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Abstract

We study the excitation of fluting perturbations in a magnetic tube by an initially imposed

kink mode. We use the ideal magnetohydrodynamic (MHD) equations in the cold-plasma

approximation. We also use the thin-tube approximation and scale the dependent and inde-

pendent variables accordingly. Then we assume that the dimensionless amplitude of the kink

mode is small and use it as an expansion parameter in the regular perturbation method. We

obtain the expression for the tube boundary perturbation in the second-order approximation.

This perturbation is a superposition of sausage and fluting perturbations.

Keywords Sun, corona · Magnetic fields · Magnetohydrodynamics · Waves · Oscillations

1. Introduction

Transverse oscillations of coronal magnetic loops were first observed by the Transition Re-

gion and Coronal Explorer (TRACE) in 1998. These observations were reported by As-

chwanden et al. (1999) and Nakariakov et al. (1999), and interpreted as fast kink standing

waves in magnetic flux tubes. After this first observation, the kink oscillations of coronal

magnetic tubes remain in the limelight of theoretical studies in solar physics. Initially, these

oscillations were studied using the simplest model of a straight homogeneous magnetic flux

tube (e.g. Ryutov and Ryutova, 1976; Edwin and Roberts, 1983). Later, more sophisticated

models taking into account such effects as the plasma density variation along and across

a tube and the presence of flows were developed (see, e.g. the review by Ruderman and

Erdélyi, 2009; Nakariakov et al., 2021).

The majority of studies on coronal-loop kink oscillations were carried out using linear

magnetohydrodynamics (MHD). Studies of nonlinear coronal loop kink oscillations are not
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numerous. Ruderman (1992) and Ruderman, Goossens, and Andries (2010) studied analyti-

cally nonlinear propagating kink waves, while Ruderman and Goossens (2014) analytically

investigated nonlinear standing kink waves. There were also a few numerical studies of

nonlinear kink oscillations (e.g. Terradas et al., 2008; Magyar, Van Doorselaere, and Marcu,

2015; Magyar and Van Doorselaere, 2016).

In a meeting of an international group led by G. Verth and R. Morton at the International

Space Science Institute (ISSI) Terradas, Magyar, and Van Doorsselaere (2018) presented the

results of a numerical study of nonlinear kink oscillations of a magnetic tube. In particular,

they reported the appearance of fluting perturbation of the tube boundary excited by an

initially imposed kink oscillation. The period of the fluting perturbation was equal to half

the period of the kink oscillation, and its amplitude took its maximum at the centre of the

magnetic tube. Some of the meeting participants insisted that the fluting perturbation must

be the first harmonic of the first fluting mode. The amplitude of this harmonic is zero at the

tube centre.

Ruderman, Goossens, and Andries (2010) and Ruderman and Goossens (2014) predicted

the excitation of the fluting perturbation with the frequency equal to double the frequency

of the kink mode. They also predicted that the amplitude of the fluting perturbation would

be proportional to the amplitude of the kink mode squared. However, their results cannot be

directly compared with those reported by Terradas, Magyar, and Van Doorsselaere (2018)

because Ruderman, Goossens, and Andries (2010) studied propagating waves, and Ruder-

man and Goossens (2014) concentrated on the effect of nonlinearity on the kink oscillations

of a magnetic tube strongly stratified in the longitudinal direction.

The results reported by Terradas, Magyar, and Van Doorsselaere (2018) motivated Rud-

erman (2017) to study the problem of the excitation of a fluting perturbation by an initially

imposed kink mode. The results that he obtained coincide qualitatively with those reported

by Terradas, Magyar, and Van Doorsselaere (2018). In particular, he obtained that the funda-

mental kink mode generates the first fluting mode with double the frequency and fundamen-

tal in the axial direction. In the interpretation of these results, an important role is played by

the fact that the equilibrium used by both Terradas, Magyar, and Van Doorsselaere (2018)

and Ruderman (2017) is mirror symmetric in the axial direction.

One particular property of magnetic flux tubes that can affect the kink waves is the mag-

netic twist. The effect of magnetic twist on standing kink oscillations in solar magnetic flux

tubes was studied by Ruderman (2007), Karami and Bahari (2012), Terradas and Goossens

(2012), and Ruderman and Terradas (2015). An important property of twist is that it destroys

the mirror symmetry of the magnetic tube in the axial direction. Hence, we can expect that

the excitation of fluting modes by kink oscillations in a twisted tube is qualitatively different

from that in a straight tube. This article aims to study analytically the effect of magnetic

twist on the excitation of fluting modes by kink oscillations. The article is organised as fol-

lows. In the next section, we formulate the problem and write down the governing equations

and boundary conditions. In Section 3 we use the regular perturbation method to study the

excitation of fluting perturbations in a twisted tube. Section 4 contains the summary of the

results obtained and our conclusions.

2. Problem Formulation and Governing Equations

We use the cold-plasma approximation. The equilibrium density [ρ0] is given by

ρ0 =

{
ρi, r < R,

ρe, r > R,
(1)
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where ρi and ρe are constant, and ρe < ρi. Outside the tube, the equilibrium magnetic field

[B] is given by B = B0ez, where ez is the unit vector in cylindrical coordinates (r,φ, z)

z-direction. Inside the tube, the equilibrium magnetic field is twisted. Hence, the azimuthal

component of the equilibrium magnetic field is defined by

Bφ =

{
Ar, r < R,

0, r > R,
(2)

where A is a constant. The equilibrium magnetic field satisfies the equation

dB2

dr
= −

2B2
φ

r
. (3)

It follows from Equations 2 and 3 and the condition that the magnetic-field magnitude must

be continuous at the tube boundary that

B2 = B2
0 + A2(R2 − r2). (4)

The perturbations are governed by the ideal MHD equations

ρ

(
∂v

∂t
+ (v · ∇)v

)
=

1

μ0

[∇ × (B + b)] × (B + b), (5)

∂b

∂t
= ∇ × [v × (B + b)], ∇ · v = 0, (6)

where ρ is the density, v is the plasma velocity, b is the magnetic-field perturbation, and

μ0 is the magnetic permeability of free space. The perturbations must satisfy the frozen-in

conditions at the tube footpoints,

v⊥ = 0 at z = ±L/2, (7)

where L is the tube length and v⊥ = v − B−2B(v · B). We also impose the boundary condi-

tions at the tube boundary,

v · er =
∂η

∂t
+ v · ∇η, [[B2 + 2b · B + |b|2]] = 0 at r = R + η(t, φ, z), (8)

where η(t, φ, z) is the tube boundary perturbation, er is the unit vector in the radial direction,

and the double brackets indicate the jump of a quantity across the tube boundary. For an

arbitrary function [f ] this jump is defined as

[[f ]] = lim
ε→+0

[f (R + η + ε) − f (R + η − ε)].

