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Effect of stop-loss reinsurance on the primary

insurer solvency
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Abstract

Stop-loss reinsurance is a risk management tool that allows an in-
surance company to transfer part of their risk to a reinsurance com-
pany. Ruin probabilities allow us to measure the effect of stop-loss rein-
surance on the solvency of the primary insurer. They further permit
the calculation of the economic capital, or the required initial capital
to hold, corresponding to the 99.5% Value-at-Risk of its surplus.

Specifically, we show that, under a stop-loss contract, the ruin prob-
ability for the primary insurer, for both finite and infinite time horizon,
can be obtained from the finite-time ruin probability when no reinsur-
ance is bought. We develop a finite-difference method for solving the
(partial integro-differential) equation satisfied by the finite-time ruin
probability with no reinsurance, leading to numerical approximations
of the ruin probabilities under a stop-loss reinsurance contract. Us-
ing the method developed here we discuss the interplay between ruin
probability, reinsurance retention level and initial capital.
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1 Introduction

The environment in which general insurance companies currently operate

is challenging in at least two aspects. First, investment income is squeezed

by unprecedented low levels of interest rates. Second, for some classes of

businesses, premium rates are relatively low due to an abundance of industry

capacity. Risk management is therefore relied upon not only for monitoring

of risks, but also to inform management decisions.

A risk management tool often used by insurance companies is reinsur-

ance, especially for very large risks or risks which are difficult to assess, for

instance hurricane, earthquake or wildfires. Under a reinsurance contract,

the reinsurer company agrees to compensate the primary insurer (or ceding

company) for part of its insurance losses in exchange for a reinsurance pre-

mium. In short, reinsurance is when an insurance company transfers part

of its underwritten insurance risks to a reinsurance company. By entering

on a reinsurance contract the primary insurer should attain a reduction on

the probability of incurring large losses and reduce the capital required to

keep its insolvency risk at an acceptable level. There are different forms of

reinsurance treaties and for a review of their properties we refer the reader

to [1]. The choice of reinsurance treaty is complex, often relying on some

optimality criteria related to profit, solvency and cost of capital (see e.g.

[12] and [13]), and taking into account the availability and price of the con-

tract, market competition and regulatory constraints: see [1] and references

therein.

One form of reinsurance is stop-loss, under which the aggregate loss,

over a given time period, is capped at an agreed retention level and the

reinsurer is liable for the excess. This type of contract has been found to be
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optimal under different decision criteria, for instance, if the primary insurer

wants to minimize the variance of the retained risk as per Borch, Kahn

and Pesonen (e.g., see [15]), or when maximizing expected utility in the

context of risk-averse utility functions as per Arrow [4] or Borch [6]. One

can also model the solvency of a reinsurance strategy using the concept of

ruin probability. Considering a ruin condition as the decision criterion allows

to find the optimal reinsurance treaty for the insurer. Indeed a stop-loss type

of reinsurance contract is optimal when the criterion is to minimize the ruin

probability: see Gajek and Zagrodny [9]. Minimizing the ruin probability

and maximizing the expected utility are in fact related, as shown by Guerra

and Centeno [10, 11] who again find that a stop-loss type of reinsurance

contract is optimal under certain conditions.

Because it is based on the aggregate losses, compared with other types

of reinsurance contract, stop-loss is useful when it is difficult to allocate

individual claims to particular events due to their nature as it can happen

for instance in agriculture. From the risk management point of view, this

type of treaty is special in the sense that it completely relieves the primary

insurer from tail risk, a major concern for solvency. In this article we intro-

duce a methodology that allow us to study how stop-loss reinsurance affects

the level of capital a primary insurer must hold to sustain a low level of

insolvency risk determined by a strategic decision or regulatory directive.

The regulatory solvency approach, under Solvency II, focusses on one year

99.5% Value-at-Risk meaning that the probability that the aggregate loss

over the year is larger than the available capital is 0.5%. Hence we use the

0.5% ruin probability to determine the level of economic capital necessary

to cover the losses over the next year.

We first introduce a relationship between the finite and infinite-time ruin
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probability for a portfolio with stop-loss reinsurance, and the finite-time ruin

probability for a portfolio with no reinsurance. Then, using a classical risk

theory result, namely that the finite-time probability of ruin in a classical

no-reinsurance contract satisfies an integro-partial differential equation (see

Pervozvansky [14]), we proceed at numerically solving the equation and

thus deriving the finite-time-no-reinsurance ruin probability that leads to

the finite and infinite-time ruin probability with stop-loss reinsurance.

