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Abstract: Human fibroblast growth factor 21 (FGF21) is a multifaceted metabolic regulator considered
to control sugar intake and to exert beneficial effects on glucose and lipid metabolism. Elevated
serum FGF21 levels are associated with metabolic syndrome, suggesting a state of FGF21 resistance.
Further, given the evidence of a hepatic ChREBP and FGF21 signaling axis, it can be assumed
that SSBs containing fructose would possibly increase FGF21 concentrations. We investigated the
effects of sugar-sweetened beverage (SSB) consumption on fasting FGF21 levels in healthy, lean
men, discriminating the effects of glucose, fructose, and their disaccharide sucrose by secondary
data analysis from a randomized controlled trial. Seven weeks of daily SSB consumption resulted
in increased fasting FGF21 in healthy, lean men, irrespective of the sugar type. Medians of ∆FGF21
between post-SSB intervention values (week 7) and no-intervention period values (IQR) in pg/mL
were: glucose 17.4 (0.4–45.8), fructose 22.9 (−8.6–35.1), and sucrose 13.7 (2.2–46.1). In contrast, this
change in FGF21 concentration was only 6.3 (−20.1–26.9) pg/mL in the control group. The lack of
a fructose-specific effect on FGF21 concentrations is contrary to our assumption. It is concluded
that SSB intake may impact FGF21 concentrations and could contribute to the increased FGF21
concentrations observed in subjects suffering from metabolic syndrome that is possibly associated
with decreased FGF21 responsiveness.

Keywords: glucose; fructose; sucrose; sugar-sweetened beverage; FGF21; liver; homeostasis; healthy
men; randomized controlled trial

1. Introduction

For many people, daily consumption of sugar-sweetened beverages (SSBs) is an
inherent part of their diet. High free-sugar intake (e.g. in the form of beverages) has
been identified as a factor promoting metabolic alterations that may not only lead to the
development of obesity [1], but also type 2 diabetes [2], non-alcoholic fatty liver disease
(NAFLD) [3], cardiovascular disease [4] and other complications. In particular, previous
studies in healthy men revealed alterations such as decreased hepatic insulin sensitivity [5],
increased hepatic lipogenic activity/lipogenesis [6,7] and atherogenic lipid profiles [8]
induced by regular consumption of SSBs containing fructose. In the present work, we
investigated the effect of SSB consumption on fibroblast growth factor 21 (FGF21), which
is considered a liver-derived hormone with multifaceted acute and chronic effects on
metabolism [9] and which impacts the regulation of food intake. In particular, it regulates
simple sugar intake and sweet taste preference [10], stimulates thermogenesis/energy
expenditure [11] and has beneficial effects on glucose [12] and lipid metabolism [13].
FGF21 is supposed to have therapeutic potential for the treatment of metabolic syndrome
and obesity, as it increases glucose uptake by the muscles [14] and adipose tissue (AT),
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induces adiponectin secretion by AT [15] and increases energy expenditure due to induction
of browning of white adipose tissue (WAT) [16,17]. Paradoxically, serum FGF21 levels
are elevated in subjects with obesity [18,19], metabolic syndrome [18], NAFLD [20] and
coronary artery/heart disease [21,22]. It is hypothesized that increased FGF21 levels could
indicate a state of FGF21 resistance [23,24].

FGF21 is subject to a complex regulatory network. A variety of stimuli have been
found to induce FG21 expression in various tissues [25]. However, the major origin of
circulating FGF21 is reported to be the liver [9]. Macronutrient intake is an important
regulator of FGF21 levels, and its effects on FGF21 have been explored in numerous animal
and human studies. While studies in mice have shown that starvation and ketogenic
diets increase FGF21 serum concentrations [26,27], these effects did not occur in human
dietary studies, indicating differences between species [19]. In contrast, both rodent and
human studies demonstrated that protein restriction increases FGF21 levels [28]. Studies
in humans showed that FGF21 is transiently increased after a glucose, fructose or sucrose
challenge [29–31], with fructose inducing an earlier and stronger FGF21 response compared
to glucose (75 g challenge). The FGF21 response after a fructose or sucrose (disaccharide of
glucose and fructose) challenge are in a similar range [30]. Interestingly, the serum FGF21
response to simple sugar intake is enhanced in subjects with metabolic syndrome compared
to healthy subjects [30].

