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Abstract

Functional magnetic resonance imaging (fMRI) has been shown successfully to assess and stratify patients with painful 
diabetic peripheral neuropathy (pDPN). This supports the idea of using neuroimaging as a mechanism-based technique to 
individualise therapy for patients with painful DPN. The aim of this study was to use deep learning to predict treatment 
response in patients with pDPN using resting state functional imaging (rs-fMRI). We divided 43 painful pDPN patients into 
responders and non-responders to lidocaine treatment (responders n = 29 and non-responders n = 14). We used rs-fMRI to 
extract functional connectivity features, using group independent component analysis (gICA), and performed automated 
treatment response deep learning classification with three-dimensional convolutional neural networks (3D-CNN). Using 
gICA we achieved an area under the receiver operating characteristic curve (AUC) of 96.60% and F1-Score of 95% in a 
ten-fold cross validation (CV) experiment using our described 3D-CNN algorithm. To our knowledge, this is the first study 
utilising deep learning methods to classify treatment response in pDPN.

Keywords Functional magnetic resonance imaging · Resting state · Convolutional neural network · Painful diabetic 
peripheral neuropathy · Treatment response

Introduction

The application of machine learning (ML) methods to the analy-
ses of neuroimaging datasets has led to significant advances in 
the field. It has enabled a shift from population/cohort-based 
analyses into more individualised biomarkers of disease or 
functional brain states. From a clinical perspective, this has fun-
damental importance in diagnosis, prognosis and patient strati-
fication. One ML approach that is increasingly being used on 
imaging datasets to detect lesions (Zhang et al., 2019b), automate 
tissue segmentation (Liu et al., 2018) and classify different brain 
disorders (Farooq et al., 2017) is deep learning using convolu-
tional neural network (CNN). One thing in common across these 

different applications is the identification of prominent delineated 
features on imaging datasets and there have been numerous stud-
ies investigating the utility of CNN in this context. However, the 
classification of clinical phenotypes using raw medical images in 
the absence of well-defined delineated features poses substantial 
challenges for CNN and has not been fully investigated.

In this study, we will examine a well-characterised cohort 
of patients with chronic neuropathic pain secondary to dia-
betes. Neuropathy is one of the commonest complications of 
diabetes causing disabling pain in the lower and upper limbs 
in up to a quarter of patients. This often results in consider-
able disability and suffering. Pharmacotherapy is the mainstay 
of treatment to alleviate symptoms but it is often ineffective. 
Even with optimal pharmacotherapy, only a third of patients 
experience any meaningful pain relief (i.e. a 50% reduction in 
pain intensity scores) (Finnerup et al., 2015; Katz et al., 2008). 
We recently demonstrated that combined ML and magnetic 
resonance (MR) imaging could accurately predict patients into 
sensory phenotypes (Teh et al., 2021) with an accuracy of 0.92. 
This has the potential to serve as a biomarker for use in patient 
stratification, leading to a more efficient treatment approach. 
We used a linear, support vector machine (SVM) algorithm 
using features extracted from rs-fMRI and MRI volumetry.
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Independent component analysis (ICA) is an effective 
method to derive brain functional networks with both func-
tional connectivity and spatial information (Nickerson et al., 
2017; Rajapakse et al., 2006). Unlike commonly used seed 
based analysis approaches (seed to voxel and ROI to ROI), 
ICA is a pure data-driven method, which generates highly 
reproducible large-scale brain networks (Damoiseaux et al., 
2006). A previous study using gICA analysis has shown that 
resting state functional connectivity can successfully predict 
subsequent duloxetine treatment response of major depres-
sive disorder (Fu et al., 2015). To capture these elusive fea-
ture delineations, 3D group ICA features have been shown 
to achieve superior classification accuracy (Qureshi et al., 
2019) when used in conjunction with CNN techniques.

Hence, the primary aim of this ML study is to train a 
CNN-based classification model to differentiate respond-
ers and non-responders to neuropathic pain treatment using 
resting state (RS) maps as inputs to a 3D-CNN architecture. 
The secondary aim was to compare the classification per-
formance of two different inputs (all group-level ICA com-
ponents vs statistically significant group-level components) 
for the 3D-CNN architecture.