We can then evaluate the level of risk faced by the primary insurer when

covered by a stop-loss contract compared with the risk faced without taking

on reinsurance. The risk cover provided by the reinsurance contract depends

on the length of the contract. Remarkably, the stop-loss contract provides an

upper bound to the ruin probability for a sufficiently long contract. In our

numerical example, for a given set of parameters of the risk process, ruin

probability plateaus for contracts longer than four months, showing that

a realistic length of contract already provides such cap on the insolvency

risk faced by the primary insurer. This shows the relevance of our results

under realistic assumptions within a dynamic framework where the stop-loss

contract can be regularly redefined in a finite (and not excessively large) time

horizon.

As in any financial enterprise, the solvency of an insurer depends on its

initial capital. Hence, it is important to understand the role of the initial

capital on the solvency of the primary insurer and how it interacts with the

amount of business ceded via a stop-loss contract. To that end, we evaluate

the change in ruin probability, corresponding to different amounts of ini-

tial capital and different reinsurance retention levels. On the one hand, we

conclude that ruin probability, and hence the risk of insolvency, is far more

sensitive to the retention level for lower than higher levels of initial capital.
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On the other hand, decreasing the stop-loss retention level (or increasing

the amount of risk ceded) does not imply a linear decrease on the initial

capital required to maintain a chosen level of insolvency risk. At higher

retention levels the extra amount of initial capital necessary to compensate

for retaining extra risk is lower than at lower retention levels. This implies

that the motivation for the primary insurer to cede more risk to the rein-

surer as a way of lowering the need of capital, and associated cost, reduces

as the retention level increases. This is a convenient result in the sense that

the primary insurer has diminishing incentive to seek an unlimited stop-loss

contract. In fact, unlimited stop-loss contracts are not sold systematically

(except under certain obligatory arrangements or captive solutions) because

once the aggregate claim losses exceeds the agreed retention level the con-

tract is a catastrophe for the reinsurer. In a dynamic finite-time horizon

setting, a possible solution is for reinsurance companies to create side-car

structures, spreading the risk among third-party private investors seeking

high-yields such as hedge funds or equity firms.

The effect of stop-loss on the primary insurer solvency is then measured

by its effect on the so-called economic capital, which is the amount of capital

the insurer must hold in order to absorb losses in excess of the average loss.

The economic capital is then defined by the Value-at-Risk, typically at a

very high confidence level and for a one year time horizon. We develop a

numerical example where we determine the level of initial capital necessary

to ensure that the insurer can cope with losses up to a 99.5% Value-at-Risk

which, in our framework, corresponds to a 0.5% ruin probability. Our main

finding is that entering into a stop-loss reinsurance contract allows for a

striking reduction in the initial capital the primary insurer must hold to

keep the desired low level of insolvency risk.
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The paper is organised as follows. In the following section we introduce

the risk process model used throughout this article. In Section 3 we show

that the probability of ruin under a stop-loss reinsurance contract can be

seen as a special case of ruin probability in finite-time. In Section 4 we

propose a numerical method for approximating solutions to the finite-time

ruin probability problem. In Section 5 we apply the numerical method to

the stop-loss reinsurance model. Section 6 follows with an evaluation of the

interplay between finite-time ruin probability, stop-loss retention level and

initial capital. Section 7 illustrates the application to the economic capital

required by Solvency II and Section 8 is the conclusion.

2 The risk process model

To assess the insurance risks in a mathematical framework, we consider an

insurance portfolio as follows. Assuming (Ω,F ,P) to be a probability space,

let (N(t))t≥0 be a counting process and (Xk)k∈N a sequence of independent

and identically distributed random variables representing, respectively, the

number of claims an insurance company received up to and including time

t and the size of claim k. The classical collective risk model, introduced by

Lundberg and Cramér, defines the surplus at a given time t as

U(t) = u+ ct−
N(t)
∑

k=1

Xk, (1)

which describes the evolution of the capital of an insurance company over

time, starting with an initial capital u, receiving premiums at rate c > 0 and

paying out claims Xk as they arrive. This model captures insurer’s capital

dynamics, keeping analytical and numerical tractability, enables us to calcu-

late solvency indicators, while maintaining adequate amount of assumptions
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regarding the real world applications.

A measure of risk which takes into account the aspects of the risk process

inherent to the insurance business is ruin probability, considered over a finite

or infinite time horizon. One defines “ruin” as the event of the surplus

becoming negative for the first time. To ensure that ruin is not certain one

requires that ct > E(N(t))E(X), the so-called net profit condition, which

in case the counting process (N(t))t≥0 is Poisson with intensity λ and the

claim sizes have mean µ, becomes c > λµ, see, for example, [5]. Throughout

the paper we consider a Poisson counting process.

The probability of ruin Ψ, as a function of the initial capital u, is defined

as

Ψ(u) := P

(

inf
s≥0

U(s) < 0

∣

∣

∣

∣

U(0) = u

)

.