Below we assume that the tube is thin: R/L = ǫ ≪ 1. In accordance with this assumption

we introduce the stretching variable Z = ǫz. The characteristic Alfvénic time related to the

tube radius is R/VA, where VA = B(μ0ρ0)
−1/2 is the Alfvén speed. It can be the Alfvén

speed either inside or outside the tube, because we assume that the density ratio [ρi/ρe] is

not large, implying that the two Alfvén speeds are of the same order. On the other hand,

the oscillation period is of the order of L/VA = ǫ−1R/VA. This inspires us to introduce the

“slow” time T = ǫt . Below we assume that the maximum tube axis displacement is of the
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order of aR, where a ≪ 1. The quantity a can be considered as the dimensionless amplitude

of the tube’s kink oscillation. Later, we assume that, although a is small, a ≫ ǫ. Finally, we

assume that the twist is weak and write Bφ = ǫB̃φ and A = ǫÃ, where B̃φ is of the order of

B0 and Ã is of the order of B0/R. Now it follows from Equation 4 that

B = B0 +O(ǫ2), Bz = B0 +O(ǫ2). (9)

In accordance with the definition of a we have η/R = O(a). We now obtain similar

estimates for other variables. Although we use nonlinear equations, the nonlinear correction

to the linear solution will be small. Then we can use the estimates for the order of magnitude

of perturbation of various quantities obtained using the linear theory. It follows that the ratio

of the radial and azimuthal components of the velocity to VA is of the order of ǫa, and

the same is true for the ratio of the radial and azimuthal components of the magnetic field

perturbation to B . On the other hand, the ratio of the z-component of the velocity to VA, and

the ratio of the z-component of the magnetic field perturbation to B are both of the order of

ǫ2a. In accordance with these estimates, we introduce the scaled components of the velocity

and magnetic-field perturbation and write

v = (ǫvr , ǫvφ, ǫ2vz), b = (ǫbr , ǫbφ, ǫ2bz). (10)

In addition, ρ −ρ0 = O(ǫ2a). We now substitute these expressions in Equations 5 and 6 and

write the equations obtained in components, keeping only the leading terms with respect to

ǫ. As a result we obtain

∂vr

∂T
+ vr

∂vr

∂r
+

vφ

r

∂vr

∂φ
−

v2
φ

r
= −

1

ρ0

∂P

∂r

+
1

μ0ρ0

(
B0

∂br

∂Z
+

B̃φ

r

∂br

∂φ
+ br

∂br

∂r
+

bφ

r

∂br

∂φ
−

2B̃φbφ

r
−

b2
φ

r

)
, (11)

∂vφ

∂T
+ vr

∂vφ

∂r
+

vφ

r

∂vφ

∂φ
+

vrvφ

r
= −

1

rρ0

∂P

∂φ
+

1

μ0ρ0

(
B0

∂bφ

∂Z

+
B̃φ

r

∂bφ

∂φ
+ br

∂bφ

∂r
+

bφ

r

∂bφ

∂φ
+

2B̃φbr

r
+

brbφ

r

)
, (12)

∂br

∂T
= B0

∂vr

∂Z
+

B̃φ

r

∂vr

∂φ
+

1

r

∂

∂φ
(vrbφ − vφbr), (13)

∂bφ

∂T
= B0

∂vφ

∂Z
−

∂

∂r
(vr B̃φ + vrbφ − vφbr), (14)

∂(rvr)

∂r
+

∂vφ

∂φ
= 0, (15)

where

P =
1

2μ0

(
2B̃φbφ + 2B0bz + b2

r + b2
φ

)
(16)

is the scaled perturbation of the total pressure. We note that although there is no equation

for P , the system of Equations 11 – 15 is closed. The boundary conditions take the form

vr = vφ = 0 at Z = ±R/2, (17)
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vr =
∂η

∂T
+

vφ

r

∂η

∂φ
, at r = R + η, (18)

Pi −
Ã2

2μ0

(
2Rη + η2

)
= Pe, at r = R + η, (19)

where the indices “i” and “e” indicate that a quantity is calculated inside and outside the

tube, respectively. When deriving Equations 17 and 19, we took into account that ǫL = R

and used Equations 4 and 9.

An important property of this system of equations is that it does not contain vz. What

is also worth noting is that the z-component of the mass conservation equation reduces to

Equation 15, which shows that the motion is incompressible in the leading order approxi-

mation with respect to ǫ. It is remarkable that although we use the linearised ideal MHD

equations for cold plasmas, Equation 15 describes an incompressible motion. It would be

the same even if we use the equations with finite plasma pressure. This is an intrinsic prop-

erty of kink and fluting modes that the plasma motion is incompressible in the thin tube

approximation. The contribution of compressibility in Equation 15 would be of the oder of

ǫ2. This contribution is neglected since we only keep the terms of the leading-order with

respect to ǫ.

The system of Equations 11 – 15 with the boundary conditions in Equations 17 – 19 is

used in the next section to study the generation of fluting perturbations by a kink mode.

3. Generation of Fluting Perturbations

We use the regular perturbation method and look for the solution to the system of Equa-

tions 11 – 15 in the form of expansions with respect to the small dimensionless wave ampli-

tude a. We use the power series expansion

f = af1 + a2f2 + · · · , (20)

where f is any of the dependent variables. We will specify a later. We substitute the ex-

pansions of all dependent variables in Equations 11 – 15 and the boundary conditions in

Equations 13 and 14, and collect the terms of the same order with respect to a.

3.1. The First-Order Approximation

In the first-order approximation we recover the results of the linear theory.

3.1.1. Equations and Boundary Conditions

We collect the terms of the order of a. As a result we obtain

∂vr1

∂T
=

1

μ0ρ0

(
B0

∂br1

∂Z
+

B̃φ

r

∂br1

∂φ
−

2B̃φbφ1

r

)
−

1

ρ0

∂P1

∂r
, (21)

∂vφ1

∂T
=

1

μ0ρ0

(
B0

∂bφ1

∂Z
+

B̃φ

r

∂bφ1

∂φ
+

2B̃φbr1

r

)
−

1

rρ0

∂P1

∂φ
, (22)

∂br1

∂T
= B0

∂vr1

∂Z
+

B̃φ

r

∂vr1

∂φ
, (23)
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∂bφ1

∂T
= B0

∂vφ1

∂Z
+

B̃φ

r

∂vφ1

∂φ
, (24)

∂(rvr1)

∂r
+

∂vφ1

∂φ
= 0. (25)

When deriving Equation 24 we used Equations 2 and 25. In this order approximation, the

boundary conditions in Equations 17 – 19 reduce to

vr1 = vφ1 = 0 at Z = ±R/2, (26)

vr1 =
∂η1

∂T
, Pi1 −

Ã2

μ0

Rη1 = Pe1 at r = R. (27)

