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Abstract: In this article, we establish a Gaffney type inequality, in W%P-Sobolev spaces, for differential
forms on sub-Riemannian contact manifolds without boundary, having bounded geometry (hence, in
particular, we have in mind noncompact manifolds). Here, p € ]1, co[ and £ = 1, 2 depending on the order
of the differential form we are considering. The proof relies on the structure of the Rumin’s complex of
differential forms in contact manifolds, on a Sobolev-Gaffney inequality proved by Baldi-Franchi in the
setting of the Heisenberg groups and on some geometric properties that can be proved for sub-Riemannian
contact manifolds with bounded geometry.
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1 Introduction

A well-known formulation of Gaffney’s inequality in R> is the following div-curl type estimate: There exists

a geometric constant C > 0 such that for any vector field F in W12(R3, R3)
- - 1 -
IF w2 < ClicurlF |l + IdivF Iz + [IF [Iz2.

Such an estimate plays a fundamental role in mathematics, for example, in classical continuum and
electromagnetic field theories. In the context of differential forms (by identifying 1-forms with vector fields),
the previous inequality generalizes in R” to the following. If W“2(R", NTR") is the Sobolev space of differ-
ential forms on R" of degree h and a € W-*(R", \"R™), then

ladlw2 < Clidall;z + l6allz + llalz, oY)

where d and § denote, respectively, the differential and codifferential of the de Rham complex in R".
Gaffney’s inequality is the key estimate for the Hodge decomposition theorem for differential forms and
makes sense also in the more general framework of manifolds. Roughly speaking, the Hodge decomposition
for a C* differential form a of degree h says thata =  + (dé + 6d)y, where df8 = 88 = O (for this problem on
Riemannian manifolds M we refer, e.g., to [37], see also [13]).

* Corresponding author: Francesca Tripaldi, Mathematisches Institut, University of Bern, Sidlerstrasse 5 3012 Bern,
Switzerland, e-mail: francesca.tripaldi@unibe.ch

Annalisa Baldi: Dipartimento di Matematica, Universita di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy,
e-mail: annalisa.baldi2@unibo.it

Maria Carla Tesi: Dipartimento di Matematica, Universita di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy,
e-mail: mariacarla.tesi@unibo.it

a Open Access. © 2022 Annalisa Baldi et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 International License.

3


https://doi.org/10.1515/ans-2022-0022
mailto:annalisa.baldi2@unibo.it
mailto:mariacarla.tesi@unibo.it
mailto:francesca.tripaldi@unibe.ch

DE GRUYTER Sobolev-Gaffney type inequalities = 485

The proof of Gaffney’s inequality for differential forms goes back to Gaffney [20] for manifolds without
boundary, and to Friedrichs [19] and Morrey [33] for manifolds with boundary, where the differential forms
satisfy additional conditions on the boundary (see also [37] and the references therein). The proof of the
above inequality in a compact Riemannian manifold without boundary, replacing the Sobolev space W2
with a more general Sobolev space WP, is due to Scott [38] where, as a corollary, a LP-Hodge decomposi-
tion result was obtained. Its counterpart, for compact Riemannian manifolds with boundary, is due to
Iwaniec et al. [26]. The study of the LP-Hodge theory for noncompact Riemannian manifolds was considered
also in [2]. Further contributions presenting various generalizations of Gaffney’s inequality can be found in
the literature. For an exhaustive overview of such Gaffney-type inequalities in the Riemannian setting,
we refer for example to [11].

In this article, we deal with sub-Riemannian contact manifolds, and since by the classical Darboux’
theorem any contact manifold is locally diffeomorphic to the Heisenberg group of corresponding dimension
via a contact map, it is worth mentioning the specific generalization of the Gaffney-Friedrichs inequality
recently proved in Heisenberg groups [17].

By replacing the exterior differential d by a suitable differential d, which acts on differential forms
“adapted” to the contact geometry (the so called Rumin complex, see subsection 1.1), we shall prove a
WbP-Gaffney-type inequality for a complete, noncompact sub-Riemannian contact manifold M without
boundary (here, ¢ = 1 or £ = 2 depending on the degree of the differential form we are dealing with). We
shall also assume that M has bounded geometry, which means that, roughly speaking, there exist uniform
bounds on the geometric invariants of the manifold (in the article, we adopt the definition of sub-
Riemannian contact manifold with bounded geometry given in [6]). Manifolds with bounded geometry
generalize the concept of compact manifolds and covering of compact manifolds. Examples of manifolds
with bounded geometry are Lie groups or, more generally, homogeneous spaces. Examples of noncompact
sub-Riemannian contact manifolds with bounded geometry are given in [6] (see, in particular, Remark 4.10
and Section 7 therein).

1.1 Sub-Riemannian contact manifolds

A contact manifold is given by the couple (M, H), where M is a smooth odd-dimensional (connected)
manifold of dimension 2n + 1 and H is the so-called contact structure on M, that is, H is a smooth
distribution of hyperplanes which is maximally nonintegrable: given 8™ a smooth 1-form defined on M
such that H = ker(fM), then dOM restricts to a nondegenerate 2-form on H. Roughly speaking, to be
maximally nonintegrable means that the contact subbundle H is as far as possible from being integrable.
Indeed, in general, for a subbundle defined by a 1-form 1 to be integrable, it is necessary and sufficient that
n A (dn)" = 0 (see [31], Section 3.4). Therefore, a measure on a contact manifold (M, H) can be defined
through the nondegenerate top degree form 6™ A (d6M)". There exists, in addition, a unique vector field £M
transverse to ker@" (the so-called Reeb vector field) such that (M) = 1 and Lem=0.

Among stratified nilpotent Lie groups, the Heisenberg groups are the simplest example of a group
endowed with a contact structure. We recall that the Heisenberg group H" is the Lie group with stratified
nilpotent Lie algebra h of step 2

h = span{Xi, ..., Xy, Y4, ..., Y} @ span{T} = h; & b,

where the only nontrivial commutation rules are [Xj, ¥;] = T, j = 1,..., n. We denote by 6" the 1-form on H"
such that ker6™ = exp(h;) and 6"(T) = 1. We recall also that H" can be identified with RZ**! through the
exponential map. The stratification of the algebra induces a family of dilations §; in the group via the
exponential map,

H=Aonl, & =A%onbh,, )

which are analogous to the Euclidean homotheties.
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As already stressed earlier, the Heisenberg groups are the local model of all contact manifolds (see [31],
p- 112).

Following Rumin (see [34], p. 288), we can assume that there is a metric g™, which is globally
adapted to the symplectic form dO™. Indeed, there exists an endomorphism J of H such that J? = -Id,
doM(X, JY) = -d6M(JX, Y) for all X, Y € H, and d6M(X, JX) > O for all X € H\{0}. Then, if X, Y € H, we
define gy(X, Y) := dOM(X, JY). Finally, we extend J to TM by setting JéM = éM and setting gM(X, Y) =
OM(X)HOM(Y) + dOM(X, JY) for all X, Y € TM.

The couple (M, H) equipped with the Riemannian metric g is called a sub-Riemannian contact mani-
fold, and in the sequel, it will be denoted by (M, H, gM), where g™ is obtained as mentioned earlier. In any
sub-Riemannian contact manifold (M, H, gM), we can define a sub-Riemannian distance dy (see, e.g., [43])
inducing on M the same topology of M as a manifold. In particular, Heisenberg groups H" can be viewed as
sub-Riemannian contact manifolds. If we choose on the contact sub-bundle of H" a left-invariant metric, it
turns out that the associated sub-Riemannian metric is also left-invariant. It is customary to call this
distance in H" a Carnot-Carathéodory distance (note that all left-invariant sub-Riemannian metrics on
Heisenberg groups are bi-Lipschitz equivalent).

A natural setting when dealing with differential forms in Heisenberg groups is provided by Rumin’s
complex (Ej, d!) of differential forms in H" (see, e.g., [34]), since de Rham’s complex (Q°, d) in R?**],
endowed with the usual exterior differential d, does not fit the very structure of the group H". Indeed,
differential forms on b split into two eigenspaces under 8, (see (2)); therefore, de Rham’s complex lacks scale
invariance under the anisotropic dilations 6, basically since it mixes derivatives along all the layers of the
stratification. Rumin’s substitute for de Rham’s exterior differential is a linear differential operator d!' from
sections of El to sections of EZ*! (0 < h < 2n + 1) such that (d'')? = 0.

We note explicitly that Rumin’s differential d' may be a left-invariant differential operator of order
higher than 1.

Rumin’s construction of the intrinsic complex makes sense for arbitrary contact manifolds (M, H) (see
[34]). The main features of Rumin’s complex defined on M are the same as those already stated in H".
Assuming E; = eaf{;glEé’ endowed with the exterior differential d¥, we have:

(D @M =0;
(ii) the complex (Eg, dM) is homotopically equivalent to de Rham’s complex (Q°, d);
(iii) dM : E} — El*'is a homogeneous differential operator in the horizontal derivatives of order 1if h # n,

whereas dM : E}' — EJ*!is a homogeneous differential operator in the horizontal derivatives of order 2.

Given (M, H, gM), the scalar product on H determines a norm on the line bundle TM /H. Therefore, for
any h, the vector spaces El are endowed with a scalar product. By using 8% A d@™ as a volume form, one
obtains LP-norms on spaces of smooth Rumin’s differential forms on M (see Remark 3.4).

We denote by * the Hodge duality associated with the inner product in E§ and the volume form (see also
Section 4), and by 6, the formal adjoint in L2(M, Eg) of the operator d™; we have §” = (-1)" + dMx on E}
(see [34]).

1.2 Bounded geometry

In the sequel, we will assume that M is a noncompact manifold with bounded geometry, without boundary.
But, of course, our approach covers also the case of a compact manifold without boundary.

Definition 1.1. Let k € N. Let B(e, 1) denote the sub-Riemannian unit ball in H". We say that a complete
smooth sub-Riemannian contact manifold (M, H, g") has C*-bounded geometry if there exist two constants
r > 0 and Cy = C(M) > 0 such that, for every x € M, if we denote by B(x, r) the sub-Riemannian ball for
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(M, H, gM) centered at x and of radius r, there exists a contactomorphism (i.e., a diffeomorphism preserving
the contact forms) ¢, : B(e, 1) — M that satisfies

(1) B(x,r) c ¢(B(e, 1)).

(2) ¢, is Cy-bi-Lipschitz.

(3) Coordinate changes 4);1 o ¢, and their derivatives up to order k with respect to unit left-invariant

horizontal vector fields are bounded by Cy.

Examples of noncompact sub-Riemannian contact manifolds with bounded geometry are given in [6]
(see, in particular, Remark 4.10 therein and Section 7).

The formulation of a Gaffney-type inequality in this setting requires different statements, depending on
the degree of the differential forms we are considering. Indeed, the fact that the operator d™ has order 1 or 2,
depending on the degree of the form on which it acts, will be a major issue in the proofs of our results and
will change the class of Sobolev spaces in our inequalities.

