
Citation: Chen, S.; Fang, J.; Xu, C.;

Wang, Z. Adaptive Hybrid Storage

Format for Sparse Matrix–Vector

Multiplication on Multi-Core SIMD

CPUs. Appl. Sci. 2022, 12, 9812.

https://doi.org/10.3390/

app12199812

Academic Editors: Yougang Sun,

Xinwei Yao and Xiaogang Jin

Received: 7 September 2022

Accepted: 25 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Adaptive Hybrid Storage Format for Sparse Matrix–Vector
Multiplication on Multi-Core SIMD CPUs
Shizhao Chen 1,2, Jianbin Fang 2,* , Chuanfu Xu 1,2 and Zheng Wang 3

1 Institute for Quantum Information & State Key Laboratory of High Performance Computing,
National University of Defense Technology, Changsha 410073, China

2 College of Computer Science and Technology, National University of Defense Technology,
Changsha 410073, China

3 School of Computing, University of Leeds, Leeds LS2 9JT, UK
* Correspondence: j.fang@nudt.edu.cn

Abstract: Optimizing sparse matrix–vector multiplication (SpMV) is challenging due to the non-
uniform distribution of the non-zero elements of the sparse matrix. The best-performing SpMV
format changes depending on the input matrix and the underlying architecture, and there is no
“one-size-fit-for-all” format. A hybrid scheme combining multiple SpMV storage formats allows
one to choose an appropriate format to use for the target matrix and hardware. However, existing
hybrid approaches are inadequate for utilizing the SIMD cores of modern multi-core CPUs with
SIMDs, and it remains unclear how to best mix different SpMV formats for a given matrix. This paper
presents a new hybrid storage format for sparse matrices, specifically targeting multi-core CPUs
with SIMDs. Our approach partitions the target sparse matrix into two segmentations based on the
regularities of the memory access pattern, where each segmentation is stored in a format suitable for
its memory access patterns. Unlike prior hybrid storage schemes that rely on the user to determine
the data partition among storage formats, we employ machine learning to build a predictive model
to automatically determine the partition threshold on a per matrix basis. Our predictive model is first
trained off line, and the trained model can be applied to any new, unseen sparse matrix. We apply our
approach to 956 matrices and evaluate its performance on three distinct multi-core CPU platforms:
a 72-core Intel Knights Landing (KNL) CPU, a 128-core AMD EPYC CPU, and a 64-core Phytium
ARMv8 CPU. Experimental results show that our hybrid scheme, combined with the predictive
model, outperforms the best-performing alternative by 2.9%, 17.5% and 16% on average on KNL,
AMD, and Phytium, respectively.

Keywords: SpMV; performance; machine learning; sparse matrix format

1. Introduction

Sparse matrix–vector multiplication (SpMV) (SpMV is defined as y = A · x, where A is
an input sparse matrix, and the input vector x and the output vector y are dense) is a common
computing block for many scientific applications and deep learning workloads [1,2], and is
often responsible for the performance bottleneck of these applications [3]. As the multi-core
design is becoming the mainstream architecture, it is important to ensure that SpMV is well
optimized for the underlying multi-core architecture.

A key challenge for optimizing SpMV is to reduce the irregular memory accesses
resulted from the uneven distribution of non-zero elements in the sparse matrix. Prior work
in this area applies a set of techniques such as blocking [4–6] and data rearrangement [7–9]
to improve the data locality and load balancing. As a consequence, there is an intensive
body of work on designing new matrix storage formats by reorganizing the non-zero
entries of the sparse matrices [4,5,7–10]. Unfortunately, studies have shown that there is no
“one-size-fit-for-all” SpMV storage format, and the optimal format changes depending on
the input matrix and the underlying architecture [11,12].

Appl. Sci. 2022, 12, 9812. https://doi.org/10.3390/app12199812 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12199812
https://doi.org/10.3390/app12199812
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3542-4869
https://doi.org/10.3390/app12199812
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12199812?type=check_update&version=2

Appl. Sci. 2022, 12, 9812 2 of 20

To best match the SpMV optimization to the underlying hardware, we would like
to bring the best of different SpMV storage schemes and have a scheme to adaptively
choose between multiple SpMV storage formats for the underlying hardware on a per
input base. To this end, a promising solution is to use machine learning to adaptively select
an optimal storage format for a given matrix and processor. Recent work has employed
machine learning to dynamically select from a set of SpMV storage formats for a given
matrix [13–16]. However, such an approach requires the programmer to either provide
different implementation variants of the program to use different storage formats or ensure
that the overhead of runtime storage format conversion can be amortized by the benefit of
format selection [17,18].

As an alternative, other works [4,6,11,19] developed a hybrid solution by combining
two native SpMV storage formats in a single framework. For example, the hybrid (HYB)
format [4] works by storing the typical number of non-zeros per row in the ELLPACK (ELL)
format [20] and the remaining entries of exceptionally long rows in the COO format. Its
implementation computes a histogram of the row sizes and determines the largest number
K such that using K columns per row in the ELL portion meets a certain objective measure.
In the follow-up work, Guo et al. present ECV-HYB [11], a hybrid scheme designed for
GPU executions. This approach first sorts the rows of the matrix based on the number
of non-zero elements of the row. It then partitions the rows into short and long rows,
where short rows are stored in the ELL format, and long rows are stored in the vectorized
compressed sparse row (CSR) format [10]. The benefit of doing so is to increase coalescing
memory access for a wider range of non-zero patterns, which thus improves memory access
performance on GPUs.

The core idea of a hybrid scheme is to partition the matrix into two portions: non-zero
elements that lead to regular memory accesses can be processed by a SIMD-friendly SpMV
kernel, and the other part with an irregular memory access pattern is processed by an
SpMV kernel suitable for irregular sparsity patterns [19]. Thus, these hybrid approaches
are able to use the best of both native storage formats, while avoiding maintaining various
storage formats. However, the prior hybrid approaches are targeted for GPUs, and their
native formats are not suitable for multi-core CPUs, which has close to one hundred SIMD
cores and distributed on-chip cache slices. In particular, the COO format used by many
hybrid schemes [4,19] is unsuitable for SIMD units and can fail to handle the irregular
part efficiently. Furthermore, a key tuning parameter for these hybrid approaches is the
partitioning threshold, or K, for determining the position to split the matrix. As we will
show later in the paper, choosing the right K is important for achieving good performance,
but the optimal settings vary from one matrix to another (see Section 3). Our work is
designed to address these two drawbacks.

In this paper, we present a new hybrid sparse matrix storage format, namely HYB5,
that is optimized for multi-core CPU processors. To better exploit the SIMD feature of
the multi-core design and balance SpMV workloads across rows, our approach upgrades
HYB [4] by employing two latest SpMV storage formats, the SELL-C-σ format [9] and
the CSR5 format [8]. To store matrix elements in the two storage formats, we first break
columns of the input matrix into two partitions in the vertical direction, where the left part
exhibits regular memory access patterns, and the right part has various row lengths and
irregular memory accesses. We then store the left part with regular memory accesses in the
SELL-C-σ format, and the remaining in the CSR5 format, where each format has its own
computation kernel for SpMV operations.

As a departure from prior work [4,11] that relies on the users and their analytical
models to determine the right threshold, K, for matrix partitioning, we develop an adaptive
approach by using machine learning to train a predictive model to determine the optimal K
on a per input basis automatically. The model takes as input a set of quantifiable attributes
or features from the input matrix and predicts the optimal value for K. The model is first
trained offline using a set of training sparse matrices. The trained model can then be applied
to any new, unseen sparse matrices to predict the best value to use for K. Our approach frees

Appl. Sci. 2022, 12, 9812 3 of 20

the programmer from manually tuning the optimal storage configuration. As it is often
difficult to anticipate what sparse matrices will be encountered, our automatic approach
thus provides a better generalization ability by automatically choosing the right threshold.