Method

Study Design and Participants

Forty-three consecutive patients (responders n = 29 and non-
responders n = 14) with painful diabetic neuropathy were 
recruited for this study. We used intravenous (IV) lidocaine 
as a experimental model to examine treatment response in 
this neuroimaging study. It is a recognised treatment option 
in specialist centres for the management of intractable neu-
ropathic pain i.e. when conventional treatment is ineffective 
(Kastrup et al., 1986, 1987; Viola et al., 2006) and included 
in clinical guidelines (Tesfaye et al., 2011). It is also a good 
experimental model for assessing neuroimaging markers of 
treatment response because 1) it has a central mechanisms of 
action (Abdi et al., 1998; Devor et al., 1992; Omana-Zapata 
et al., 1997); 2) a short half-life (40 min) – nullifying a direct 
treatment effect on MRI measures; and 3) up to one half of 
patients do not respond to treatment—enabling assessment of 
matched groups of responders and non-responders. Patients 
completed a standardised questionnaire to determine treat-
ment response to IV lidocaine treatment. Responders were 
defined as patients who report at least a 30% reduction in 
pain intensity score (0 to 10 numeric rating scale, where 
0 = no pain and 10 = worse pain imaginable) post lidocaine 
treatment. Study visits were conducted prior to IV lidocaine 
treatment. Altogether, there were two study visits: Visit 1 was 
for detailed clinical and neurophysiological assessments and 
Visit 2 for MR neuroimaging.

Details of the clinical and neurophysiological assess-
ment performed at Visit 1 are shown in Table 1. There were 
no statistically significant differences between responders 
and non-responders in the assessments performed. Written 
informed consent for the study was obtained before sub-
jects participated in the study, which has prior approval by 
the Sheffield Local Research Ethics Committee (Sheffield, 
U.K.).

MRI Acquisition

On the second visit prior to IV lidocaine treatment sub-
jects underwent MRI using a Phillips Achieva 3 Tesla 
system (Phillips Medical Systems, Holland) with a 
32-channel head coil. T1-weighted magnetisation pre-
pared rapid acquisition gradient echo sequence was used 
to acquire anatomical data with the following parameters: 
repetition time (TR) 7.2 ms, echo time (TE) 3.2 ms, flip 
angle 8°, and voxel size 0.9 mm3, yielding isotropic spa-
tial resolution. Resting-state fMRI data was also acquired 
while subjects fixated on a cross using a T2*-weighted 

Table 1  Demographic, metabolic and neurophysiological assessments of 
study participants

Data presented as mean (standard deviation) unless otherwise stated. 
Groups were compared using Student’s t-tests

NTSS-6  Neuropathy Total Symptom Score-6 pain questionnaire, 
TCNS Toronto Clinical Neuropathy Score, DN4 Douleur Neuropathique 
en 4 Questions

Responder Non Responder p

n 29 14

Age (years) 57.48(8.82) 57.07(11.12) 0.896

Male sex (n, %) 19, 66 5,36

Type of diabetes (Type 

1/2)

9,20 3,11

Duration of diabetes 

(years)

20.41(14.7) 20.86(14.6) 0.926

Duration of pain (years) 10.37(7.51) 7.89(6.34) 0.292

Hba1c (mmol/mol) 70(18.42) 73(16.67) 0.714

NTSS-6 score 16.01(3.29) 14.18(4.29) 0.176

TCNS 21.19(4.49) 16(9.26) 0.07

BMI 33.23(11.46) 30(5.6) 0.328

Becks 23.84(13.06) 11.71(14.15) 0.051

DN4 7.86(1.49) 6.67(1.58) 0.055

Sural

  Conduction velocity (m/s) 19.12(17.03) 14.98(18.73) 0.562

  Amplitude (mAmp) 3.98(6.18) 1.9(5.7) 0.392

Common Peroneal Nerve

  Conduction velocity (m/s) 26.35(17.97) 29.75(20.22) 0.646

  Amplitude (mAmp) 2.04(2.2) 1.39(2.29) 0.467

  Distal latency (ms) 3.73(2.83) 4.2(3.27) 0.693

Tibial Latency 3.7(2.94) 4.07(3.46) 0.829
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pulse sequence, with TE = 35  ms; TR = 2600  ms, in-
plane pixel dimensions = 1.8 mm × 1.8 mm, contiguous 
trans-axial slices thickness of 4 mm, a slice acquisition 
order = ascending (bottom-up), FOV = 128 × 128 mm, 
pixel bandwidth of 2129, number of phase encoding steps 
of 94 and an echo train length of 53.