To introduce the notion of Sobolev space in M, we will make use of the analogous notion in Heisenberg
groups H™. This notion is associated with the stratification of their algebra and nowadays is quite classical:
we refer, e.g., to Section 4 of [14] and Section 2.1.1 of this article Roughly speaking, if £ € N and p > 1, the
Sobolev space W&P(H™) (the so-called Folland-Stein Sobolev space) can be defined as follows. Fix an
orthonormal basis {W;, i =1, ...,2n + 1} of h such that W; € b, fori = 1,..., 2n and Wh,,; € h,. We call homo-
geneous order of a monomial in {W} its degree of homogeneity with respect to the group dilations 6;, A > 0.
We say that a differential form on H" belongs to WSP(H™) if all its derivatives of homogeneous order <¢ along
{W} belong to LP(H™). Using C*-bounded charts, this notion extends to C¥-bounded geometry sub-Rieman-
nian contact manifolds M (we refer to Section 3 for precise definitions).

Our main result reads as follows.

Theorem 1.2. Let (M, H, g™) be a complete, smooth contact manifold with CX-bounded geometry (k > 3),
without boundary. We have:
(i) ifl <h<2n,and1< p < oo, then there exists C > O such that for all « € W-P(M, E}) withh # n,n + 1

M M
”a”W“’(M,Eé') < C(lld; 0‘||LP(M,E(§“1) + 16 a"LI”(M,Eé"l) + ||0‘||LI’(M,E(§'))-

Moreover,

(ii) ifh =n, and 1 < p < oo, then there exists C > 0 such that for all « € W>P(M, E})

M MgM
ladlw2ru,ezy < CAlA: &llpran gz + Nde 6 allrau, gy + lellraonep)-

On the other hand,

(iiiy ifh=n+1,and1 < p < oo, then there exists C > 0 such that for all « ¢ W>P(M, E}")
letlwzoau, g2y < CUSM AN  llproun, gty + 162 e, gy + ltlzran, gnesy)-

This article is organized as follows. Section 2 contains some definitions and properties of Heisenberg
groups and a very short review of Rumin’s complex. Section 3 contains a precise definition of manifold with
bounded geometry and the definition of its associated Sobolev spaces. Section 3 also contains a fine result
concerning the existence of a map that associates an orthonormal symplectic basis of kerO” with the
canonical orthonormal symplectic basis of Ker 6!, where 6} denotes the form 8" evaluated at the point
e € H". It should be noted that throughout the article, we will use both symbols a, and a(p) to indicate
when the form a is evaluated at the point p. In our setting, if ) : H" — M is a contact diffeomorphism, we
have ptdM = d'"y!, where ! is the pullback of the map 1. This is not the case when we replace the
differential with the codifferential; in Section 4, we show that if M has bounded geometry we can locally
control the difference 6™ — 6! with constants depending only on the geometry of M. In Section 5, we
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prove at first a local Gaffney inequality, and then we pass from the local case to the global one using an ad
hoc covering for M with balls of suitably small radius obtained in Section 3.

We now list a few difficulties we have to deal with in this note. To prove the Gaffney inequality on M, we
pass from the corresponding result for the “flat” model H" proved in [4]. A delicate point is to show that we
can replace the contactomorphism ¢, appearing in Definition 1.1 with another contactomorphism ), which

“sends” an orthonormal symplectic basis of ker8¥ into the canonical orthonormal symplectic basis of
ker@' and that still depends only on the bounded geometric constants and not on the point x. This is
accomplished in Theorem 3.10, and it is a convenient step if we want to write the difference '™ — 8"yt in
local coordinates. Another subtle issue comes from the fact that the order of the differentials d* and d!' can
be one or two depending on the degree of the form, and this problem is reflected in several proofs (e.g., in
Section 4, when we estimate ! — 6"yt or in Theorem 5.4 when we have to estimate the commutators
between differentials and functions).

2 Basic properties of Rumin’s complex (E,, d;) on Heisenberg
groups and on general contact manifolds

2.1 Heisenberg groups

We denote by H" the (2n + 1)-dimensional Heisenberg group, identified with R?**! through exponential
coordinates. A point p € H" is denoted by p = (x, y, t), with both x, y € R" and t € R. If we consider two
points in H", p = (x,y,t) and q = (%, 7, f), the (noncommutative) group operation is denoted by
p-q=x+Xy+y,t+f+ %z;‘zl(x,-g - ¥%)). In this system of coordinates, the unit element of H", which

will be denote by e, is the zero of the vector space R?**!, and p~! = —p.
For any g € H", the (left) translation 7, : H" — H" is defined as follows:

p=1p=q-p.

The Lebesgue measure in R?**! is a Haar measure in H".

For a general review on Heisenberg groups and their properties, we refer to [24,39,42]. We limit
ourselves to fix some notation, following [6].

First, we notice that Heisenberg groups are smooth manifolds (and therefore are Lie groups). In
particular, the pullback of differential forms is well defined as follows (see, e.g., [21], Proposition 1.106).

Definition 2.1. If ¢/ and <V are open subsets of H", and f: U — <V is a diffeomorphism, then for any
differential form a of degree h, we denote by f*a the pullback form in U defined by

(ffa)(p)vi, -...vn) = a(f(p)Af (P, -...df (P)Ivh)

for any h-tuple (v, ...,vy) of tangent vectors at p.

The Heisenberg group H" can be endowed with the homogeneous norm (known as Koranyi norm)
o(p) = ((xP + lyP)* + 16¢)V*,
and we define the gauge distance (a true distance, see [39], p. 638) as follows:
d(p, @) = o(p™ - ). 3)
The metric d behaves well with respect to left-translations, that is,
d(p, Tp") = d(p, p),

for all g, p, p’ € H". Finally, the balls for the metric d are the so-called Koranyi balls



DE GRUYTER Sobolev-Gaffney type inequalities =— 489

B(p,r) ={q e H"; d(p, q) <r1}. (4)
We denote by | the Lie algebra of the left-invariant vector fields of H". The standard basis of fj is given,
fori=1,...,n, by
1 1
Xi =0y - Eyz'at’ Y= 0y + EX"a" T = 0.

The only nontrivial bracket relations are [X;, ;] = T, for j = 1,..., n. The horizontal subspace ty, is the sub-
space of h spanned by X,,..., X, and Y,..., ¥,. Coherently, from now on, we refer to Xi,..., X, ¥i,..., ¥,
(identified with first-order differential operators) as the horizontal derivatives. Denoting by b, the linear
span of T, the two-step stratification of § is expressed by

h="hobh.

The stratification of the Lie algebra h induces a family of nonisotropic dilations {6}, A > 0, in H" so that
forany p = (x,y,t) e H",

&(p) = (x, Ay, X%0). ®)

Notice that the gauge norm is positively §-homogenous (i.e., d(&(p), A(p")) = Ad(p, p’) for all
q,p,p' € H"and A > 0) so that the Lebesgue measure of the ball B(x, r) is r***2 up to a geometric constant
(the Lebesgue measure of B(e, 1)). Thus, the homogeneous dimension of H" with respect to 6;, A > 0, equals

Q=2n+2.

It is well known that the topological dimension of H" is 2n + 1, since as a smooth manifold it coincides with
R2"*1, whereas the Hausdorff dimension of (H", d) is Q.

The vector space h can be endowed with an inner product, indicated by (-, ), making Xi,..., Xp, ¥1,..., ¥,
and T orthonormal.

Throughout this article, we write also

WH=X, WM, =Y, WY, =T, fori=1,..,n (6)

As in [15], we also adopt the following multi-index notation for higher-order derivatives. If I = (iy, ...,1n.1)
is a multi-index, we set

WL = (WY (W) on (Wi ), @)

By the Poincaré-Birkhoff-Witt theorem, the differential operators W*! form a basis for the algebra of left
invariant differential operators in H". Furthermore, we set

| =4y + -+ b + bpyr
to denote the order of the differential operator W™/, and
d(I) =iy + -+ I + 2bpsy

to denote its degree of homogeneity with respect to group dilations.

2.1.1 Sobolev spaces in H”

Let U ¢ H" be an open set. We shall use the following classical notation: E(U) is the space of all smooth
function on U, and D(U) is the space of all compactly supported smooth functions on U, endowed with the
standard topologies (see, e.g., [40]).

We recall the notion of (integer order) Folland-Stein Sobolev space (for a general presentation, see, e.g.,
[14] and [15]).
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Definition 2.2. If U ¢ H" is an open set, 1 < p < oo and k € N, then the space WXP(U) is the space of all
u € LP(U) such that, with the notation (7),

WH-Iy e LP(U) for all multi-indicesIwith d(I) < k,
endowed with the natural norm

||u||w’<xP(U) = Z ||WIH’IU||L1’(U)-
d(h<k
Folland-Stein Sobolev spaces enjoy the following properties akin to those of the usual Euclidean
Sobolev spaces (see [14], and e.g., [18]).

Theorem 2.3. IfU c H",1 < p < 00, and k € N, then we have:
(i) W*P(U) is a Banach space.

In addition, if p < co, we have:
(ii) Whkr(U) n &) is dense in WoP(U);
(iti) if U = H", then D(HM) is dense in WXP(H™);
(iv) if1 < p < oo, then WoP(U) is reflexive.

Definition 2.4. If U ¢ H" is open and if 1 < p < co, we denote by Wh? the completion of D(U) in WkP(U).

Remark 2.5. If U ¢ H" is bounded, by (iterated) Poincaré inequality (see, e.g., [27]), it follows that the
norms

lulyrrgy and Y [WHNlp,
d(=k

are equivalent on W*? when 1 < p < co.
We recall the following inequality (see, e.g., [37], Lemma 1.5.3 for a proof):

Lemma 2.6. (Ehrling’s inequality). Let B, B ,, B 3 be Banach spaces. Let A : B; — B, be a compact map and
B, — B3 be a continuous embedding. Then for any € > 0, there exists a constant ¢ = c(¢) such that

IAxls, < elxls, + clxls, Vx € B;.

Remark 2.7. Let B(e, 1) be the Koranyi ball in H". We want to show that taking B; = W>P(B(e, 1)),
B, = W'P(B(e, 1)) and B3 = LP(B(e, 1)), we can apply the previous lemma in our content. We stress that
imbedding theorems in Heisenberg groups (or in more general Carnot groups) are not trivial at all. Indeed,
they require suitable condition on the domain and involve Poincaré inequalities and extensions results. In
our setting, the crucial step we need to prove is that the inclusion W2P(B(e, 1)) — W' P(B(e, 1)) is compact.
Indeed, it is shown in [32] that B(e, 1) is a (¢, §) domain, and hence, we have the compact embedding
W1P(B(e, 1)) — LP(B(e, 1)) by Theorem 1.27 in [22] (see also [16,25,28—-30]). By Poincaré inequality, we have
also that the imbedding WS’I’(B(e, 2)) = WLP(B(e, 2)) is compact. The delicate part, in order to pass from
spaces of order one to spaces of order two, that we show below, is to obtain the extension from W??(B(e, 1))
to W2P(B(e, 2)) and hence to have that W2?(B(e, 1)) — W'P(B(e, 1)) is compact.