While acute effects of simple sugar intake on FGF21 serum concentrations are known,
there is a gap of knowledge regarding the impact on FGF21 levels of repeated SSB con-
sumption in moderate amounts. This study aimed to describe the effects on fasting FGF21
serum concentrations of daily SSB intake over a period of seven weeks in healthy, lean
men by a secondary, descriptive evaluation of data from a randomized controlled trial. In
particular, it focuses on reporting the effects of different sugars, such as glucose, fructose
and the disaccharide sucrose.

We supposed that prolonged exposure to fructose- and sucrose-containing SSBs would
result in higher FGF21 levels, since it has been suggested that FGF21 secretion is mediated
by ChREBP, which itself is strongly induced by fructose. In addition, the study also
describes the changes in food intake resulting from SSB consumption (macronutrient
composition and energy intake).

2. Methods
2.1. Study Design

A randomized controlled SSB trial was conducted in the years 2013–2016 at the
University Hospital of Zurich to investigate the effects of SSB consumption on hepatic
de novo lipogenesis (primary trial) [6]. The present study is based on data from this
trial and includes additional exploratory analyses of the trial data. Over the course of
7 weeks, subjects consumed daily fructose-, sucrose- or glucose-sweetened beverages
(80 g sugar/day) or had to abstain from SSB consumption (control). Subjects were randomly
assigned to one of four dietary intervention groups (simple random allocation) and supplied
with 2 dl SSB containers (13.3 g sugar/dl) containing pure fructose, sucrose or glucose, or no
SSBs (control) (Molkerei Biedermann AG, Bischofszell (provided SSBs in coded containers);
Swiss technology testing service, Dietikon (quality control)). These SSBs were produced
exclusively for the trial and not commercially available. The drinks had to be consumed
with the three main meals during the day.

2.2. Subjects

A total of 126 healthy male volunteers (age 18–30 years) with BMI < 24 kg/m2 were
recruited to the study (primary trial) by advertisement at the University of Zurich in
the years 2013–2016. Study participation was limited to only one sex (males), as there is
evidence of divergent metabolic effects of fructose on males and females [32]. Eligibility was
assessed by examination and included medical history and blood biochemistry. Subjects
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with high SSB consumption (exceeding 3 dl/day) or engaging in more than 3 h of physical
activity per week were excluded from the study.

The study was approved by the Ethical Committee (Canton Zurich, Switzerland).
Written informed consent was obtained from all individuals, and all procedures were
performed in compliance with the guidelines of the Declaration of Helsinki. A total of
83 subjects gave consent for further use of their data and blood samples for secondary
analyses and thus were included in the present study.

2.3. Protocol

At baseline and after seven weeks of intervention, subjects were examined at the
Clinical Trial Unit, University Hospital Zurich as described in [6]. After an overnight fast,
routine anthropometric data were collected (weight, height, waist and hip circumference)
and blood samples were drawn for the measurement of laboratory parameters. On both
occasions, the participants provided food records of their dietary intake for the three days
before the examination.

2.4. Anthropometry

Subjects were weighed using a digital balance (WB 100 P, Tanita, Hoofddorp, the
Netherlands), and height was measured using a wall-mounted stadiometer. Waist and hip
circumference were determined using a measuring tape.

2.5. Laboratory Analysis

Blood glucose was measured from whole blood samples (BIOSEN C-line, EKF Diag-
nostic, Barleben, Germany). Triglycerides (TG), cholesterol and free fatty acids (FFA) were
measured enzymatically in fresh serum (triglycerides, GPO-PAP; cholesterol, CHOP-PAP;
HDL-cholesterol plus 3rd generation, Roche Diagnostics, Mannheim, Germany; free fatty
acids, Konelab Free Fatty Acids; Thermo Scientific, Dreieich, Germany). From frozen serum,
C-peptide was measured using an immunoradiometric assay (IRMA-C-PEP; CIS bio inter-
national, Bagnols-sur-Cèze Cedex, France), insulin was measured by radioimmunoassay
(RIA; CIS Bio international, Oris Industries, Gif-Sur-Yvette, France) and leptin, adiponectin
and FGF21 were measured using ELISA (Leptin EZHL-80 SK; Linco Research, St. Charles,
MS, USA; adiponectin DRP 300, R&D Systems Inc., Minneapolis, MN, USA, ELISA; human
FGF21-ELISA, RD191108200R, Brno, Czech Republic).

