Combined gravity field time series derived from Swarm and Sentinel GPS data

Thomas Grombein, Martin Lasser,

Daniel Arnold, Ulrich Meyer, Adrian Jäggi

Astronomical Institute University of Bern, Switzerland

Contact: thomas.grombein@aiub.unibe.ch

Introduction

Motivation

- Any Low Earth Orbiting (LEO) satellite with a GPS receiver may serve as a gravity field sensor (in addition to dedicated missions)
- GPS tracking data of LEO satellites may be used to derive largescale (time-variable) gravity field information
- Our goal: Multi-LEO gravity field time series taking advantage of a
 - Large number of continuous observations
 - Complementary orbital configurations
- Focus here: contribution of Swarm, Sentinel and GRACE-FO GPS data
 - 1) Which quality can be expected from individual LEO gravity field solutions?
 - 2) Can a Swarm gravity field time series profit from additional LEO data?

Source: ESA, NASA

Introduction

Gravity field recovery

- Celestial Mechanics Approach (Beutler et al., 2010)
- Two-step procedure
 - 1) GPS tracking data \rightarrow Kinematic orbit positions
 - 2) Kinematic orbit positions \rightarrow Gravity field recovery
- Processing with the Bernese GNSS software

Ocean RMS values of equivalent water height differences w.r.t. ITSG-Grace2018 (Mayer-Gürr et al., 2018)

Difference degree amplitudes w.r.t. ITSG-Grace2018

Sentinel-1 and GRACE-FO solutions may contribute to the low-degree coefficients

Difference degree amplitudes w.r.t. ITSG-Grace2018

field time series derived from Swarm and (GGHS2022), Austin, USA, 12–14 Sep 2022 Arnold, U. Meyer, A. Jäggi: Combined gravity field time Geoid, and Height Systems 2022 Symposium (GGHS202 D. σ T. Grombein, M. La Sentinel GPS data.

Swarm-only solution

Weighted combination at solution level (based on formal errors)

Zonal + near zonal coefficients are impaired by the influence of Sentinel's polar gap

Weighted combination at solution level (based on formal errors)

Zonal + near zonal coefficients are solely based on

Swarm and GRACE-FO data

Combination at normal equation (NEQ) level (using variance component estimation)

Quality of lower degrees can be further improved

(no special handling of polar gap needed)

Quality of combined gravity field solution

Ocean RMS values of filtered EWH differences w.r.t. ITSG-Grace2018

Quality of combined gravity field solution

• RMS values over all months for each grid cell (EWH differences w.r.t. ITSG-Grace2018)

Swarm

Time-variable gravity field signals (fit of monthly solutions)

- Combined gravity field time series based on GPS data of 7 LEOs from 6 years
- Main findings
 - Swarm gravity field time series can be improved using further LEO GPS data
 - Sentinel-1 / GRACE-FO data can contribute to the most relevant lower degrees
 - Influence of Sentinel's polar gap propagates into combination at solution level
 - Full potential is exploited by a combination at normal equation level
- Outlook: Extension of time series and inclusion of data from further LEO satellites

Source: ESA, NASA

•

Thank you for your attention