To this aim let {u;} be a bounded sequence in W?P(B(e, 1)). By [30], Theorem B, there exists an exten-
sion operator A so that Auy is bounded in W2P(H"). Let i be a smooth cut-off function such that ¢ = 1 in
B(e, 1) and with support supp ¥ < B(e, 2). Hence, the sequence {ipAuy} is bounded in Wg”’(B(e, 2)). There-
fore, up a subsequence, YAu; — u in W'P(B(e, 2)), as k — oo. Hence,

lpAukIB(e,n = U = Upg,
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in WLP(B(e, 1)). In conclusion, W?>P(B(e, 1)) — WLP(B(e, 1)) — LP(B(e, 1)), and all the inclusions are com-
pact. Hence, by Ehrling’s inequality, if v € W?P(B(e, 1)) for any £ > 0, there exists a constant c(¢) such that

IVliwtrse, ) < EVIwzrae,y) + CENIVILABE,1)-

2.2 Multilinear algebra and Rumin’s complex in Heisenberg groups

The dual space of § is denoted by Alh. The basis of Alh, dual to the basis {X,, ..., Y,, T}, is the family of
covectors {dx, ...,dxy, dy,, ...,dy,, 6"}, where

1 n
M = dt - EZ(Xidyj - ydx;)
j=1

is called the contact form in H™.
We indicate again by (-,-) the inner product in /lf that makes (dx, ...,dy,, ") an orthonormal basis.
Coherently with the previous notation (6), we set

H H H ;
w'=dg ol,=dy, wp,=0" fori=1,..,n

The volume (2n + 1)-form w' A --- A w},; will be also written as dV.
We denote by Aoh = /\°h =R and, for 1 < h < 2n + 1, we can define

Anb = span{Wl-[:4 A AW 1< < <ip < 2n+ 1},
Nty = span{wi“l1 A Aot 1< < e<ip<2n+ 1}.

In the sequel, we shall denote by 8" the basis of /\'h defined by

H

o ={w' A Aol i1<i < <ip<m+ 1)

The inner product (-,-) on \'h yields naturally an inner product(-,-) on /\"h making ©" an orthonormal basis.
If1 < h <2n + 1, the Hodge isomorphisms

*: A & Nomproph and  x: N'poo N2,
are defined by setting
VAx W=V, WA - AWE L Y, woe Anb,
(p/\*l/):«p’l/))wl[H/\ /\wg;l'Hl VV’WE/\hh'
If v e \nh, we define its dual v € \"p by the identity (vVilw) == (v, w), and analogously we define
@' € \nh for ¢ € N\'h.
Throughout this article, the elements of Ah are identified with left invariant differential forms of degree
honH",
Definition 2.8. A h-form @ on H" is said left invariant if
Tia=a forany q e H".
Here, 7l denotes the pull-back of a through the left translation 7.

The same construction given earlier can be performed starting from the vector subspace bh; C b,
obtaining horizontal h-covectors and horizontal h-vectors

Anb1 = span{Wi[:4 A AW T < <<y < 2n},

Ny = span{wl-[lH A Al i1 < <y < Zn}.
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Moreover,
04 = " n Nty

provides an orthonormal basis of /\"h;.
The symplectic 2-form d6" € /\?h; is defined by

n
do" = - w!' A wfl,.
i=1
Keeping in mind that the Lie algebra h) can be identified with the tangent space toH" at x = e (see, e.g.,
[21], Proposition 1.72), starting from /\"h we can define by left translation a fiber bundle over H", which is
still denoted by /\'h. We can think of h-forms as sections of Ah. We denote by Q" the vector space of all
smooth h-forms. In addition, the symplectic 2-form —d6" induces on b; a symplectic structure. Notice that
{wh, ...,Wh} is a symplectic basis of kerg".

2.2.1 Rumin’s complex

Unfortunately, when dealing with differential forms in H", the de Rham complex lacks scale invariance
under anisotropic dilations (see (2)). Thus, a substitute for de Rham’s complex, which recovers scale
invariance under 6;, has been defined by Rumin, [34].

Here, we give only a short introduction to Rumin’s complex. For a more detailed presentation, we refer
to Rumin’s papers [36] or to the presentation in [7].

Let L : AN'"p — A2 be the Lefschetz operator defined by

LE=do" A L. ®)

Then the spaces E; ¢ /N can be defined explicitly as follows.

Theorem 2.9. (See [34,35]). We have:
(i) Ey = Nby;
(i) if2 < h < n, then E} = Ntg, n (\'=2; A dO™)* (i.e., EF is the space of the so-called primitive covectors

of N'tn);
(iii) ifn < h < 2n + 1, then

El={a=BnA6", Be Ny, BAdOY =0} = OY A KkerL;
. . . h_ (2n 2n \,
(iv) if1 < h < n, then dimE; = (h) - (hiz),
(v) if * denotes the Hodge duality associated with the inner product in /Nt and the volume form,
then «El = EZ"'h,

For h = 0,...,2n + 1, the space of Rumin h-forms is the space of smooth sections of a left-invariant
subbundle of A\h, which we still denote by EJ. Hence, it inherits the inner product and the norm of /\".

The core of Rumin’s theory consists in the construction of a suitable “exterior differential” d'' : E} — El*!
making & = (Eg, d'') a complex homotopic to the de Rham complex (i.e., d!' o d! = 0).

More precisely, the exterior differential d' : E} — EJ*! is a left-invariant, homogeneous operator with
respect to group dilations. It is a first-order homogeneous operator in the horizontal derivatives in degree
#n, whereas it is a second-order homogeneous horizontal operator in degree n. There exists a left invariant

orthonormal basis of EZ. This basis is explicitly constructed by induction in [3]. Explicit computations of the

classes E! and of the differential d!' : E} — E*!in H! and H? are given in [4] (see Examples 3.11 and 3.12

therein).
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The next remarkable property of Rumin’s complex is its invariance under contact transformations.

Proposition 2.10. If we write a form a = ) a;¢ }H in coordinates with respect to a left invariant basis {¢ }H}I of

El, we have
Tha = EI:(“I o 7&f! 9)
for all ¢ € H". In addition, fort > 0,
Sfa ="y (a; « 8¢}, if 1<h<n (10)
1
and
fa = th1Y (o o )&}, if n+1<h<2n+1. (1)
1

We fix the notation for vector-valued function spaces (for the scalar case, we refer to Section 2.1.1).

Definition 2.11. If U c H" is an open set, 0 < h<2n + 1,1 < p < co and m > 0, we denote by LP(U, \'p),
U, Np), DU, Ntp), Wmp(U, N'h) and by W"*(U, \'h) the space of all sections of \'h such that their
components with respect to a given left invariant frame belong to the corresponding scalar spaces.
The spaces LP(U, EY), (U, ED), DU, EY), wmp(U, E}) and W™P(U, El) are defined in the same way.
Clearly, all these definitions are independent of the choice of frame.

In addition, Sobolev spaces of differential forms are invariant with respect to the pullback operator
associated with contact diffeomorphisms (see [6], Lemma 4.8).

Proposition 2.12. Denote by 6!' the formal adjoint of d'' in IAH", E}). Then 8}' = (-1)" = d''+ on E[.

We remind the reader that 6!' can be written in coordinates as a left-invariant homogeneous differential
operator in the horizontal variables, of order 1if h # n + 1and of order 2if h = n + 1 (see Examples 3.11 and
3.12 [4] for explicit expressions of the codifferential).

When d}' is second-order (i.e., when d!' acts on forms of degree n), the complex (Eg, d}') stops behaving
like a differential module. This is the source of many complications. In particular, the classical Leibniz
formula for the de Rham complex d(a A ) = da A B + a A df in general fails to hold (see [8], Proposition
A.7). This causes several technical difficulties when we want to localize our estimates by means of cut-off
functions.

If { is a smooth real function and & € L. (H", EY) we write d(¢a) = {d'a + [dY, {]a. The proof of the
following Leibniz-type formula can be found in [5] (see Lemma 4.1) and basically is due to the fact that the
exterior differential d' on EJ can be written in coordinates as a left-invariant homogeneous differential
operator in the horizontal variables, of order 1if h # n and of order 2 if h = n (analogously, the codifferential
8 can be written in coordinates as a left-invariant homogeneous differential operator in the horizontal
variables, of order 1if h # n + 1 and of order 2if h = n + 1).

Lemma 2.13. If { is a smooth real function, then the following formulae hold:
(i) if h # n, then on E! we have

[dg, {1 = PE(WO),

where PE(W{) : E} — ElF*' is a linear homogeneous differential operator of order O with coefficients
depending only on the horizontal derivatives of {. Ifh # n + 1, an analogous statement holds if we replace

d™ in degree h with 6! in degree h + 1;
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(ii) if h = n, then on E} we have
[d, ¢1 = P}WS) + PR(W2),

where P(W() : E} — EX! is a linear homogeneous differential operator of order 1 (and therefore
horizontal) with coefficients depending only on the horizontal derivatives of ({, and where
PA(W20) : E} — EZ*'is a linear homogeneous differential operator in the horizontal derivatives of order
0 with coefficients depending only on the second-order horizontal derivatives of {. If h=n + 1, an
analogous statement holds if we replace d}' in degree n with 8" in degree n + 1.

(iii) if h # n + 1, then

[d'st', {1 = PI(WE) + PE(WZ),

where PR(W() : EX — E! is a linear homogeneous differential operator of order 1 (and therefore hori-
zontal) with coefficients depending only on the horizontal derivatives of {, and where P{(W2{) : E} — E!
is a linear homogeneous differential operator in the horizontal derivatives of order 0 with coefficients
depending only on the second-order horizontal derivatives of (.

(iv) if h # n, then

[6'd', ¢1 = PAW{) + PL(WA),

where PWQ) : EX — El is a linear homogeneous differential operator of order 1 (and therefore hori-
zontal) with coefficients depending only on the horizontal derivatives of {, and where PX(W2() : E} — E!
is a linear homogeneous differential operator in the horizontal derivatives of order O with coefficients
depending only on the second-order horizontal derivatives of {.

Remark 2.14. On forms of degree h > n, Lemma 2.13 (i) takes the following simpler form. If a € L} (H", EF)
with h > n and y € EH"), then

dia) = d@pa) = dp A a + Ppda = d'Y A a + PpdHa

(in the sense of distributions). This follows from (iii) of Theorem 2.9, since « is a multiple of 6.

2.2.2 Rumin’s complex in contact manifolds

The notion of Rumin’s complex makes sense for arbitrary contact manifolds.
Let us start with the following definition (see [31], Section I-3).