Eliminating the magnetic-field perturbation, we transform Equations 21 and 22 into

∂2vr1

∂T 2
− V 2

A

∂2vr1

∂Z2
−

2B0B̃φ

rμ0ρ0

∂

∂Z

(
∂vr1

∂φ
− vφ1

)

−
B̃2

φ

r2μ0ρ0

(
∂2vr1

∂φ2
− 2

∂vφ1

∂φ

)
= −

1

ρ0

∂2P1

∂r∂T
, (28)

∂2vφ1

∂T 2
− V 2

A

∂2vφ1

∂Z2
−

2B0B̃φ

rμ0ρ0

∂

∂Z

(
∂vφ1

∂φ
+ vr1

)

−
B̃2

φ

r2μ0ρ0

∂

∂φ

(
∂vφ1

∂φ
+ 2vr1

)
= −

1

rρ0

∂2P1

∂φ∂T
. (29)

3.1.2. Solutions to Equations of the First-Order Approximation

Now we differentiate Equation 28 with respect to φ, multiply Equation 29 by r and differ-

entiate it with respect to r , and then subtract the second equation from the first one and use

Equation 25. As a result we obtain

∂2F

∂T 2
− V 2

A

∂2F

∂Z2
−

2B0B̃φ

rμ0ρ0

∂2F

∂φ∂Z
−

B̃2
φ

r2μ0ρ0

∂2F

∂φ2
= 0, (30)

where

F =
∂vr1

∂φ
−

∂(rvφ1)

∂r
. (31)

We assume that perturbations start at the initial time t = 0. It follows from Equation 26 that

F = 0 at Z = ±R/2. Taking this into account, we can expand F in the Fourier series

F =

∞∑

m=−∞

∞∑

n=1

eimφ

(
F c

mn(T ) cos
(2n − 1)πZ

R
+ F s

mn(T ) sin
2πnZ

R

)
, (32)

where m �= 0 in this expression. Substituting Equation 32 in Equation 30, we obtain, in

particular, from the third term in this equation that

m(2k − 1)π

R
F c

mn(T ) sin
(2n − 1)πZ

R
= 0,

2mπn

R
F s

mn(T ) cos
2πnZ

R
= 0. (33)
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This implies that F c
mn(T ) = F s

mn(T ) = 0, and consequently F = 0. Now we eliminate vφ1

from equation F = 0 and Equation 25 to obtain

∂

∂r
r
∂(rvr1)

∂r
+

∂2vr1

∂φ2
= 0. (34)

It is worth noting that this is an equation with separable variables. As a result, obtaining

the solution to this equation is straightforward. We assume that at the initial time the loop

displacement is zero, while the displacement velocity is finite. After that, the loop oscillates

harmonically. In accordance with this we take vr1 to be proportional to cos(	T ). Then we

look for the solution to this equation in the form

vr1 = f (r)ṽr1(Z) cos(	T ) cosφ. (35)

Substituting this expression in Equation 34 yields

d

dr
r
d(rf )

∂r
− f = 0. (36)

Taking into account that vr1 must be regular at r = 0 and decay as r → ∞, and in accordance

with the first boundary condition in Equation 27 vr1 must be continuous at r = R, we obtain

f (r) =

{
1, r < R,

(R/r)2, r > R.
(37)

Now, it follows from the first boundary condition in Equations 27 that

η1 = η̃1(Z) sin(	T ) cosφ, η̃1(Z) = 	−1ṽr1(Z). (38)

Using Equations 25, 35, and 38 yields

vφ1 = g(r)η̃1(Z)	 cos(	T ) sinφ, (39)

where

g(r) =

{
−1, r < R,

(R/r)2, r > R.
(40)

Now, substituting Equations 35 and 39 in Equation 29, we obtain with the aid of Equation 38

∂2P1

∂φ∂T
= rρ0	 cos(	T ) sinφ

[
g(r)

(
	2η̃1 + V 2

A

d2η̃1

dZ2

)
−

B̃2
φ η̃1

r2μ0ρ0

)]
. (41)

It follows from this equation that

P1 = rρ0 sin(	T ) cosφ

[
B̃2

φ η̃1

r2μ0ρ0

− g(r)

(
	2η̃1 + V 2

A

d2η̃1

dZ2

)]
. (42)

Using Equations 38 and 42 we obtain from the second boundary condition in Equation 27

d2η̃1

dZ2
+

	2

C2
k

η̃1 = 0, C2
k =

2B2
0

μ0(ρi + ρe)
. (43)
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Ck is the phase speed of kink waves in the thin tube approximation. It is remarkable that

in the thin tube approximation the phase speeds of all fluting modes are also equal to Ck.

Hence, in a thin tube, the kink mode and all fluting modes are in exact resonance. Solving

this equation and using Equation 26 yields

η̃1 = R cos
πZ

R
, 	 =

πCk

R
, (44)

where we now define a as the maximum displacement of the tube axis to the tube radius.

Using Equations 23, 24, 35, 38, 39, and 42, we obtain the expressions for all variables of the

first-order approximation:

η1 = R sin(	T ) cosφ cos(πZ/R),

vr1 = R	f (r) cos(	T ) cosφ cos(πZ/R),

vφ1 = R	g(r) cos(	T ) sinφ cos(πZ/R),

br1 = −f (r) sin(	T )[πB0 cosφ sin(πZ/R) + (RB̃φ/r) sinφ cos(πZ/R)],

bφ1 = −g(r) sin(	T )[πB0 sinφ sin(πZ/R) − (RB̃φ/r) cosφ cos(πZ/R)],

P1 = rRf (r)

(
	2 ρi − ρe

2
+

B̃2
φ

r2μ0

)
sin(	T ) cosφ cos(πZ/R).

(45)

We introduce auxiliary Cartesian coordinates x and y related to the cylindrical coordinates

by x = r cosφ and y = r sinφ. Then we obtain that the x- and y-component of the velocity

inside the tube are given by

vx1 = vr1 cosφ − vφ1 sinφ = R	f (r) cos(	T ) cos(πZ/R), (46)

vy1 = vr1 sinφ + vφ1 cosφ = 0. (47)

We see that Equation 45 describes an oscillation linearly polarised in the x-direction.

3.2. The Second-Order Approximation

In this section we aim to obtain the expression for the nonlinear correction to the tube bound-

ary displacement η2.