We evaluate our approach by applying it to 956 sparse matrices on 3 multi-core CPU
platforms: a 72-core Intel Knights Landing (KNL) CPU processor, a 128-core AMD EPYC
processor, and a 64-core Phytium ARMv8 processor. We compare our approach against
five universal formats, including CSR [10], CSR5 [8], ELL [20], SELL-C-σ [9] and HYB [4].
We also compare our approach with the state-of-the-art, best-performing format, CVR [21],
which is specifically tuned for the KNL architecture. On KNL, our approach outperforms
all competing approaches, with an average improvement of up to 96.7%. On AMD EPYC,
our approach outperforms all alternative schemes with an average improvement of up to
25.5%. On Phytium, our approach outperforms all competing approaches by an average
improvement of up to 70%. We show that our predictive model is highly accurate in
choosing the partitioning factor, delivering 98.3%, 97.0% and 91.0% of the best available
performance given by a theoretically perfect predictor on KNL, EPYC, and Phytium,
respectively.

This paper provides the following techniques contributions:

• We propose a new hybrid storage format (HYB5) for sparse matrices, which relies
on a mixture of SELL-C-σ and CSR5 and their individual SpMV implementations
(Section 4).

• We use a machine learning based approach to automatically predict the optimal matrix
segmentation threshold (Section 5).

• We demonstrate that, by using the best of both worlds, our approach can achieve a
better performance than the state-of-the-art SpMV implementations on three represen-
tative multi-core CPU architectures (Section 6).

2. Background
2.1. Sparse Matrix–Vector Multiplication

Sparse matrix–vector multiplication (SpMV) is of the form y← A · x, where A (M×N)
is a sparse matrix, and x (N × 1) and y (M× 1) are dense vectors. Figure 1 gives a simple
example of SpMV, where the number of non-zero elements (nnz) of A is 8 and M = N = 4.

6 1
2 8 3

4
7 5

2
4
6
8

30
76
24
58

× �

Figure 1. A SpMV example with a 4× 4 matrix and a vector.

SpMV is a numerical algorithm based on sparse matrix. The use of compressed storage
formats reduces memory footprints, but it also increases the number of discontinuous
memory accesses and increases the memory access overhead. Since the compressed storage
destroys the temporal and spatial locality in the calculation, it is difficult to optimize the
SpMV on the cache-based CPU. To improve the computational efficiency of SpMV, the
existing implementation needs to be improved by combining the characteristics of the target
architecture and matrix storage format with the characteristics of the SpMV algorithm itself.

2.2. Sparse Matrix Storage Format

Due to a large number of zeros existing in sparse matrices, using dense matrix formats
will lead to a waste of storage and computing resources. Thus, researchers have invented
various sparse matrix storage formats, i.e., merely storing the non-zero elements and their
indices of a matrix.

Appl. Sci. 2022, 12, 9812 4 of 20

COO The coordinate (COO) format (i.e., IJV format) is a particularly simple storage scheme.
The arrays row, col, and data are used to store the row indices, column indices, and values
of the non-zero elements. This format is a general sparse matrix representation because
the required storage is always proportional to the number of non-zero elements for any
sparsity pattern. Different from other formats, COO stores explicitly both row indices and
column indices. Table 1 shows an example matrix in the COO format.

Table 1. Matrix storage formats and their data structures for the sparse matrix shown in Figure 1.

Representation Specific Values

COO
row = [0, 0, 1, 1, 1, 2, 3, 3]
col = [1, 2, 0, 2, 3, 2, 1, 2]

data = [6, 1, 2, 8, 3, 4, 7, 5]

CSR
ptr = [0, 2, 5, 6, 8]

indices = [1, 2, 0, 2, 3, 2, 1, 2]
data = [6, 1, 2, 8, 3, 4, 7, 5]

CSR5

ptr = [0, 2, 5, 6, 8] tile_ptr = [0, 1, 4]
tile_des : bit_ f lag = [T, T, F, F|T, T, T, F],

y_o f f = [0, 1|0, 2], seg_o f f = [0, 0|0, 0]
indices = [1, 0, 2, 2|3, 1, 2, 2]

data = [6, 2, 1, 8|3, 7, 4, 5]

ELL data =

6 1 ∗
2 8 3
4 ∗ ∗
7 5 ∗

 indices =

1 2 ∗
0 2 3
2 ∗ ∗
1 2 ∗

SELL data =

6 1 ∗
2 8 3
4 ∗
7 5

 indices =

1 2 ∗
0 2 3
2 ∗
1 2

slices = [3, 2]

SELL-C-σ data =

2 8 3
6 1 ∗
7 5
4 ∗

 indices =

0 2 3
1 2 ∗
1 2
2 ∗

slices = [3, 2]

HYB ELL:data =

6 1
2 8
4 ∗
7 5

 indices =

1 2
0 2
2 ∗
1 2

COO: row = [1], col = [3], data = [3]

CVR data =

6 2
1 8
4 3
7 5

 column_indices =

1 0
2 2
2 3
1 2

CSR The compressed sparse row (CSR) format is the most popular general-purpose sparse
matrix representation. This format explicitly stores column indices and non-zero elements
in array indices and data, and uses a third array ptr to store the starting nonzero index
of each row in the sparse matrix (i.e., row pointers). For an M× N matrix, ptr is sized of
M + 1 and stores the offset into the ith row in ptr[i]. Thus, the last entry of ptr is the total
number of non-zero elements. Table 1 illustrates an example matrix represented in CSR. We
see that the CSR format is a natural extension of the COO format by using a compressed
scheme. In this way, CSR can reduce the storage requirement. More importantly, the
introduced ptr facilitates a fast query of matrix values and other interesting quantities,
such as the number of non-zero elements in a particular row.

Appl. Sci. 2022, 12, 9812 5 of 20

CSR5 To achieve near-optimal load balance for matrices with any sparsity structures,
CSR5 first evenly partitions all nonzero entries to multiple 2D tiles of the same size. Thus,
when executing parallel SpMV operation, a compute core can consume one or more 2D
tiles, and each SIMD lane of the core can deal with one column of a tile. Then the main
skeleton of the CSR5 format is simply a group of 2D tiles. The CSR5 format has two tuning
parameters, ω and σ, where ω is a tile’s width and σ is its height, which is set to the size
of the SIMD execution unit and on-chip memory strategy of the processor, respectively.
CSR5 is an extension to the CSR format [8]. Apart from the three data structures from CSR,
CSR5 introduces another two data structures: a tile pointer tile_ptr and a tile descriptor
tile_des. Table 1 illustrates an example matrix represented in CSR5, where ω = σ = 2.

ELL The ELLPACK (ELL) format is suitable for the vector architectures [20]. For an M× N
matrix with a maximum of K non-zero elements per row, ELL stores the sparse matrix in a
dense M× K array (data), where the rows with fewer than K are padded. Another data
structure, indices, stores the column indices and is zero-padded in the same way as that of
data. Table 1 shows the ELL representation of the example sparse matrix, where K = 3 and
the data structures are padded with *. The ELL format would waste a sizable amount of
storage. To mitigate this issue, we can combine ELL with another general-purpose format,
such as CSR or COO.

SELL and SELL-C-σ Sliced ELL (SELL) is an extension of the ELL format by partitioning
the input matrix into strips of C adjacent rows [22]. Each strip is stored in the ELL format,
and the number of non-zero elements stored in ELL may differ over strips. Thus, a data
structure slice is used to keep the strip information. Table 1 demonstrates a matrix
represented in the SELL format when C = 2. A variant to SELL is the SELL-C-σ format,
which introduces sorting to save storage overhead [9]. That is, they choose to sort the
matrix rows not globally but within σ consecutive rows. Typically, the sorting scope σ is
selected to be a multiple of C. The effect of local sorting is shown in Table 1 with C = 2 and
σ = 4.

HYB The HYB format [11] is a combination of ELL and COO, and it stores the majority
of matrix non-zero elements in ELL and the remaining entries in COO [4]. Typically,
HYB stores the typical number of non-zero elements per row in the ELL format and the
exceptionally long rows in the COO format. In the general case, this typical number (K)
can be calculated directly from the input matrix. Table 1 shows an example matrix in this
hybrid format with K = 2.

CVR The CVR format is an SpMV representation targeting the efficient vectorization
developed especially for the Intel KNL processor [21]. The number of columns in CVR
formats equals the number of SIMD lanes. It stores the matrix switching from row order
to column order, while trying to fill the "data" with non-zero elements. Both the format
conversion and the SpMV implementation are SIMD friendly. Table 1 shows an example
matrix in CVR format, with two SIMD lanes.

3. Motivation

This section presents the motivation of our work and outlines the design choices of
our approach.