2.6. Dietary Assessment

For assessment of dietary intake, subjects recorded their food and beverage intake
in a 3-day diary (weighed food record) [33]. A detailed analysis of the dietary intake was
performed using a nutrition software system (EBISpro for Windows 8.0 (Swiss version),
Dr J. Erhardt, University of Hohenheim, Hohenheim, Germany) that converts the reported
consumed food into individual nutrients.

2.7. Statistics

Statistical calculations were performed with SPSS version 26 (IBM). As this is a purely
exploratory analysis, we show descriptive statistics only. All variables and differences were
tested for normal distribution. Accordingly, data are expressed as means with confidence
intervals or medians with interquartile ranges (IQR) (non-normally distributed data in at
least one group).

3. Results
3.1. Anthropometry

Data of 83 subjects (mean age 22.9 ± 2.5 years) were included in the analyses. Baseline
anthropometric characteristics are reported in Table 1. Overall, the SSB intervention did
not change anthropometric characteristics.
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Table 1. Anthropometric characteristics at baseline (W0) and after intervention (W7).

Variable Control Group
N = 21

Glucose Group
N = 20

Fructose Group
N = 23

Sucrose Group
N = 19

Age (years) W0 22.5 (21.2–23.8) 22.0 (20.8–23.1) 23.6 (22.6–24.5) 23.4 (22.3–24.4)

Body
weight (kg)

W0 69.7 (65.8–73.7) 71.4 (68.0–74.7) 69.5 (65.8–73.1) 76.2 (72.9–79.4)

W7 69.9 (66.0–73.8) 71.9 (68.7–75.1) 69.8 (66.2–73.4) 76.7 (73.6–79.9)

∆ 0.0 (−0.9–1.4) 1 0.3 (−0.2–1.4) 1 0.8 (−0.7–1.2) 1 0.2 (−0.4–1.3) 1

Height (m) W0 1.81 (1.78–1.84) 1.81 (1.78–1.84) 1.80 (1.77–1.83) 1.83 (1.80–1.86)

W/H ratio
W0 0.88 (0.87–0.90) 0.85 (0.83–0.87) 0.87 (0.85–0.89) 0.87 (0.85–0.89)

W7 0.88 (0.87–0.90) 0.85 (0.83–0.87) 0.87 (0.85–0.89) 0.88 (0.86–0.90)

∆ 0.00 (−0.01–0.02) 0.00 (−0.02–0.02) 0.00 (−0.02–0.01) 0.01 (−0.01–0.02)

Abbreviations: W/H, waist hip ratio. Data are presented as means (CI) or medians (25th and 75th percentile values) 1.

3.2. Glucose and Lipid Metabolism

Parameters of glucose and lipid metabolism are reported in Table 2. Fasting glucose
and insulin values were comparable before and after the intervention, while C-peptide
tended to be increased after the sucrose intervention (mean ∆ (CI) 55.8 (6.0–105.6) pmol/L).

Table 2. Lipid and glucose metabolism at baseline (W0) and after intervention (W7).

Variable Control Group
N = 21

Glucose Group
N = 20

Fructose Group
N = 23

Sucrose Group
N = 19

Fasting
glucose

(mmol/L)

W0 4.33 (3.97–4.63) 4.26 (4.09–4.42) 4.38 (4.15–4.53) 4.40 (4.20–4.66)

W7 4.47 (4.09–4.67) 4.39 (4.09–4.56) 4.44 (4.16–4.73) 4.32 (4.24–4.57)

∆ 0.03 (−0.16–0.23) 1 0.05 (−0.14–0.23) 1 0.01 (−0.15–0.17) 1 −0.02 (−0.14–0.10) 1

Insulin
(pmol/L)

W0 104.1 (79.3–137.7) 98.3 (80.6–121.8) 103.4 (75.6–134.9) 94.7 (45.7–123.0)

W7 90.9 (76.0–117.6) 107.4 (83.2–143.0) 99.3 (83.5–154.8) 89.8 (53.9–108.9)

∆ −13.0 (−34.6–8.6) 1 11.5 (−12.3–35.4) 1 −6.3 (−34.4–21.7) 1 −8.2 (−32.0–15.5) 1

c-peptide
(pmol/L)