This is the probability that the insurer’s capital balance will become negative

for the first time. This is referred to as the infinite-time ruin probability,

or ruin probability in infinite horizon, or simply ruin probability. One may

also consider the probability of ruin in finite-time, defined as a function of

the initial capital u and the time horizon T ,

Ψ(u, T ) := P

(

inf
0≤s≤T

U(s) < 0

∣

∣

∣

∣

U(0) = u

)

,

describing the probability that ruin occurs by time T . One way of deriv-

ing the ruin probabilities in insurance portfolios is as solutions of integro-

differential equations for infinite horizon ruin, respectively integro-partial

differential equations for finite-time ruin. By specifying the claims distri-

bution, one can further reduce these equations to differential (see e.g. [2]),

respectively partial-differential equations (see e.g. Pervozvansky [14]), that

in specific instances have analytic solutions.
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3 Stop-loss reinsurance and (in)finite-time ruin prob-

ability

We consider the following stop-loss reinsurance contract. A time T (may be

infinite) is agreed between the ceding company and the reinsurer, until when

the reinsurer agrees to cover all the aggregate losses that exceed a certain

level B ≥ 0. Let S denote the aggregate loss up to and including time t.

That is

S(t) :=

N(t)
∑

k=1

Xk.

Then the amount the reinsurer pays to the ceding company, up to and

including time t, is R(t) = (S(t) − B)+, where we use the notation a+ :=

max(a, 0) for a real number a. Moreover let UR denote the surplus of the

ceding company who entered such contract with the reinsurer. Clearly

UR(t) = u+ cRt− S(t) +R(t) for t ∈ [0, T ], (2)

where cR is the adjusted premium income which equals to the original pre-

mium income from the classical model c (i.e. the premium when there is no

reinsurance in the model) minus the cost of the reinsurance contract. Let

ΨR denote the probability of ruin before time T with initial capital u under

this stop-loss reinsurance contract, that is,

ΨR(u, T ) := P

(

inf
0≤s≤T

UR(s) < 0

∣

∣

∣

∣

UR(0) = u

)

.

Let Ψ0 be the classical ruin probability with no reinsurance

Ψ0(u, T ) := P

(

inf
0≤t≤T

u+ cRt− S(t) < 0

)

.

where the premium rate is cR instead of the original c.
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Theorem 3.1. Let

t0 :=
B − u

cR

and let T ∗ := (min(t0, T ))
+. Then

ΨR(u, T ) = Ψ0(u, T
∗). (3)

Proof. By definition S(t)−R(t) = B∧S(t) is the retention part of aggregated

claims under the stop-loss reinsurance at time t > 0. Hence, for t ≥ t0,

UR(t) = u+ cRt− S(t) +R(t) ≥ B −B ∧ S(t) ≥ 0 (4)

which means ruin will not occur after t0.

Fixing T ∈ (0, t0), on the set {UR(t) ≥ 0, ∀t ∈ [0, T )}

UR(t) = u+ cRt−B ∧ S(t) ≥ 0

it is necessary that S(t) < B, thus R(t) = 0 and

UR(t) = u+ cRt− S(t) = U(t) ∀t ∈ [0, T ).

On the other hand, on the set {U(t) ≥ 0, ∀t ∈ [0, T )}

U(t) = u+ cRt− S(t) ≥ 0

for every t < T < t0. Thus S(t) < B,R(t) = 0 and

U(t) = u+ cRt− S(t) +R(t) = UR(t) ∀t ∈ [0, T ).

The identities above show that on the event of finite time survival the two

models coincide, for every T < t0.

In other words, for every T > 0

ΨR(u, T ) = ΨR(u, T ∧ t0) = Ψ0(u, T ∧ t0). (5)
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Remark 3.1. Note that in the presence of a stop-loss contract, for T =

∞, the ruin would never happen after T ∗ = t0 =
B − u

cR
, in other words

ΨR(u,∞) = ΨR(u, T
∗) = Ψ0(u, T

∗).

So far we have shown that the ruin probability of a certain type of stop-

loss reinsurance contract can be expressed in terms of the ruin probability

in finite-time for an insurer without reinsurance for a given T ∗ dependent on

T . To further explore finite-time ruin probability with stop-loss reinsurance,

we recall the partial integro-differential equation for the finite-time ruin

probability, derived by Pervozvansky [14] under very general conditions.

Here we present the result for the convenience of the reader. This will be

the basis for the finite-difference numerical scheme of Section 4.