Why using a hybrid format? Studies have shown that no single matrix storage format
performs best across matrix datasets and/or architectures [11,12]. As a result, work has
been proposed to build an analytical model to pick an optimal storage format for a given
dataset and architecture [18]. However, such an approach requires managing various
storage formats in a single program, and the overhead of format conversion could be
non-negligible during the runtime. As an alternative, a hybrid storage format works by
mixing two (or more) native formats in a single framework. Recent works [4,11] have
demonstrated the promising results of a hybrid scheme. Our work builds upon these recent
works by proposing a new hybrid scheme to target the emerging multi-core architectures.

Appl. Sci. 2022, 12, 9812 6 of 20

Why combine SELL-C-σ and CSR5? As we will show later in Section 6, CSR5 [8] and SELL-
C-σ [9] are two well-performing sparse matrix storage format on multi-core architectures.
Figure 2 shows the performance measurements of the two storage formats on KNL when
applying the respective SpMV kernel to 956 matrices. Here, the x-axis shows the regularity
(denoted as variation) of the input matrix. The variation is calculated by computing
the standard deviation of non-zero elements on the row dimension of the input matrix.
Therefore, the larger the variation is, the more irregular the matrix will be. Overall, we
see that CSR5 (marked with red triangles) performs better than SELL-C-σ (marked with
blue plus) for irregular matrices (i.e., when variation is large), while SELL-C-σ performs
better for the regular matrices (i.e., when variation is small). It can be observed from
Figure 2 that CSR5 works better when variation is large. Therefore, we expect that a
hybrid storage format combining these native formats would exploit the advantages of both
worlds by storing the left few non-zero elements per row in SELL-C-σ and the remaining
(possibly irregular) non-zero elements in CSR5. Figure 3 shows that our approach, namely
HYB5 (SELL-C-σ+CSR5), significantly outperforms HYB (ELL+COO) on KNL when using
a right-partitioning parameter K.

0 2 4 6 8 10
Variation

0

5

10

15

20

25

30

35

40

Gf
lo

ps

CSR5
SELL-8-512

Figure 2. SpMV performance of SELL-8-512 and CSR5 for SpMV performs on matrices with different
irregularities (variations). The larger the variation is, the more irregularity a matrix has.

Why is choosing the right K important? Figure 3 shows how the SpMV performance
changes over the partition parameter K for the cage12 and Cube_Coup_dt0 matrix from the
SuiteSparse matrix collection [23] on Intel KNL (Section 6.1). We note that using a right K
gives significant performance benefit over SELL-C-σ and CSR5. However, an inappropriate
K setting can also hurt performance seriously, as shown by the point marked with A.
Thus, selecting a suitable partitioning parameter K is of great significance for the SpMV
performance. Therefore, to unlock the potential of our hybrid scheme, we also develop a
scheme to dynamically determine the right K on a per matrix basis.

0 10 20 30 40 50
K

5
10
15
20
25
30

Gf
lo

ps

histogram
average

opt_storage

HYB5
HYB
SELL
CSR5

(a) The cage12 matrix

0 10 20 30 40 50 60 70
K

30

40

50

60

70

80

Gf
lo

ps

histogram

average

A

opt_storage

HYB5
HYB
SELL
CSR5

(b) The Cube_Coup_dt0 matrix

Figure 3. How the performance of HYB and HYB5 changes as the partitioning threshold K changes
on two sparse matrices (a,b).

Figure 3 also shows the performance of the prior analytical models: average [12],
histogram [4], and opt_storage [19]. We note that the histogram model outperforms the

Appl. Sci. 2022, 12, 9812 7 of 20

average and opt_storage one for cage12, while their performance is the other way around
for Cube_Coup_dt0. For both cases, the obtained SpMV performance via the analytical
models is not the best. This is due to the fact that the selection of K depends not only on the
input matrix features, but also on the underlying architectures and native storage formats.
These first two models can only capture the input matrix features. The opt_storage
threshold selection is based on minimizing the memory footprint of the HYB matrix format.
However, the SpMV performance trends for HYB and HYB5 are different as the threshold
changes as shown in Figure 3. Therefore, we need a model that is capable of taking the
input matrix features, the underlying architectures and native storage formats into account.
In this work, we will use machine learning techniques to build such a model.

4. Our Approach
4.1. HYB5 Overview

HYB5 is a hybrid sparse matrix storage scheme that combines SELL-C-σ [9] and
CSR5 [8]. With HYB5, an input matrix is partitioned into two portions in the vertical
direction: the left regular portion is stored in the SELL-C-σ format, and the right irregular
portion is stored in the CSR5 format. Figure 4 shows how a sparse matrix A of size 16 × 16
with 76 nonzero elements is represented in the HYB5 format. In this example, K is set
to be 3, and matrix A is first divided into two sub-matrices of the same size as A. The
left sub-matrix is stored in the SELL-C-σ format. Due to the fact that the right portion
becomes even more irregular than it was, it is necessary to compress this part to reduce
the processing overhead and save storage space.Thus, the right sub-matrix is compressed
first, then the rows without non-zero entries are removed (i.e., empty rows) and stored in
the CSR5 [8] format.

0 1 0 2 3 4 0 0 0 5 6 0 0 0 0 0

0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 2 0 0 3 0 0 0 0 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 1 0 0 0 0 0 0 2 0 3 0 0

0 1 2 0 0 0 0 3 4 0 0 0 0 0 0 0

0 1 0 0 0 2 0 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 2 0 0 0 0 0 0 0 3 0 0 0 0

0 0 1 0 2 3 4 5 0 0 0 0 6 7 8 0

0 0 0 1 0 0 0 0 0 2 0 0 0 3 4 0

0 0 0 1 0 0 2 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 2 3 0 0 0

1 2 3 0 4 5 0 6 0 0 7 8 9 10 11 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2

0 0 1 0 0 0 0 0 0 0 0 2 0 0 3 0

A =

0 1 0 2 3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 2 0 0 3 0 0 0 0 0
1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 2 0 3 0 0
0 1 2 0 0 0 0 3 0 0 0 0 0 0 0 0
0 1 0 0 0 2 0 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 2 0 0 0 0 0 0 0 3 0 0 0 0
0 0 1 0 2 3 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 2 0 0 0 3 0 0
0 0 0 1 0 0 2 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 2 3 0 0 0
1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2
0 0 1 0 0 0 0 0 0 0 0 2 0 0 3 0

0 0 0 0 0 4 0 0 0 5 6 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
0 0 0 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 5 0 0 0 0 6 7 8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 5 0 6 0 0 7 8 9 10 11 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 4 0 0 0 5 6 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
0 0 0 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 4 5 0 0 0 0 6 7 8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 4 5 0 6 0 0 7 8 9 10 11 0

1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 0
1 0 0
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 0

1 3 4
4 7 10
0 1 2
4 11 13
1 2 7
1 5 7
4 5 0
6 0 0
1 3 11
2 4 5
3 9 13
3 6 7
7 11 12
0 1 2
2 11 14
11 15 0

4 4 8 12
5 5 9 13
6 6 10 14
4 7 11 15

16 6 4 8
4 7 5 9
4 8 6 10
5 4 7 11

5 3 7 11
9 4 8 12
10 5 9 13
15 6 10 14

15 12 4 11
8 13 5 12
6 14 7 13
7 14 10 14

T T F F
F F F F
F F F F
T F F F

F F T F
T F F F
T F F F
F T F F

Segmentation:

trpos[]={0 2 3 4 5 6 1 7 8 9 10 11 12 13 15 14}
val[]= col_idx[]=

K=3

C

!

K

row_ptr[]={0 3 4 17 18 23 24 32}
tile_ptr[]={0 2 7}

val[]= col_idx[]=
tile_desc:

y_offset[]={0 2 3 3}

y_offset[]={0 2 3 4}

seg_offset[]={0 1 1 0}

seg_offset[]={0 0 1 0}

empty_offset[]={�}

empty_offset[]={�}

bit_flag[]=

Figure 4. Represent a sparse matrix A with the HYB5 format. How a sparse matrix A is represented in
HYB5 and SELL-C-σ. In this example, matrix A is of 16 × 16 size and has 76 non-zeros. Colored cells
denote non-zero elements, and white cells are zeros. The arrows indicate the memory accessing order.