3.2.1. Equations and Boundary Conditions

We collect terms of the order of a2 in Equations 7 – 11 and the boundary conditions Equa-

tions 13 and 14. This yields

∂vr2

∂T
+

1

ρ 0

∂P2

∂r
−

1

μ0ρ0

(
B0

∂br2

∂Z
+

B̃φ

r

∂br2

∂φ
−

2B̃φbφ2

r

)
= −vr1

∂vr1

∂r

−
vφ1

r

∂vr1

∂φ
+

v2
φ1

r
+

1

μ0ρ0

(
br1

∂br1

∂r
+

bφ1

r

∂br1

∂φ
−

b2
φ1

r

)
, (48)

∂vφ2

∂T
+

1

ρ0r

∂P2

∂φ
−

1

μ0ρ0

(
B0

∂bφ2

∂Z
+

B̃φ

r

∂bφ2

∂φ
+

2B̃φbr2

r

)
= −vr1

∂vφ1

∂r
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−
vφ1

r

∂vφ1

∂φ
−

vr1vφ1

r
+

1

μ0ρ0

(
br1

∂bφ1

∂r
+

bφ1

r

∂bφ1

∂φ
+

br1bφ1

r

)
, (49)

∂br2

∂T
− B0

∂vr2

∂Z
−

B̃φ

r

∂vr2

∂φ
=

1

r

∂

∂φ
(vr1bφ1 − vφ1br1), (50)

∂bφ2

∂T
− B0

∂vφ2

∂Z
−

B̃φ

r

∂vφ2

∂φ
= −

∂

∂r
(vr1bφ1 − vφ1br1), (51)

∂(rvr2)

∂r
+

∂vφ2

∂φ
= 0, (52)

vr2 = vφ2 = 0 at Z = ±R/2, (53)

vr2 −
∂η2

∂T
=

vφ1

R

∂η1

∂φ
− η1

∂vr1

∂r
, at r = R, (54)

Pi2 − Pe2 −
Ã2

μ0

Rη2 =

(
∂Pe1

∂r
−

∂Pi1

∂r

)
η1 +

Ã2

2μ0

η2
1, at r = R. (55)

Using Equations 44 and 45 we reduce Equations 48 – 51, 54, and 55 to

∂vr2

∂T
+

1

ρ 0

∂P2

∂r
−

1

μ0ρ0

(
B0

∂br2

∂Z
+

B̃φ

r

∂br2

∂φ
−

2B̃φbφ2

r

)
=

π2R2[f (r) + g(r)]

r3

×
[
C2

k cos2(	T ) cos2(πZ/R) − V 2
A sin2(	T ) sin2(πZ/R)

]
, (56)

∂vφ2

∂T
+

1

ρ0r

∂P2

∂φ
−

1

μ0ρ0

(
B0

∂bφ2

∂Z
+

B̃φ

r

∂bφ2

∂φ
+

2B̃φbr2

r

)
= 0, (57)

∂br2

∂T
− B0

∂vr2

∂Z
−

B̃φ

r

∂vr2

∂φ
= 0, (58)

∂bφ2

∂T
− B0

∂vφ2

∂Z
−

B̃φ

r

∂vφ2

∂φ
= 0, (59)

vr2 −
∂η2

∂T
=

	R

4
{f (r) + [f (r) + 2g(r)] cos(2φ)}

× sin(2	T ) cos2(πZ/R) at r = R, (60)

Pi2 − Pe2 −
Ã2

μ0

Rη2 = −R2

(
	2(ρi − ρe) +

Ã2

2μ0

)

× sin2(	T ) cos2 φ cos2(πZ/R), at r = R. (61)

Eliminating br2 and bφ2 in Equations 56 – 59 yields

∂2vr2

∂T 2
+

1

ρ0

∂2P2

∂r∂T
− V 2

A

∂2vr2

∂Z2
−

2B0B̃φ

rμ0ρ0

∂

∂Z

(
∂vr2

∂φ
− vφ2

)

−
B̃2

φ

r2μ0ρ0

∂

∂φ

(
∂vr2

∂φ
− 2vφ2

)
= −

π2	R2[f (r) + g(r)]

r3
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×
[
C2

k cos2(πZ/R) + V 2
A sin2(πZ/R)

]
sin(2	T ), (62)

∂2vφ2

∂T 2
− V 2

A

∂2vφ2

∂Z2
−

2B0B̃φ

rμ0ρ0

∂

∂Z

(
∂vφ2

∂φ
+ vr2

)

−
B̃2

φ

r2μ0ρ0

∂

∂φ

(
∂vφ2

∂φ
+ 2vr2

)
+

1

rρ0

∂2P2

∂φ∂T
= 0. (63)

3.2.2. Derivation of Governing Equation for Amplitudes of Kink and Fluting Modes

We eliminate P2 from Equations 62 and 63. To do this, we differentiate Equation 62 with

respect to φ, then multiply Equation 63 by r and differentiate the result with respect to r ,

and, finally, subtract the second equation from the first one. As a result, we obtain the same

Equation 30, but with F2 substituted for F , where F2 is obtained from the expression for

F by substituting vr2 and vφ2 for vr1 and vφ1. Then, in the same way as in the previous

subsection we show that F2 = 0. Using Equation 52 to eliminate vφ1 from equation F2 = 0,

we obtain

∂

∂r
r
∂(rvr2)

∂r
+

∂2vr2

∂φ2
= 0. (64)

The general solution to this equation satisfying the condition that is regular at r = 0 and

decay as r → ∞ is

vr2 =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑

m=1

(r/R)m−1
[
ac

m(T ,Z) cos(mφ) + as
m(T ,Z) sin(mφ)

]
, r < R,

∞∑

m=1

(R/r)m+1
[
qc

m(T ,Z) cos(mφ) + qs
m(T ,Z) sin(mφ)

]
, r > R,

(65)

where ac,s
m (T ,Z) and qc,s

m (T ,Z) are arbitrary functions. It follows from Equation 60 that

vr2

∣∣
r=R+0

− vr2

∣∣
r=R−0

= 	R sin(2	T ) cos(2φ) cos2(πZ/R), (66)

where the subscripts r = R − 0 and r = R + 0 indicate that a quantity is calculated as r

tends to R from the left and the right, respectively. It follows from Equations 65 and 66 that

qs
2(T ,Z) = as

2(T ,Z), qc,s
m (T ,Z) = ac,s

m (T ,Z), m = 1,3,4, . . . , (67)

qc
2(T ,Z) − ac

2(T ,Z) = 	R sin(2	T ) cos2(πZ/R). (68)

Using Equations 52 and 65, we obtain

vφ2 =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑

m=1

(r/R)m−1
[
as

m(T ,Z) cos(mφ) − ac
m(T ,Z) sin(mφ)

]
, r < R,

∞∑

m=1

(R/r)m+1
[
qc

m(T ,Z) sin(mφ) − qs
m(T ,Z) cos(mφ)

]
, r > R.