W0 410.0 (360.0–445.0) 435.0 (360.5–560.0) 390.0 (290.0–510.0) 350.0 (290.0–430.0)

W7 380.0 (355.0–490.0) 480.0 (324.0–610.0) 390.0 (310.0–510.0) 430.0 (280.0–500.0)

∆ −13.6 (−68.8–41.6) 1 −11.7 (−72.4–49.1) 1 −3.7 (−38.4–31.0) 1 55.8 (6.0–105.6) 1

Triglycerides
(mmol/L)

W0 0.77 (0.66–0.93) 0.72 (0.53–0.88) 0.84 (0.58–1.15) 0.84 (0.61–0.92)

W7 0.74 (0.62–0.94) 0.72 (0.53–1.12) 0.86 (0.61–1.04) 0.68 (0.58–0.88)

∆ −0.00 (−0.21–0.14) 0.03 (−0.09–0.27) −0.08 (−0.31–0.07) −0.12 (−0.27–0.13)

FFA (µmol/L)

W0 428 (361–700) 531 (463–770) 520 (340–703) 464 (343–745)

W7 481 (393–580) 368 (284–547) 363 (296–472) 441 (273–754)

∆ 30 (−269–114) −172 (−363–51) −117 (−263–28) −87 (−407–187)

Total
cholesterol
(mmol/L)

W0 3.80 (3.40–4.35) 3.60 (3.30–4.30) 3.90 (3.60–4.50) 4.10 (3.40–4.50)

W7 3.70 (3.25–4.25) 3.80 (3.20–4.35) 3.80 (3.60–4.10) 3.9 (3.58–4.35)

∆ −0.10 (−0.30–0.00) 0.00 (−0.35–0.40) −0.10 (−0.50–0.10) 0.10 (−0.50–0.30)

LDL
cholesterol
(mmol/L)

W0 2.00 (1.55–2.55) 1.80 (1.50–2.30) 2.35 (1.90–2.68) 2.20 (1.70–2.70)

W7 2.00 (1.45–2.50) 1.95 (1.40–2.38) 2.00 (1.80–2.60) 2.10 (1.65–2.53)

∆ 0.00 (−0.15- 0.10) −0.10 (−0.20–0.30) −0.10 (−0.50–0.20) 0.00 (−0.40–0.20)

HDL
cholesterol
(mmol/L)

W0 1.39 (1.25–1.62) 1.45 (1.27–1.70) 1.36 (1.09–1.55) 1.40 0 (1.16–1.71)

W7 1.37 (1.11–1.51) 1.48 (1.15–1.67) 1.29 (1.13–1.62) 1.49 (1.28–1.67)

∆ −0.07 (−0.21–−0.01) −0.05 (−0.10–0.10) 0.02 (−0.18–0.14) 0.08 (−0.12–0.16)

Leptin
(ng/mL)

W0 2.1 (1.1–3.4) 2.0 (0.8–3.1) 2.4 (0.7–3.3) 2.7 (1.4–3.3)

W7 2.1 (1.1–3.1) 2.1 (1.4–4.0) 2.6 (0.9–3.5) 3.2 (1.7–4.3)

∆ 0.1 (−0.5–0.6) 1 0.6 (−0.2–1.4) 1 0.3 (−0.1–0.6) 1 0.6 (0.1–1.1) 1
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Table 2. Cont.

Variable Control Group
N = 21

Glucose Group
N = 20

Fructose Group
N = 23

Sucrose Group
N = 19

Resistin
(ng/mL)

W0 3.6 (3.0–4.3) 3.9 (3.2–4.5) 4.1 (3.1–5.0) 3.7 (3.1–4.2)

W7 3.7 (2.8–4.3) 3.8 (3.2–5.0) 4.0 (3.2–4.5) 3.5 (3.1–4.3)

∆ 0.1 (−0.4–0.2) 0.0 (−0.3–0.7) −0.3 (−0.6–0.1) 0.1 (−0.3–0.4)

Adiponectin
(µg/mL)

W0 6.0 (4.2–9.2) 6.0 (3.7–6.9) 5.1 (3.7–8.7) 4.9 (3.6–7.0)

W7 5.8 (3.9–9.1) 6.2 (4.5–7.2) 4.6 (3.5–7.4) 5.6 (4.3–6.7)