Theorem 3.2. Let (N(t))t≥0 be a Poisson process with constant intensity

λ > 0. Let the claims (Xk)k∈N be independent and identically distributed

with cumulative distribution function F . Assume that Xk have density which

is once continuously differentiable. Let F̄ = 1−F . Then for (u, t) ∈ (0,∞)×
(0,∞)

∂Ψ(u, t)

∂t
− c

∂Ψ(u, t)

∂u
+ λΨ(u, t) = λ

∫ u

0
Ψ(u− y, t)dF (y) + λF̄ (u) (6)

with the boundary conditions

lim
u→∞

Ψ(u, t) = 0, ∀t ∈ (0,∞) and Ψ(u, 0) = 0, ∀u ∈ [0,∞).

For proof of (6) see Pervozvansky [14, Theorem 1]. Note that the first

boundary condition comes from the assumption of a positive net profit,

c > λE(X). The second one follows from the definition of Ψ.

Remark 3.2. There is an analytic solution to (6) in the particular case

when claim sizes Xk have exponential distribution with parameter β. Let

10



J(x) := I0(2
√
x) where I0(x) denotes the modified Bessel function, see e.g.

Rolski et al. [16, page 197]. Then

ψ(u, t) = 1− exp(−βu− (1 + ξ)λt) ω(βu+ ξλt, λt),

where ξ = βc/λ and

ω(z, θ) = J(θz) + θJ (1)(θz) +

∫ z

0
exp(z − ν)J(θν)dν

− 1

ξ

∫ ξθ

0
exp(ξθ − ν)J(zνξ−1)dν.

4 Finite-difference approximations of finite-time

ruin probability

4.1 Description of the numerical scheme

Let T > 0 be the greatest time for which we wish to calculate the ruin

probability in finite-time. We will use the finite-difference method to ap-

proximate solutions to the above partial integro-differential equations for

Ψ(u, t), u ∈ (0,∞), t ∈ (0, T ]. Let N ∈ N be the number of time steps used

in the approximation and let τ := T/N . This is the step-size used in the

temporal discretization. Let h > 0 denote the step-size used in the spatial

discretisation. Let g be some function defined on [0,∞)× [0, T ]. Then

δhg(u, t) :=
1

h
(g(u+ h, t)− g(u, t)) ≈ ∂g

∂u
(u, t).

and

δτg(u, t) :=
1

τ
(g(u, t+ τ)− g(u, t)) ≈ ∂g

∂t
(u, t)

Care has to be taken when approximate the integral term as f will typically

be unbounded at 0. Thus we propose three possible approximations corre-
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sponding to “left-point”, “mid-point” and “right-point” approximation:

ILh g(ih, t) :=
i−1
∑

j=0

g((i− j)h, t)f(jh)h,

IMh g(ih, t) :=
i−1
∑

j=0

1

2

(

g((i− j)h, t)f(jh) + g((i− j + 1)h, t)f((j + 1)h)
)

h,

IRh g(ih, t) :=
i−1
∑

j=0

g((i− j + 1)h, t)f((j + 1)h)h.

We see that for S ∈ {L,M,R}

ISh g(ih, t) ≈
∫ ih

0
g(ih− y)dF (y).

The last approximation lies in restricting the domain (0,∞) × (0, T ] to a

bounded domain, say (0, umax] × (0, T ]. For this we need an “artificial”

boundary condition. We use the fact that Ψ is monotonically decreasing as

a function of u and the boundary condition limu→∞Ψ(u, t) = 0 to impose an

artificial boundary condition. Let us denote by u0 the largest initial capital

for which we wish to approximate the probability of ruin in finite-time. Let

K ∈ N denote the multiple of u0 which we use to define the size of the

interval on which the computation is carried out. Thus we choose

umax := min{ih : ih ≥ Ku0, i = 0, 1, . . .}.

We will then consider the grid

Gh,τ,K := {(u, t) : u = ih, t = nτ, i = 0, 1, . . . , umax/h, n = 0, 1, . . . , N}.

We will define ΨS : Gh,τ,K → R, for S ∈ {L,M,R}, as the function that

satisfies, for i = 0, 1, . . . , umax/h− 1 and n = 0, 1, . . . , N − 1

δτΨ
S(ih, (n− 1)τ)− cδhΨ

S(ih, nτ) + λΨS(ih, nτ)

= λIhΨ
S(ih, (n− 1)τ) + λF̄ (ih)

(7)
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together with the initial and boundary condition

ψS(ih, 0) = 0, i = 0, 1, . . . umax/h,

ψS(umax, nτ) = 0, n = 0, 1, . . . N.
(8)

See Figure 1 for graphical illustration of the dependence structure of the

scheme. We can see that (7) is a semi-implicit approximation of (6) and

ψS ≈ ψ on Gh,τ ∩ [0, u0]× [0, T ].

Regarding the stability of the scheme we present the following estimate

in the energy norm.