(69)
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Substituting Equations 65 and 69 in Equation 63 and integrating the obtained equation with

respect to φ yields

∂Pi2

∂T
= ρiR

∞∑

m=1

(
r

R

)m[(
−

1

m

∂2ac
m

∂T 2
+

V 2
Ai

m

∂2ac
m

∂Z2
+

2(m − 1)χV 2
Ai

mR

∂as
m

∂Z

−
(m − 2)χ2V 2

Aia
c
m

R2

)
cos(mφ) −

(
1

m

∂2as
m

∂T 2
−

V 2
Ai

m

∂2as
m

∂Z2

+
2(m − 1)χV 2

Ai

mR

∂ac
m

∂Z
+

(m − 2)χ2V 2
Aia

s
m

R2

)
sin(mφ)

]
+

∂Pi0

∂T
, (70)

∂Pe2

∂T
= ρeR

∞∑

m=1

1

m

(
R

r

)m[(
∂2qc

m

∂T 2
− V 2

Ae

∂2qc
m

∂Z2

)
cos(mφ)

+

(
∂2qs

m

∂T 2
− V 2

Ae

∂2qs
m

∂Z2

)
sin(mφ)

]
+

∂Pe0

∂T
, (71)

where Pi0(r, T ,Z) and Pe0(r, T ,Z) are arbitrary functions, and

χ =
RÃ

B0

. (72)

We note that the number of turns of a magnetic-field line inside the tube over the tube

length is χ/2π . Substituting Equations 70 and 71 in Equation 62, we can show that, in fact,

∂Pi0/∂T is independent of r , and obtain the expression for ∂Pe0/∂T . However, we do not

do this because these results are not used below.

Differentiating Equation 61 with respect to T and using Equation 60, we obtain

∂Pi2

∂T
−

∂Pe2

∂T
−

χ2ρ0V
2

Avri2

R
= −	

[
π2C2

k (ρi − ρe) cos2 φ +
1

2
χ2ρ0V

2
A

]

× sin(2	T ) cos2(πZ/R) at r = R. (73)

We recall that ρiV
2

Ai = ρeV
2

Ae. Using Equations 65, 67, 68, 70, and 71, we obtain from Equa-

tion 73

∂Pi0

∂T
−

∂Pe0

∂T
= −

	

2

[
π2C2

k (ρi − ρe) + χ2ρ0V
2

A

]
sin(2	T ) cos2(πZ/R), (74)

∂2ac,s
m

∂T 2
− C2

k

∂2ac,s
m

∂Z2
+

(m − 1)χC2
k

R

(
mχac,s

m

2R
∓

∂as,c
m

∂Z

)
= 0, m = 1,3,4, . . . (75)

∂2ac
2

∂T 2
− C2

k

∂2ac
2

∂Z2
−

χC2
k

R

(
∂as

2

∂Z
−

χac
2

R

)

=
π2	C2

k

2R
sin(2	T )

(
ρi + 3ρe

ρi + ρe

−
ρi − ρe

ρi + ρe

cos
2πZ

R

)
, (76)

∂2as
2

∂T 2
− C2

k

∂2as
2

∂Z2
+

χC2
k

R

(
∂ac

2

∂Z
+

χas
2

R

)
= 0, (77)
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where the upper and lower signs in Equation 75 correspond to the superscripts “c” and “s”,

respectively. Equations 74 – 77 must be supplemented with the boundary conditions

ac,s
m = 0 at Z = ±R/2. (78)

3.2.3. Kink and Higher Fluting Modes

In this section we show that we can disregard the nonlinear correction to the kink mode

while the higher fluting modes are not driven. First, we take m = 1 in Equation 75 to obtain

∂2a
c,s
1

∂T 2
− C2

k

∂2a
c,s
1

∂Z2
= 0. (79)

We look for the solution to this equation satisfying the boundary conditions in Equation 78,

corresponding to the fundamental mode. As a result we obtain

a
c,s
1 = ā

c,s
1 sin(	(T + T0)) cos(πZ/R), (80)

where ā
c,s
1 and T0 are constants. This solution corresponds to the fundamental mode of kink

oscillations, linearly polarised in the direction constituting the angle φ0 = arctan(ās
1/ā

c
1)

with the x-axis. Then the superposition of the two linearly polarised oscillations, one with

the amplitude proportional to a, and the other with the amplitude proportional to a2, will be

again a linearly polarised oscillation with the amplitude proportional to a. We impose the

condition that the angle φ is measured from the direction of the oscillation polarisation and

the amplitude of the radial velocity is exactly equal to aR	. Then we obtain that ac
1 = as

1 =

0.

Next, we take m ≥ 3 in Equation 75. Multiplying this equation with the second super-

script by i and adding to this equation with the first superscript yields

∂2am

∂T 2
− C2

k

∂2am

∂Z2
+

(m − 1)χC2
k

R

(
mχam

2R
+ i

∂am

∂Z

)
= 0, (81)

where am = ac
m + ias

m. We look for solutions to this equation proportional to e−i̟T . Then

Equation 81 reduces to

C2
k

d2am

dZ2
−

i(m − 1)χC2
k

R

dam

dZ
+

(
̟ 2 −

m(m − 1)χ2C2
k

2R2

)
am = 0. (82)

The solution to this equation must satisfy the boundary conditions

am = 0 at Z = ±R/2. (83)

The solution to Equation 82 is

am = e−iθmZ
(
H+eiκmZ + H−e−iκmZ

)
, (84)

where H+ and H− are constants, and

θm = −
(m − 1)χ

2R
, κm =

√
̟ 2

C2
k

−
(m2 − 1)χ2

4R2
. (85)
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Substituting Equation 84 in the boundary conditions Equation 83 yields

H+eiκmR/2 + H−e−iκmR/2, H+e−iκmR/2 + H−eiκmR/2 = 0. (86)

This system of linear homogeneous algebraic equations with respect to H+ and H− has non-

trivial solutions only when its determinant is zero. This condition is written as e2iκmR = 1,

which gives

̟ 2 =
C2

k

R2

[
π2n2 +

χ2(m2 − 1)

4

]
, (87)

where n = 1 corresponds to the fundamental mode with respect to Z and n > 1 to overtones.

The expression for the frequency of the fundamental fluting modes given by Equation 87

with n = 1 was previously obtained by Ruderman (2007).