Definition 2.15. If (M,, H,) and (M,, H,) are contact manifolds with H; = ker8: (i.e., 8™ are contact forms for
i=1,2), U; c M; and U, c M, are open sets and f is a diffeomorphism from U; onto U5, then f is said a
contact diffeomorphism if there exists a nonvanishing real function t defined in U; such that

fioM: = ToM,

As already pointed out, by the classical Darboux theorem, any contact manifold (M, H) of dimension
2n + 1 is locally contact diffeomorphic to the Heisenberg group H™. It turns out that Rumin’s intrinsic
complex is invariant under contactomorphisms; hence, it is invariantly defined for general contact mani-
folds (M, H). A detailed construction of this complex can be found in [34] (see also [6] Section 3.3 for
details). Alternative contact invariant definitions of Rumin’s complex can be found in [9] and [10].

In this article, we do not enter into the details of Rumin’s construction. Instead, we just recall the basic
properties enjoyed by the complex, exactly analogous to the ones in H™:

D) dM o d=0;
(ii) the complex &, = (Ej, dM) is homotopically equivalent to the de Rham complex (Q°, d);
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(iii) dM : E} — El*!is a differential operator of order 1 if h # n, whereas d : E} — EJ*! is a differential
operator of order 2.

For later purposes, we recall the following statement, proved in [6] (see Proposition 2.14), which
expresses the fact that Rumin’s complex is invariant under contactomorphisms.

Proposition 2.16. If ¢ is a contactomorphism from an open set U c H" to M, and we denote by V the open
set V = ¢(U), the pullback operator ¢! satisfies:

(@) @EN(V) = Eg(U);

(ii) d'dt = ptd.

3 Sobolev spaces on contact sub-Riemannian manifolds with
bounded geometry

There are several possibilities for defining and investigating Sobolev spaces over complete Riemannian
manifolds. Here, we define Sobolev spaces (involving a positive number of derivatives) on contact sub-
Riemannian manifolds with bounded geometry, following the approach already used in [6] (see [41] or [12]).

We make more precise the definition of contact manifold of bounded geometry already given in
Definition 1.1.

Definition 3.1. Let k be a positive integer and let B(e, 1) denote the unit sub-Riemannian ball in H". We say
that a sub-Riemannian contact manifold (M, H, gM) has bounded C*-geometry if there exist constants
r, Cyr > 0 such that, for every x € M, there exists a contactomorphism (i.e., a diffeomorphism preserving
the contact forms) ¢, : B(e, 1) — M that satisfies,

(1) B(x,r) c ¢(Ble, 1));
(2) ¢, is Cy-bi-Lipschitz, i.e.,

éd(p, Q) < dy(p(p), (@) < Cyd(p, q) forall p, q € B(e, 1); (12)

(3) coordinate changes (;by’ 1, ¢, and their first k derivatives with respect to unit left-invariant horizontal

vector fields are bounded by Cy.
We recall the following covering lemma and definition from [6].

Lemma 3.2. (See [6], Lemma 4.11). Let (M, H, gM) be a C*-bounded geometry sub-Riemannian contact
manifold, where k is a positive integer. Then there exists p > O (depending only on the radius r of
Definition 3.1) and an at most countable covering {B(x;, p)} of M such that:
(i) each ball B(x;, p) is contained in the image of one of the contact charts of Definition 3.1;
(i) B(g, 3p) N BCxi, 5p) = @ if 1 # j;
(iii) the covering is uniformly locally finite. Even more, there exists N = N(M) € N such that for each ball
B(x, p)

#{k € N such that B(xi, p) N B(x,p) + J} < N.
In addition, if B(xy, p) N B(x, p) + &, then B(xy, p) c B(x, r); see Definition 3.1.

We are in position to define Sobolev spaces on M on bounded geometry contact sub-Riemannian
manifolds.
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Definition 3.3. Let (M, H, g™) be a smooth sub-Riemannian contact manifold with Ck-bounded geometry
(k € N), and let {)(j} be a partition of the unity subordinated to the atlas U := {B(Xj, P)s ¢X]_} of Lemma 3.2. We

stress explicitly that ¢;l(supp X;) € Ble, 1). If a is a Rumin’s differential form on M, we say that
vl
a e WiP(M, Eg) fore = 0,1,..., k- 1, and p > 1, if
(;b)f]_(xja) € WP(H", Eg) for j e N

(notice that ¢}j_()(i a) is compactly supported in B(e, 1) and therefore can be continued by zero on the whole
H™). Then, we set

1/p
”a”W,fl’p(M,E(;) = [Z||¢)§,-(Xia)||5v“vp(u4",}ag)] . (13)
j

A different uniform covering and other choices of controlled charts lead to an equivalent norm. The
definition of the Sobolev spaces W,f;p(M , E5), indeed, does not depend on the atlas U/, as shown in [6],
Proposition 4.13. Therefore, from now on, we drop the index U from the notation of Sobolev norms and we
shall write simply W5P(M, Eg).

Remark 3.4. Setting £ = 0 in (13), we found that the norm in WP(M, E}) is equivalent to the norm LP(M, E})
associated with the volume form u = 6 A (d6M)" defined in the introduction.

Proof. Let us denote the norm in WoP(M, Ej) by

1/p
alllran e = lellwora,ey = [letl)ﬁ}_()(ja)llfp(w,%)) ,
j

and by
lellzpam, E5)

the LP-norm associated with u.
First, since x;a is compactly supported and

BEOM A (dOM)™) = BE(OM) A BE((AOM)™) = O A (dO™),
J J J
we have ||¢)§i(xja)llfp(w£6) = ”X)‘“”f;(M,Eg)- Hence,
1/p 1/p
ez, ) = (ZII¢3,-%“)II$<W,EO->) - [Zlmalli’,f<M,Eg>] :
j j
We are left to show that
1/p
[ZIIX]‘“"Z{'(M,E(;)] =~ el g -
j
To this aim, note that since {y;} is a partition of unity |y;| < 1, Zjl)(jlp < Zjl)(jl < 1 and therefore
ZIl)Ga|de = J‘ZDG“PdV = IZ%|p|a|p < ||“||f,5’(M,Eg)-
I u v v

On the other hand, since a = Z}.Xja,

p p = Pla|P
”a"L‘f’(M,E(;) S ”Z)(]a"l,‘f(M,E(;) - J"Z)(Il |a| d:u'
j o
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Now, forany x € M, Z,-X; (x) is a finite sum with a number of terms less than or equal to N (see (iii) in Lemma
3.2), and hence, there exists a constant cy so that |Z]‘Xj [P < CNZ].|)(I- [P, and in the inequality given earlier, we
obtain

||a||f)5,(M,E6) < CNZ_['XI' [Pla [Pdu = CNZIIJQaIIf;(M,E@- =
iy j

Thanks to the previous remark, from now on, we shall denote with the same symbol | - [|zr(,g;) the two
equivalent norms || - ||L,5’(M,E5) and ||| - [llzr,E)-

In the sequel of the article, we will need a covering of M with balls of suitable, fixed radius, which has
the same properties as the covering of the Lemma 3.2. In analogy with what happens in the Riemannian
setting (see, e.g., [41], 7.2.1) we have:

Remark 3.5. If > 0 is small, then there exists an at most countable covering of M with balls {B(ay, 1)},
which satisfy the same properties as the covering given in Lemma 3.2. In particular, the covering is uni-
formly locally finite, i.e., there exists N = N(n) € N such that any point of M has an open neighborhood of
radius n that is covered by at most N(n) balls of the covering. Moreover, the functions of the atlas
{B(ag, n), ¢,}, with ¢, : B(e, n/Cy) — M, satisfy conditions (2) and (3) of Definition 3.1 with constants
depending only on Cy but independent of a,. In particular, we notice that, if a is supported in
¢,(B(e, n/Cu)), then by Definition 3.1, the norms

lallwmrar,ey  and [l falwmrgn k)

are equivalent, with equivalence constants independent of €.

Proof. For any x e M, let ¢, : B(e,1) c H® - M be a map satisfying the conditions contained in
Theorem 3.10.
Let {B(x;, p)} be a countable locally finite subcovering of {¢, (B(e, 1)), x € M} asin Lemma 3.2, and let ¢X]_

be the corresponding bounded contact charts from the unit Heisenberg ball, i.e., ¢Xi : B(e, 1) — B(x, p). We

show now that any ball B(x;, p) has a finite subcover of balls of radii 7.

Without loss of generality, we can assume that the ¢;g are defined on a larger ball B(e, A), where A > 11is
fixed and they still satisfy conditions (2) and (3) of Definition 3.1.

Let n > 0. We can cover the ball B(e, 1) by a finite number k = k(1) of balls of radii L, that is,

Cn

Ble, 1) c L}_(JB(ZI-, Ci) c Ble, A). (14)
M

i=1

For any z; as in (14), we define the map ¢; : B(e, %) — M as follows:
/)

b, (2) = ¢y ° T(2) = Py (zi - 2).
Notice that ¢! (e) = b, (zi - €) = a,’;], € ¢,(B(e, 1)).
J .
Since the map (l)x}, is a contact map, and we have composed with a translation, the map ¢, is a smooth
/)

contact map. Indeed, since ¢x,- is a contact map, we have (¢X]_)n9M - ¥, and hence,
(p1)16M = (¢, o 7, )16M =7 o (B, )0M = Ti0M = OM.
]

Moreover, the maps (;b; satisfy conditions (2) and (3) of Definition 3.1 with constants depending only on
7
Cyu but independent of x;. We can see that (2) still holds for ¢;, as a consequence of the left-invariance of the
/)

Korany distance (3). Indeed, for all p, g € B(e, 1), we have
du(D,(p), $1(@)) = du($y(zi - P). by (zi - D) = d(zi - p, zi - @) = d(p, @), (15)
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where the symbol = means that we have used the same constant Cj; given in (12).

Now, reasoning as in (15), for any i = 1,..., k = k(17), we have B(a};j, n) > (},’);_(B(e, &)) Hence,
7

k()

UB(a3n)

is a finite cover of the set B(x;, p).
Therefore, any ball B(x;, p) of the countable covering {B(x;, p)} of M has a finite subcover of balls of radii

1, and eventually {B(a};j, n)} is an at most countable covering of M uniformly locally finite.
From now on, we shall denote the covering {B(a,‘;i, n), q,');} simply by {B(aq, 1), ¢,}. By construction, any
/)

point of M has an open neighborhood of radius 7 that is covered by at most N(n) balls of the covering. The
number N(7n) satisfies the relation N(n) = k(n)N(M), where the symbol = means that there are constants
depending only on the geometry of M (i.e., on the Cy and r that were introduced in Definition 3.1), and
where N(M) is the number appearing in Lemma 3.2. Indeed, the constants appearing in (15) are only Cy; and
1/ Cy, just like in (12). Moreover, in the proof of Lemma 3.2 (see Lemma 4.11 in [6]), it is explicitly shown that
the constant N(M) depends on the geometry of the underlying manifold, as N(M) = N(Cy, ). O

Remark 3.6. We notice that, if we use a covering of M with balls of radius 7 small as mentioned earlier, the
constant cy, which gives the equivalence between the two norms in Remark 3.4, will depend also on 7.