Lemma 4.1. Let M := umax/h and let

En :=
M−1
∑

i=0

|ΨS(ih, nτ)|2.

Then there is a constant C independent of h, τ and K such that for any

n = 1, . . . , N

En ≤ C.

Proof. In (7) we multiply by ΨS(ih, n) for some n = 0, 1, . . . , N and use the

algebraic relations

(a− b)a =
1

2
[a2 − b2 + (a− b)2],

(a− b)b =
1

2
[a2 − b2 − (a− b)2].

valid for any a, b ∈ R. Hence we obtain

(1 + 2τλ)|ΨS(ih, nτ)|2 ≤ |ΨS(ih, (n− 1)τ)|2 − cτh−1[|ΨS((i+ 1)h, nτ)|2

− |ΨS(ih, nτ)|2 − |ΨS((i+ 1)h, nτ)−ΨS(ih, nτ)|2]

+ 2τλΨS(ih, nτ)(IhΨ
S(ih, (n− 1)τ) + F̄ (ih)).
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Note that |(IhΨS(ih, (n − 1)τ)|2 ≤ CEn−1. Use Young’s inequality, sum

over i = 0, . . . ,M − 1 and multiply by h > 0. Use the boundary condition

ΨS(Mh,nτ) = 0 to obtain:

(1 + 2τλ)En ≤En−1 − cτ |ΨS(0, nτ)|2 + τλ[En + CEn−1 + C]

Iterating the above estimate and noting that E0 = 0 we get

En ≤ τ

n
∑

k=1

C ≤ C.

4.2 Numerical experiments verifying convergence

We will use Remark 3.2 to obtain an analytical solution to (6). This can be

compared to numerical approximations of the solution to verify convergence.

The numerical method can then be applied for other distributions of claim

size Xk. The constants used in the numerical experiments are in Table 1.

Parameter u0 T c λ β

Value 5 5 20 5 0.5

Table 1: Constants used in the numerical experiments: T > 0 is the (finite)

time horizon, c is the premium rate, λ is the claim intensity, 1/β is the

mean claim size and u0 is the largest initial capital for which we wish to

approximate the probability of ruin in finite-time.

Figure 2 demonstrates the convergence of approximation with different

schemes S ∈ {L,M, S} as h→ 0 with other parameters fixed. One observes

that as the number of space steps increases all three methods converge.

Figures 2, 3 and 4 demonstrate convergence as h→ 0, τ → 0, umax → ∞.

When running the experiment the other parameters were kept as small (for
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Ψ

S
(u
,
0
)
=

0

Artificial b.c.: ΨS(umax, 0) = 0

0

ΨS(ih, nτ)

ΨS((i+ 1)h, nτ)

ΨS(0, (n− 1)τ)

...

ΨS(ih, (n− 1)τ)

...

ΨS(umax, (n− 1)τ)

Figure 1: Scheme dependence diagram.

h, τ) or as large (for K) as necessary to introduce no discernible error. We

note in particular that taking K = 10 (which results in umax ≈ Ku0 = 50)

results in an error of order 10−4.
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Figure 2: Convergence using different S for approximating the convolution

term. We note that for mid-point and right-point scheme the convergence

is clearly linear. For the left-point scheme it appears to be sub-linear.
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Figure 3: Convergence as τ → 0. We note that the convergence appears to

be linear.
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Figure 4: Convergence as K → ∞. Here the convergence is exponential. It

appears that K of 10 already produces errors of order 10−4 in the ruin prob-

ability and the choice of τ and h are the determining factors for producing

the required accuracy.
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4.3 Results for finite-time ruin probability Ψ(u, T )

Until now, we have analysed the stability and checked the convergence of

the numerical scheme. In this section, some by-products of our algorithm

will be introduced. One advantage of applying the finite-difference method

is that we will have the dynamics of the PDE system when we solve it.

We are not yet applying in this section the algorithm to calculate the ruin

probability under the stop-loss reinsurance setting.

Instead of solving a single setting of ruin probability Ψ(u, T ) directly,

we separate the time horizon into many small time intervals, and this is

actually providing us additional information about the ruin process with

respect to the time at least when the grid size is chosen large enough. For

each of the Ψn
i ’s we approximated inside the process until reaching the final

ΨN
I . We are also approximating how will ruin probability behave in each of

these finite-time horizons (with accuracy decreasing while n gets smaller).

The same by-product also comes when we divide the initial capital u into

segments. These by-products can be justified by the deterministic property

of the PDE system as in equation 6. If the arguments of reaching a decent

accuracy when approximating a Ψ(u, T ) via this scheme stand, then, one

can say that any Ψ(s, t) where s ∈ [0, u] and t ∈ [0, T ] can be approximated

to the same accuracy. So, in one run, a large enough grid size can be found

to approximate Ψ(s, t) with the required accuracy.