3.2.4. Driving the Sausage and First Fluting Mode

Finally, we consider the driving of the first fluting mode by the kink perturbation. We will

see that simultaneously the sausage mode is also driven. We multiply Equation 77 by i, add

the result to Equation 76, and introduce

a2 = (ac
2 + ias

2) exp(−iχZ/2R) (88)

to obtain

∂2a2

∂T 2
− C2

k

∂2a2

∂Z2
+

3χ2C2
ka2

4R2

=
π3C3

k

2R2
sin(2	T ) exp

(
−

iχZ

2R

)(
ρi + 3ρe

ρi + ρe

−
ρi − ρe

ρi + ρe

cos
2πZ

R

)
. (89)

We assume that at T = 0 all variables of the second-order approximation are zero. In partic-

ular, this implies that vr2 = 0 at T = 0. It also follows from Equation 56 that ∂vr2/∂T = 0 at

T = 0 for r ≤ R (but not for r > R). Then, using Equation 65 we obtain that a2 must satisfy

the initial conditions

a2 =
∂a2

∂T
= 0 at T = 0. (90)

We look for the solution to Equation 89 satisfying the boundary conditions in Equation 83

with m = 2 and the initial conditions Equation 90, as the sum of a particular solution and

the solution to the homogeneous counterpart of Equation 89,

a2 = a2p + a2h. (91)

We look for a particular solution in the form ã2p(Z) sin(2	T ). Then we obtain

d2ã2p

dZ2
+

16π2 − 3χ2

4R2
ã2p

= −
π3Ck

2R2
exp

(
−

iχZ

2R

)(
ρi + 3ρe

ρi + ρe

−
ρi − ρe

ρi + ρe

cos
2πZ

R

)
. (92)
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The general solution to this equation is

ã2p = −
π3Ck

2(4π2 − χ2)
exp

(
−

iχZ

2R

)[
ρi + 3ρe

ρi + ρe

−
ρi − ρe

ρi + ρe

(
cos

2πZ

R

+
2π i

χ
sin

2πZ

R

)]
+ A1 cos

2�Z

R
+ A2 sin

2�Z

R
, (93)

where A1 and A2 are arbitrary constants and

� =
1

4

√
16π2 − 3χ2. (94)

Determining them from the condition that ã2p = 0 at r = ±R/2, we eventually arrive at

a2p = −
π3Ck sin(2	T )

4π2 − χ2

{
1

2
exp

(
−

iχZ

2R

)[
ρi + 3ρe

ρi + ρe

−
ρi − ρe

ρi + ρe

(
cos

2πZ

R

+
2π i

χ
sin

2πZ

R

)]
−

cos(χ/4)

cos�
cos

2�Z

R
+

i sin(χ/4)

sin�
sin

2�Z

R

}
. (95)

It follows from Equation 90, 91, and 95 that a2h must satisfy the following initial conditions

at T = 0:

a2h = 0, (96)

∂a2h

∂T
=

2π4C2
k

R(4π2 − χ2)

{
1

2
exp

(
−

iχZ

2R

)[
ρi + 3ρe

ρi + ρe

−
ρi − ρe

ρi + ρe

(
cos

2πZ

R

+
2π i

χ
sin

2πZ

R

)]
−

cos(χ/4)

cos�
cos

2�Z

R
+

i sin(χ/4)

sin�
sin

2�Z

R

}
. (97)

We look for the expression for a2h in the form

a2h = Ck

∞∑

n=1

(
U c

n(T ) cos
(2n − 1)πZ

R
+ iU s

n(T ) sin
2πnZ

R

)
. (98)

Substituting this expression in the homogeneous counterpart of Equation 89 we obtain the

system of equations

d2U c
n

dT 2
+ (λc

n)
2U c

n = 0, (99)

d2U s
n

dT 2
+ (λs

n)
2U s

n = 0, (100)

where

λc
n =

Ck

2R

√
4π2(2n − 1)2 + 3χ2, λs

n =
Ck

2R

√
16π2n2 + 3χ2. (101)

Using Equation 96, 97, and 120 – 123 from Appendix A, we obtain that U c
n and U s

n must

satisfy the following initial conditions:

U c
n = U s

n = 0,
dU c

n

dT
=

CkW
c
n

R
,

dU s
n

dT
=

CkW
s
n

R
at T = 0, (102)
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where

W c
n =

16π5(−1)n+1

4π2 − χ2
cos

χ

4

[
(ρi + 3ρe)(2n − 1)

(ρi + ρe)[4π2(2n − 1)2 − χ2]

+
ρi − ρe

ρi + ρe

(
n + 1

4π2(2n + 1)2 − χ2
+

n − 2

4π2(2n − 3)2 − χ2

)

−
4(2n − 1)

4π2(2n + 1)(2n − 3) + 3χ2

]
, (103)

W s
n =

16π5(−1)n

4π2 − χ2
sin

χ

4

[
2n(ρi + 3ρe)

(ρi + ρe)[16π2n2 − χ2]
+

ρi − ρe

2(ρi + ρe)

×

(
2n + 3

16π2(n + 1)2 − χ2
+

2n − 3

16π2(n − 1)2 − χ2

)
−

4n

16π2(n2 − 1) + 3χ2

]
. (104)

The solutions to Equations 99 and 100 satisfying the boundary conditions in Equation 102

are

U c
n =

W c
n

λc
n

sin(λc
nT ), U s

n =
W s

n

λs
n

sin(λs
nT ). (105)

Substituting these expressions in Equation 98, we obtain

a2h =
C2

k

R

∞∑

n=1

(
W c

n

λc
n

sin(λc
nT ) cos

(2n − 1)πZ

R
+ i

W s
n

λs
n

sin(λs
nT ) sin

2πnZ

R

)
. (106)

The radial displacement of the tube boundary is η. To calculate η2 we use Equation 60

with r → R − 0 and Equation 65. Then recalling that only terms with m = 2 in Equation 65

are non-zero, we obtain

∂η2

∂T
= ac

2(T ,Z) cos(2φ) + as
2(T ,Z) sin(2φ)

−
	R

4
[1 − cos(2φ)] sin(2	T ) cos2(πZ/R). (107)

Imposing the initial condition η2 = 0 at T = 0 and using Equations 91, 95, 98, 101, and 106,

we obtain from this equation

η2 = η21 + η22 + η23, (108)

where

η21 = −
R

8
[1 − cos(2	T )] cos2(πZ/R), (109)

η22 =
R

8
[1 − cos(2	T )][X(Z) cos(2φ) + Y (Z) sin(2φ)], (110)

η23 = 4R

∞∑

n=1

{
W c

n [1 − cos(λc
nT )]

4π2(2n − 1)2 + 3χ2
cos

(
2φ −

χZ

2R

)
cos

(2n − 1)πZ

R

+
W s

n[1 − cos(λs
nT )]

16π2n2 + 3χ2
sin

(
2φ −

χZ

2R

)
sin

2πnZ

R

}
, (111)
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and

X(Z) = cos2(πZ/R) +
4π2

4π2 − χ2

(
ρi − ρe

2(ρi + ρe)
cos

2πZ

R
−

ρi + 3ρe

2(ρi + ρe)