∆ −0.2 (−1.0–0.7) 0.4 (−0.6–1.6) −0.3 (−1.1–0.3) 0.1 (−0.7–0.8)

FGF21
(pg/mL)

W0 49.3 (18.6–81.0) 51.6 (42.1–65.6) 45.0 (24.5–82.5) 31.6 (20.4–59.0)

W7 61.4 (33.6–90.3) 70.3 (26.6–107.1) 53.9 (38.9–108.8) 58.6 (32.0–102.8)

∆ 6.3 (−20.1–26.9) 17.4 (0.4–45.8) 22.9 (−8.6–35.1) 13.7 (2.2–46.1)

Abbreviations: FGF, fibroblast growth factor; LDL, low-density lipoprotein; HDL, high-density lipoprotein. Data
are presented as medians (25th and 75th percentile values) or means (CI) 1.

3.3. Fasting FGF21 Concentrations

Fasting FGF21 concentrations showed some variability between subjects (Table 2). The
increase after 7 weeks in the SSB groups (as compared to baseline) was higher than in the
control group. Medians of differences of the SSB intervention groups were 2.2- (sucrose),
2.8- (glucose) and 3.6- (fructose) fold higher relative to the control group. Figure 1 il-
lustrates the differences in FGF21 concentrations between baseline and after 7 weeks of
SSB intervention.
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3.4. Food Intake

The dietary intakes at baseline and after 7 weeks of SSB intervention are shown in
Table 3 and Figure 2. There is some variability regarding the baseline sucrose intake. The
intake of the different sugars changed according to the specific SSB interventions, and the
total sugar consumption increased accordingly. Overall, there was no apparent increase in
total energy intake by SSB interventions.
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Table 3. Dietary intake of the subjects of the different groups at baseline (W0) and after intervention
(W7).

Control
N = 21

Glucose
N = 18

Fructose
N = 19

Sucrose
N = 18

Energy (kcal/day) W0 2085 (1887–2662) 2024 (1791–2462) 1835 (1502–2322) 2214 (1976–2723)

W7 1898 (1687–2364) 2389 (1876–2510) 2131 (1707–2574) 1894 (1640–2911)

∆ −187 (−396–−36) 112 (−234–497) 155 (−223–578) −68 (−936–311)

Carbohydrate, % W0 47 (44–49) 2 47 (44–50) 2 47 (43–50) 2 47 (44–50) 2

W7 48 (44–52) 2 58 (55–61) 2 56 (53–60) 2 52 (48–56) 2

∆ 1 (−2–5) 2 11 (7–15) 2 10 (5–14) 2 4 (0–8) 2

Protein, % W0 17 (15–18) 2 18 (15–20) 2 17 (15–19) 2 19 (17–21) 2

W7 18 (16–19) 2 15 (14–17) 2 14 (13–15) 2 17 (15–19) 2

∆ 1 (−1–3) 2 −3 (−5–0) 2 −2 (−5–0) 2 −2 (−4–1) 2

Fat, % W0 37 (35–39) 2 35 (32–38) 2 36 (32–39) 2 35 (32–38) 2

W7 35 (32–38) 2 29 (26–32) 2 29 (26–32) 2 33 (29–37) 2

∆ −3 (−8–2) −4 (−11–−1) −7 (−10–−2) −2 (−6–0)

Fructose 1, g/d W0 6.9 (4.3–15.4) 4.5 (1.2–7.9) 5.8 (2.8–9.8) 7.8 (1.9–12.4)

W7 5.1 (2.2–7.3) 3.6 (1.8–6.8) 81.8 (79.7–86.1) 2.8 (0.6–7.3)

∆ −1.8 (−9.3–1.0) −0.5 (−3.8–1.1) 75.1 (63.7–80.6) −4.4 (−8.8–0.1)

Glucose 1, g/d W0 4.8 (2.8–10.8) 4.4 (1.4–8.1) 5.3 (2.1–8.6) 5.9 (2.1–8.9)

W7 5.0 (2.1–6.0) 83.3 (80.6–84.2) 3.5 (2.1–6.8) 2.6 (0.7–5.5)

∆ −0.5 (−6.7–1.3) 78.0 (75.6–79.7) −2.0 (−4.9–1.8) −0.7 (−6.7–0.6)