Pre‑processing and Data Analysis

Group ICA based analysis was performed using the CONN 
(version 18.b) (Whitfield-Gabrieli & Nieto-Castanon, 2012): 
functional connectivity toolbox software which was also 
used to perform all pre-processing steps (using the default 
pre-processing pipeline), as well as subsequent statistical 
analyses, on all subject scans. Using the CONN toolbox pre-
processing pipeline, raw functional images were slice-time 
corrected, realigned (motion corrected), unwarped, and co-
registered to each subject's T1-weighted dataset in accord-
ance with standard algorithms. Images were then normalised 
to Montreal Neurological Institute (MNI) coordinate space, 
spatially smoothed (5 mm full-width at half maximum), and 
resliced to yield 2 × 2 × 2 mm voxels and the resting state 
connectivity analysis was performed using CONN toolbox. 
Further resting state analysis using gICA in CONN toolbox 
was performed with variance normalisation pre-condition-
ing, subject or condition concatenation of BOLD signal data 
along temporal dimension, group level dimensionality reduc-
tion, fast ICA for estimation of independent spatial compo-
nents, and GICA1 back-projection for individual subject-
level spatial map estimation (Beckmann et al., 2009). The 
number of independent components to be estimated was set 
to 30 and dimensionality reduction was set to 64.

Proposed Framework

Figure 1 illustrates the procedures used for joint predic-
tion of treatment response status in this study. Figure 1a 
shows the first step of the procedure in which the group-
level 3D ICA spatial maps of all studied subjects were 
computed. Next, we employed an automatic clustering 
tool (using CONN toolbox spatial match to template) to 
identify the useful group-level independent components 
(X ICs) for further analysis; we also compared all analysed 
components (30 ICs). We then performed the two-stage 
dual regression (Fig. 1c) to extract: 1) subject-specific IC 
time courses (stage 1) and; 2) subject-specific ICA spatial 
maps (stage 2). Figure 1d presents the nested tenfold cross 
validation (CV) strategy used to evaluate the performance 
of the proposed framework. The subject-specific ICA maps 
were applied to a 3D Convolutional Neural Network (3D-
CNN) for the classification task (Fig. 1e).

Deep Learning Features

Multiple 3D spatial component maps were acquired by per-
forming dual regression (Beckmann et al., 2009) on the 
group ICA. The 3D spatial maps of these selected func-
tional networks were then inputted into our chosen 3D-CNN 
for classification of responders and non-responders to IV 
lidocaine treatment groups. This work examine differences 
in classification performance between an approach using all 
ICA spatial components (ASC) and another using a semi-
automatically selected meaningful independent component 
time-series dataset (SSC). There were 8 spatial maps (SSC) 
identified when matched to a spatial template in CONN 
toolbox chosen with p < 0.1. These 8 chosen maps will be 
shown in more detail in the results section. We also com-
pared the classification results of the 8 selected spatial 
component maps with all 30 spatial component maps. Non 
post-processed resting state pre-processed image inputs 
were also used as a base comparison.

Deep Learning and 3D‑CNN Framework

We used a 3D-CNN based deep learning classification 
framework in this study based on a lightweight Voxnet 
(Maturana & Scherer, 2015) architecture. The framework 
was implemented on the TensorFlow library version 2.5 
with two bridged Nvidia Ge-Force GTX 2080Ti graphical 
processing units (GPU). For the training model, we used the 
Adam optimizer with a learning rate of 0.001 and setting 
epsilon at 0.1. Since the size of the dataset was relatively 
small for deep learning, to avoid model overfitting, we used 
ten-fold cross-validation in this study to report the mean 
performance of the overall model.

A modified version of the Voxnet classification frame-
work was used in this study. Specifically, we added batch 
normalization layers in the convolution layer. A dropout rate 
of 0.3 was used in the fully connected layers with a batch 
size set at 4 and using 100 epochs. The parameters includ-
ing learning rate, epsilon value, dropout rate, batch size, and 
epoch size were optimised using the following ranges. For 
epsilon, we tuned it in the range of [0.1: 0.05: 1], for learn-
ing rate, we tuned it in the logarithmic range of [1, 0.1, 0.01, 
0.001, 0.0001, and 0.00001], for the dropout rate, we tuned 
it in the range [0.1: 0.05: 1], for the batch size, we optimized 
it by the maximum available GPU memory, and the number 
of epochs were tuned in the range of [10: 1: 200]. We used a 
binary entropy loss function when training the deep learning 
network, and an early stopping criterion was used to stop 
the network training with respect to the leave-one-out cross-
validation loss. The optimal parameter tuning was chosen to 
reflect the best performance metrics for the ASC and SSC 
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dataset. The chosen parameters were similarly used on the 
pre-processed resting state image data (RSP).