Compared to the native SELL-C-σ format, HYB5 can further reduce the storage and
processing overhead. As an illustrative example in Figure 5, the same matrix A is repre-
sented in SELL-4-8. We see that there are fewer padding zeros when K = 3 compared to
K = 8 with the same configurations. Then, the remaining sparse rows with various lengths
are handled by the CSR5 format. By doing so, HYB5 can make use of the best of both
worlds. Note that HYB5 is not a simple combination of the two native formats, and we
have to choose the right partitioning position between the two portions on a per matrix
basis (Section 4.2).

Appl. Sci. 2022, 12, 9812 8 of 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0
0 0

0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

��� ���

Figure 5. Represent the same matrix A with the SELL-4-8 format.

4.2. Matrix Segmentation

The key to representing a sparse matrix in the HYB5 format is to determine how
to partition the matrix. As a first step, the input matrix A has to be divided into two
sub-matrices, where their number of rows and columns are equal to those of matrix A. As
shown in Figure 4, the size of the sub-matrices is 16 × 16. During matrix partitioning, we
only have to save non-zero elements for both sub-matrices. The divided non-zero elements
remain in their original locations for each sub-matrix. As we have mentioned, a partitioning
parameter K is used to determine the position where to cut a row of the matrix. The first K
non-zero elements are stored in the left sub-matrix. If there are fewer than K non-zeros, then
all non-zero elements in this row are stored in the left sub-matrix. In Figure 4, K = 3 and
the first three non-zero elements of each row are represented in SELL-C-σ. The remaining
non-zero elements within this row are stored in the right sub-matrix in CSR5. The resultant
HYB5 structures are outlined in the upper right-hand portion of Figure 4.

As illustrated in Algorithm 1, for each row, we use an array row_counter to record the
number of non-zero elements stored in row coo_row_index[i], i.e., the row index of the
ith non-zero element. When the non-zero elements of this row are accumulated to K, the
rest are stored into the right matrix. In other words, the non-zero elements before K of each
row will be stored as the left matrix and represented in the SELL-C-σ format. The right
sub-matrix will be first converted into the CSR format and then to the CSR5 format. We
expect that there are as few padding zeros as possible in the left sub-matrix, letting CSR5
handle the very long non-zero rows.

4.3. Compressed CSR

Before being converted into CSR5 format, the right submatrix needs to be converted
to the CSR format. Figure 4 shows that the right sub-matrix outlined has much fewer
non-zero elements comparing with the original matrix A, resulting in many empty rows
with a large processing overhead. Specifically, array row_ptr, which is used by both CSR
and CSR5 format, contains many duplicate elements. Taking the right submatrix as an ex-

Appl. Sci. 2022, 12, 9812 9 of 20

ample, row_ptr = {0 0 3 4 4 17 17 17 17 18 23 23 23 24 24 24 32}.
Besides, buffer empty_offset (stores the correct positions of empty rows used when com-
puting the partial sum) of the CSR5 also contains duplicate entries. Therefore, we compress
the matrix to only retain the rows with non-zero elements.

Algorithm 1 Convert COO to HYB5

1: function CONVERTTOHYB5(coo_mtx∗, k)
2: p← 0
3: q← 0
4: for i = 0 to nnz do
5: if row_counter[coo_row_index[i]] >= K then
6: csr_data_stru[p]← coo_data_stru[i]
7: row_counter[coo_row_index[i]] + +
8: p ++
9: else

10: sell_data_stru[q]← coo_data_stru[i]
11: row_counter[coo_row_index[i]] + +
12: q ++
13: end if
14: end for
15: CCSR_mtx∗ ← CompressCSR(csr_data_stru)
16: CSR5_mtx∗ ← ConvertToCSR5(CCSR_mtx)
17: SELL_mtx∗ ← ConvertToSELL(sell_data_stru)
18: end function

During the conversion process, we introduce a new data structure (nnz_row_idx) to
record the original index of each row. For the CSR format, we need to change row_ptr
to eliminate the entries of indicating empty rows. If two adjacent elements in row_ptr
are equal, we regard that there exists an empty row. Algorithm 2 shows that we remove
the empty rows, convert row_ptr to com_row_ptr, and record the original index of the
remaining rows in nnz_row_idx. Figure 4 shows that the size of the right submatrix is
significantly reduced by compressing the raw data. Consequently, the size of array row_ptr
is reduced, and it is unnecessary to use empty_offset. When storing the result to y which
stores the results of SpMV (e.g., y = Ax), we use nnz_row_idx to retrieve the original row
indices for the corresponding non-zeros. Note that we have not changed the column index
of the non-zero elements. By doing so, we guarantee that the SpMV results are stored to
the right locations of vector y.

Algorithm 2 Compress CSR format.

1: function COMCSR(row_ptr∗, com_row_ptr∗, nnz_row_idx∗)
2: j = 0
3: p = 0
4: for i = 1 to N do
5: if row_ptr[i]! = row_ptr[i− 1] then
6: j ++
7: com_row_ptr[j]← row_ptr[i]
8: nnz_row_idx[p]← i− 1
9: p ++

10: end if
11: end for
12: end function

4.4. Format Conversion

We split the sparse matrix, A, into two sub-matrices, which are initially stored in
the COO format. We then convert the left sub-matrix to the SELL-4-8 format, as shown

Appl. Sci. 2022, 12, 9812 10 of 20

in Figure 4. Here arrays val and col_idx are transposed from the row-major order to
the column-major order. After sorting the rows of the matrix by the number of non-zero
elements, we use array trpos in the SELL-C-σ format to the original row indices. We set
C = 8 for Intel Knights Landing with 512-bit SIMD units, C = 4 for both AMD EPYC and
Phytium 2000+. To reduce zeros entries, we set the sorting scope σ = 8. As indicated by the
arrow in Figure 4, the matrix values and column indices are accessed in the column-major
order. The SELL-C-σ format divides value and column index into N/C blocks, with each
having C× K elements.

The right compressed sub-matrix in CSR can be directly converted into the CSR5
format. As shown in Figure 4, we partition the non-zero entries to two 4× 4 tiles. When
performing SpMV operations, a compute core can deal with multiple tiles, and each SIMD
lane of the core can work on a column of a tile [8]. For each tile, CSR5 introduces a tile
pointer tile_ptr, a tile descriptor tile_desc and reuses the three CSR data structures
(value, row_ptr, and col_idx). Similar to the SELL-C-σ format, the val data and the
col_idx data are transposed from the row-major order to the column-major order.

5. Adaptive Parameter Tuning

This section introduces how to build a model for selecting a right position of cutting a
sparse matrix.

The model estimates the performance gain for a given K value for the target matrix.
The predictive model is used as a utility function to quickly search for the optimal K.
Predictions are made based on a set of numerical values, or feature values, of the target
matrix as described in Section 5.2.

Our predictive model is built upon the scikit-learn machine learning package [24]. We
use a support vector machine (SVM) based regression model with an rbf kernel, which is
effective in modeling non-linear data. An alternative to our regression-based approach is to
build a classifier to directly predict the optimal K. However, a classifier can only choose a
value that has been seen in the training data, due to the nature of classification algorithms.
We avoid this drawback by employing an unconstrained based approach—our regression-
based model can be used for arbitrary K values (even those that were not presented during
training) because the model takes the value as an input to estimate the potential gain.

Building and using such a predictive model follows the 3-step process for supervised
machine learning: ¶ generate training data, · train a predicted model, and ¸ use the predictor.

5.1. Training the Predictor

The offline training only needs to be performed once for a given architecture. To
target a new architecture, we need to generate and label training samples for the targeting
hardware. This is done by profiling the benchmarks under different K to find the optimal K
for each training program. However, the process of feature selection, training and model
selection is fully automated and can remain unchanged for a new architecture.

Figure 6 depicts the process of training the predictive model. To collect training data,
we profile each training matrix under a given K to find the best-performing K. We normalize
the measured SpMV running time against the default setting, Kaverage, that computes K by
counting the average number of non-zero elements per row. For each training matrix, we
also extract the feature values.

5.1.1. Generating Training Data

We use cross-validation to train and test our approach. We use 80% of the sparse
matrices from the SuiteSparse matrix collection [23] to train our model and then test the
trained model on the remaining matrices. For each training matrix, we store the sparse
matrix using our hybrid format under a given K. We then profile the resulting SpMV
performance to find the best-performing K value.

