. Then, one can show that718

φ′(1) = N1/C , φ′′(1) = 2
pb
pe
N3/C , and Φ′′

C(1) = 2
pb
pe

[

N3/CN2(1−1/C)
]

+N1/Cχ′′
C(1).
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We find719

Φ′′
1(1) = 2

pb
pe
N3, Φ′′

2(1) = 2
pb
pe

(

N5/2 +N2
)

, Φ′′
3(1) = 2

pb
pe

(

N7/3 +N2 +N5/3
)

, . . . .

That is, we have720

Φ′′
C(1) = 2

pb
pe
N2+1/C

C−1
∑

c=0

N−c/C . (67)

The variance of R is proportional to N2+ 1
C in the limit N → +∞ (see Figure 13).721

C Compartment analysis in the case of asymmetric division722

In an asymmetric division event, one daughter cell transits to the next compartment and the other remains723

in the compartment. Each cell, independently, may die, divide, undergo asymmetric division, or transit to724

the next compartment, with probabilities725

pd, pb, pa, and pe,

where pd + pb + pe + pa = 1. The analogue of (H1), guaranteeing extinction in the compartment, is726

2pb + pa < 1. (Ha)

C.1 Family sizes727

Proceeding to the calculation of the qk as in Section 2, we find that (4) still holds, but (7) and (8) are replaced728

by ∆q1 = pe + paq0 and729

qk =
pb
∆

k−1
∑

j=1

qjqk−j +
pa
∆
qk−1, k ≥ 2. (68)

The probability generating function of R when C = 1, denoted by ψ(z), satisfies730

ψ(z) = pd + pez + pazψ(z) + pbψ
2(z). (69)

The solution is given by731

ψ(z) =
1 − paz − [(1 − paz)2 − 4pbpd − 4pbpez]1/2

2pb
. (70)

Figure 14 compares qk in this case (asymmetric case) with that of symmetric division only (pa = 0).732

Thus, in the case of asymmetric division, and for C = 1, we have733

N =
pe + pa

1 − 2pb − pa
. (71)

Remark C.1 If qk = P (R = k) then, for k ≥ 2,

qk =
∆

pb

(

2pbq1 + pa
2∆

)k ⌊k/2⌋
∑

j=0

ck−j−1

(

k − j

j

)( −2p2a∆

(2pa + 4pbpe)(2pbq1 + pa)

)j

=
∆

pb

(

2pbq1 + pa
2∆

)k ⌊k/2⌋
∑

j=0

1

k − j

(

2k − 2j − 1

k − j

)(

k − j

j

)( −2p2a∆

(2pa + 4pbpe)(2pbq1 + pa)

)j

.

Remark C.2 It is convenient to generate qk via a recursion relation. Following the approach described in734

Appendix A, we rewrite (70) as735

2pbψ(z) = 1 − paz − wa(z), where w2
a(z) = ∆ − (2pa + 4pbpe)z + p2az

2. (72)
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Thus, ψ(z) satisfies the following differential equation736

w2
a(z)ψ′(z) + w′

a(z)wa(z)ψ(z) + ζ(z) = 0, (73)

with ζ(z) = (p2a − pa + 2papbpe − 4pbpe)z + ∆2 − pa − 2pbpe. Matching terms proportional to737

zk leads to the following recursion relation:738

∆2(k + 2)qk+2 = (2k + 1)(pa + 2pbpe)qk+1 − (k − 1)p2aqk. (74)

We note that in the asymmetric case, even for C = 1, the recursion relation is of second order.739

This is due to the fact that w2
a(z) is a polynomial of order two in z.740

Remark C.3 As k → +∞, we obtain the following behaviour741

qk ∝ γkak
−3/2, (75)

where γa satisfies the equation742

(1 − 4pbpd)γ2a − (2pa + 4pbpe)γa + p2a = 0. (76)

Remark C.4 We now consider the case C = 2, with two non-identical compartments, i.e., ψ1(z) ̸= ψ2(z).743

Let us introduce744

Ψ2(z) = ψ1(ψ2(z)), (77)

and745

w2
a,c(z) = 1 − 4pb(c)pd(c) − [2pa(c) + 4pb(c)pe(c)]z + p2a(c)z2, c = 1, 2. (78)

Then, one can show that746

2pb(1)Ψ2(z) = H1(z) −H2(z), (79)

where H1(z) = 1 − pa(1)

2pb(2)
+
pa(1)pa(2)

2pb(2)
− pa(1)

2pb(2)
wa2(z), and747

H2(z)2 =
p2a(1)p2a(2)

2p2b(2)
z2 +

(

pa(2)

pb(2)
(pa(1) + 2pb(1)pe(1) − p2a(1)

p2b(2)
(pa(2) + pb(2)pe(2))

)

z

+

(

pa(1) + 2pb(1)pe(1)

pb(2)
− p2a(1)(1 − pa(2)z)

2p2b(2)

)

wa,2(z)

+ ∆2(1) +
p2a(1)

2p2b(2)
(1 − 2pd(2)pb(2)) − pa(1) + 2pb(1)pe(1)

pb(2)
.