Performance Measures

One of the most crucial processes of defining a machine 
learning model is model evaluation. For this work, we will 
compare standard metrics such as accuracy (ACC), precision 
(PR) and recall (RE) with average cross-validation AUC 
and F1-Score. We choose to include the AUC and F1-score 
due to the slight imbalance in our dataset leaning towards 
treatment responders to lidocaine. Of all these performance 

metrics we regard the AUC and F1 score to be the most 
important metric in this work. Previous work has concluded 
that these measures fit best for imbalanced data problems 
(Jeni et al., 2013; Raeder et al., 2012). These, two perfor-
mance measures are described further. Firstly, introducing 
some acronyms TP, TN, FP and FN are the number of true 
positive (responders), true negative (non-responders), false 
positive and false negative samples, respectively. The met-
rics used are shown below:

(1)ACC =
TP + TN

TP + TN + FP + FN

Fig. 1  Illustration of our proposed treatment response classification 
framework using group ICA features extracted from rs-fMRI scans. 
Firstly, (A) shows the 30 group-level ICA networks from all studied 
subjects. Next, we used CONN toolbox spatial to match template-
clustering tool to identify the useful functional group-level ICA 
maps. As a result, 8 IC selected spatial components (SSC) (p < 0.1) 
were identified as statistically useful networks whereas 22 ICs were 
not used in the selected IC subset (B). Then these group-level compo-

nents (8 and 30 IC components) were used to extract subject-specific 
time courses (stage 1) and subject-specific spatial ICA maps (stage 
2) using dual regression method in (C). Step (D) presents the nested 
tenfold cross validation strategy to train the classifier and regressors, 
tune the hyperparameters and test their performances. Next the 4D 
ICA spatial component maps (concatenated multiple 3D spatial com-
ponent maps) were fed into the 3D-CNN (E) for treatment response 
classification
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where precision measures samples correctly classified as 
positive, and recall describes the proportion of all positive 
samples classified as positive. F1 score is interpreted as a 
weighted average of the precision (PR) and recall (RE):

AUC score (Area Under the receiver operating character-
istic Curve) characterises the area under the curve of sen-
sitivities plotted against corresponding false positive rates 
(FPR):

Results

Classification Results

Our results suggest that using ICA analysis specifically spa-
tial component maps can be used as a good discriminatory 
predictor of lidocaine treatment response in painful DPN 
patients. In our study, we compared using ASC, SSC and 
RSP as the input to our CNN classification workflow. Com-
paring the classification performances, the first thing we 
noticed from Table 2 is the sub optimal results obtained from 
the pre-processed resting state data. We achieved a F1-Score 
of 69% and an AUC score of 44%. On the other hand, ASC 
gave the best performing results achieving a F1-Score of 
95% and a mean balanced AUC of 96.60% in a ten-fold CV 
experiment using the described 3D-CNN algorithm. As 
compared to SSC it also achieved good performance with 
F1-Score of 90% and AUC of 85%. The rest of the results 
for the three groups are shown in Table 2.

(2)PR =
TP

TP + FP

(3)RE =
TP

TP + FN

(4)F1 = 2 ⋅

PR.RE

PR + RE

(5)FPR =
FP

FP + TN

Also, when running our networks, we also calculated the 
timing cost comparison. Using the deep learning configura-
tion described above with our lightweight modified Voxnet 
CNN pipeline took 3.4 min to train 100 epoch per fold for 
the SSC, 5.1 min for ASC and 29.3 min for RSP.

Network Component Analysis

Table 3 shows the ranking of each functional network as 
the features of a deep learning framework. These compo-
nents were chosen based on p < 0.1. The uncorrected p-value 
revealed the component’s significance. Using this signifi-
cance level we identified eight ICA spatial components 
from a subset of 30. The 5 resting state functional networks 
identified by the CONN network cortical ROIs (HCP-ICA) 
through the ICA analysis were the cerebellar network (CEB), 
default mode network (DMN), frontoparietal (FPN), sensori-
motor network (SMN) and visual network (VN). They were 
used to perform dual regression to generate subject-specific 
time courses for connectivity analysis and spatial maps for 
classification.