Appl. Sci. 2022, 12, 9812 11 of 20

Profiling
runs

Feature
extraction

Learning
A

lgorithm

Performance ratio
of K to K_ave

feature values

Predictive ModelTraining
matrices

filestack

Feature
Extraction

Predictor

matrix

feature values

Performance ratio

K

Figure 6. The training process of our predictive model.

As the range of possible values that K can take is too large, it is prohibitively expensive
to exhaustively search for the optimal K for every training matrix. Instead, we sample
10% of our training matrices and find that the best K often stays around Kaverage and
Khistogram, where Khistogram is the number given by a histogram algorithm similar to HYB.
As a result, for each training matrix, we profile the resulting SpMV performance of around
Kaverage or Khistogram, [Kaverage-30, Kaverage+30] and [Khistogram-30, Khistogram+30], where the
lower bound is capped at 0. To generate training data, we measure the resulting SpMV
performance for each K value for a given training matrix and record the best-performing
value. On average, we profile 30–120 different values of K. To minimize the impact of
profiling noise, we profile each K value setting multiple times until the upper and lower
confidence bounds are smaller than 5% under a 95% confidence interval setting. As part
of the training data collection, we also collect a set of feature values (Section 5.2) for each
training matrix.

5.1.2. Building the Model

The performance ratio as a label of the sample, along with their corresponding feature
set, is passed to our supervised learning algorithm. The learning algorithm tries to find a
correlation between the feature values and optimal representation labels. The output of
our learning algorithm is a version of our SVM-based model. To relate the target models to
architectures and matrix features, the training processor is performed for distinct platforms
separately. Since training is performed off-line and only needs to be carried out once for a
given architecture, this is a one-off cost.

5.1.3. Training Overhead

The total training time of our model is comprised of gathering the training data and
then building the model. Gathering the SpMV performance data of the formats consumed
most of the total training time. It took around two days for our platforms. In contrast,
gathering features of matrices and building the model took a negligible amount of time,
less than 10 s and 10 ms, respectively.

5.2. Feature Engineering

The key to building a successful predictor is developing the right features to charac-
terize the input. Our predictive model is based exclusively on static, hardware-agnostic
features of the target matrix, and no dynamic profiling is required. The features are ex-
tracted using our Python script. Since the models are trained separately for our platforms,
the hardware-specific features are implicitly embedded in the models.

5.2.1. Feature Selection

Table 2 presents a full list of all our selected features. Kaverage and Khistogram are
obtained by a traditional method presented in [4]. The time overhead to obtain the features
of one matrix is in the order of milliseconds. As we have 47,956 groups of training samples
from 756 matrices, we would like to reduce the number of features. To do so, we first
combine some of the individual features. Through feature combination, we reduce the

Appl. Sci. 2022, 12, 9812 12 of 20

number of features to 6, which are nnz_ f rac, n_rows, nnz_std, variation, Kaverage, Khistogram.
We apply the wrapper method [25,26] to further obtain the best subset of features and then
confirm nnz_ f rac, n_rows, nnz_std, variation and Kaverage as our features. The importance
is shown in Table 2. The evaluation criteria for the subset of features are the predictive
accuracy of the model. The wrapper method means that the model is trained by using
different subsets of features until it is accurate enough or all the subsets of features have
been tested.

Table 2. Features used in our predictive model.

Features Description Importance
n_rows number of rows 33.71%
n_cols number of columns
variation matrix regularity 3.96%
nnz_ f rac percentage of non-zero elements 42.72%
nnz_tot total number of non-zero elements
Khistogram K is obtained by a histogram algorithm
Kaverage average number of non-zero 2.10%

elements per row
nnz_min minimum number of non-zero

elements per row
nnz_max maximum number of non-zero

elements per row
nnz_std standard derivation of non-zero 17.51%

elements per row

5.2.2. Feature Scaling

In the final step, we scale each of the extracted feature values to a common range
(between 0 and 1) to prevent the range of any single feature being a factor in its importance.
We record the minimum and maximum values of each feature in the training dataset in
order to scale the feature values of an unseen matrix. We also clip a feature value to make
sure it is within the expected range during deployment.

5.3. Runtime Deployment

Deployment of our predictive model is designed to be simple and easy to use. To
this end, our approach is implemented as an API. The API has encapsulated all of the
inner workings, such as feature extraction and matrix format translation. We also provide
a source to source translation tool to obtain the available optimal K for HYB5. With the
predicted results, a high-performance HYB5 can be obtained at runtime.

6. Evaluation
6.1. Experimental Setup

Hardware Platforms. We use three multi-core CPUs: a 72-core Intel Knight Landing (KNL)
multi-core processor, a 128-core AMD EPYC CPU, and a 64-core Phytium ARMv8 CPU.
The KNL processor has a peak performance of 3Tflops for double-precision operations [27].
Each KNL core has an AVX512 unit supporting four threads and running at 1.3 GHz. Each
core has a private L1 data and L1 instruction cache of 32 KB. The AMD EPYC CPU features
a peak performance of 3.5 Tflops double-precision operation [28,29]. The AMD CPU used
has two sockets, each having 64 AVX2 cores and 256 MB L3. Each EPYC core supports two
hardware threads running at 3.35 GHz, and a private 32 KB L1 data and a private 64 KB
L1 instruction cache. Phytium 2000+ has 64 high-performance ARMv8 compatible xiaomi
cores running at 2.2 GHz. The entire chip offers a peak performance of 563.2 Gflops for
double-precision operations. The 64 hardware cores are organized into 8 panels, where
each panel connects a memory control unit. Each core has a private L1 cache of 32KB for
data and instructions, and every four cores share a 2 MB L2 cache [30].

Appl. Sci. 2022, 12, 9812 13 of 20

Systems Software. Our platforms run a customized Linux operating system with a kernel
v3.10.0 on KNL, v4.18.0 on AMD EPYC, and v4.19.46 on Phytium 2000+. We use Intel icc
v17.0.4 on KNL, gcc v8.3.1 on AMD EPYC, gcc v9.3.0 on Phytium 2000+, with the default
“-O3” option. We use the OpenMP threading model with 272 threads on KNL, 256 threads
on EPYC and 64 threads on Phytium.

Datasets. Our experiments use 956 square matrices from the SuiteSparse matrix collec-
tion [23]. The number of nonzero elements of the matrices ranges from 100 K to 200 M.
The dataset includes both regular and irregular matrices, covering domains from scientific
computing to social networks.

Native Format Settings. In the experiments, we use double precision to store the matrices
and vectors. On KNL for CSR5, ω = 8, σ = 12, and for SELL-C-σ, C = 8. On AMD EPYC for
CSR5, ω = 4, σ = 16, and for SELL-C-σ, C = 4. On Phytium 2000+ for CSR5, ω = 4, σ = 16,
and for SELL-C-σ, C = 4. This setting is used in accordance with 512-bit SIMD units on
KNL, 256-bit SIMD units on AMD EPYC and 128-bit SIMD units on Phytium. And σ = 512
on KNL, σ=256 on AMD EPYC, and σ = 256 on Phytium 2000+ for SELL-C-σ. Accordingly,
HYB5 also uses the same configurations for its native formats.

Evaluation Methodology. We use cross validation to evaluate our approach by randomly
splitting the 965 matrices into two parts: 756 matrices for training and 200 matrices for
testing. We learn a model with the training matrices. We then evaluate the learned model
by applying it to make a prediction on the 200 testing matrices. We use a regression model,
and the performance of the model is based on the accuracy of the predicted results. The
performance of the parameter K predicted by the model is injected into HYB5 during
runtime. We use the ratio of performance of predicted results to the Oracle performance to
represent the accuracy of the model.