3.1 Symplectic basis and orthogonal linear transformations

In the sequel of the article, we need to cover M with atlases that enjoy further properties besides those
contained in Definition 3.1. First, in the next theorem, we observe that we can replace the contacto-
morphism ¢, appearing in Definition 3.1 with another contactomorphism, which “sends” an orthonormal

symplectic basis of ker®¥ into the canonical orthonormal symplectic basis of ker8! (see (6)) and still
depending only on the bounded geometric constants and not on the point x. We begin with the following
remark.

Remark 3.7. Given a contact manifold M, for any x € M, there exists an orthonormal basis of ker 6,{” .

Proof. This can be shown by simply considering the endomorphism J : ker6 — ker6M, with J> = —Id. The
metric gM on M was already defined in Subsection 1.1, and it is globally adapted to the symplectic form d9™.
If we follow the steps of the proof of Theorem 2.1.3 in [31], and choose Z; € ker6™ to be a unit vector field,
i.e.,

1=gM(Z, 2)) = d6M(Z,, ] Zy),
then also JZ; is a unit vector field, as follows:
gM(zy, JZ)) = d60M(JZy, J?Zy) = -dOM(J?Z,, JZy) = —-dOM(-Z4, JZy) = gM(Zy, Z) = 1.

Notice also that g™(Z,, J1Z,) = d0M(Z,, J?Z,)) = -dOM(Z,, Z;) = 0, so Z; and JZ; are orthonormal.

To extend {Z;,JZ;} to an orthonormal basis of ker6M, let us consider a unitary vector field
Z, € span{Z, JZ;}* n kerOM. Arguing as earlier, gM(Z,,JZ,) = 0. To prove that the vectors fields
71, JZ1, Z,, JZ, are all orthonormal, we are left to show that g"(Z,, JZ,) = 0 and gM(JZ,, JZ,) = 0. Indeed,

8M(Z,, JZy) = d0M(Zy, J*Z,) = —-d0M(JZy, JZ,) = —-gM(JZ1, Z,) = O
by construction, and analogously

gM(Jz,, JZ,) = dOM(JZy, J?Z5) = dOM(Zy, JZ,) = gM(Zy, Z,) = O
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by construction.
Likewise, one can repeat the same reasoning n times and construct an orthonormal symplectic basis for
ker6M, O

From now on, the basis {Z,, ...,Zy, JZi, ...,JZ,} will be denoted by
W, .., Wil,

and we will refer to it as an orthonormal symplectic basis of ker6M,
We recall now the following definition.

Definition 3.8. Let V and W be real vector spaces of dimension N, both endowed with scalar products (-, )y
and (-,-)w, respectively. We say that the linear map

T:V->W

is an orthogonal linear transformation if, given {ey, ..., ey} an orthonormal basis of V, then {Te, ...,Teyx} = {&, ...,&n}
is an orthonormal basis of W.

The following proposition follows easily from a result of [1].

Proposition 3.9. Let a € M be a fixed point, and let {W}, ..., WM} be an orthonormal symplectic basis of
ker OM in a neighbourhood of a. Then there exist € = (a) > 0, and a smooth family of horizontal curves
yt:[0,€] —» M, for ¢ =1,..., 2n, such that

@ y0) = a;

(i) (y%)'(0) = W'(a);

4 — (F oMyt ey 1/2 M ; ; ; ;
(i) dy(y*(t), a) = jog H's), Y (s))ye(s)ds, where g¥ is the metric defined in Subsection 1.1.

Proof. Fix ¢ € {1, ...,2n}. Following [1], Section 4.3.1, denote by H : T*M — R the sub-Riemannian Hamil-
tonian associated with (M, ker6™, gM), and let A : [0, 1] — T*M be the normal extremal, i.e., the solution of

N() = HA®)),
with A(0) = (WM())! (recall that the Hamiltonian vector field H is defined by d9M(H, ) = —~dH) , so that
(A0), W¥(@)) = 8

Then the assertion follows from Remark 4.28 and Theorem 4.65 in [1]. O
The main result of this section is the following theorem.

Theorem 3.10. There exist 0 < r’ < r, and 0 < u < 1 (all depending only on the bounded geometry constants)
such that for any a € M, if we denote by {Wl’f’fl, vy WZ]',/,I o the orthonormal symplectic basis of ker6M (and, as in
(6), {Wl"fe, ...,Wz"jl,e} is the orthonormal symplectic basis of ker6''), and there exists a contact map Y, (that is
PiOM) = 6M),

Y, :Ble,y) cH" - M
satisfying B(a, r') c Y,(B(e, u)) and conditions (2) and (3) given in Definition 3.1 and such that:
@) Y le) = a;
(i) (dy)eW}, = W' for j =1,..., 2n, and (d)eé! = EM. In particular, the map

(dl)ba)e : Teﬂ‘ln - TaM, Vi (d"l}a)(:’(v)’

is an orthogonal linear map.
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Proof. Let a € M and let ¢, : B(e, 1) — M be a contactomorphism as in Definition 3.1 satisfying
(1) B(a,r) c ¢,(Ble, 1));
)

éd(p, q) < du(@,(p), ¢,(@)) < Cud(p, q) forall p, q € Ble, 1); (16)

(3) coordinate changes (,bb’ 1, ¢, and their first k derivatives with respect to unit left-invariant horizontal
vector fields are bounded by Cy.

We can also assume that ¢,(e) = a.
We consider the map

(dp)e : TH" — T,M.
The map q,')a‘l : ¢,(B(e, 1)) — B(e, 1) defines, by pushforward, the vector fields
{Why .., Wha} = {dg (W), ... A (W),
which are a symplectic basis of ker6". Indeed, since ¢, is a contact map, i.e.,
$i(6M) = o,
For example, if j =i + n, we have
o™ (W, W) = d6(dg;, ' (WM™, dg, (W)
= d(@}0")(d¢, (W), dgp, (W)

= Bi(d6M)(dg (W), dey (W)
= (doM|dg,dg, (W), dgp,dg, (W) = d6M(W", W) = 6.

In particular, (Wi(e), ..., Wh(e)) can be identified with a symplectic basis of R?". Hence, if we denote by
{e1, ..., e} the canonical basis of R?", there exists a matrix A = Ay € Sp(2n) such that

AWH, = Aei= Wie) i=1,...,2n

(we stress that the matrix A depends on dz;ba‘l). It is well defined the (Euclidean) linear contact map
L : H" —» H" associated with the matrix
A = A 02n><1
01><2n 1

with A € GL(R?**!, R2"*1), In particular, A induces an automorphism of the group.

We are now ready to show that there exist 0 < r’ < r and O < p < 1 (depending only on the constant Cy
appearing in (16)) and a contact map i, that satisfies the property of Definition 3.1, with constants
depending only on the bounded geometry, but independent of a.

Claim: We claim that the norm of Wi(e) can be bounded from above and below by constants depending
only on the constant Cy; appearing in Definition 3.1 and not on the point a. We can then write IIW,-(e)ll =1
(independently of the point a € M), where the symbol = means that the constants appearing above depend
only on Cy.

Let us assume for a while that the claim is true. It follows that also the norm of the matrix A is controlled
from below and above by a constants depending only on the constant Cy appearing in Definition 3.1,
ie., 1/Cy < IA] < Cu.

First, we notice that if p = (p1, ...,Dn, Pans1) = (D', Pans1) € H" and L(p) = A(D', Pans1) = (AP, Pons1),
then (Cyy > 1)

Citd(p, e)* < Cif (A" Ap'|* + 16p2,,1) < (AD'|* + 16p3.1) = d(L(p), €)* < Cd(p, e)*. a7
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Therefore, if 0 < y < 1, we have
L(B(e, w) c B(e, 1) (18)

if we take pu < 1/Cy.
Hence, we can define

Yy = @y ° Lise : Ble, ) — M.
The map ¢, is a contactomorphism and by construction satisfies
W% = (dy) W}

i

We show now that if ' < ro” we have

B(a, ') < ,(Be, ). 19)

Indeed, let b € B(a, r'). There exists p € B(e, 1) such that b = ¢,(p) (ifr' < r). By (16), if we taker’ < %, we
have

d(p, €) < Cudu(B,(p), a) = Cudu(b, a) < Ci
M

thatis, p € B(e, é) Since L is a linear isomorphism there exists g € H" such that p = L(q). We show that
q € B(e, ). Indeed, by (17),

d(g, ) < Cyud(L(q), e) = Cyd(p, e) < cMCi - .
M

Hence, b = ¢,(p) = (¢, ° L)(q) = Y,(q) € Y,(B(e, W) and (19) holds.
We need to show now that if p, g € B(e, u), then the condition (12) in Definition 3.1 is satisfied, that is,

Au(Y,(p), (@) = d(p, ),
where, here, the symbol = means that the constants appearing above depend only on Cy. Notice that if
p, q € B(e, ), then L(p), L(q) € B(e, 1), by (18), and

by (16)

duW(p), Y(@) = du(P,L(P)), L) =  dL(p), L(q))
=p(L(p) " L(@) = p(L(p™' - q)) = d(L(p™' - @), ).

As in (17),
dL(p™ - q), e) = d(p, @),
hence,
du(,(p), (@) = d(p, @),

where, again, the equivalence constants depend only on the constant Cy; appearing in Definition 3.1 and
hence independent of a € M.

We have now to check that the map i), satisfies also the third requirement of Definition 3.1. Leta, b € M,
and consider the maps i, = ¢, » L and ), = ¢, o L constructed as earlier. We recall that the maps L and L,
being linear contact maps, preserve horizontal derivatives. Since, by (3) in Definition 3.1, coordinate
changes ¢, o ¢, and all their first k derivatives with respect to unit left-invariant horizontal vector fields
are bounded by Cy, and it follows that i," o ), = it ¢," o ¢, o L enjoy the same property.

We are left with the proof of the Claim.

Let WM,..., WM be an orthonormal symplectic basis of ker " in a neighborhood of a. By Proposition
3.9, for any j = 1,..., 2n, there exists a curve y/(t) for t small, such that
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t
du(yi(t), a) = ng((y")’(S), )0}, ds-
0
Notice that the basis is orthonormal, hence for any j, g"((y/)'(0), (¥))'(0))y/? = MW}, WML/ = 1.
Let us take the map ¢, considered at the very beginning of the proof. Hence, again by condition (16), for
t # 0 small, we have

1/2 ds = dM(y](t)y a) ~ d(‘l’;l)’](t), e)
Y(s) t t ’

t
%ng((yf)'(s), LO) (20)
0

where the symbol = means that the constants appearing depend only on Cy.
If we set o/(t)=¢yl(t), then 0/(0)=¢'y/(0)=e. Since W= dg;'(W), we have

(07)(0) = (dgh;M)e(y))'(0) = (dep, )W}, = WiCe).
The map ¢, is a contact map, then the vector fields IW; are horizontal vector fields.