One can also study the dynamics of finite-time ruin probability more

directly by iterating our algorithm on several Ψ(s, t) where s ∈ [0, u] and

t ∈ [0, T ]. Figure 5 gives a comprehensive view of how the finite-time ruin

probability Ψ(u, T ) varies as a function of the initial capital u and time
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horizon T 1. One can observe that the finite-difference method approxima-

tion gives a ruin probability that increases as the time horizon increases and

decreases as the initial capital increases, as expected.

Figure 5: Plot of finite-time ruin probability: this is a numerical approxima-

tion showing how the initial capital and the time horizon affect the finite-

time ruin probability. Initial capital varies from 10 to 20, time horizon

ranges from 0 to 3, h = 0.005, τ = 0.01, K = 12, and other parameters are

as in Table 1.

1Note the difference between Figure 5 and Figure 7. In here, we present how time

horizon affects ruin probability which is not the same concept as how big is the retention

level of stop-loss reinsurance. Referring to the formula linking the critical time t0 and

the retention level B, we can see that the retention level is a function of time and initial

capital, since we are changing both of these parameters here, each point on this surface

represents a different retention level, which results in a different story of how stop-loss

affects ruin probability.
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We can also analyse the finite-time ruin probability under different pa-

rameter settings. By changing the initial capital u, premium rate c, Poisson

intensity λ, and claim average size 1/β separately, we can analyse the be-

haviour of the finite-time ruin probabilities as well as compare these with the

infinite-time ruin probability. As one can see from Table 2, the finite-time

ruin probabilities increase with time and converge to the infinite-time ruin

probability, in all settings we have considered. We can further confirm that

the numerical method is working as it should as the approximate ruin prob-

ability increases with claims intensity and claim average size, and decreases

when initial capital and premium rate increases.

Parameters Time horizon, T (years)

(u, c, λ, β) 0.1 0.5 1 2 4 8 Infinity

(5,20,5,0.5) 0.035165 0.099974 0.125627 0.139186 0.142946 0.143313 0.143252

(5,15,5,0.5) 0.039238 0.137707 0.195929 0.244954 0.275293 0.287726 0.289732

(5,20,7,0.5) 0.053630 0.174861 0.238538 0.288632 0.318013 0.329485 0.330657

(5,20,5,0.3) 0.095225 0.287057 0.391502 0.484876 0.557218 0.606357 0.649001

(10,20,5,0.5) 0.004292 0.020611 0.031224 0.038415 0.040771 0.041025 0.041042

(10,15,5,0.5) 0.004855 0.031306 0.058143 0.088889 0.112544 0.123639 0.125917

(10,20,7,0.5) 0.007359 0.046122 0.081174 0.117582 0.143278 0.154477 0.156191

(10,20,5,0.3) 0.027800 0.128481 0.211560 0.303877 0.386723 0.448424 0.505442

Table 2: Finite and infinite-time ruin probability under different parameter

settings. For the parameters, u is the initial capital, c is the premium rate,

λ is the claim intensity, and 1/β is the mean claim size.
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5 Finite-time ruin probability with and without

stop-loss reinsurance

A direct application of the above algorithm is to calculate the finite and

infinite-time ruin probability when stop-loss reinsurance is considered. For

simplicity, in this study we assume that the premium for the reinsurance

contract is determined by the pure risk premium principle. By definition,

the pure premium principle allocates to the reinsurer a certain proportion

of the difference between the expected claims and the retention level as

its premium, i.e α(E[S(t)] − B) where α (usually we have α ∈ (0, 1)) is

the premium rate for reinsurance. Denote by Bα the retention level of a

stop-loss reinsurance contract with premium rate α. Given the result in (3),

determining the ruin probability under stop-loss reinsurance reduces itself to

the finite-time ruin probability, i.e ΨR(u, T ) = Ψ0(u, T
∗), with T ∗ the only

parameter left unknown. But as shown in theorem 3.1, T ∗ = (min(t0, T ))
+,

with t0 =
B−u
cR

, where T is the length of the reinsurance contract.

We can visualise the effect of buying stop-loss reinsurance on the ruin

probability by plotting in Figure 6 the ruin probability for different time

horizons, with and without reinsurance. Here the stop-loss reinsurance con-

tract is T years long. One can see from the plot that, up to a certain time

horizon, the ruin probability with stop-loss reinsurance is larger than the

ruin probability without stop-loss reinsurance. This can be explained by

the costs associated with the reinsurance contract. Meanwhile, if the ceding

company has not faced ruin before this particular time horizon, it will not

face ruin probability for longer horizons, since the reinsurance is capping the

claims to be paid. This feature that we observe here is consistent with the

argument used in the proof of Theorem 3.2. Indeed, in the same figure, one
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can observe that the finite-time ruin probability will not increase for time

horizons longer than marked by the red dashed line in the plot, the moment

when the stop-loss reinsurance starts to pay claims. There is a time horizon

such that, as expected, for horizons longer than that, the finite-time ruin

probabilities are smaller when reinsurance is present.