Discussion

To the best of our knowledge, this is the first study classify-
ing treatment response using rs-fMRI and 3D-CNN deep 
learning architecture. The key findings of this work are 1) 
using ICA spatial component maps (ASC and SSC) per-
forms better than only using RSP as the input to our CNN 
networks; 2) using all the group ICA spatial components 
(ASC) information performs better compared to the semi-
automatic selection of the highly relevant networks (SSC) 
and 3) a lightweight 3D-CNN deep learning architecture for 
classification uses imaging data more efficiently. With these 
approaches, we achieved better treatment response classifi-
cation results.

Table 2  Described performance metrics comparing ASC and SSC 
results

ASC SSC RSP

Accuracy 0.9307 0.8529 0.6743

Precision 0.9237 0.8460 0.6744

Recall 0.9787 0.9623 0.7136

F1-Score 0.9504 0.9004 0.6934

AUC 0.9661 0.8499 0.4375

Table 3  SSC networks selected based on comparison of network 
activities between responders to lidocaine and non-responders at 
p < 0.1

Component Name Component 

Number

p-value Pearson(r)

Cerebellar ICA1 0.014 0.373

Default Mode ICA10 0.003 0.446

FrontoParietal ICA5 0.058 0.292

Sensorimotor ICA9 0.099 0.254

Sensorimotor ICA26 0.058 0.291

Sensorimotor ICA29 0.026 0.339

Visual ICA6 0.009 0.394

Visual ICA11 0.001 0.579
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Our analyses show a clear disparity between RSP and 
both the ICA analysed spatial component maps (ASC and 
SSC) giving an enhanced performance score. When com-
paring ASC and SSC there is an improvement for the ASC 
score with a 5% improvement in the F1-Score and a 11.6% 
improvement for the AUC. The extra 22 spatial components 
in the ASC which are noisier (not satisfying the p < 0.1 
condition of the 8 networks shown in Fig. 2) is shown to 
have contributed to the performance metric boost of the 
ASC method. Using deep learning we were able to auto-
matically discover the intricate structure differences of the 
responders and non responders imaging features especially 
true when larger imaging information was used during the 
training step as shown by (LeCun et al., 2015). Hence from 
our results we surmise that when a dataset is closely matched 
(in our case painful diabetic neuropathy patients) using more 
ICA components provides better performance. In future we 
will explore SSC classification performance more using dif-
ferent p value network selection (i.e. p < 0.2, p < 0.3 etc.) to 
further our assertion.

We did not explicitly compare our Voxnet based light-
weight model with other popular deeper learning networks 
such as Resnet or VGG-16 (Simonyan & Zisserman, 2014). 
We calculated the trainable parameters of VGG-16 to be 
around 2.5 billion compared to around 1.4 million using 
Voxnet with identical 4D ICA spatial component input data-
set. Hence due to GPU memory limitations, we did not com-
pare our proposed CNN model with these deeper networks. 
When the computation time was compared between SSC 
and ASC there was an extra 1.7 min computation time per 
fold when using the ASC as the input data. We consider this 
a good use of extra computational time given the boost of 
performance when using the ASC input dataset.

In our literature search, we did not find any treatment 
response classification of pDPN using machine learning. 
We, however, found two closest studies focusing on pain 
and treatment response classification using ML. The first 
study used a SVM classifier to differentiate lower back pain 
and healthy volunteers (Lamichhane et al., 2021). They 
achieved an average classification accuracy of 74.51% and 
an AUC = 0.787. The second study used deep learning (DL) 
neural networks in classifying chronic pain patients and 
pain-free controls (Santana et al., 2019). Their best model 
using the Ann4brain architecture and MSDL parcellation 
had a balanced accuracy of 86.8% and AUC of 0.918. Due 
to the differences in patient cohorts, we cannot directly com-
pare these results with ours. However, with our high testing 
accuracy of 93% and AUC of 97%, we believe we can trans-
late our painful DPN CNN model to other disease cohorts. 
For example, with other neuropathy patients (i.e. idiopathic 
and chemotherapy painful neuropathy).