A

From now on, we argue with a fixed vector field W,. Hence, for the sake of simplicity, we shall drop the
index j writing W instead of VTG and o(t) instead of ¢/(t). Hence, we have

2n

W(p) = Y h(p)Wi, (21)
k=1

and o(t) = (oy(t), ...,00,(t), Oa.1(t)) satisfies:
o gi(t) = Mi(o(t)) if 1 < k < 2n, and

* 0501() = 354 (01O 0en(t) — O n(DO(L)).
By Taylor’s formula we have, for t — 0:

oi(t) = tA(0(0)) + O(t2) = tAk(e) + O(t?) if1 < k < 2n, and hence also o”,(t) = Ak(e) + O(t) if1 < k < 2n.
Replacing these expressions in 0y, (t), we obtain

Oonsa(6) = %Z((Ak(e) + O(O)tAxin(e) + 0(t) = (Ain(e) + O(O)(tAx(e) + O(E%)) = O(t?) = o(t?).
k=1

Therefore, for t — 0,
a(t) = (t(h(e) + 0(1)), ...,t(An(e) + 0(1)), 2 - 0(1)) = 6(A(e) + 0o(D), ...,Au(e) + o(2), o(1)),
where 6, is the dilation defined in (5). If we take p = e in (21), W(e) = (Ai(e), ...,Am(e), 0), hence
a(t) = 8(W(e) + o(1)).

Thus,

d(a(t),e) _ pla(t)
t

; = [ Wj(e) + o(] as t — 0.

Therefore, by (20), it holds

t
@) + oDl < ¢ M )®, 0O < Cullie) + oD,
0

as t — 0. Passing now to the limit for t — 0, and keeping in mind that g¥(y’(0), y'(0))Y/? = 1, we obtain

1 . .
—I[Wi(e)ll <1 < CullWi(el,
Cu

and the claim is proved. O



DE GRUYTER Sobolev-Gaffney type inequalities =—— 503

4 Some results about the lack of commutation between the pull-
back and the co-differential

In this section, we take the map i : B(e, 1) —» M as in Theorem 3.10.

Let a be a smooth differential form on M and set 8 == y'a the pullback of a. As already pointed out in
Proposition 2.16, pulling back dMa gives d!f. On the contrary, since §”a involves the Hodge *-operator, it
turns out that its pullback is not !B, i.e., Y!6M # 6"'yt. In this section, we shall examine the relation
between !6M and 6!'yt. Remember that both 6! and 6 are equal to + * d!'« and + * dM«, respectively. In
the sequel, we shall always drop the sign since we are only interested in estimates of norms.

In Definition 4.1 and Proposition 4.2, we recall some preliminary notations and results (see [23],
Section 2.1).

Let V and W be real vector spaces of dimension N, both endowed with scalar products(-,-)y and (-, - )w,
respectively.

If we denote by * the Hodge *-operator in V, the following equality holds

UA=*V:={Uvye A - Aey,

where {e, ...,ey} is an orthonormal basis of V. The Hodge *-operator on W is defined analogously.
To fix our notations, we recall the following definition (see [23], Section 2.1).

Definition 4.1. If V, W are finite dimensional linear vector spaces and L : V — W is a linear map, we define

AL : \WV = \uW
as the linear map given by

AWV A - Avp) = L) A -+ A L(vp)

for any simple h-vector vi A -+ A v € \pV, and

NL :NW - NV
as the linear map defined by

(ML) (@)v A == A i) = (@l(ARL)(vs A =+ A V)

for any a € \"W and any simple h-vector v; A --- A vy €AV

Proposition 4.2. If V. and W are N-dimensional vector spaces and L : V — W is an orthogonal linear
transformation, we have

#(ApL) = (An-pL) * .
Let {W}, ..., WM} be an orthonormal symplectic basis of ker8. If we denote by £ the Reeb vector field
on M, then the metric can be extended to a Riemannian metric on TM (still denoted by g™), so that
(WM, . WM &M}isan orthonormal frame of TM. Let {W}, ..., W3} be the standard orthonormal symplectic

basis of ker8™ (see (6)).
If m € M, we denote by

K : TuM — R21

the map which associates with a vector v € T,,M its coordinates with respect to the basis {Wﬂ”m, s Wz]‘,{m, {rﬁ'f 3
and by

fx . TX[Hn N [R2n+1

the analogous map which associates with a vector v € T,H" its coordinates with respect to the basis
{Wl[}jx’ ""Wg—rlz,x’ Wg—rlvrl,x}-
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We have the following property.

Lemma 4.3. If  : B(e, 1) » M is a map as in Theorem 3.10 and f and k are defined as earlier, we set
W= kyy © (@)ce fi1 5 RI - R,
and we set
Lys=lyt o Yoo frand Ry = kil o [% = ¥l o f.
Then
(d)x = Ly + Ry,

where the map L, is an orthogonal transformation for any x € H", and the linear map R, is a smooth map
vanishing at x = e. Moreover,

*Ah(dlp)x = A2n+1—h(dll))x * = Nop1-pRye * + % ApRy. (22)

Proof. By Theorem 3.10 (dy), is an orthogonal linear map, thus
klp(e) ° (d’)b)e" fe—l . R+l _, R2n+1

is an orthonormal map, since by construction both f, and k;,, are orthonormal maps for any x € H" and for
any m € M, respectively, that is, ¥, is an orthogonal linear transformation.
Moreover, if we express

Yo=Y +¥% -1,
we have
(d)x = Kty © B o fi = Kb © W o o + Ky o [%e = Wl o fr.
Thus, if we set
Lo = kyly o Yo fr and  Re =kl o [% — %o f,
we obtain
(d)y = Ly + R, and  Ay(dy)y = ApLy + ApR.

In particular, we notice that R, = (dy), — k,,j%x) o ¥, o fy, which can be seen as a matrix-valued smooth
map vanishing at x = e.

Moreover, the map kz/_;%x) o ¥, o f, is an orthogonal transformation for any x € H", and by
Proposition 4.2,

*ApLy = Nonr1-ply * .
Therefore, we can then write

*Ah(dll))x =#NpLy + % ApRy = Mopri-ply * + * ApRy
= A2n+1—h(d¢)x # = Nony1-nRyx * + % ApRy. O

In the following lemma, we discuss the interplay between the Hodge *-operator and the pullback.

Lemma 4.4. Let a be a smooth form on M of degree h, and let { : B(e, 1) — M be as in Theorem 3.10, then
l/;ﬂ(*a) — k l/)na = ijsj[H, (23)
I

where {{I[H}I is a left-invariant basis of the space of forms in H" of degree 2n + 1 — h, and b; € C®°(H™") are
smooth coefficients that vanish when evaluated at the point x = e.
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Proof. Let a be a form on M of degree h, and take vi A --- A Vony1_n € Mni1_ph an arbitrary simple
(2n + 1 - h)-vector of norm <1. If x € B(e, 1), using (22), we can write

(WHxa))vi A -+ A Vanaaon) = (ool Aone1-n(dP) (v A -+ A Vany1-p))
= (ayeol * [Done1-n(@P)x (i A -+ A Va1
= {aylAn(dP)y * (1 A -+ A Vang1on))
— {0l ArRy * V1A - A Vagga-n)) + (Aol * Monp1-hB(vi A -+ A Vapia-p))
= ()| A -+ A Vags1-n)) — (ool ARy * (A -+ A Vangi-p))
+ {ayeol * Donr1-nB(Vi A -+ A Vapya-n)).

Hence,
Yira) -« Yha = YbigH,
1
where the ¢ }H belong to a basis of the space of the forms of degree 2n + 1 — hin H".
Let Wy' be the dual of the (2n + 1 - h)-covector &}'. Then
bi(x) = (PH(xa))x — P WT') = (ayool AR * WD) = (@l * Donri-n(ROWT. (24)

Since R vanishes at x = e (see Lemma 4.3), then b;(e) = 0. O
By using 6™« instead of & in (23), we obtain:

Corollary 4.5. With the same hypotheses of Lemma 4.4, we have
Yi(x6Ma) — » Pi(Ma) = Y BEY, 25)
J

where {.f][H Yy is a left-invariant basis of the space of forms in H" of degree 2n + 2 — h, and B; € C*°(H") are
smooth coefficients defined by

Bj(x) = (@H(x6Ma)), — (i8N ), | WT) 06)
= (M) ool An1RIC = WY = ((BMa)poo| * Donsa-nROWS')

and that vanish when evaluated at the point x = e.

Remark 4.6. Let us denote by r;  the coefficients of An(Ry) WH, The 1j x are smooth maps that vanish at x = e.
Let us notice that, even though the coefficients b; are functions on H", by the second equality of (24) in the
proof mentioned earlier, they can be expressed as a linear combination of terms of the form

Qi) Tix = (@ o P)(X) (%), (27)

where we used the subscript ¢ to highlight the dependence of b; on the map .

Remark 4.7. Let us assume a to be a form on M of degree h, then by Lemma 4.4, we know that

dipi(xa) — d « Pi(a) = dﬂ*gbﬁ}“- (28)

Applying the Hodge *-operator, then we obtain
sdi'Pi(xa) — « df = Pi(a) = = diYY bié]s
1
Keeping in mind that d}y! = !dM, the expression mentioned earlier becomes *!(dM * a) — 8:'Pi(a) =

«dy'y, &l Therefore, writing, up to a sign, 1 = * =, from the last equality, we have «ipi(x * dM * a) -
8'}a) = « d'y,bié;]', and, again up to a sign, we eventually obtain
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SMYi(a) = = Pi(«6Ma) + = deIZbeIH- (29)

If2n +1 - h # n (i.e., h # n + 1), the differential dﬂ* has order 1, then by left-invariance, we have

#d' Y bl = Y (W'hy) * (@' A ).
1

el
Then, *d} Ybié }H is a form of degree h — 1 whose coefficients are of the type
(W' o) Tix OF @ ycey “(WE'T ).

When h = n + 1 the differential d{' has order two. Then «d;'y, b;é}" is a form of degree n whose coefficients
are of type

(W' W3l p00) 1,0 (W' pe0) WiTix 0 @y (WY WI'T; ).
Moreover, by (26), the coefficients B; are of the type

(Wi yoo) Tix f h#n+1, or (WEWY'a; yoo) 1ix if h=n+ 1.

We are now in position to examine the interplay between !6¥ and &'yt

Proposition 4.8. With the same hypotheses of Lemma 4.4, we have

SHypt(a) = YrSMa) + * dc[HZbe}H + ZB]é’][H, (30)
I J
where the coefficient by and B; are defined in (24) and (26), respectively.