Figure 6: Finite-time ruin probability with and without stop-loss reinsur-

ance.

6 Finite-time ruin probability, stop-loss retention

level and initial capital

Next, we study the dynamics of the ceding company’s ruin probability under

a stop-loss reinsurance contract. The 3-d graph in Figure 7 shows how

initial capital u, and stop-loss retention level B affect the finite-time ruin

probability. When the initial capital is large and the stop-loss retention level
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is small (corner further away in the plot), the ruin probability equals zero

(i.e. there is no ruin). In fact, when the stop-loss retention level B is smaller

than (or equal to) the initial capital u, we obtain from Theorem 3.1 that

T ∗ = (min(t0, T ))
+ = 0 and hence the probability of ruin Ψ(u, 0) is zero.

Then, as the retention level increases, which indicates that the reinsurer

takes fewer risks and the ceding company may face more risks itself, the

ruin probability for the ceding company increases.

We can also observe in the plot that the reduction of the initial capital

increases the ruin probability as we expected. We do not know exactly

how will ruin probability behave without accurate parameter estimates and

the exact reinsurance pricing mechanism. But in the case studied here, the

ceding company’s premium is relatively high, as a matter of fact so high, that

for longer time horizons, with the help from the reinsurance company, it will

not face ruin, so we can observe this finite-time ruin probability dynamics

in Figure 7.

Moreover, Figure 7 tells us an even more interesting story, namely how

will the initial capital compensate for the choice of stop-loss retention level,

which consequently, compensates for the cost of buying stop-loss reinsur-

ance. Telling from the colour, choosing any fixed retention level, the increase

of initial capital will drop the ruin probability, and for any fixed initial capi-

tal, the increase of retention level will boost the ruin probability up to some

point. Moreover, the curves in the initial capital versus retention level plain,

which help us tell the hight of the surface, are actually a measure of how the

initial capital compensates for the stop-loss retention level and thus ensure

the efficiency of the stop-loss reinsurance contract.

For example, for relatively low initial capitals, say the hight retention

level and low initial capital corner, the small size of initial capital requires
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a small retention level of stop-loss reinsurance to keep it in the lower ruin

probability region, i.e. the dark blue part. And this small retention level

of stop-loss reinsurance means an expensive contract, as the reinsurer takes

more risks. On the other hand, with relatively large initial capitals, the

ceding company can stay safe (i.e. small ruin probability) even with large

retention levels, which means cheaper reinsurance contracts, but more risk

for the ceding company. One sees here how initial capital and retention level

compensate for each other. In reality, it all depends on the ceding company

itself to choose between buying a more expensive reinsurance contract or

just raising more capital (rather than spending on reinsurance).

Furthermore, one can easily observe that, whenever the company targets

a certain ruin probability, as the retention level gets larger the increase on

itself will compensate less and less for the increase in the initial capital,

thus exhibiting “diminishing returns”. This indicates a low sensitivity of

ruin probability to retention level when the latter is large.

7 Stop-loss reinsurance and the primary insurer

solvency

Risk of insolvency has sustained an increase in risk regulation for the in-

surance industry over the last decades. In the United States, the National

Association of Insurance Commissioners supports the development of insur-

ance regulation by individual states and has promoted the notion of risk-

based capital for insurance companies. In Europe, the European Insurance

and Occupational Pensions Authority oversees the development of the Sol-

vency II framework. Under Solvency II insurance companies must calculate

their Solvency Capital Requirement, or Solvency II Economic Capital (EC),
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Figure 7: Plot of finite-time ruin probability with stop-loss reinsurance:

this is a numerical approximation showing how initial capital and stop-loss

retention level influence finite-time ruin probability. Initial capital varies

from 3 to 10, the retention level from 5 to 20, h = 0.005, τ = 0.01, K = 12,

and all other parameters are as in Table 1.

where all assets and liabilities should be valued on a market-consistent basis.

According to this regulatory framework the EC ensures that the probability

of insolvency over a one-year period does not surpasses 0.5%. To calcu-

late their portfolio overall capital requirement, an insurance company must

consider all the risks and their interactions. The methodology developed

in this article can be used in the calculation of the capital requirement for

a homogeneous insurance segment. According to Solvency II, the capital

requirement for the all insurance company can then be calculated using

an internal model, or a simpler standard formula where the aggregation of
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risks is done using correlation parameters. A discussion of the aggregation

properties of the two different approaches is out of the scope of this article.