6.2. Compared with State-of-the-Art

Figure 7 shows the performance comparison of SpMV for six state-of-the-art storage
formats on KNL and for five storage formats on Phytium 2000+ and AMD EPYC. On KNL,
HYB5 outperforms the state-of-the-art storage formats by 96.7% for HYB, 60.6% for CSR,
25.2% for SELL-C-σ, 7.4% for CSR5, and 2.9% for CVR on average. On AMD EPYC, HYB5
outperforms the state-of-the-art storage formats by 19.8% for SELL-C-σ, 21.5% for CSR5,
17.5% for HYB, and 25.5% for CSR on average. On Phytium 2000+, HYB5 outperforms
the state-of-the-art storage formats by 70% for CSR5, 32.3% for CSR, 23.3% for SELL-C-σ
and 16% for HYB on average. Therefore, HYB5 obtains the best performance on the three
multi-core CPUs with SIMDs. This is because HYB5 can make the best of both SELL-C-σ
and CSR5, i.e., it can achieve a good data locality and enable balanced loads for both regular
and irregular matrices. We did not test CVR on AMD EPYC and Phytium 2000+, because
it can only work on architectures that support the Intel avx512 intrinsics, which are not
supported on AMD EPYC or Phytium 2000+.

Figure 7a shows that the CSR-based SpMV performs bad in most cases on KNL. The
main reason is that the code of the CSR-based SpMV is not explicitly vectorized for KNL.
Among the six formats, the performance of HYB is the worst. This is due to fact that its
native formats (ELL and COO) are not competitive, compared to SELL-C-σ and CSR5.
Moreover, the selection of the cutting parameter K is not optimal (Section 3).

In Figure 7b, we see that on AMD EPYC, the CSR5-based SpMV performs worse than
that on KNL. The main reason is that the CSR5-based SpMV has an intensive usage of
the scatter operation which is supported by the KNL avx512 intrinsics. However, AMD
EPYC uses avx2 and has no scatter instruction. Thus, we have to manually scatter the
result data, which leads to inefficient vectorization. On the other hand, the SELL-C-σ-based
SpMV still performs well. By using the best of both worlds, HYB5 still retains its optimal
performance which again indicates HYB5’s cross-platform advantages.

Figure 7c shows that, CSR5 performs the worst among all the formats on Phytium
2000+. This is because the CSR5-based SpMV is not explicitly vectorized for Phytium 2000+.

Appl. Sci. 2022, 12, 9812 14 of 20

In contrast, the performance of SELL-C-σ looks promising even without vectorization. The
work [12] states that the performance of vectorized SELL-C-σ-based SpMV on Phytium
2000+ is limited by the missing support of gather and scatter. However, our HYB5 format
can still take the advantage of CSR5 in that it excels in handling exceptionally long rows.
Note that HYB of combining ELL and COO have achieved the second best performance,
running after our HYB5 format.

Figure 8 further illustrates the performance of CVR with the HYB5’s native formats on
KNL. We note that the performance of the SELL-C-σ is not satisfying, when the input matrix
has a large variation. For such cases, this format pads many zero elements, which leads to
a large storing and computing overhead. Among all the single storage formats, CVR yields
the most competitive performance with ours on KNL. This is due to the fact that CVR uses a
vectorization-friendly data layout, specialized for the KNL vector units. However, we have
not chosen CVR as the native format of HYB5, because the CVR performance is sensitive to
the regularity of matrices. That is, CVR performs worse than our chosen native formats for
matrices with very large or small variations (Figure 8). This is further illustrated by the
long tail of the CVR violin in Figure 7a. This also conforms to our motivation of building
our new format HYB5.

6.3. Compared with Predictive Models

Figure 9 shows the performance comparison between our model and three existing
analytical models (K_average, K_histogram and K_opt_storage [19]) on the three target
architectures. The y-axis represents the achieved performance of the four K-selection
methods in terms of accuracy calculated by Equation (1). For each matrix, the SpMV
performance with the K obtained from one of the three methods is G f lopsk_test, and the
SpMV performance with the best K is G f lopsk_best.

Accuracy = G f lopsk_test/G f lopsk_best (1)

We see that, for the three tested platforms, in general, the accuracy of our model is
optimal, which is significantly better than that of Khistogram, Kopt_storage and Kaverage. In
terms of average accuracy, our model outperforms Khistogram , Kopt_storage and Kaverage by
26.1%, 5.4%, and 7.7%, respectively, on KNL; 61.1%, 47.3% and 59.4%, respectively, on AMD
EPYC; and 72.6%, 109.2% and 77.7%, respectively, on Phytium 2000+. Figure 7c shows that,
although the native formats of HYB5 have a poor performance, our model on Phytium
2000+ can provide superior performance and still outperform the state-of-the-art formats.
Note that Kaverage yields better performance than Khistogram on KNL (Figure 9a).

6.4. Compared with Best Individual Formats

We have mentioned that there are two general solutions to the “one-size-fits-all” issue:
selecting the best individual format and using the hybrid solution. Figure 10 compares
the performance of these two solutions. From Figure 10a,b, we see that, for the small
matrices (i.e., with few non-zero elements), the performance of HYB5 is worse than that
of the best individual format. However, the performance of HYB5 is competitive for large
sparse matrices. Figure 10c also shows that HYB5 performs better than the best individual
formats, especially for the large matrices. Overall, we summarize that using the best
individual formats generally outperforms using a hybrid solution. However, programmers
have to maintain various individual storage formats and endure the converting overhead
across formats. By contrast, we have to maintain only one hybrid format during software
development. This particularly helps when developing large-scale applications. Therefore,
using a hybrid solution wins in maintenance cost, but suffers a loss in performance. It is up
to the programmers to make the final choice.

Appl. Sci. 2022, 12, 9812 15 of 20

hyb sell csr csr5 cvr hyb5
format

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

d
Do

wn
 to

 O
pt

im
al

 S
pM

V
Pe

rfo
rm

an
ce

(a) KNL

csr csr5 hyb sell hyb5
format

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

d
Do

wn
 to

 O
pt

im
al

 S
pM

V
Pe

rfo
rm

an
ce

(b) AMD EPYC

csr5 csr hyb sell hyb5
format

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

d
Do

wn
 to

 O
pt

im
al

 S
pM

V
Pe

rfo
rm

an
ce

(c) Phytium 2000+

Figure 7. Comparing HYB5 performance to state-of-the-art formats. The violin diagrams show the
reduction ratio of the compared formats for the relatively optimal format of SpMV performance for
each matrix. The shape of the violin represents the distribution of the acceleration ratio over the data
set, and the bold black line is the location of 50% of the data set.

Appl. Sci. 2022, 12, 9812 16 of 20

0 5 10 15 20
Variation

0

10

20

30

40

50

60

70

Gf
lo

ps

SELL
CVR
CSR5

Figure 8. SpMV performance of SELL-8-512, CSR5, and CVR with matrices of different variations.
The x-axis is variation (vardata), which represents the regularity of a given matrix. As var increases,
the regularity degree of matrices decreases.

histogram opt_storage average model
Algorithms for calculating parameter K

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a) KNL

histogram opt_storage average model
Algorithms for calculating parameter K

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(b) AMD EPYC

histogram opt_storage average model
Algorithms for calculating parameter K

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(c) Phytium 2000+

Figure 9. The violin diagram shows the comparison of three methods of obtaining parameter K by
showing its corresponding SpMV performance on the three target architectures.

Appl. Sci. 2022, 12, 9812 17 of 20

5.0 5.5 6.0 6.5 7.0 7.5 8.0
nonzeros log10

0

2

4

6

8

10

Sp
ee

d-
up

 R
at

io

KNL

(a) KNL

5.0 5.5 6.0 6.5 7.0 7.5 8.0
nonzeros log10

0

2

4

6

8

10

Sp
ee

d-
up

 R
at

io

AMD EPYC

(b) AMD EPYC

5.0 5.5 6.0 6.5 7.0 7.5 8.0
nonzeros log10

0

2

4

6

8

10

Sp
ee

d-
up

 R
at

io

Phytium 2000+

(c) Phytium 2000+

Figure 10. The scatter diagrams show the speedup ratio of performance of HYB5-based SpMV with
the optimal K and the optimal performance from using the other compared formats for each matrix
on three target platforms.

7. Related Work

SpMV has been extensively investigated on multi-core CPUs with SIMDs [10,31,32].
Recently, the effort was dedicated to new storage formats and/or adaptive autotuning
frameworks for performant and scalable SpMV.