In this instance, for the asymmetric case with C = 2, and to calculate the distribution of748

probabilities, Qk(2), we must compute two recursion relations: one for H1(z) and a second749

one for H2(z). This strategy leads to a three-term recursion relation for H1(z), and a six-term750

recursion relation for H2(z).751

C.2 Generation analysis752

To define the random variable G, we begin with three simple random variables U, V and W, with state753

spaces {0, 1, 2}, {0, 1}, and {0, 1}, respectively, where754

P (U = 0) = 1 − pb − pa, P (U = 1) = pa, P (U = 2) = pb,
755

P (V = 0) = 1 − pe, P (V = 1) = pe and P (W = 0) = 1 − pa, P (W = 1) = pa.

Let us introduce, as we did in the case of symmetric division, Z0 = 1 and756

Zn+1 =

Zn
∑

i=1

Ui, n = 0, 1, 2, . . . , (80)
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where, for each i, Ui is an independent copy of U (as defined above). The definition (35) still holds, but (36)757

is replaced by758

Yn =

Zn
∑

i=1

Vi +

Zn−1
∑

i=1

Wi, n = 0, 1, 2, . . . , (81)

where each Vi, Wi are, respectively, an independent copy of V and W. The mean values of Yn for n ≥ 0,759

which generalise (38), are given by IE(Y0) = pe and760

IE(Yn) = peE(Zn) + paE(Zn−1) = pe(2pb + pa)n + pa(2pb + pa)n−1.

Once again, and due to condition (Ha), in the limit n→ +∞, IE(Zn) → 0 and IE(Yn) → 0. We are interested761

in obtaining the probability generating function of G. Making use of the definition of the random variables762

R and G, the probability generating function of G is given by763

ξ(z) =
1

N

+∞
∑

n=0

IE(Yn)zn =
1

N

[

pe +

+∞
∑

n=1

IE(Yn)zn

]

=
pe + paz

N(1 − (2pb + pa)z)
. (82)

This allows us to compute the expectation value of G in the asymmetric case:764

IE(G) = D =
1

pe + pa

pa + pe(2pb + pa)

1 − 2pb − pa
. (83)

The variance of G is also computed from (82):765

var(G) =
2pa + pe

pe
D(D + 1). (84)

Remark C.5 In the case of asymmetric division, we can choose N, pa, and pd as the three independent766

parameters, so that (40) is given by767

D =
2N − 1

1 + pa − 2pd

(

1 +
pa
N

)

− 1. (85)

Figure 15, constructed using (85), summarises the effect of asymmetric division (as compared768

to Figure 8).769

Remark C.6 We may express all single-compartment quantities in terms of N , D, and pa, to obtain770

pb =
N [D(1 − pa) − pa] − pa

2N(D + 1)
, pe =

N − paD

D + 1
, and pd =

N [2 +D(1 + pa) − 2N − pa] + pa
2N(D + 1)

.

Note that, if we set pa = 0 then all quantities simplify to the values derived in Section 4.771

Remark C.7 In the case of C > 1 compartments, and asymmetric division, we define for c = 1, . . . , C the772

following random variables U(c), V(c) and W(c):773

P (U(c) = 0) = 1 − pb(c) − pa(c), P (U(c) = 1) = pa(c), P (U(c) = 2) = pb(c),
774

P (V(c) = 0) = 1 − pe(c), P (V(c) = 1) = pe(c) and
775

P (W(c) = 0) = 1 − pa(c), P (W(c) = 1) = pa(c).

We have in this case Z0(1) = 1, Z0(c) = Y0(c− 1) for c ≥ 2, and776

Zn+1(c) = Yn+1(c− 1) +

Zn(c)
∑

i=1

Ui(c), c = 2, . . . , C, n = 0, 1, 2, . . . , (86)

and777

Yn(c) =

Zn(c)
∑

i=1

Vi(c) +

Zn−1(c)
∑

i=1

Wi(c), c = 2, . . . , C, n = 1, 2, . . . . (87)

The probability generating function of G is given by a product of single-compartment gener-778

ating functions making use of (49).779
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Figure 4: The quantity qk is the probability that k cells exit a compartment, descended from one progenitor
cell. Results, using (11), are shown for two different choices of pb and pe. On the left, we use the estimates
of Sawicka et al. [14]: pb = 0.4004 and pd = 0.0885 for SP4 thymocytes. On the right, their estimates for
SP8 thymocytes: pb = 0.2449 and pd = 0.3170.
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Figure 5: Top plot: the probability, qk [using (11) and (15)], that the number of product cells is k, logarithmic
scales, with and without death. The dashed line is the power law qk = k−3/2. Lower plot: k3/2qk in the
same two cases. The vertical dotted lines, at k = 6N2/(1 − 2pd), indicate where the power law ceases to
be an accurate approximation. The parameter values, calculated using (12) so that N = 2.57 in both cases,
are pd = 0, pb = 0.455, pe = 0.545, and pd = 0.0885, pb = 0.4004, pe = 0.5111. The latter set of values
corresponds to those of SP4 thymocytes, as discussed above.