+
cos(χ/4)

cos�
cos

χZ

2R
cos

2�Z

R
+

sin(χ/4)

sin�
sin

χZ

2R
sin

2�Z

R

)
, (112)

Y (Z) =
4π2

4π2 − χ2

(
π(ρi − ρe)

χ(ρi + ρe)
sin

2πZ

R

−
sin(χ/4)

sin�
cos

χZ

2R
sin

2�Z

R
+

cos(χ/4)

cos�
sin

χZ

2R
cos

2�Z

R

)
. (113)

3.2.5. Properties of Driven Modes

The term η21 in Equation 109 describes a sausage oscillation of the tube with double the

frequency of the kink oscillation 2	. The term η22 describes the first fluting mode, again

oscillating with double the frequency of the kink oscillation 2	. Both oscillation modes

are forced oscillations caused by nonlinear interaction with the kink oscillation. Finally, the

term η23 describes the sum of all modes that correspond to the first fluting mode and with the

eigenfrequencies corresponding to various harmonics in the axial direction. The presence of

this term is related to the initial conditions.

If we introduce any mechanism causing wave damping, then these modes would describe

the transition from the initial state with only the kink mode to the state where there are forced

oscillations with the frequency 2	. One possibility to have such a damping mechanism is

to consider a more general model of a magnetic tube with the transitional layer between the

dense core and the rarified surrounding plasma. Then wave damping would be caused by

resonant absorption in this transitional layer. Of course if the kink mode is excited by an

initial perturbation, it would also damp as well as the forced oscillations with the frequency

2	. The higher eigenoscillations described by terms in Equation 111 with sufficiently large

n would damp much faster than the kink oscillations. However, the damping time of the

eigenoscillations described by terms in Equation 111 with small values of n would be of the

same order as the damping time of the kink oscillation. Hence, in this scenario, we would

not arrive at the state with only the kink mode and forced oscillations with the frequency

2	.

However, we can consider another scenario. Tian et al. (2012) and Wang et al. (2012) re-

ported observations of low-amplitude coronal loop kink oscillations that do not decay. Sim-

ilar observations were later reported by Nisticò, Nakariakov, and Verwichte (2013), Nisticò,

Anfinogentov, and Nakariakov (2014), Anfinogentov, Nakariakov, and Nisticò (2015), and

Duckenfield et al. (2018) (see also the review by Nakariakov et al., 2021). If we now assume

that a decayless kink oscillation started at T = 0 then after a transitional time, the modes

with the eigenfrequencies λc
n and λs

n will decay, and the tube oscillations will be the super-

position of this decayless kink oscillation with the frequency 	 and two forced oscillations

with the frequency 2	, which will be the sausage mode described by η21 in Equation 108,

and the first fluting mode described by η22.

It is instructive to consider the limit χ → 0 corresponding to an untwisted tube. We can

see from Equation 109 that η21 is independent of χ . This implies that the forced sausage os-

cillations with the frequency 2	 are not affected by the twist. It follows from Equations 125
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and 129 that both η22 and η23 have singularities at χ = 0. However, η22 + η23 is a regular

function of χ . Using Equation 125 and 129 in Appendix B, we obtain that

lim
χ→0

(η22 + η23) =
R

8
cos(2φ)[1 − cos(2	T )]

(
4πZ

3R
sin

2πZ

R

−
2ρe

ρi + ρe

cos2(πZ/R)

)
− πR

∞∑

n=1

(−1)n 1 − cos[(2n − 1)	T ]

(2n − 1)2

×

[
ρi + 3ρe

(2n − 1)(ρi + ρe)
+

ρi − ρe

ρi + ρe

(
n + 1

(2n + 1)2
+

n − 2

(2n − 3)2

)

−
4(2n − 1)

(2n + 1)(2n − 3)

]
cos

(2n − 1)πZ

R
. (114)

Below we consider

η̃22 = η22 +
4RW s

1 [1 − cos(λs
1T )]

16π2 + 3χ2
sin

(
2φ −

χZ

2R

)
sin

2πZ

R
. (115)

This quantity is also a regular function of χ . When χ = 0, it contains all terms describing

the oscillation with the frequency 2	. We have

lim
χ→0

η̃22 =
R

4
cos(2φ)[1 − cos(2	T )]G(Z), (116)

where

G(Z) =
2πZ

3R
sin

2πZ

R
−

1

ζ + 1
cos2(πZ/R), (117)

and ζ = ρi/ρe. The graph of function G(Z) is shown in Figure 1 for a few values of ζ . Since

G(Z) is an even function, we only show the dependence of G(Z) for Z ∈ [0,R/2].

When χ �= 0 the flute oscillation with the frequency 2	 is described by η22. Hence, below

we investigate the properties of this quantity. We introduce the amplitude of flute oscillation

[Am(Z)] and its phase [�(Z)] defined by

Am(Z) =
√

X2(Z) + Y 2(Z), �(Z) =
1

2
arccot

X(Z)

Y (Z)
. (118)

Then we can transform Equation 110 into

η22 =
R

8
[1 − cos(2	T )]Am(Z) cos[2(φ − �(Z))] (119)

The graphs of Am(Z) and �(z) are shown in Figures 2 and 3 for ζ = 3 and various values

of χ . Since X(Z) is an even function and Y (Z) is an odd function, it follows that Am(Z)

is an even function. Hence, we only plot its graph for Z ∈ [0,R/2]. As for the phase, we

can use the definition of �(Z) given by Equation 118 only for Z ∈ [0,R/2], while for

Z ∈ [−R/2,0] we take �(Z) = −�(−Z). Then �(Z) is an odd function and we only show

the dependence of � on Z for Z ∈ [0,R/2]. We see in Figure 2 that Am(Z) takes maximum

at approximately the middle of the interval [0,R/2]. The maximum value of Am(Z) at
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Figure 1 Dependence of G on

Z. The solid, dashed, and

dash-dotted lines correspond to

ζ = 3, 5, and 10, respectively.

Figure 2 Dependence of the

amplitude Am(Z) on Z. The

solid, dashed, dotted, and

dash-dotted lines correspond to

χ = π/6, π/2, π , and 3π/2,

respectively.

χ = π/6 is much higher than at larger values of χ . This result is in agreement with the fact

that η22 is singular at χ = 0.

The tube boundary perturbed by the first fluting mode has an elliptic shape. In accordance

with Figure 3, when we move from the middle of the tube corresponding to Z = 0 in the

positive Z-direction the large and small axes of the ellipse rotate in the counter-clockwise

direction. Since �(Z) is an odd function, these axes rotate in the clockwise direction when

we move from the middle of the tube in the negative Z-direction.
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Figure 3 Dependence of phase

�(Z) on Z. The solid, dashed,

dotted, and dash-dotted lines

correspond to χ = π/6, π/2, π ,

and 3π/2, respectively.