New sparse matrix storage formats have been designed to enable efficient SpMV by match-
ing various inputs to multi-core CPUs with SIMDs [3,4,10,33]. Xie et al. propose a sparse
matrix representation CVR [21] for efficient vectorization. CVR is insensitive to the irreg-
ularity and sparseness of SpMV, so it can handle a large number of scale-free matrices
on Intel Knights Landing. Liu et al. proposed CSR5 [8], which is a tile-based format.
This format enables high-throughput SpMV on both CPUs and GPUs for both regular

Appl. Sci. 2022, 12, 9812 18 of 20

and irregular matrices. The format conversion from CSR to CSR5 is claimed to be a few
SpMV operations. On Intel KNC, Liu et al. identified and addressed several performance
bottlenecks of SpMV [5]. They exploited the salient architecture features of KNC and used
specialized data structures with careful load balancing to obtain satisfactory performance.
Moritz et al. proposed a SIMD-friendly format SELL-C-σ [9]. This format is a variant
of Sliced ELLPACK by reordering the rows of a matrix stored in Sliced ELLPACK, which
aims to decrease the padding overhead and increase the utilization of vector units. The
sorting range is determined by C and σ. Coronado-Barrientos et al. designed a new format
AXC [34] to improve the SpMV performance for Intel Xeon Phi. AXC improves the SpMV
performance by avoiding indirect access to vector x and reducing cache misses. This format
can outperform CSR for 12 data sets. Chen et al. proposed the CSR-SIMD [35] format to
utilize SIMD units of ARMv8-based FT1500A and x86-based Intel Xeon Phi fully. This
format compresses the non-zero elements into many variable-length pieces of data with
consecutive memory access addresses to improve the accessing locality of vector x.

Adaptive optimization methods of SpMV based on machine learning techniques have
attracted interests in recent years [15,36–41]. This is due to the fact that the SpMV perfor-
mance is determined by a combination of the storage format, the platform architecture,
and the input dataset. For different architectures, there is no single format that can enable
consistently better performance for all datasets. It is thus necessary to select the best matrix
representation for a given architecture and data input. Chen et al. employed a decision
tree to build a predictive model to help choose an optimal matrix representation from
five widely-used formats: CSR, CSR5, ELLPACK, SELL-C-σ, and HYB for FT2000+ and
Intel KNL [12]. Then, they analyzed the working process of the decision tree in detail [42].
Cui et al. presented a deep learning mechanism for SpMV format selection best suited for a
given data set [39]. They converted the matrices into graphs and directly made them inputs
to the neural network eliminating the need for manually selecting features. Zhou et al.
designed regression models and neural network-based time series prediction models to
capture the influence imposed on the existing SpMV program performance by the overhead
and benefits of format prediction and conversions [17].

Using hybrid storage formats can leverage the advantages of both formats. HYB is the first
hybrid format for SpMV optimization on the GPU [4]. It combines ELLPACK and COO as
a new format HYB, which can outperform its native formats. HYB determines the segmen-
tation position of sparse matrices with a histogram algorithm, which is outperformed by
our model (Section 6.3). Our work upgrades HYB with two new native storage formats
and uses machine learning to select the cutting factor.

8. Conclusions

We presented a new hybrid SpMV storage format, HYB5, which is designed to utilize
the hardware parallelism provided by modern multi-core CPUs. HYB5 aims to bring the
best of CSR5 and SELL-C-σ. It achieves this by storing non-zero matrix elements with
irregular patterns in the CSR5 format and the remaining in the SELL-C-σ format. This
hybrid scheme allows one to employ an efficient parallel kernel to perform SpMV on regular
non-zero elements and use the CSR5 to mitigate the impact of irregular matrix accesses.
One of the key challenges of our approach is how to determine the partition between the
two storage formats. We achieve this by employing machine learning to automatically
construct a predictive model from training samples to predict the right matrix partition
on a per matrix basis. The learned model can then be used for any unseen matrix. We
evaluate our approach by applying it to over 900 matrices on three distinct multi-core CPU
architectures. Experimental results show that our approach outperforms all alternative
SpMV storage formats across the evaluation platforms. As the future work, it would be
interesting to work with the deep learning method to automatically extract matrix features.

Appl. Sci. 2022, 12, 9812 19 of 20

Author Contributions: Conceptualization, J.F., S.C. and C.X.; methodology, J.F. and S.C.; software,
S.C.; validation, S.C., J.F. and Z.W.; formal analysis, S.C., J.F.; investigation, S.C., J.F., C.X. and W.Z;
resources, J.F., C.X. and W.Z; data curation, S.C. and J.F. All authors have read and agreed to the
published version of the manuscript.

Funding: The NNW project (program no. TC228S03J).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mohammed, T.; Albeshri, A.; Katib, I.A.; Mehmood, R. DIESEL: A novel deep learning-based tool for SpMV computations and

solving sparse linear equation systems. J. Supercomput. 2020, 77, 6313–6355. [CrossRef]
2. Cui, H.; Hirasawa, S.; Takizawa, H.; Kobayashi, H. A Code Selection Mechanism Using Deep Learning. In Proceedings of the

2016 IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSOC), Lyon, France, 21–23
September 2016.

3. Goumas, G.I.; Kourtis, K.; Anastopoulos, N.; Karakasis, V.; Koziris, N. Performance evaluation of the sparse matrix-vector
multiplication on modern architectures. J. Supercomput. 2009, 50, 36–77. [CrossRef]

4. Bell, N.; Garland, M. Implementing sparse matrix-vector multiplication on throughput-oriented processors. In Proceedings of
the Conference on High Performance Computing Networking, Storage and Analysis, Portland, Oregon, 14–20 November 2009.

5. Liu, X.; Smelyanskiy, M.; Chow, E.; Dubey, P. Efficient sparse matrix-vector multiplication on x86-based many-core processors.
In Proceedings of the 27th International ACM Conference on International Conference on Supercomputing, Eugene, OR, USA,
10–14 June 2013.

6. Tang, W.T.; Zhao, R.; Lu, M.; Liang, Y.; Huyng, H.P.; Li, X.; Goh, R.S.M. Optimizing and auto-tuning scale-free sparse matrix-vector
multiplication on Intel Xeon Phi. In Proceedings of the 2015 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), San Francisco, CA, USA, 7–11 February 2015.

7. Blelloch, G.E.; Heroux, M.A.; Zagha, M. Segmented Operations for Sparse Matrix Computation on Vector Multiprocessors; Technical
Report CMU-CS-93-173; Carnegie Mellon University: Pittsburgh, PA, USA, 1993.

8. Liu, W.; Vinter, B. CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication. In Proceedings of
the 29th ACM on International Conference on Supercomputing, Newport Beach, CA, USA, 8–11 June 2015.

9. Kreutzer, M.; Hager, G.; Wellein, G.; Fehske, H.; Bishop, A.R. A Unified Sparse Matrix Data Format for Efficient General Sparse
Matrix-Vector Multiplication on Modern Processors with Wide SIMD Units. SIAM J. Sci. Comput. 2014, 36, C401–C423. [CrossRef]

10. Williams, S.; Oliker, L.; Vuduc, R.W.; Shalf, J.; Yelick, K.A.; Demmel, J. Optimization of sparse matrix-vector multiplication on
emerging multicore platforms. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, Reno, NV, USA, 10–16
November 2007.

11. Guo, D.; Gropp, W.; Olson, L.N. A hybrid format for better performance of sparse matrix-vector multiplication on a GPU. Int. J.
High Perform. C 2016, 30, 103–120. [CrossRef]

12. Chen, S.; Fang, J.; Chen, D.; Xu, C.; Wang, Z. Adaptive Optimization of Sparse Matrix-Vector Multiplication on Emerging
Many-Core Architectures. In Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018.

13. Hou, K.; Feng, W.; Che, S. Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and
Many-Core Processors. In Proceedings of the 2017 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), Lake Buena Vista, FL, USA, 29 May–2 June 2017.

14. Benatia, A.; Ji, W.; Wang, Y.; Shi, F. Sparse Matrix Format Selection with Multiclass SVM for SpMV on GPU. In Proceedings of the
2016 45th International Conference on Parallel Processing (ICPP), Philadelphia, PA, USA, 16–19 August 2016.

15. Benatia, A.; Ji, W.; Wang, Y.; Shi, F. Machine Learning Approach for the Predicting Performance of SpMV on GPU. In
Proceedings of the 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), Wuhan, China, 13–16
December 2016.

16. Zhao, Y.; Li, J.; Liao, C.; Shen, X. Bridging the gap between deep learning and sparse matrix format selection. In Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Vienna, Austria, 24–28 February 2018.