From a risk measurement perspective the EC, being an estimate of the

capital necessary to keep the probability of insolvency below 5%, can be

calculated as the one-year market-value based Value-at-Risk (VaR). In our

framework, we take the initial capital corresponding to a one-year horizon

ruin probability of 0.5% as the required EC. By simulation and interpola-

tion of the results from our algorithm, we can calculate the initial capital

corresponding to a ruin probability of 0.5% with one-year time horizon. The

results are in Table 3.

In panel A we list, for different parameter values and when there is no

reinsurance contract in place, the value of the initial capital corresponding

to a 0.5% ruin probability for a time horizon ranging from about 5 weeks to

8 years. The initial capital necessary to maintain the desired level of ruin

probability increases with the average aggregate claims, and decreases when

the premium rate increases. In panel B we list, for two values of reinsurer

premium rate, the value of the initial capital corresponding to a 0.5% ruin

probability for a one year time horizon when there is a stop-loss reinsurance

contract in place. We observe that reinsurance lowers substantially the

amount of initial capital (Economic Capital) required in relation to the no-

reinsurance case. Interestingly, once there is a stop-loss reinsurance contract

in place increasing the reinsurance premium rate from α = 0.3 to α = 0.9

does not increase the required initial capital that much when compared with

the significant reduction implied by the introduction of reinsurance.
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Panel A: Without reinsurance

Parameters Time horizon, T (years)

(c, λ, β) 0.1 0.5 1 2 4 8

(20,5,0.5) 9.593921 14.188087 16.232585 17.713893 18.320151 18.405424

(15,5,0.5) 9.893007 15.643934 19.054614 22.792824 26.261153 28.565091

(20,7,0.5) 10.857631 17.401518 21.315918 25.605376 29.565199 32.094999

(20,5,0.3) 16.802917 27.698801 34.573297 40.518959 46.216685 52.393767

Panel B: With reinsurance and T = 1

Retention level, Bα

α = 0.3 1 2 4 6 8 10

(20,5,0.5) 3.532088 3.521673 3.500712 6.379115 4.432340 11.204400

(15,5,0.5) 3.699426 3.689711 3.670160 6.463373 3.168102 10.553199

(20,7,0.5) 4.997532 4.994197 4.987510 5.584031 3.922885 8.700725

(20,5,0.3) 7.370037 7.367306 7.361851 7.357099 7.292685 6.793047

α = 0.9

(20,5,0.5) 3.712315 3.683212 3.623897 6.436518 4.343473 11.204400

(15,5,0.5) 3.867475 3.840345 3.785043 6.474379 2.375872 10.553199

(20,7,0.5) 5.082380 5.072757 5.053388 5.607053 3.322549 6.186034

(20,5,0.3) 7.456775 7.448370 7.431625 7.415705 7.327712 6.533600

Table 3: Initial capital corresponding to a 0.5% ruin probability for different

parameter values of the risk process. For the parameters, c is the insurer

premium rate, λ is the claim intensity, 1/β is the mean claim size, and α is

the reinsurer premium rate.
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8 Conclusion

We employ ruin probability as a measure of risk of an insurance company

solvency. We propose a relationship between the finite and infinite-time ruin

probability for a portfolio with stop-loss reinsurance and the finite-time ruin

probability for a portfolio with no reinsurance contract. This can be found

in Theorem 3.1. According to Remark 3.1, ruin would never happen for a

time horizon longer than a certain T ∗ for a portfolio with stop-loss reinsur-

ance, which is illustrated in Figure 2. When employing aggregate stop-loss

reinsurance, we build on two novel approaches. Firstly the connection intro-

duced here between the finite and infinite-time ruin probability of a stop-loss

portfolio and the finite-time ruin probability of a classical reinsurance free

portfolio and secondly, on the adaptation of the finite-difference method

normally used for solving partial differential equations to solve the integro-

partial differential equation the finite-time ruin satisfies. With the results

at hand, a risk analysis is performed, identifying the combination of initial

capital and retention level for which ruin is no longer possible, the dimin-

ishing returns of the balancing of initial capital and retention level and, not

last, the variations on solvency for different time horizons. Analysing these

dynamics between the parameters involved proves relevant to the risk man-

agement of an insurance portfolio. The methodology presented in this article

allows to identify the level of the primary insurer capital and correspond-

ing retention level under a stop-loss contract necessary to keep a desired

low level of insolvency risk. By entering in a stop-loss contract the primary

insurer can significantly reduce the capital without increasing the level of

insolvency risk. In most cases, employing reinsurance is always better than

not in terms of ruin probabilities and solvency capital requirement.
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