Another important factor in our study is that we set the 
number of ICA components to 30, as is conventionally used 
in a recent study (Qureshi et al., 2019). Recently, it has been 
shown that the detected disease-related differences in func-
tional connectivity may alter as a function of ICA model 
order, specifically how many ICA components to use (Abou 
Elseoud et al., 2011). Their multi-level ICA exploration of 
unmedicated seasonal affective disorders functional con-
nectivity enables optimisation of sensitivity to brain disor-
ders and found 45 RS networks as the optimum component 
number to use. To further explore the effect of chosen RS 
ICA components, a recent study compared 2, 10 and 45 ICA 
chosen components. They reached an accuracy of 95% for 
the 2 components, 93% for the 10 components and 92% for 
the 45 components. In our study, the performance decreases 

Fig. 2  Spatial to match template 
(CONN toolbox gICA) to select 
the best SSC based on p < 0.1
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with smaller component number, which is the opposite of 
the described study. We will investigate a wider number of 
set ICA component analysis to further affirm our findings.

Our study also used gICA, a data driven method, to inves-
tigate the association between brain networks. Here, we 
decomposed the signal from whole brain voxels to spatially 
and temporally independent components. Future work will 
involve using different indices of functional brain alterations, 
including amplitude of low-frequency fluctuations (ALFF), 
regional homogeneity (ReHo), and regional functional cor-
relation strength (RFCS) which has been successfully dem-
onstrated in a CNN migraine study (Yang et al., 2018). In 
our gICA analysis method, we only compared the analysis of 
SSC and ASC. Here, we concatenated the 3D spatial compo-
nents together (8 and 30), which consists of different resting 
state networks (RSN). However, in future to fully understand 
and interpret our results further we will also explore rest-
ing state networks individually between our two groups. Of 
particular interest to our pDPN dataset are the default mode, 
sensorimotor and fronto parietal networks. This will enable 
us to identify and rank individual networks based on the 
binary classification performance as shown in a recent work 
on Autism spectrum disorder (Yang et al., 2021). To further 
this study we will analyse the resting state data with higher 
regional sensitivity using a region of interest (ROI) to ROI 
analysis approach. The outcome of the ROI-ROI analysis 
will also be expanded further with the use of linear classifi-
ers for example linear SVM instead of black box models like 
deep learning for better interpretability as shown recently 
(Teh et al., 2021).

This study has some limitations. Our dataset of 43 sam-
ples is relatively small. However, in our previous study, we 
have shown with similar sample sizes using resting state ROI 
to ROI image analysis to have enough sample size power to 
clearly differentiate between lidocaine treatment responses 
(Wilkinson et al., 2020). Another limitation is the lack of 
a separate testing dataset. To address this, the results pre-
sented are the ten-fold cross-validated performance metrics 
of our CNN method. In future work, we intend to apply 
our algorithm to other treatment response datasets to exter-
nally validate our algorithm. This will include out of sam-
ple testing with within disease datasets (painful DPN) and 
also between disease datasets (idiopathic and chemotherapy 
induced neuropathy). In addition, although we have shown 
that a 3D-CNN model trained on rs-fMRI datasets accurately 
classifies patients according to their treatment response (i.e. 
based on analgesic response), we are unable to determine 
or explore the impact of neuropathy or diabetes itself on 
cortical changes described. To address this, future studies 
should consider including appropriate control subjects (e.g. 
participants with diabetes and no neuropathy or subjects 
with neuropathic pain from different aetiologies).

In summary, in the last few years CNNs have been used 
very successfully with rs-fMRI to classify different disease 
phenotypes (Qureshi et al., 2019). We have demonstrated the 
effectiveness of using a 3D lightweight CNN method, which 
not only saves on computational time but also gives high 
prediction scores. We believe that the presented results show 
that rs-fMRI has great application potential as a biomarker in 
neuropathic pain (Cauda et al., 2009, 2010; Sağ et al., 2019; 
Zhang et al., 2019a). Finally, we have successfully shown that 
we are able to differentiate responders and non-responders to 
neuropathic pain treatment using 3D gICA resting state (RS) 
maps as inputs to a 3D-CNN architecture.

Information Sharing Statement

The analysed RS data that supports the findings of this study 
can be downloaded at https:// doi. org/ 10. 5281/ zenodo. 63255 87. 
Pre-processed or raw resting state data associated with this work 
can be provided upon request.
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