Figure 6: Plot of k3/2Qk(C) as a function of k, with logarithmic scales, for C = 1, C = 2, and C = 10.
The distribution of R narrows as the number of compartments increases. The solid lines are the exact
results, computed using (15) and (65). The dots are averages obtained from Gillespie realisations. Parameter
values, chosen using (12) with N = 25, are C = 1: pd = 0, pb = 0.4898; C = 2: pd(1) = pd(2) = 0,
pb(1) = pb(2) = 0.4444, and N1 = N2 = 5; C = 10: pd(c) = 0, pb(c) = 0.2158, and Nc = 1.38 for each
c = 1, . . . , 10.
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Figure 7: One realisation with C = 1, showing generation numbers from left to right, with Z0 = 1. Cyan
cells divide, red cells exit, and black cells die. In this realisation Y0 = 0, Y1 = 1, Y2 = 0, Y3 = 1, Y4 = 2,
and Y5 = 2. Thus, we have R = 6. The parameter values are pb = 0.45 and pd = 0.15.

Figure 8: Lines of constant D (red) and lines of constant N (blue) in the part of the plane representing
possible parameter values. The two quantities characterising the population of cells exiting a compartment,
as functions of pb and pd, (6) and (39). Each blue line is the set of pairs (pb, pd) corresponding to the
indicated value of N . Each red line is the set of pairs (pb, pd) corresponding to the indicated value of D. The
triangular part of the parameter space corresponding to N > 1 is at bottom right. The green dots are the
estimates of Sawicka et al. [14], for SP4 and SP8 thymocytes.
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Figure 9: One realisation with C = 2, showing generation numbers from left to right. Cells in the first
compartment are shown as circles, and cells in the second compartment as squares. Cyan cells divide, red
cells exit, and black cells die. Arrows indicate a transition from the first to the second compartment. In this
realisation Y0(1) = 0, Y1(1) = 0, Y2(1) = 1, Y3(1) = 2, Y4(1) = 1, and Y5(1) = 0; Y0(2) = 0, Y1(2) = 0,
Y2(2) = 0, Y3(2) = 1, Y4(2) = 3, and Y5(2) = 0. Thus, we have R = 4. The parameter values are C = 2,
pb(1) = pb(2) = 0.45, and pd(1) = pd(2) = 0.15.
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Figure 10: Average generation number of product cells, as a function of the mean number of exiting cells.
Left: plot for the case C = 1. Right: plot for the case C = 2, with parameters chosen so that N1 = N2. Given
a value of N , D is lower when C = 2 (proportional to

√
N as N → +∞) than when C = 1 (proportional to

N as N → +∞).
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Figure 11: The probability distribution of the random variable G, the generation number in the product cell
population. One, two and three compartments have been shown. In all cases, N = 100, and all compartments
are identical. Solid lines correspond to pd = 0, and dotted lines to pd = 0.05.

Figure 12: Top: Mathematical model of T cell development from the DN3a to the SP stage [81]. Middle
and lower: Numerical results for two cases of the five-compartment thymus model. The histograms show the
distributions of family sizes and of cell generation number in the population of product cells. The difference
between the two cases is the first compartment, where only death and asymmetric division have non-zero
probabilities. Table 1 gives the probabilities for all five compartments, and quantities derived from them.
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Figure 13: The standard deviation of R as a function of the mean of R, N , for different values of C. The
lines use the formula (66), and each line corresponds to one value of C. The dots are obtained as averages
over numerical realisations. Parameter values have been chosen so that Nc is independent of c, pd(c) = 0,
and thus, Nc = N1/c, pe(c) = 1 − pb(c), and pb(c) = Nc−1

2Nc−1 , for all c = 1, . . . , C.

Figure 14: The distribution of R, with and without asymmetric division, when C = 1. In red, the symmetric
case (11), pa = 0, and in blue, the purely asymmetric case, pe = 0, generated using (74). In both cases we
have chosen N = 25 and pd = 0.25.
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Figure 15: Lines of constant N (blue) and curves of constant D (red) in the part of the plane representing
possible parameter values when pa = 0.2. Each blue line is the set of pairs (pb, pd) corresponding to the
indicated value of N . Each red curve is the set of pairs (pb, pd) corresponding to the indicated value of D.
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