Sucrose, g/d W0 61.1 (43.1–81.9) 50.2 (32.9–83.6) 43.2 (32.2–82.5) 78.6 (56.4–94.8)

W7 51.0 (33.6–70.9) 48.9 (28.8–68.0) 51.8 (27.7–65.4) 118.1 (101.9–146.0)

∆ −10.8 (−23.5–2.0) 2 −5.4 (−18.0–7.1) 2 1.9 (−15.1–18.9) 2 45.2 (25.4–65.1) 2

1 as monosaccharide. Values are shown as medians (25th and 75th percentile values) or means (CI) 2.
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Figure 2. Macronutrient composition of the diet at baseline (W0) and at week 7 (W7) of
the intervention.

SSB interventions changed macronutrient ratios. The percentage of energy intake
from carbohydrates increased in all SSB interventions by 4 to 11 percent. SSB intervention
resulted in decreased fat intake in the glucose group and fructose group by 4–7 percent.
SSB intervention also reduced protein intake by 2–3 percent.

3.5. Adipokines

Adipokine concentrations are reported in Table 2. Leptin levels tended to be higher af-
ter the glucose (mean ∆ (CI) 0.6 (−0.2–1.4) ng/mL) and sucrose interventions
(0.6 (0.1–1.1) ng/mL) (Figure 3 illustrates the distribution of differences). In contrast,
changes in levels of resistin and adiponectin were comparable throughout the groups.
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4. Discussion

This secondary descriptive reporting of data from a subgroup of a controlled trial [6]
shows that after daily intake of sugar-sweetened beverages over seven weeks, fasting
FGF21 concentrations were increased in healthy men. This effect occurred in the glucose-,
fructose- and sucrose-SSB intervention groups and thus was irrespective of the type of
added sugar. Contrary to our assumption, fasting FGF21 concentrations were increased
to a similar extent after consumption of glucose-, sucrose- and fructose-containing SSB,
despite known substantial differences between the hexoses with respect to absorption,
distribution and metabolism [34]. Although both fructose and glucose acutely induce a
FGF21 serum response that is considered to result from stimulation of the sugar-ChREBP-
FGF21 signaling axis in the liver, the acute FGF21 response induced by fructose was found
to be stronger than the one induced by glucose [30]. This difference may be explained
by the fact that fructose is a more potent hepatic ChREBP inducer than glucose because
absorbed fructose is very rapidly and almost completely metabolized by the liver. The
liver is considered the main site of fructose metabolism and the predominant source of
circulating FGF21. However, thresholds of monosaccharide levels required for induction
of the hepatic ChREBP-FGF21 axis may be achieved after consumption of both fructose-
and glucose-sweetened beverages, and thus, the effects of regular consumption of glucose-
and fructose-sweetened beverages regarding fasting FGF21 serum concentrations may
be similar.

Furthermore, the liver is not the only site of FGF21 expression. The muscles and
adipose tissue are additional sources of FGF21. Thus, it could be hypothesized that the
relative contribution of the liver-, muscle- and fat-derived FGF21 to FGF21 serum concen-
trations may be different during fructose- vs. sucrose- vs. glucose-SSB interventions. It has
been shown that insulin induces FGF21 expression in the muscles, which contributes to
circulating FGF21 [35]. Therefore, the muscles may also represent a possible site of origin of
circulating FGF21, in particular, after glucose consumption. Furthermore, there is evidence
of leptin-induced FGF21 expression in WAT [36]. Notably, leptin levels were increased
after the interventions with SSB containing glucose, which would be consistent with in-
creased FGF21 levels. Increased FGF21 expression in adipose tissue after a high-glucose
but not after high-fructose diet has been demonstrated in mice [37]. To our knowledge,
the contribution of FGF21 expressed by muscles or adipose tissue (in response to glucose
and fructose) to circulating FGF21 has not yet been investigated in humans. Future studies
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should investigate the effects of SSB consumption on gene expression of FGF21, as well as
its receptors and target genes in different tissues (liver, muscle, brown adipose tissue (BAT)
and WAT).