Proof. We start from (29) and combine with (25) to obtain, up to a sign,

8YMa) =« YHEMa) + « 'Y bidl + = Y By} O
I J
Given a smooth h-form a on M, we show below that the LP-norm of

Mt — YisMa

is small if a is supported in a suitably chosen small ball. To show this, we have to handle terms of the form
Wf;“ (@i, px))- 1j,x and terms of the form a; y ) -(W(l_”rj,x) (and with a little difference in the case h = n + 1). The
proof relies on two different approaches: for terms like a;,y(x (W{'r; x), we use a Sobolev inequality and the
fact that the support of a is small; on the contrary, when we want to handle terms of the form
wy! (@;,px))- Tj,x» We use the fact that the r; , tend to zero as x — e. Remember that the r; , are the coefficients
of AW(ROWY, which depend only on the map Y (see Lemma 4.3), and the map ¥ can be controlled with
constants depending only on the geometry of M, i.e., onr and Cy; (by Theorem 3.10). In conclusion, we find
that the radius of the support can be chosen independently of « and depends only on the geometry of M.

Proposition 4.9. For any a € M, we consider the map =, as in Theorem 3.10. With the notation of
Proposition 4.8, we define the operator

PO, WHpla = &' (Pla) — YoM a) = « di'y bigl' + = Y Big)'. 31)
1 ]

The operator P is a linear differential operator on H", which is of second-order if h = n + 1 and of first-order
otherwise.

Let1< p < oo and let € > 0. Then there exists i = 1(Cy, 1, €) > 0 such that if n < 7(Cy, €) and a is a
smooth h-form on M supported in B(a, n), we have
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1P CP*Ol oy (ia, . 2ty < EID* @iy tipa,ny, 2y (32)
ifh+n+1,or

1Pty miamy, ey < NP allwzeey i ny, 50 (33)

Proof. By Proposition 4.8, the operator # acts on y'a, since we can write
Px, Whpla = &' (Pra) - P& ph ' (pla).

As pointed out in Lemma 4.4, the smooth mapsr; x vanish at x = e, and since they are the coefficients of
A2n+1_h(RX)W}H, they do not depend on a but only on .

Keeping into account (27), which expresses b;, we obtain estimates of the type
[b10CO| < e, ool QX),

where Q(x) = O(p(x)) for x — e (with a slight abuse of notation here and in the sequel we avoid to take the
sum over the index i).
Moreover, if h # n + 1, from (29), by the triangular inequality, we also obtain estimates of the type

168 H@) — YN0l < Y IW i pol Q0O + ey - ) Wi, (34)
14 4

where Q(x) = O(p(x)) for x — e.
Similarly, if h = n + 1, remembering also that d™ is a second-order differential operator, we have
estimates of the type

|62 H(@) — YHE )| < Y IWWE iyl Q) + Y IWE 'y - D WET A + o) - Y (WE W ol (35)
oA ¢ 1 oA

where Q(x) = O(p(x)) for x — e.
e Caseh +n + 1.

Let us estimate the L?-norm of the first term in the right-hand side of (34). If x — e then Q(x) — 0, then the
LP-norm of term Zelwg*ai,l/,(x)lﬂ(x) is controlled by £}, Wita|» provided x is sufficiently close to e. Thus,
now we need to estimate the second term of the right-hand side of (34).

Hence, we need only to handle carefully the terms that can be expressed as a linear combination of
terms of the form:

Ao “(WE'T ) = g o POO-(WE'r ).
The functions W{'r;, are bounded in (B(a, n7)). But B(e, %) c YY(B(a, n)) < B(e, Cyn), and by the
Sobolev inequality,
1/p 1/p
| @epoora| <oam [ Tl o woordr|
B(e,Cun) Ble,Cun) *
where ¢, denotes the Sobolev constant (depending only on p and n).
If we chose 17 so that ¢,Cyn < €, i.e., n < 1, where
€

n= CpCM ’ (36)

and finally, we obtain,

s,y (W't )l Bamy < X NWE s pllrg ey -
P

Therefore, reasoning on the differential form a, and possibly relabeling €, we obtain (32).
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e Case h = n + 1. Arguing again as mentioned earlier, we notice that the first term on the right-hand side of
(35) is of the form (W{'W}'(a;yc)))- 7jx and can be estimated by ey, ,|W{'W}'(a)l» since r;, — O
if x —> e.

Hence, we need only to handle carefully the terms that can be expressed as a linear combination of terms of
the form

(Wz[Ha,-,l/,(X) . W,"\*)ri,x and al-,ll,(x) '(W(I;HW}}\{))’]"X.

They can be handled again by using the Sobolev inequality, since both first and second derivatives of r; , are
bounded in B(e, Cyn). Indeed, when we apply Sobolev inequality to terms of the form Wé”ai,,/,(x), we obtain
an estimate with terms of the form ¢,CynY, AW W W) |py1(p(a, - Similarly, the terms of the type
Qo) “(WE WiHr « can be estimated by ¢,CunY. IWe' (W)l ey aia,ny)-

Therefore, again choosing c,Cyn < €, eventually we obtain (33). O

Notice that 7 depends also on p, n, but this dependence is not explicit in the statement given earlier
since it is well known and what is relevant to us is to show the dependence on the geometry of M.

Remark 4.10. If the differential form « is of degree n, to prove Theorem 5.4, we shall also need to know the
interplay between Y}(dMsM) and a6t y?.
We set
Q(x, W) = '8 (Yha) — (a6 a). @7
Now, Q(ta) = d'sY (Yla) — YiadMsMa) = al'st (Yla) — dt''(6Ma). Hence, keeping in mind (31), we easily
see that

Qx, W) = df'P(x, WM)

is a second-order differential operator (since Py'a is a form of degree n — 1 and hence d" is a differential
operator of degree 1). To estimate the L? norm of Q(x, WH)(y*a), we have to estimate terms of type

(We'W3 (@,p00)) T W' po) WETx  OF @ iy (W WEDE .
Hence, with the notation of Proposition 4.9, given € > 0 if n < 7(Cy, €) and «a is supported in B(a, 1), then
lRW')|Lr < elpialyzr. (38)

Likewise, if the differential form « is of degree n + 1, in proving Theorem 5.4, we shall need also to
evaluate the difference 8'a! (Y'a) — Y*(6MaMa). Let us set

T, W) = 8'de' () — 48 d ).
Hence,
Tix, WH) = P(x, wH)aX

is again a second-order differential operator (since d!'ytfa is a form of degree n + 2 and hence P is a
differential operator of degree 1). As for the operator (38), we have

1T )l < elptalyzr. 39)

The estimates (38) and (39) obtained in Proposition 4.9 will be used in the proof of Theorem 5.2.

In the sequel, to prove a Gaffney estimate on M, once we have chosen an atlas on M and a partition of
the unity subordinated to the chosen covering of M, we will need also some L? estimates of the commutator
between the operator d¥ (or §M) with a smooth function. A key step to obtain such L? estimates is given by
the following lemma (since we are only interested in estimates of norms, the following inequalities are true
up to signs).
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Lemma 4.11. Let i be a contactomorphism from an open set U c H" to M, and denote by V the open set
V = ¢(U). If x is a smooth function in M and a € EX(V), we have

Yi([d, xla) = [de', x  YIla  for any h, (40)

YiI8Y, xlo) = (67, X o YlPla + [P, x o YIpi(+a) if h#n+1, (41)
Yi((dMsM, Xla) = (A8l o Ylpla + [df'P, x o YlPla if h=n, (42)
Yi((6MaM, xla) = (61l x o Ylpia + [Pl x o YilPla if h=n+ 1L (43)

Proof. The first equality follows directly from the fact that the Rumin differential and the pullback of a
contact map commute (see also Proposition 2.16):

YA, xla) = Prd (xa) - PiixdMa) = diGre) — x o - YHdMR) = Gy o - Pra) - x o - dEia
= [d!', X = Ylpia.

For the second formula, the codifferential and the pullback map do not commute; however, we can use (31):

Pi((M, X1 = YoM (xe) — (xS a)
= 81 (xa) + PYHxa) — x © PpioMa)
=8 o Y- Yha) + P o Y- Pla) — x o Y& Pla + Pla)
=[8" % © YlPla + [P, x  Plpla.

The third and fourth formulae will follow by using a similar reasoning as earlier:

Pi([dM8M, x1a) = YHdM8M (X)) — YH(xd M6 a)
= dfP6Y (xa) — x o YdiyYiEMa)
= d (6 Pi(xa) + PYH(xa) — x o Ydi' (6 Pra + Ppia)
=dl' &' (X o Y- Pra) + Py o Y- PP)) - x © Pdi' (8 + PPia)
=[d'8, x o Yl + [dI'P, x - Yl

and as for (43), using again (31), we obtain

Yi((6Md}, Xla) = Y81 dY (xa) — Yi(xsMd M)
= &'pid Y (xa) + Ppid (xa) - x o Y&F'Yda + Ppida)
= & di i) + P Pixa) — x o Y(&'de ' Pra + P Pra)
=[x o Ylla + [Pd, x - Ylpia. O

5 Sobolev-Gaffney type inequalities on contact manifolds

We recall the following Sobolev-Gaffney type inequalities proved in the setting of Heisenberg groups for
differential forms in D(H?", Eé‘) (see [4], Remark 5.3, (i), (iii), (vi) therein). By density of D(H™", Eg’) in
WkP(H", E) (see Theorem 2.3), this result can be rephrased as follows.

Lemmab5.1. Let1 < h < 2n, and 1 < p < oco. Then there exists a constant C; = Cs(p, n, h) > 0 such that for all
u € Whp(H", ED), we have:
@ ifh+n,n+1,

||u||w1-P([|-|",E(;‘) < CG(”dg—lu"LP(H”,Eé'”) + "6cHu||LP([|-|",E(§”1) + ”u"LP(H",E(;l)), (44)

(i) ifh=n,
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N

ldllwzrain gy < Collde ullppan gy + Ide' 8 ullrgim gy + Iullrain g)s (45)

and
(iii) ifh=n+1,

IN

lullyzein grery < Co(ll8e dd ullprgan gy + 168 ullrain gy + Nullppan goeny). (46)

Before stating the global result, we prove the following local one where we can use the groundwork just
developed, together with the Gaffney-Sobolev inequality stated in the previous result.

Theorem 5.2. If1 < p < o0, there exists a positive constant 1j = fj(Cy, Cs) such that, ifn < 1j, (B(ay, 1), l,ba() is
a chart of the atlas given in Remark 3.5, and a is a smooth form in M with support contained in B(ay, 1), then
there exists a constant C = C(Cy, Cg) such that, if h + n,n + 1, then

M
Il (g icaamnit) < CABRALP (g piagn,el) + W5 (e O (g B, my, s

. )
+ g (B 0N (yaamy, 52 1))-
Whereas, if h = n, we obtain
M
I3 e (ymaomyy) < COWE e (g iaaom.eg) + 195 Ol (g iBiagm, ez
(48)
MgM
+ ||l/),§e(dc 6(,‘ a)"Lp(IIJ‘;;(B(GQ,TI)),ES))'
and if h = n + 1, we obtain
||ll’§£“||w2-ﬂ(lp,;el(B(ae,q)),Eg“) < C("'I)gea"Lp(ll)';zl(B(ae,n)),Eé”l) + ||1P§£(5CM d Oler (4, Blaem). ™)
(49)

M
+ ||¢3€(6c Oller (y, Baum).E;))-

Proof. We consider a chart (B(a,, 1), z[)az) and assume that l,[)az is taken as in Theorem 3.10.
To avoid cumbersome notation, in the sequel, we omit the subscripts, and we write B(a, n) and .
Moreover, we set

By = % '(B(a, )

and write LP(E’,T) instead of LP(y"1(B(a, 1)), Eg’) and similarly for the notation on Sobolev spaces. If a is
supported in B(a, ) then, without loss of generality, we may assume that ta is compactly supported in
B(e, 1/ Cu), since B(e, &) < Y (B(a, n)) < Ble, Cyn).