4. Summary and Conclusions

In this article, we studied the excitation of the first fluting mode on a twisted magnetic tube

by an imposed kink oscillation. We used the ideal MHD equations in the approximation

of cold plasma, i.e. we neglected the plasma pressure in comparison with the magnetic

pressure. We also used the thin tube approximation.

Next, we used the regular perturbation method with the dimensionless amplitude of the

kink oscillation as a small parameter. The first-order approximation describes the kink os-

cillation. Ruderman (2017) investigated the excitation of the first fluting mode by a kink

oscillation in a non-twisted tube. He imposed the condition that the solution is periodic in

time. However, from the physical point of view, it is more convenient to consider the ini-

tial value problem. In accordance with this, we assumed that the kink oscillation starts at

the initial time and then studied the evolution of the system. We found that the solution in

the second-order approximation is proportional to the dimensionless amplitude of the kink

mode squared. In this order approximation the perturbation of the tube boundary is described

by the sum of three terms [η21 + η22 + η23]. The first term [η21] describes a forced sausage

oscillation with double the frequency of the kink oscillation 2	. We see that the kink oscil-

lations can nonlinearly excite a sausage mode. Previously the same result was obtained by

Ruderman (2017).

The second term [η22] describes the forced fluting oscillation again with the frequency

[2	]. The third term [η23] describes the superposition of oscillations corresponding to the

first fluting mode with the eigenfrequencies. In our analysis, we did not take into account

any physical processes that can cause the damping of oscillation. The term [η23] is related

to satisfying the initial conditions. If we add any damping mechanism, for example resonant

damping related to a transitional layer at the tube boundary, then [η23] would decay. Of

course, if the kink oscillation is launched at the initial time by a finite input of energy, it

would also decay, and then [η21] and [η22] would also decay. However, if the kink oscillation

is a decayless oscillation (e.g. Nisticò, Nakariakov, and Verwichte, 2013; Anfinogentov,

Nakariakov, and Nisticò, 2015; Nakariakov et al., 2021) then, for large times, the oscillation



  116 Page 20 of 23 M.S. Ruderman, N.S. Petrukhin

of the tube boundary in the second-order approximation would be periodic with the period

2	. It would be described by the sum of the first and second terms in Equation 109.

An important property of η22 is that it is singular at χ = 0. This property is related to the

fact that the first term in the expression for η23 describes an oscillation with the frequency

2	, when χ = 0. As a result, the oscillation described by this term does not damp even

when wave damping is present and the kink oscillation is decayless. Hence, in an untwisted

tube, the forced fluting oscillation with the frequency 2	 is described the sum of η22 and

the first term in the expression for η23. They both have a singularity at χ = 0, however their

sum [η̃22] is regular.

Appendix A: Useful Identities

In this section we present the identities obtained by expansions in the Fourier series. These

identities are used in Section 3.2.4. They read

exp

(
−

iχZ

2R

)
= 16π

∞∑

n=1

(−1)n

(
2ni sin(χ/4)

16π2n2 − χ2
sin

2πnZ

R

−
(2n − 1) cos(χ/4)

4π2(2n − 1)2 − χ2
cos

(2n − 1)πZ

R

)
, (120)

exp

(
−

iχZ

2R

)
cos

2πZ

R
= 8π

∞∑

n=1

(−1)n

[(
2n + 1

4π2(2n + 1)2 − χ2

+
2n − 3

4π2(2n − 3)2 − χ2

)
cos

χ

4
cos

(2n − 1)πZ

R

− 2i

(
n + 1

16π2(n + 1)2 − χ2
+

n − 1

16π2(n − 1)2 − χ2

)
sin

χ

4
sin

2πnZ

R

]
, (121)

exp

(
−

iχZ

2R

)
sin

2πZ

R
= 4χ

∞∑

n=1

(−1)n+1

[(
i

4π2(2n + 1)2 − χ2

−
i

4π2(2n − 3)2 − χ2

)
cos

χ

4
cos

(2n − 1)πZ

R

+

(
1

16π2(n + 1)2 − χ2
−

1

16π2(n − 1)2 − χ2

)
sin

χ

4
sin

2πnZ

R

]
, (122)

cos(χ/4)

cos�
cos

2�Z

R
−

i sin(χ/4)

sin�
sin

2�Z

R

= 16π

∞∑

n=1

(−1)n

[
in sin(χ/4)

16π2(n2 − 1) + 3χ2
sin

2nπZ

R

−
2(2n − 1) cos(χ/4)

4π2(2n + 1)(2n − 3) + 3χ2
cos

(2n − 1)πZ

R

]
. (123)
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Appendix B: Limit of Untwisted Tube (χ → 0)

In this section we consider the limit of the untwisted tube that corresponds to χ → 0. We

can see that [η21] is independent of [χ ]. Hence, the forced sausage oscillation of the tube is

not affected by twist. Using the expansion

� = π −
3χ2

32π
+O(χ4), (124)

valid for |χ | ≪ 1, we obtain from Equation 110

η22 =
R

8
[1 − cos(2	T )]

[
cos(2φ)

(
4πZ

3R
sin

2πZ

R
−

2ρe

ρi + ρe

cos2(πZ/R)

)

−
π(5ρi + 11ρe)

3χ(ρi + ρe)
sin(2φ) sin

2πZ

R

]
+O(χ). (125)

We also use the expressions

λc
n = 	(2n − 1) +O(χ2), λs

n = 2	n +O(χ2), n = 1,2, . . . , (126)

W c
n = π(−1)n+1

[
ρi + 3ρe

(2n − 1)(ρi + ρe)
+

ρi − ρe

ρi + ρe

(
n + 1

(2n + 1)2
+

n − 2

(2n − 3)2

)

−
4(2n − 1)

(2n + 1)(2n − 3)

]
+O(χ2), n = 1,2, . . . , (127)

W s
1 =

π3(5ρi + 11ρe)

6χ(ρi + ρe)
+O(χ), W s

n = O(χ), n = 2,3, . . . (128)

Using Equations 126 – 128, we obtain from Equation 111 that

η23 =
πR[1 − cos(2	T )](5ρi + 11ρe)

24χ(ρi + ρe)
sin(2φ) sin

2πZ

R

− πR cos(2φ)

∞∑

n=1

(−1)n 1 − cos[(2n − 1)	T ]

(2n − 1)2

×

[
ρi + 3ρe

(2n − 1)(ρi + ρe)
+

ρi − ρe

ρi + ρe

(
n + 1

(2n + 1)2
+

n − 2

(2n − 3)2

)

−
4(2n − 1)

(2n + 1)(2n − 3)

]
cos

(2n − 1)πZ

R
+O(χ). (129)
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