In the current study, as well as in previous studies [7], we observed no overall increase
in energy intake by SSB interventions, but we did find an overall higher sugar intake by
SSB interventions. Thus, SSB consumption did not lead to a fully compensatory reduction
of sugar intake from other sources. However, we observed a reduction of the energy intake
from protein and/or fat (i.e., in the glucose and fructose group), which is consistent with
previous SSB studies [7]. This finding implies that sugar intake is not solely regulated
by FGF21 but is subject to a regulatory network with additional players that still need to
be identified.

Increased FGF21 expression could be regarded as an adaptive response that contributes
to glucose homeostasis in individuals regularly exposed to sugar loads. FGF21 induces
glucose disposal by different mechanisms and thereby maintains blood-sugar homeostasis.
As an important FGF21 target tissue, adipose tissue increases adiponectin secretion, glucose
uptake and uncoupling protein 1 (UCP1) expression [15]. We also measured adiponectin
serum concentrations, as FGF21 is considered to increase adiponectin concentration [38],
which then increases insulin sensitivity and promotes adipogenesis and glucose uptake by
AT [38,39]. In the present study, we observed no changes in adiponectin concentrations.
However, it remains open whether adiponectin expression in adipose tissue was increased
by the intervention of the study.

Similarly, the levels of resistin (which was also shown to be involved in the adiponectin–
FGF21 axis [40]) also remained unchanged.

A change was observed in C-peptide levels, with an increase in fasting C-peptide in
the sucrose group possibly pointing to a slight decrease in insulin sensitivity after 7 weeks
of consumption of sucrose-containing SSBs.

Assuming a state of FGF21 resistance in metabolic diseases, as described above, the
question is whether this state can be reversed. Indeed, animal studies have been able to
show that a reduction of obesity-induced metabolic disturbances via enhancing FGF21
sensitivity in adipose tissue is possible, e.g., by exercise [41]. It remains to be clarified
whether such mechanisms also play a role in humans.

Our observation that regular SSB consumption may increase fasting FGF21 concentra-
tions contrasts with a recent study reporting that fructose intake does not change baseline
FGF21 concentrations in men [42]. This discrepancy may be explained by the different
interventions in the studies. Subjects of the latter study had to consume a daily total dose
of 75 g fructose according to their individual preference within 24 h (over two weeks). This
means that they possibly ingested the fructose at single doses below the threshold of 20 g
required to induce an FGF21 response [43]. This threshold was achieved with our study, in
which subjects had to consume 80 g of sugar as SSB drinks divided into three doses per day.

Our study has some limitations. First, our analysis is a descriptive secondary report
of data from a randomized controlled trial. Thus, it was not powered to detect between-
group differences regarding FGF21 levels. Its character is exploratory, and thus, further
trials are needed to confirm the findings. Since this would necessitate a group size of
60–90 participants as calculated using the actual variances observed in this study, it might
be advisable to use a cross-over design to reduce interindividual differences. However, it
must be taken into account that a cross-over design allowing the comparison of effects of
different sugar types would impose a long-term obligation on study participants. Second,
it is an inherent problem of dietary studies that awareness of being on a dietary study,
per se, may impact the outcome, and that choosing an adequate placebo is difficult. A
placebo group receiving artificially sweetened beverages was not used in the study, as
such non-caloric sweeteners potentially affect human metabolism (e.g., appetite control,
weight and microbiome composition) [44,45]. For future studies, a water control might by
an option to at least control for the volume provided. Third, women were not included in
our study, as divergent metabolic effects of fructose on men and women are known, which
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could confound the results [32]. However, the inclusion of young men can be justified, as
they generally have a higher SSB intake and thus represent a population with a possibly
increased risk to develop metabolic alterations [46]. Fourth, the study neither explored the
origin of serum FGF21 after SSB consumption nor the transcriptional response in FGF21
target tissues. Of course, these measurements are technically demanding and require
biopsies; they should be addressed in future studies.

5. Conclusions

This study describes an increase in fasting FGF21 concentrations after moderate daily
SSB consumption as compared to a control group. Interestingly, effects of glucose-, fructose-
and sucrose-sweetened beverages on FGF21 were comparable, indicating that repeated
intake of SSB over the course of several weeks elevated FGF21 levels irrespective of the type
of sugar consumed. Accordingly, SSB consumption may contribute to the emergence of
FGF21 resistance that may affect metabolic health. Further studies are required to confirm
our findings and to provide better understanding of the impact of SSB consumption on
FGF21 physiology.
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