To prove (47), we use first (44) with (31) and then (32): given € > 0, by Proposition 4.9, there exists 17
(see (36)) so that, if n < 77, we obtain

Itallyrs,) < Collptaliram + I WYra)llramy + 16F Wra)llrginy)
< CollPtalips,) + WY @lrg,y + IWHE D)@, + 1P )l E,)
< Co(llptallr, + lpta Ollrr@, + lptM Ollzra, + elptalr,))-

1
ZCPCMC(;

Choosing € < 1/(2Cs), we have proved (47) for n < 7] =
dependence on ¢, was omitted).

Let now h = n. The argument mentioned earlier needs to be only slightly modified. Indeed, we will
apply the Gaffney inequality (45), where both d!' and d!'6!! appearing on the right-hand side are differential
operators of order 2. Therefore, keeping also in mind (38), we obtain

(notice that in the statement, again, the
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IWrallwer s, < Coflptaliram + g WYra)llram + I1dE 88 (Pra)llpram}
< Colllpralir,y + lpta Ollrr@,) + lptasM Oz, + 1QW ) Lr,)}
< Cellpiallrs, + WM, + 1WHdX6M NG, + elpialyerg,)}-

Choosing € < 1/(2C;), we can absorb the term £||l,[)na||w2yp(gq) in the left-hand side and eventually obtain (48).
The case h = n + 1 can be handled similarly, taking into account (39) and proving therefore (49). 0O

As noticed in Remark 3.5, if a is supported in B(a, 1), then the norms
ladlweran,gy  and  Ptalwergn g

are equivalent, with equivalence constants independent of i. From the previous theorem, we immediately
obtain the following local result in M.

Remark 5.3. Under the notation of Theorem 5.2, let B(a, 1) be a ball satisfying Remark 3.5. Let a be a smooth
form supported in B(a, n). If n < j(Cy, Cg), then there exists a constant C > 0 depending only on Cj; and Cg,
so that, if h # n, n + 1, we have

e,y ey < CUliripiam, ey + 14 alrepiam, ey + 162 lLripia,n,2-4)- (50)
Whereas, if h = n, we obtain
lellw2ozea . eny < CUllr@@m,en + 1Mo ety + 1826 dllr@am,en)s (51)
and if h = n + 1, we obtain
ldiwracan,zpy < CA@ILraam.epy + 162 dllr@a ey + 162 @lrap,e)- (52)

We are now in position to prove the following Sobolev-Gaffney type inequalities on M if we assume M
to be a smooth sub-Riemannian contact manifold without boundary with bounded geometry.

Theorem 5.4. Let (M, H, g) be a smooth contact manifold with bounded geometry, without boundary. Let
1<h<2n,and1 < p < co. There exists a positive constant C = C(Cy, Cg) such that for all a € W-P(M, Eé’),
we have:

(i) forh+n,n+1,

||a||W1’P(M,E5') < C("cha”LP(M,Eg*l) + ||6CM£X||Lp(M’Eg—1) + ||0(||LP(M,E§)); (53)
(ii) for h = n,
lelwzogu, gy < CAAMallpan, gy + MM allran gz + Il p)s (54)
(iii) forh=n + 1,
letlwzoau, g2y < CUSM AN  llrous, gty + 16X llrun, gy + Ntlzran, gnesy)- (55)

Proof. Let %ﬁ(CM, Cs) < n < 1(Cy, Cg) (where 1j is taken as in Theorem 5.2) and consider the countable,
locally finite, atlas U = {B(a;, ), l/)i} of Remark 3.5, where l[)i : B(e, n/Cy) — M. As in Definition 3.3, let

now {y;} be a partition of unity subordinate to the atlas. Without loss of generality, we can assume

Y (supp x;) < B(e, n/Cu)-
We have

azz/yja.

j
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Notice that X is supported in l,bj(B(e, n/Cu)). By definition, if ¢ = 1, 2, we have

p
lllwera, 3 = [Z"‘/’}O(ia)"ﬁ/”m",Eé)] )
j

In the sequel ¢ will denote a geometric constant that may vary from line to line, depending in principle
on Cy, Cs, n (and on p, h, n). Once we have chosen n such that %ﬁ(CM, Cs) < n < fi(Cy, Cg), the dependence
of ¢ is only on Cy, Cs (and on p, h, n).

® Suppose first h + n, n + 1. We divide the proof in three steps.

Step 1. Let j € N be fixed, and let (B(g;, 1), l/)]-) be a chart of ¢ . We apply Theorem 5.2 to 1/)}?()(].0() (see
(47)), and hence,

n .
Gy e

II',D]?‘(X].a)IIWLp(B(e,CL ) £8) < c{llll}}(d,f” Xja)”LP(B(e,%)’Eéwl) A VACH Xja)lle(B(e Jer) IIII),?(Xja)IILp(B( ),Eg)}

Now, since
dM () = x;dla+ [dY, xla, 8 (ga) = x;6a + [6Y, x;1a,

from the previous inequality, we obtain

||zl)}’(x,-a>“fvl,p(,g(e,%)fg)

<c IIIIJ}‘(X].dCMa)IIfP(B( .

“ou

t ||t/»}0(,-6é”a>||fp( (

),Eg+1 B e,&),Eg’l) (56)

+ IO el? + pid, xlel? + [pH8Y, x;1lP .
AL n j j n\ phe J j nY\ o
Lp(B(e,G),E(;') L”(B(e,m),Eé' ) LP(B(e,@), E! 1)

Step 2. We show now that we can control the sum with respect to j, of the last two terms in (56), with the
norm IIaIIfI,(M £y

First, by Lemma 4.11, (40) and (41),
YHdM, yla = [dY, x; o Ylpla
and
WS, xila = [8%, % o Yylla + = [d¥, x; o Yyl = a.

On the other hand, by Lemma 2.13, the differential operators [d}, X; > ¥]and [6H, X; ° ¥;] in H™ have

order 0 if h # n, n + 1. Keeping in mind this fact, we start from the estimate of the LP-norm of z/;}.”[d(f” pare
We have:

H ° f H o 1. f
lde", x; l/’i]lpj“”Lp(B(e,%),Eg*l) s¢ kzs;-” e X; o il (Xka)"L”(B(e,%),Eé”l)
)

<c z ||l/Jf(Xka)”LP(B( ),Eé’)

n
e
4o
kel; M

<c Z ||¢}p(¢]£)71¢]£(Xka)||LP(B( ),Eé')

n
e,
C
kEI,‘ M

(57)

<c) ||l/);§(Xka)"L"(B(e,$),Eé’)’

kGI,'

where #1I; < N(n) since, by Remark 3.5, B(qj, n) intersect at most N (1) other balls of the covering (and where
the constant also depends on the uniform bound by Gy, of the horizontal derivatives of i, 1, ll)]-). However,
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since 7 is bounded above and below by a quantity that depends only on Cy and Cg, also the #I; can be
controlled only by a geometric constant. Hence, also

¥, x; o ylpal? o

128 e

< c Y Ipfogal”

hety P n°
)EO P’ L (B( ' ),EO)

Finally, an analogous estimate of the LP-norm of [&!, X ° l,bj]l,bl?a, gives an estimate of the LP-norm of
z/;}!‘[&j” , X;]a. Indeed,

NI ) "B e )

kel;

Using once again the fact that the cover is uniformly locally finite and that Z].Zke ;= Zkzje ;o Summing

up over j in the inequalities mentioned earlier and keeping in mind Remark 3.4, we obtain

;nzpf([dc’”, )(j]a)||fp(3(e,%) gt ¥ Z_||¢f([6c’”,x,-]a)llﬁp(3(e ars

»50

z # p
<cC l,b 24 < Clla
- " k(Xk )"LP(B(e,Cn ),Eo) ” "Lp(M E )

Step 3. Finally, summing up over j in (56), and using the last estimates, we obtain
1/p
il
. 1
p wo(s(e. L ).2t)
1/p 1/p

1/p
o[ Swimarerr, . :),m] M e ) (T e

+ ||a||LP(M,E(§'),

which, keeping again in mind Remark 3.4, gives eventually (53).
® Let now h = n.
The argument mentioned earlier needs to be slightly modified. For j € N fixed and keeping in mind

again that x;a is supported in l/)i(B<
oG ll?
W)

, c’l )) we apply now (48) to obtain

.Eg)

{ MNP # MgoM N\ (P
< C{lllp](x}dc a)”LP(B(e’%),Eg“) + "lhb](X}dC 5c a)"Lp(B(e Ci) ED) (58)

N ||¢}(Xia>u;(3( ar
e

e, |,E
” 0)

+ "lp}([dCM’Xj]a)"ip(s(e,cl) ||lP"([dM5y:X;]a)||pp(B( 2 )EO)}

’E())’H-l)

Since h = n, by Lemmas 2.13 and 4.11, Y[}, x;] and }[d/'8}", x;] are now operators of order 1. Rea-
soning as in Step 2, we can write

||¢]}1([dCM,X}.]a)lli’p(B(e,gl) - ) lelbk(xka)ll (( %)Eé‘)

kel;

If we combine this with Remark 2.7, then for any 0 < € < 1, there exists a constant c(¢) such that
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;||¢}([d34,x,»]a)||fp(3( )

e
< ;||¢,§(xka)||;’vl,p(3(e%)£g> (59)
< e§||¢,§o(ka)||fvz,p(3(e’C,L),ES) + c(e)n;¢,§0cka)||fp(3(e%)w
< ellaligon gy gry + CENANT gy gy
A similar argument shows that
§||¢]?([dg”6§4, Xf](xf“))”fvw(e, n ),Eg) < e gy gny + CENAUp gy g - (60)

Going back to (58), summing over j and taking the power 1/p of all the addends, we obtain
lelwzru,gny < cldMallppangoy + 1406 ey + lellranepy + elallwzranen + c@lallran,eg)-

Therefore, absorbing &lally2ruy, gy in the left-hand side, up to changing the constants from line to line,
we obtain (54).

*Thecaseh=n+ 1.

We fix again j € N and we start from the local estimate (49). The case h = n + 1 can be dealt with a
similar argument to the case h = n. Indeed, we have to use the fact that the differential operators
zp]?[(SCMdCM ,X;] and z/)}?[{SCM »X;], again by Lemmas 4.11 and 2.13, are operators in H" of order 1. Then we can

produce estimates for these operators analogous to the ones in (59) and (60). Finally, to conclude we need,
once again, Remark 2.7. O
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