17. Zhou, W.; Zhao, Y.; Shen, X.; Chen, W. Enabling Runtime SpMV Format Selection through an Overhead Conscious Method. IEEE
Trans. Parallel Distrib. Syst. 2020, 31, 80–93. [CrossRef]

18. Li, J.; Tan, G.; Chen, M.; Sun, N. SMAT: An input adaptive auto-tuner for sparse matrix-vector multiplication. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, Seattle, WA, USA, 16–19 June 2013.

http://doi.org/10.1007/s11227-020-03489-3
http://dx.doi.org/10.1007/s11227-008-0251-8
http://dx.doi.org/10.1137/130930352
http://dx.doi.org/10.1177/1094342015593156
http://dx.doi.org/10.1109/TPDS.2019.2932931

Appl. Sci. 2022, 12, 9812 20 of 20

19. Anzt, H.; Cojean, T.; Yen-Chen, C.; Dongarra, J.J.; Flegar, G.; Nayak, P.; Tomov, S.; Tsai, Y.M.; Wang, W. Load-balancing Sparse
Matrix Vector Product Kernels on GPUs. ACM Trans. Parallel Comput. 2020, 7, 1–26. [CrossRef]

20. Grimes, R.; Kincaid, D.; Young, D. ITPACK 2.0 User’s Guide; Technical Report CNA-150; Center for Numerical Analysis, University
of Texas: Austin, TX, USA, 1979.

21. Xie, B.; Zhan, J.; Liu, X.; Gao, W.; Jia, Z.; He, X.; Zhang, L. CVR: Efficient vectorization of SpMV on x86 processors. In Proceedings
of the 2018 International Symposium on Code Generation and Optimization, Vienna, Austria, 24–28 February 2018.

22. Monakov, A.; Lokhmotov, A.; Avetisyan, A. Automatically Tuning Sparse Matrix-Vector Multiplication for GPU Architectures. In
Proceedings of the International Conference on High-Performance Embedded Architectures and Compilers, Pisa, Italy, 25–27
January 2010.

23. Davis, T.A.; Hu, Y. The university of Florida sparse matrix collection. ACM Trans. Math. Softw. 2011, 38, 1–25. [CrossRef]
24. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res.

2011, 12, 2825–2830.
25. Mustaqeem, A.; Anwar, S.M.; Majid, M.; Khan, A.R. Wrapper method for feature selection to classify cardiac arrhythmia. In

Proceedings of the IEEE 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Jeju, Korea, 11–15 July 2017.

26. Kohavi, R.; Sommerfield, D. Feature Subset Selection Using the Wrapper Method: Overfitting and Dynamic Search Space Topology;
AAAI Press: Menlo Park, CA, USA, 1995.

27. Ramos, S.; Hoefler, T. Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL. In Proceedings of
the 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Orlando, FL, USA, 29 May–2 June 2017.

28. Bunn, C.C.; Barclay, H.; Lazarev, A.; Yusuf, F.; Fitch, J.; Booth, J.; Shivdikar, K.; Kaeli, D.R. Student cluster competition 2018, team
northeastern university: Reproducing performance of a multi-physics simulations of the Tsunamigenic 2004 Sumatra Megathrust
earthquake on the AMD EPYC 7551 architecture. Parallel Comput. 2019, 90, 102568. [CrossRef]

29. Devices, A.M. AMD EPYC 7002 Series Processors. Available online: https://www.amd.com/zh-hans/products/cpu/amd-epyc-
7702 (accessed on 6 September 2022).

30. Fang, J.; Liao, X.; Huang, C.; Dong, D. Performance Evaluation of Memory-Centric ARMv8 Many-Core Architectures: A Case
Study with Phytium 2000+. J. Comput. Sci. Technol. 2021, 36, 33–43. [CrossRef]

31. Mellor-Crummey, J.M.; Garvin, J. Optimizing Sparse Matrix—Vector Product Computations Using Unroll and Jam. Int. J. High
Perform. Comput. Appl. 2004, 18, 225–236. [CrossRef]

32. Pinar, A.; Heath, M.T. Improving Performance of Sparse Matrix-Vector Multiplication. In Proceedings of the 1999 ACM/IEEE
Conference on Supercomputing, Portland, OR, USA, 13–19 November 1999.

33. Im, E.; Yelick, K.A.; Vuduc, R.W. Sparsity: Optimization Framework for Sparse Matrix Kernels. Int. J. High Perform. Comput. Appl.
2004, 18, 135–158. [CrossRef]

34. Coronado-Barrientos, E.; Indalecio, G.; Garcia-Loureiro, A. AXC: A new format to perform the SpMV oriented to Intel Xeon Phi
architecture in OpenCL. Concurr. Comput. Pract. Exp. 2019, 31, e4864. [CrossRef]

35. Chen, X.; Xie, P.; Chi, L.; Liu, J.; Gong, C. An efficient SIMD compression format for sparse matrix-vector multiplication. Concurr.
Comput. Pract. Exp. 2018, 30, e4800. [CrossRef]

36. Lehnert, C.; Berrendorf, R.; Ecker, J.P.; Mannuss, F. Performance Prediction and Ranking of SpMV Kernels on GPU Architectures.
In Proceedings of the European Conference on Parallel Processing, Grenoble, France, 24–26 August 2016.

37. Abubaker, N.; Akbudak, K.; Aykanat, C. Spatiotemporal Graph and Hypergraph Partitioning Models for Sparse Matrix-Vector
Multiplication on Many-Core Architectures. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 445–458. [CrossRef]

38. Mohammed, T.; Albeshri, A.; Katib, I.A.; Mehmood, R. Nitro: A Framework for Adaptive Code Variant Tuning. In Proceedings
of the 2014 IEEE 28th International Parallel and Distributed Processing Symposium, Phoenix, AZ, USA, 19–23 May 2014.

39. Cui, H.; Hirasawa, S.; Kobayashi, H.; Takizawa, H. A Machine Learning-Based Approach for Selecting SpMV Kernels and Matrix
Storage Formats. IEICE Trans. Inf. Syst. 2018, 9, 2307–2314. [CrossRef]

40. Guo, P.; Lee, C. A Performance Prediction and Analysis Integrated Framework for SpMV on GPUs. Procedia Comput. Sci. 2016, 80,
178–189. [CrossRef]

41. Usman, S.; Mehmood, R.; Katib, I.A.; Albeshri, A. ZAKI+: A Machine Learning Based Process Mapping Tool for SpMV
Computations on Distributed Memory Architectures. IEEE Access 2019, 7, 81279–81296. [CrossRef]

42. Chen, D.; Fang, J.; Chen, S.; Xu, C.; Wang, Z. Optimizing Sparse Matrix-Vector Multiplications on an ARMv8-based Many-Core
Architecture. Int. J. Parallel Program. 2019, 47, 418–432. [CrossRef]

http://dx.doi.org/10.1145/3380930
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1016/j.parco.2019.102568
https://www.amd.com/zh-hans/products/cpu/amd-epyc-7702
https://www.amd.com/zh-hans/products/cpu/amd-epyc-7702
http://dx.doi.org/10.1007/s11390-020-0741-6
http://dx.doi.org/10.1177/1094342004038951
http://dx.doi.org/10.1177/1094342004041296
http://dx.doi.org/10.1002/cpe.4864
http://dx.doi.org/10.1002/cpe.4800
http://dx.doi.org/10.1109/TPDS.2018.2864729
http://dx.doi.org/10.1587/transinf.2017EDP7176
http://dx.doi.org/10.1016/j.procs.2016.05.308
http://dx.doi.org/10.1109/ACCESS.2019.2923565
http://dx.doi.org/10.1007/s10766-018-00625-8

	Introduction
	Background
	Sparse Matrix–Vector Multiplication
	Sparse Matrix Storage Format

	Motivation
	Our Approach
	HYB5 Overview
	Matrix Segmentation
	Compressed CSR
	Format Conversion

	Adaptive Parameter Tuning
	Training the Predictor
	Generating Training Data
	Building the Model
	Training Overhead

	Feature Engineering
	Feature Selection
	Feature Scaling

	Runtime Deployment

	Evaluation
	Experimental Setup
	Compared with State-of-the-Art
	Compared with Predictive Models
	Compared with Best Individual Formats

	Related Work
	Conclusions
	References

